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Renormalizable Theory of the Weak Interactions*

N. CHRISTt
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A class of renormalizable 6eld theories of the weak interactions is investigated. These theories, of the
type 6rst suggested by Kummer and Segrh, postulate that the weak interactions are mediated by the
simultaneous exchange of two scalar particles. It is found that although the leptonic and semileptonic weak
interactions can be fairly easily described by a two-scalar-exchange mechanism, the structure of observed
nonleptonic weak processes presents serious obstacles to the success of such a theory. Nevertheless, two
particular models are discussed which may correctly describe not only the leptonic and semileptonic weak
interactions but also nonleptonic weak processes.
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FIG. 1. An example of the type of
diagram that describes neutron p
decay in the two-scalar-exchange
theory.

~ Work supported in part by the U. S. Air Force OfIIIce of Air
Research and Development Command under Contract Xo.
AF491 (638)-1545.

/Alfred P. Sloan Fellow, on leave from Columbia University.
'That such a theory may, in fact, be able to describe the ob-

served weak interactions was erst suggested and discussed by
W. Kummer and G. Segrh, Nucl. Phys. 64, 585 (1965). The
author is indebted to F. E. Low for bringing that article to his
attention. Throughout this paper a "scalar" particle will be a
particle with zero spin, but it may not have a de6nite parity.
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I. INTRODUCTION

'HE presently observed weak interactions can be
successfully described, as is well known, by the

phenomenological Lagrangian

g 1G(J s+,J /)e(J A+/ i) (1)

where J„"and J„' are the conventional hadronic and
leptonic weak currents. In order to construct a complete
theory, this Lagrangian, or one modiGed by the addition
of an intermediate vector boson 5',

&w~=t,"i&~'(J."+J.')+gi~u(~. "+~.')* (2)

can be treated as a Geld-theoretic Lagrangian. The
resulting Geld theory is nonrenormalizable and therefore
plagued by serious difhculties impeding the calculation
of all but the lowest order terms of an expansion in

powers of G (or gi). In the following we will attempt to
circumvent these dHIIIculties by adopting a fundamental
Lagrangian basically very different from (1) or (2). In
particular, a class of Lagrangian Geld theories will be
discussed which not only agree to lowest order with the
known leptonic and semileptonic weak interactions but
are also renormalizable.

The type of theory to be discussed postulates that the
weak interactions are mediated by the simultaneous
exchange of two heavy scalar bosons. ' Thus, for
example, neutron P decay is described by diagrams of
the type found in Fig. 1.We show that if certain general

conditions are satisGed by the weak couplings of these
exchanged bosons to the hadrons and leptons, then in
first approximation the usual form (1) for the leptonic
and semileptonic weak interactions' is guaranteed.
These conditions can be satisGed by couplings consistent
with renormalizable Geld theory. Additional require-
ments are placed on the theory by our knowledge of the
nonleptonic weak interactions. However, the many
diKculties associated with a Geld-theoretic treatment
of the strong interactions prevent a useful general
analysis. We will be content with a qualitative investi-
gation of two simple models. These models must specify
not only the details of the weak couplings but also part
of the structure of the strong interactions.

The number of different scalar bosons which can be
exchanged in pairs can of course be large. For simplicity
we will limit the discussion to theories containing E
distinct scalar bosons which can be exchanged, all with
the same mass 3f. These appear in a weak Lagrangian
of the form

& ~=& ii+& i,"

(3)
= g Q g .(S .l+S.h)

where the 8; are E Hermitian Gelds corresponding to
the bosons which can be exchanged. The local operators
S (x) and S;"(x)are composed of leptonic and hadronic
operators, respectively, and thus connnute to zero order
in g. S (x) and S;"(x) transform like scalar functions
under the proper Lorentz group. The coupling constant
g must be suQiciently small that perturbation theory is
applicable.

In Sec. II it is shown that if the operators S (x) are
required to have a certain general form, then: (i) Z~i, '

given in (3) will, to lowest order, correctly describe
muon decay and all other known features of the low-
energy leptonic weak interactions; (ii) Z„z will generate
a renormalizable field theory. In order to be concrete,
we discuss in detail a simple model for Z„k .This model
requires the introduction of two heavy neutral leptons

The leptonic, semileptonic, and nonleptonic weak interactions
are weak processes involving only leptons, leptons and hadrons,
and only hadrons, respectively.
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L, and L„' as well as the intermediate scalar bosons
8+ and 8'. Additions to the anomalous magnetic
moments of the charged. leptons and corrections of
order (m„/M)' to the p decay amplitude are computed.
These set a lower limit on M, the heavy boson's mass,

II. LEPTONIC PROCESSES

A. General Discussion

We will now show that the operators S (x), appearing
in the leptonic part of the Lagrangian

M&2 BeV.
Z„g' ——g QB;S (5)

In addition, the lowest-order parity-violating correc-
tions to the electromagnetic vertex of the charged
leptons are computed.

In analogy with the weak couplings proposed for the
leptons, the hadronic operators S;~ are assumed to
satisfy certain general requirements speciGed in Sec.
III A. Here it is shown that, to order g4 and'zero order
in (m&/M)', these conditions imply that the low-energy

semileptonic weak interactions are described by the
phenomenological Lagrangian given in (1). m~ is the
nucleon mass. Unfortunately, correction terms of order
g' or g'(mN/M)' cannot, in general, be computed unless

further assumptions are made. In Sec. IIIB these
general considerations are illustrated by the discussion

of a particular model. In this model, the operators
S;"(x) satisfy the requirements proposed in Sec. III A

and are written explicitly in terms of an SU3 triplet of
spinor Gelds and an additional Geld corresponding to a
new heavy fermion.

The nonleptonic weak interactions are discussed in

Sec. IV. The general requirements placed on the theory
in Secs. II and III are not sufhcient to determine the
nonleptonic weak interactions —the explicit form of the
operators S;"(x)must be given. Even when this detailed

information has been supplied, only rough qualitative
estimates of the weak processes of interest can be made.
A general analysis of all possibilities is hence unreward-

ing, and we will instead discuss two simple models

qualitatively. Both of these models assume that the
weak hadronic current Jq" can be written as a sum of
bilinear products of an SUB triplet of spinor Gelds. The
first model, requiring a total of six new particles and
their antiparticles, is the simplest. However, this model

is so constrained by the smallness of parity violation in

nuclear transitions (which are proportional to 1/M) and

strangeness-changing weak processes (which increase
as M') that it may well be inconsistent with present
experimental information. The second model, involving

eleven new weakly interacting particles and their anti-
particles, may allow the intermediate boson masses to
be quite large (M 30 BeV or perhaps even greater),
and is very likely consistent with all present experi-

mental knowledge. This model, however, requires two

relatively light neutral leptons (with masses about
1 BeV) whose weak couplings are exactly like those of
the neutrinos v„and v, if the Cabbibo angle 8q is re-

placed by Og —~~.

can be so restricted that (i) if taken to lowest order
2„&' correctly describes the low-energy leptonic weak
interactions, and (ii) Z„q generates a renormalizable
theory. If 8„&' is to yield a renormalizable theory, the
operators S must be constructed of bilinear prod-
ucts of spin--', fields —without derivatives. ' The V—3
structure of muon decay can be assured to zero order in
(m„/M)' if we require each lepton field f to appear only
in the form (1+ps)f. M is the mass of the heavy bosons
J3; and is assumed to be much larger than the muon
mass m„. We will therefore require S to have the form

S.
f=P, e, PIs, Vy

N'

where p, e, v„, v, are the muon, electron, muon-neutrino,
and electron-neutrino Gelds, respectively. The 4SS'-
complex constants C;"(P) should have magnitude less
than, or of the order of, one. The operators L" are the
field operators (conventionally normalized) for N'
distinct and presently unobserved spin- —, particles with
masses M„.In addition to the couplings specified by (5)
and (6), the I."have only electromagnetic interactions.
We will assume the existence of separately conserved,
additive electron (L,) and muon (L„) lepton numbers.
Conservation of L, and L„and the requirement that the
bosons 8; have zero lepton number implies

P C "(f) C "(P')=0 (2)

jul & e vpvg ~

To order g' and first order in (tn„/M)s, the amplitude

' A. Salam, Phys. Rev. 82, 217 (1951); 84, 426 (1951); P. T.
Matthews and A. Salam, Rev. Mod. Phys. 2B, 311 (1951).

4 The masses M must be so chosen that order g' decays of the
sort p ~ v+5'+& cannot occur.

f f and. f' carry different lepton numbers.
The Lagrangian described by (5)-(2) correctly pre-

dicts all known features of the leptonic weak inter-
actions if a simple relation between g, C;"(P), and G is
satisGed, and if M is suKciently large. To prove this we
need only calculate the amplitude for the decay4
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for the transition (8) in the limit m, =o is given by

g' — re„' p„ke p„.p.
Ci+Gs=++s +&4

3P 3P 3P
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Fxo. 2. The Feynman dia-
gram representing the ampli-
tude for muon decay as pre-
dicted by the model described
in Sec. II B.

X &„&.„(1—vs)Ldi(P. —&.)+dsm. )fI.

+0(m„'/M'M ')+0(m„'/M'), (9a)

where

, = P (P C-(, )C-(„)*PC-"'(e)C-(. )*
nn' u

—C,"'(e)C,"'(u.)*j)
M„2—M„.2

Ms(M. ' M')— 3f„'
ln(M'/M ')

i(M' —M ') (M' —M ') (M' —M ')'

M„.4
ln(M'iM, )). (9b)

(M' —M ')'

S. A Particular Model

Characteristic of this type of two-scalar exchange
theory is the possibility of measurable sects of order
g'. If we consider only processes involving known
leptons, then the only measurable g' eGects are correc-

' Throughout this paper we use p= —ip"&", where 7~, 1&@,(4,
are the standard Dirac matrices; p', p', p' are the spatial com-
ponents of the four-vector p" and p =ip is its imaginary fourth
component; (p)'= (p')'+(p')'+(p')s —(p')'. There is no distinc-
tion made between Lorentz indices appearing as subscripts or
superscripts. For a vector operator V„, V„*=VJ(1—26„4).

The a; and d; depend only on C;"Q), M, and 3II„, and
are given in Appendix A. p„, p„k„,and k. are the four-
momenta' of the muon, electron, muon neutrino, and
electron neutrino, respectively, while U„, U„U„„,and
U, , are the corresponding spinors. Thus, if M is suK-
ciently small that the corrections in (9) of order m„'/Ms
can be neglected, and if

g'a, /M'= G/v2,

then the Lagrangian given by (5) and (6) correctly
describes muon decay. This Lagrangian also allows, in
general, all other lepton-number-conserving four-lepton
interactions, such as

P.+e ~ P.+e,
&s+&e + &s+&sp

e +e ~ e +e, etc.

to occur to order g'. The amplitudes for these processes
can be easily computed and have a form analogous to
that found for muon decay.

tions to electromagnetic vertices and lepton propa-
gators. Such corrections can be computed explicitly for
the general theory described by (5) and (6). However,
for clarity, we will investigate these g2 eGects for a
specific, simple model. In this model there are two inter-
mediate bosons 8+ and 8, and their antiparticles, 8
and 8'. (Here it is inconvenient to deal with Hermitian
fields. ) in addition, there are two heavy, neutral leptons
L,' and L„', one with electron lepton number and the
other with muon lepton number. These leptons are
assumed to have the same mass M as 8+ and 8'. In
terms of these fields, the weak Lagrangian is given by

Z„p' ——(4~)'~'g P L8-/(1 —ys)I.,'+8't &(1—ys)I ~'
l=e, II,

+Hermitian conjugatej. (12)

With this explicit choice of the parameters C;"(f) we
can considerably simplify the expression in (9) for the
muon decay amplitude. The resulting amplitude is
represented by the Feynman diagram in Fig. 2 and,
with the approximations and notation of (9), is given by

g4

U,q" (1+'r,)U„g„„»(1+&,)P„
3 312

1m„' 1p„k,~ 1

20 Ms 1O Ms j 1OMs

X ~„„(1—q,) (2m„—P,)U„.

This expression is certainly consistent wjth
se~ed properties of muon decay, 1f we require that

&~(g'/M') =G/V2 (14)
and that M& j.0m„.

In such a simple model we can easily compute the g'
corrections to the lepton propagators and the electro-
magnetic vertex of the charged leptons. The "self-
energy" contribution represented in Fig. 3(a) alters the
bare propagator i/(p —mp) so that, to order g' and 6rst
order in p'/M', the full inverse propagator of the leptons
p, e, v» and v, is given by

g2
P-m~'+ —Dn(~'/M')-5--. *(P'/M') jp(1+vs), (»)

where A. is a regulator mass introduced into the P'
propagator by the Pauli-Villars technique, and terms
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and outgoing charged leptons, respectively, and qq=pq' —pi, . The anomalous magnetic moment in units
of e/2mi implied by (19) is

FIG. 3. Feynman diagrams
representing corrections of order
g' to (a) the lepton propa-
gator, and (b) the electro-
magnetic vertex of the charged
leptons, as computed in the
model described in Sec. II B.

(o)

/
/

I I

pX Fo p&X

(b)

p.= —(g'/67r) (mP/Ms) . (20)

This correction is largest in the case of the muon, but
M& 2 BeV is sufficiently small that its presence would
not alter the present agreement between the measured
value of g„—2 for the muon and the predictions of
quantum electrodynamics. '

III. SEMILEPTONIC PROCESSES

A. General Discussion

of order M'/A' or higher have been dropped. The bare
mass m~' is, of course, zero in the case of the muon or
electron neutrino; ns„, =m„„=0. The full lepton propa-
gator can be put in a more conventional form if it is
written in terms of the renormalized lepton field
operators:

g2 nZ2

P,.„(g)= 1+—ln (A'/M') —-'+ s
8& M2

rnp)
+v (»(4'i4r') —l+-', l 4 (*) (M)

Mi

In order to extend our two-scalar-exchange theory to
include the semileptonic weak interactions, we must
specify, at least in part, the hadronic operators 5,~

which appear in the weak Lagrangian

Z„g——g Q 8;(S +S,").

This can be done most naturally by exploiting the
analogy between the 8;"and the leptonic operators S,
which have already been partially determined by Eq.
(6). Let

F;,*(qP,n) =+i e""d4y(PI 1'(S,*(0)S;*(y))In), (21)

instead of the original lepton fields /=14, e, 4„, 4,. In
terms of these renormalized fields, the inverse lepton
propagator becomes

g (25$4+p) (p —f84) p +frlp l
p—fri,+ Pvs I

— (1&)

where, to order g' and mis'/M', the physical lepton mass
m) is given by

g' t' (fnis)')
,=,o 1—

I
l (x/M) —,+-,'—

I
. (18)' Ms)

Similarly, if one writes the bare vertex function for the
charged leptons in terms of the renormalized 6elds
f„(x)and adds to it the g' corrections represented by
Fig. 3(b), then the 6nite renormalized, proper vertex
function I'„,,p(p' —p) results:

g' 1 q'+P'+P "+6tr44sI,~(p p) ski' 1
8~ 6 M2

(4'+4"+4'"+ ')+vsl
M2

q' pp'"+p'p"
+ — (1+74) (19)

24m M2

where p and p' are the four-momenta of the incoming

where In) and Ip) are two states containing known
particles and x=l or h. In terms of the functions
F; (q,n,p) and the notation introduced in the expression
(9), the amplitude for p, decay is given by

, &' (q,P.,-)F,,'(-q, P.. .)
2 (2 )' ' LC'+M'3L(q+ p. &)'+M']—

whe~e
I pi), Ini), I ps), and Ins) are states of one muon

neutrino, one negative muon, an electron and an anti-
electron neutrino, and the vacuum, respectively. As was
demonstrated in Sec. II, the amplitude (22) can be
accurately evaluated for the case ffs„'/M'«1 if only the
large qi, limit of F44'(q, P,n) is used,

(Pl l'. '(~,s,i) I )
lim F '(qpn)=g q', (23a)

Q&,»~y ~i M 2+qs
6 The lower limit of 2 BeV for 3f is obtained by requiring that

~44, ~
be less than the difference between the present experimental

value of g„—2 and the predictions of quantum electrodynamics.
For the experimental value we use ~(g„—2) = {11666~5)&10 &

from J. Bailey et al. (unpublished), presented by F. Parley at the
International Symposium on Electron and Photon Interactions at
High Energies, 1967 (unpublished). The value of {g„—2}/2 pre-
dicted by quantum electrodynamics is taken to be 11 655.2)& 10
(just the a and n' contributions); H. Suura and E. Wichmann,
phys. Rev. 105, 1930 (1957); A. Petermann, ibid. 10$, 1931
(1957); C. Sommer6eld, ibid. 107, 328 (1957); H. Elend, Phys.
I.etters 21, 720 (1966).The value of p~ given in (21) does not have
the right sign to explain the discreparIcy between these two num-
bers. The value for fM,, given in Eq. (6) differs from that estimated
by W. Kummer and G. Segre (Ref. 1), because of an error in their
calculation.
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where the vector operator V.'(m, i,j) is given by

V.'(N, i,j)= 2i—
P, P~~e, P, , vs, v~

4wl c;-g)c "g')*

—cf"(4)c'"(0")*3PV'(1+7)f' (23b)

Thus, let us assume in analogy that~

&Pl V "(N,i,j)lrr&
lim F,P(q,P,n)= Q q

n=j. (M h)2+q2
(24)

can be computed to lowest order in g and m~'/M2 in

terms of the operators V, ' and V ":

&(«+rra~Pt+P )| g4

2 (2')'

F')"(q,Pa,~a)F' ( q, P~, «—)
d4q

' LC'+M'X(q+Pw P- )'+M—'j

where

4

2 ~- -&P~lv"(~', j,~)l~.&

(8e )2 r, j,n, n'

x &P~l v'(N, i,j ) I «&+o(rlrr'/M'), (26a)

Here, m~ is the nucleon mass, and Io.& and IP) are
known hadronic states with masses and (relative four-
momentum)' of the order of the nucleon mass.

For large M, the amplitude for the semijeptonic
reaction

«+rra ~Pi+Pa

require that

&Pa I

V"(I',j,~) I
~.&&P~ I

V'(~, &,j) I ~~&
)

g„/gp= 1.012+0.002. (28)

Since it is natural to demand that the symbol G appear-
ing in (10) and (27) represents the same number in both
equations, the presence of the term O(m~'/M') in (26a)
will act to alter the equality of gp and g„. If we require
that this term contribute less than 1%%uz to gp and, for
example, estimate its size by computing the eGect of a
similar term given explicitly in (13) for p decay (in
which we replace m„by mz), then we conclude that

M&3m~. (29)

ln general, the term O(mze/3P) in Eq. (26) not only
produces correctio is to the amplitudes of semileptonic
weak processes allowed by the phenomenological
Lagrangian (1) but also permits other, presently un-

observed, semileptonic transitions to occur. In particu-
lar, the small experimental upper bounds on the rates
for strangeness-changing decays producing a neutral
lepton pair such as

X&.. Xl= (G/~2)&Pal~" I~-&&Pil~'*I«&"
"(8')2

+(Gi~~)&P. I
J'*l~.&&Pil~'I«&, (27)

and that the term O(mz /3P) in Eq. (26a) is negligible.
A stringent upper limit on this term of order mg/M'
derives from the near equality of the experimentally
determined vector coupling constants' in P decay (gs)
and p decay (g„):

I (M„.")'—M'j(M '—M')

E2 ~ jtk

E+~ ++e+e—, (30a)

M„4 ln (M'/M„')

(M 2 M2)2LM 2 (M, a)2J

(M .")41nL3IP/(M„")'j
(26b)

L(M„.")'—M')'I M„'—(M„")'j

E+~m+vf, (30b)

put severe restrictions on this correction term. The
rates predicted for these decays, which are of course
forbidden to zero order in m&2/3II2 by Eqs. (24), (26),
and (27), depend on the details of the theory and must
be discussed separately for each particular model.

The states «, P~ and rra, Pa are composed of known

leptons and hadrons, respectively, and are assumed to
have masses and (relative four-momentum)2 of the
order of tNN The struc. ture displayed in Eq. (26) is
similar to the vector-vector coupling observed in the
semileptonic weak interactions. The amplitude given

by (26) can be made to agree with the usual phenom-
enological description of semileptonic processes if we

7 It is interesting to note that limits of this type (in the case
M f,&((g") can be derived from the equal-time commutators of the
operators 5;"(x) using techniques developed by J. D. Bjorken,
Phys. Rev. 148, 1467 (1966).This possibility divas pointed out by
F. E. Low and M. L. Goldberger (private communication).

B. A Particular Model

As we have seen, Eqs. (24), (26), and (27), together
with certain restrictions on the term O(mN'/M') in
Eq. (26), are sufficient to predict correctly the observed
structure of the semileptonic weak interactions. These
conditions are apparently very general and may well be
satisied by a variety of models. In order to illustrate
the implications of conditions (24), (26), and (27), let
us discuss in detail a simple, two-boson-exchange model
for the leptonic and semileptonic weak interactions. The
model is an extension of the one investigated in Sec. II

8 See, for exam le, T. D. Lee and C. S. Wu, Ann. Rev. Nucl.
Sci. «5,'Ss~ (i965.

'
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FIG. 4. Feynman diagrams representing
(a) the additional weak coupling of the
charged leptons to the hadrons predicted
by the model described in Sec. III 3, and
(b) the competing electromagnetic proc-
ess.

e+

e+

(0)

(b)

for a,b, =+, —,0 and x=k, L To lowestordering the
fields F and P' appearing in (34) are noninteracting
and, using Kick's theorem, can be replaced by a
fermion propagator. If this is done, for example„ in the
expression for F+s"(q,n,p), one obtainsI

XLX(y) cos8&+) (y) sin8&j
I p) (35)

(q+k)'+M'

Furthermore, if it is assumed that the integral over k,
converges rapidly and receivesnegligible contribution for
kg)Ns~, then for q,))err we can neglect k, with
respect to q,. Consequently,

and described by the Lagrangian Z„z' given by (12)
and (14). We assume that the observed hadronic weak
current J„"can be formed of bilinear products of a SU3
triplet of fields (P(x), K(x), and X(x) '.

—i8zq
lim F+e" (q,n,p) =

qp» mÃ q'+M'

X(nl(P(0)7'(1+ps)l K(0) cos8&+X(0) srn8c)lp)

8m-q'

q'+M'
J„"(x)= ircos8c %(x)+sin8o X(x)jys(1+ps)(P(x), (31)

Smq'

,( I&."lp),
q' M'

lim F s'(q, n,p)=—
qp» tRPf

lim F++" lim Fss"———— lim F "=0, (3/)
qp» 'frf+ qfr» mg qp» sl+

where ~~0.25 is the usual Cabbibo angle. The Gelds I igewjse
(P, K, and ) are assumed to carry one, zero, and zero
units of electric charge, respectively; (P and K make up
a conventional isodoublet and have the same strange-
ness, while ) belongs to an isosinglet and has one unit
less strangeness than (P and X. The total weak Lagran-
gian is given by

& ~=& s'+(4 )'"gl B+(P(1—vs)P'
+ B'(ft cos8c+3 sin8c) (1—ys)Fs

+Hermitian conjugate]. (32)

An additional heavy fermion Ii of mass M with only
weak interactions has been introduced. Thus, this model
contains five new particles

F s Lu s Le q
8+ and 8 (33)

and their antiparticles.
Let us now complete our model so that it satisfies

equations (24), (26), and (27). Not being able to
specify consistently the detailed properties of the opera-
tors (P, X, and 3, we can only asslike that the following
forrnal derivation of (24), (26), and (27) leads to a
correct conclusion. It is convenient to relabel the
operators S;* and the functions F;,*(q, p)nso that
S+*,S ', and So are the operators coupled to the bosons
J3+, 8—,and 8', respectively, and

F„'(q,n,p) =i e' dsy( 4ITn(S,*(0)Ss*(y))I p) (34)

' M. Gell-Mann, phys. Letters S, 214 (1964). G. Zweig, CERN
Reports No. 8182/TH 401 and No. 8419/TH 412, 1964 (un-
published).

lim F+ "(q,n,P)=—

The vanishing of Fes"(q,n,p) for qg)fNN follows from the
equality of Bs and Bst. Thus, except for Eq. (38),'
this model reproduces conditions (24), (26), and (2'/)
and therefore (to order g' and zero order in mNs/Ms)
agrees with the conventional phenomenological de-
scription of the leptonic and semileptonic weak inter-
actions.

This model is suQiciently concrete to allow a more
complete discussion of the unobserved decays (30).
This will be done in Appendix B.

IV. NONLEPTOMC WEAK PROCESSES

Ke now turn our attention to the nonleptonic weak
interactions. Unlike the leptonic and semileptonic weak

rs Equation (38) introduces a new weak coupling represented in
Fig. 4{a) which is usually negligible compared to the competing
electromagnetic process shown in Fig. 4(b). For energies consider-
ably less than M', the form given by Eq. (34) for F+ " leads to an
efFective Lagrangian of the form

(Gl~) 2 r-, l 6 "(1+7~)N'Y"(1+~5)&
This parity-violating weak coupling does not have the damping at
large (momentum transfer)' which is found in the competing
electromagnetic process, because of the additional photon propa-
gator.
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processes, the observed nonleptonic weak reactions have
not yet been described by a systematic, detailed,
phenomenological theory. Lacking such a phenomeno-
logical theory, we use field theory to specify directly
the operators S;"(x) of Eq. (3), which describe the
hadron-intermediate boson coupling. Because of the
large number of possibilities and the difficulties of
calculation, we will not attempt a general analysis of the
restrictions placed on the operators S,"(x) by the ob-
served nonleptonic weak processes. Instead, we discuss
qualitatively the properties of the nonleptonic weak
interactions predicted by two simple models. These
models are distinguished by the number of different
types of intermediate bosons and the mechanism for
strangeness violation. In both of these models the weak
couplings of the hadrons are specified in terms of an
SU3 triplet of hadronic field operators O', X, and X, as
was done in Sec. III B.The Lagrangian for each model
is so chosen that (i) Eqs. (6), (9), and (10) of Sec. II A
are satisfied, and (ii) the arguments and assumptions
given in Sec. III 3 can be used to derive conditions
(24), (26), and (27); thereby assuring the usual current
&( current form for low-energy (energy«M) leptonic
and semileptonic weak processes to lowest order in g
and miv2/M2. The models are discussed in order of
increasing complexity.

Before these two models are described, the non-
leptonic weak interactions predicted by the very simple
model investigated in Sec. III 3 should be examined.
Perhaps the most serious difficulty of this model is the
size predicted for strangeness violation. A simple self-
energy loop of order g', as shown in Fig. 5, produces
strangeness violation. The unrenormalized amplitude
for a d,S=1 transition 2 —+ C is given by

g
4 sinoq cosa& d4g de e" de

(22r)'

(C I
2'(X(x) (aye) (1y~,)) (0)) I a)X— (39)

(q2+~2) L (P+q)2+ ~2]

where the same techniques used to derive Eq. (35) have
been employed here. If we introduce a regulator term
with mass A. into the 8 propagator and expand to
lowest order in m1v2/M2, assuming the integr and
vanishes quickly for k&&m~, we obtain

lg2 8X(x)—sin8c cos8c (Cl Tl X(x)y"(1+y2) l 2)
4n. Bx~

XLln (cV/3P) —-', j. (40)

Because of the logarithmic dependence on the cutoQ A,
we cannot calculate such a transition amplitude in
renormalized perturbation theory. However, it is
reasonable to assume that a rough estimate can be
obtained by replacing In(cV/3P) by one. If the hadronic

08
/

I
I 1

FrG. 5. The Feynman diagram representing the amplitude for a
nonleptonic 3,5=1 transition A —+ C as computed in the model
described in Sec. III 8.

matrix element is also estimated to be of order one in
appropriate units, we obtain a AS= 1 transition strength
of

M
sineg —3g l0 4 sin0q,

4& mg
(41)

which is almost certainly too large to correctly predict
the observed rates of nonleptonic, strangeness-changing
decays.

A. Two-Boson Mod. el

In this model the leptonic part of the Lagrangian is
the same as that introduced in Sec. II B. However, in
addition to the two bosons 8+ and 8' and the two heavy
leptons L,' and L„', two heavy ferrnions F' and Ii' are
introduced. The complete weak interaction Lagrangian
for this model is"

k g 11+@ kh, (42r)1/2g Q D(1—p2)L1 B
l=e, p

+p, (1—y,)L12BO+Hermitian conjugate)

+ (42r)"2gL(p(1 —p5) (F' cos8c+F" sin8c)B+

+g, (1—y2)F'B'+X (1 P5)F"B'—
+Hermitian conjugate$, (42)

"This model was erst proposed by M. L. Goldberger and F. E.
Low (private communication).

where the hadronic fermion fields (P, X, and X are
members of an SU3 triplet and identical to those
described in Sec. III B.

The two fermions Ii' and F' are introduced to avoid
nonleptonic strangeness violation of order g' (of the
type discussed above). In a theory containing only two
types of scalar intermediate bosons 8+ and 8', 2„k"
cannot be invariant under a strangeness-gauge trans-
formation because, for example, both the E+ and m+

pseudoscalar mesons must be able to make virtual
transitions to the 8+8 state. However, any amplitude
for a transition between hadronic states can, to order
g', be divided into parts, each involving either 8+ or 8'
but not both. The absence of 3$=1 terms of order g'
can then be naturally assured by so constructing the
8+- and 8 -dependent parts of 2 i," that each is sepa-
rately invariant under a (different) strangeness-gauge
transformation. The above Lagrangian has this property
because of the presence of the tzvo heavy fermions.
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The Lagrangian (42) is so chosen that, except for the
coupling of neutral currents of charged leptons, the
usual phenomenological description of the leptonic and
semileptonic weak interactions is predicted. In fact,
using the same techniques and assumptions employed
in the derivation of Eqs. (9) and (35)—(38), we can
describe the low-energy (energy((M) leptonic and
semileptonic effects of (42) to order g and zero order in

m)))'/M' by the phenomenological Lagrangian

Zph= (G/V2) {—J"*J'—J'*J"+J'*J'
y vJ t'y1gl'gl') (43a)

which is consistent with present experimental knowl-
edge. The currents J„"and J'„' appearing in (43a) are
the usual hadronic and leptonic weak currents, while

»'=~~(1 vn)v"~+—~I (1 v) v~—,
S&&'=B(1 v,)v—"6

(43b)

1. AS= 0. Having completely specified the model, let
us first discuss strangeness-conserving nonleptonic
transitions. Using the techniques employed in obtaining
Eq. (35), the unrenormalized amplitude for the strange-
ness-conserving transition 2 —+ C can be derived:

(2~)' e=e, si, i
d4q d4k ei~'~de

(C I
2'(N(z) (q+&) (1+v )0 (o)) I ~)

X
(q+k)'+M'

1
xl — I, (44)

Eq'+M' q'+h. ')

eik. sg2
d4k de

(2~)4

X Z &C &(It(*)v"&"(1+v)a(O))l~)

where a regulator term of mass A. has been added to the
8+ and 8 propagators. If we assume that the integrand
falls off very rapidly as the hadronic momentum k&

increases above m))), then to first order in m~'/Mm this
amplitude reduces to

Hamiltonian density

g2

H, ig(x) = ——
4m 4=(P,K,&

ln(X2/M2) ——;y
6M2

X& ye~1 q, ~, 46
S~Jl

where the four-dimensional Laplacian is

g'/4)r 3X1O-'(M/m)), ). (48)

Even for M =3 BeV, the lower bound suggested by the
discussion in Secs. II B and III A, the resulting 10 is
most likely too large to be compatible with the small
upper limits on the size of parity-violating effects in
nuclear physics. However, let us assume that Z, g)
given in (47) is invariant to first order in 8 under the
replacement P —& (1+bv~)f, i.e.,

&,(4)=&,L(1+&v,)fj+0(S ),

2 ~
i=I Qp.2 ()p 2

The most significant feature of this effective Hamil-
tonian is its noninvariance under parity. In order to
discuss the size of the parity violation evidenced by
Eq. (46), it is necessary to introduce further assump-
tions about the structure of the strong interactions. For
this purpose we will assume that the strong interactions
can be described by a field-theoretic Lagrangian density
of the form

8
&. (*)=— 2 0(*) v" +~)P(*)+& ik) (4&)

4=(P, Jt, , & BXp

where the second term describes the interaction of the
fields f and may include other fundamental fields. The
expression within the curly brackets in (46) can be
divided into two terms: a constant term, ln(A'/M') ——,',
and a term linear in CI', 0'/6M'. Since the constant
term depends on the cutoff A, it requires renormalization
and consequently cannot be computed using perturba-
tion theory. As before, we will attempt to roughly
estimate its size by replacing 1n(A'/M') by one. Thus,
in general, one may expect this constant term in (46) to
produce parity violation whose size is characterized by
the dimensionless number

f=fJ', K,&

x l
ln(ie/M )——',——,'(k /M2) j.

where 8 is a small real number. If the Lagrangian g,& is
written in terms of the field variables f'= (1+bvt;)g, it
becomes, to first order in b,

8
+&i(0')+2 Z ~k'(~)v" vA'(*) (5o)

/=6', Ki& 8$p

It must be emphasized that the analysis to follow re-
quires the convergence of this integral over k& which is g /&~ v T.r t'&~

at best uncertain and may very well not occur. Thus, p=p, si, x Bz„
with this assumption, the effects of the Lagrangian (43)
to order g2 on low-energy processes involving only
hadrons can be summarized by the following effective
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8'(q)r

8+

/
I

P(k,)

for low-energy processes (energy«M) may be quite
small. If the size of the e8ects caused by this linear term
is estimated by replacing CI' by mz and computing the
resulting coeKcient of lt(x)ps'&Bid/Bx„, one obtains

Fn. 6. A Feynman diagram representing one term of order g' in
the strangeness-conserving, nonleptonic transition A -+ C. The
momenta enclosed in parentheses indicate the four-momentum
carried by particular lines.

g 5$~ 18~
X = X4X10-',

24X M2 M

which is 10—' or less for

(51)

(52)

For 8=g'flu(A'/Ms) —sag/Ss. the term farthest to the
right in Eq. (50) acts as a counter-term, cancelling that
part of the constant term in B,gf which multiplies the
y~. Thus, if the strong interactions are symmetric under
the transformation described by (49) the constant term
in B',«has no parity-violating eBects.

Parity violation produced by the term linear in Q'
found in H,«cannot be so easily transformed away, but

Thus, if the strong-interaction dynamics satis6es certain
conditions, then parity violation in nonleptonic weak
interaction of order g2 depends inversely on 3f, and can
be made sufficiently small for large M.

Finally, let us consider the nonleptonic, strangeness-
conserving, weak interactions of order g . A typical term
in the amplitude for such a nonleptonic transition
A —+ C is represented in Fig. 6, and is given by

d4q II d4ki
(C ~ T(K(xs) (7ts+q) (1+ps)(P(0)(P(xs) (Jtt+q) (1+ps)K(—x1)) ~ A)

dpi cos28g (53)
(2s)4 — (qs+Ms)f(q+~1 ~2)2+MsjL(q+P )2+MsjL(q+P )2+M21

The convergence properties of the integrals over the
momenta k&, k2, and k3 carried by the hadron lines will
determine whether this amplitude contains parity
violation of magnitude g or of magnitude g rng/M'.
Unfortunately, the behavior of these integrals is essen-
tially a matter for speculation. Renormalized perturba-
tion theory for the strong interactions cannot be used
for a guide, because it is inconsistent with assumptions
that have already been made, e.g. , Eq. (38).~ Conse-
quently, the size of the nonleptonic parity violation of

order g' predicted by this model is uncertain and may
or may not grow with increasing 3f.

Z. M=1. The Lagrangian (42) was purposely chosen
to eliminate M/0 hadronic transitions of order g'.
Strangeness violation can occur to order g, and should
have a magnitude in qualitative agreement with the
observed strangeness-violating nonleptonic decays. To
order g', the d,S= 1 transition A ~ C is represented by
Fig. 7(a), and is given by

4

d'q II
7r2 i=1

d4ki —dpi cosoq sino t.-
(2s)'

(C~ T(X(xs) (q+ks) (1+y,)(P(0)(P(xs) (q+%1) (1+Vs)X(—»)) I A)X- (54)
(qs+Ms)L(q+$1 Ps)s+MsjL(q+P )2+Ms)L(q+P )2+M21

Evaluation of the expression (54) is made dificult and
uncertain by the presence of the product of four had-
ronic operators. The most singular part of the integrand
in (54) for large k; and q can perhaps be estimated by
replacing the operator (P(0)(P(x&) appearing in (54) by

"It is interesting to note that sufhcient convergence to insure a
P/M~ behavior for the order g4, nonleptonic, parity-violat'ing
amplitude is not obviously inconsistent with the existence of a
local algebra for the currents Pv„f' and Py„7&/', where g and g' are
members of the triplet of fields O', X, and P. Such a local algebra
may require g4 behavior only for terms in the amplitude (54),where
the product of two field operators |P(a)P (y) is replaced by a fermion
propagator SJ(x—y). These terms contain only two hadronic
operators and hence have the same structure as the amplitude of
order g~. Therefore, with the assumption of (49) (where 8 must now
depend on f) and the arguments given above, such terms will
produce parity-violating effects of order g4/N'.

the Feynman propagator S1 (—xs) for a free particle of
mass m~, as is represented in Fig. 7(b)."gf this is done
and only terms linear in k& ——k3 are kept, the resulting
amplitude is

8
cos8c sin8c(C~ X(x)(1—ys)y" X(x)

~
A)4~' BgJg

XL-.' ln'(A'/M') —' 1n(h.'/M )—0 94) (55)
'3 In contrast with the assumptions made in previous sections,

this procedure requires the relatively slow decrease of a particular
hadronic amplitude as it transmits a larger and larger four-
momentum. If no such singular behavior is present then the
estimate given in (55) must be reduced by roughly a factor of
mQ/3E' and consequently no longer places an upper limit on M.
(See, however, Ref. 12.)
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FxG. 8. The Feynman diagram representing the amplitude for
the AS=2 transition A -+ C as computed for the model described
in Sec. IV A to order gs.

Fro. 7. Feynman diagrams representing (a) the complete ampli-
tude of order g' for the AS=1 nonleptonic transition A -+ C, and
(b) the approximation used to estimate the most singular part of
that amplitude. The particular structure of (a) is that predicted
by the model discussed in Sec. IV A.

where a regulator term of mass A. has been added to the
8+ and 8' propagators and the constant 0.94 appearing
in the square brackets is the result of numerical inte-
gration. Although the amplitude (55) is cutoff-depen-
dent and consequently requires renormalization, we may
attempt to determine its size by replacing the quantity
in square brackets by 1.If we require that the resulting
coeKcient of the operator %(x)(1—ys)y&(c)/Bx„) X(x) be
less than 10 'sinai, then

3f&4 BeV. (56)

'4 The estimate of the size of b,S=2 transitions which is referred
to here was made by replacing the operator products P(x;)(P(x;),
which appear in the expression represented by Fig. 8, by the
propagator Sr(x;—x;) as was done above. Such mild momentum
dependence of a hadronic amplitude is suggested by local current
algebra, but is by no means certain. If a more convergent behavior
were assumed for the integrals represented in Fig. 8 the b,8=2
amplitude would depend on gs/M4 and would place no upper limit
on M.

The expression (55) is an estimate of only the leading
AS= 1 amplitude for large M. There will, of course, be
other less divergent contributions depending, for
example, on the combination g'/Ms. Thus the size of
(55) can yield only an upper limit on M.

3. M=2. Finally, we investigate the size of M=2
transitions which, for this model, occur in order g .The
amplitude for the M=2 transition A —+C is repre-
sented by Fig. 8. As in the case of AS= 1 processes, the
weak coupling constant g need not always occur in the
combination g'/M'. In particular the presence of terms
depending on g' or g'/M' will place an upper limit on M.
A very crude estimate of the diagram shown in Fig. 8
indicates that the inequality (56) is suKcient to insure
ZLS=2 transitions of magnitude consistent with the
observed. E~—E2 mass difference. '4

This concludes the discussion of the two-boson model.
The smallness of observed parity violation in M=0

processes and the weakness of strangeness-violating
nonleptonic decays place conQicting requirements on 3f.
These requirements may in fact be inconsistent,
although the uncertain estimates (52) and (56) are not
in disagreement. Since the estimate given by (56) is
probably correct within a factor of three, this two-boson
model must involve new particles of mass

j/t &10 BeV. (57)

It must be remembered that even these qualitative
conclusions depend critically on a number of assump-
tions about the strong interactions. In particular, the
rapid convergence of certain integrals over hadronic
momenta and a symmetry (49) of the strong-interaction
Lagrangian were required in order to reduce the size of~=0 parity violation to an experimentally acceptable
level. Finally, it must be emphasized that the restric-
tions (49) and (56) were derived from estimates of
logarithmically divergent expressions which had been
regularized. If one works strictly within the framework
of renormalized perturbation theory, such divergent
quantities should be replaced by free parameters which
are determined from experiment. Had we adopted such
an attitude, the troublesome terms giving rise to the
restrictions (49) and (56) could be simply renormalized
to zero. In the resulting theory the strong interactions
would, not have to satisfy (49), but the small size of
88=2 transitions, (i.e., the Et—Es mass differ'ence)
would still 1imit M to a value of a few BeV."

B. Three-Boson Model

In this model the strength of strangeness violation is
so weakened that the observed size of M= 1 and hS= 2
transitions does rot place an upper limit on the weak
coupling constant g and a corresponding upper limit on
M (in contrast with the two-boson model discussed
above). This is brought about by two features of the
theory. First the coupling between the intermediate
scalar bosons and the hadrons is altered so that it is
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strangeness conserving. This requires the existence of at
least three types of intermediate bosons, which can be
assigned strangeness quantum numbers. Second, two
new neutral leptons e* and p,

* are added with masses

m, * and m„* of the order of one BeV. These appear in the
weak Lagrangian in such a way that strangeness is
exactly conserved in the limit m„~= m,*=0. The weak-
interaction Lagrangian for this model is

2„),= (4tr)'"gLB+(P(1—ps)F'+B'K(1 —p&)F'+B"X(1—»)F'+Herrnitian conjugateg

+ (4tr)"'g p $B+l(1 p;)L—(s+B'(v( cosec+t* sinec) (1—ys)L('
L=e, )tt

+B"(v( sinec —t" cos8c) (1—ys)L('+Hermitian conjugatej+&', (58a)

where 8+, 8', and 8"are the three intermediate scalar
particles with mass M, G=V2g'/3Ms, and the same
symbol has been used to represent both particles and
Gelds. O', X, and X are the three integrally charged Gelds
that were discussed in Sec. III B. The heavy fermion
F' and the heavy leptons L,' and L„' are the same as
those appearing in the model of Sec. III B and all have
mass M.

Because the hadronic part of this Lagrangian must
conserve strangeness, 8' or 8"cannot be its own anti-
particle. We will, therefore, "assume 8', 8'~, 8"', and
8"t are four independent fields. Consequently, the
na, tural suppression found before for the decay (3Qb)
and the low energy scattering v+ hadron ~ v+
hadron' does not occur in this model. These processes
were suppressed in the models discussed previously
because those models contained only one, self-conjugate,

neutral intermediate boson. The final term 2' has been
added to the Lagrangian (58a) to reduce the rates for
these two processes" so that they do not occur to lowest
order in g and (m))r/M)':

+Hermitian conjugate . (58b)

The 7.; are the usual 2X2 Pauli matrices, 4, , and St
are 2)&1, 1X2, and 1)&2 matrices of field operators
respectively,

vx~ ~"(qa)

LI
~j B'(q, )

FO 0
t Yt(X)

A C

FO

II 8"(ql)

qual(&)

A C

Fn. 9. The Feynman diagrams representing the amplitude for
the hS= 1 transition A —+ C as computed for the model described
in Sec. IV B to order g4.

"We will demand that, except for the P—v~ mass difference, the
weak Lagrangian be invariant under the SU3 subgroup generated
by Ii6, Iiv, and F3—V3F8 in the notation of Gell-Mann, CalifornIa
Institute of Technology Synchrotron Laboratory, Report No.
CTSL-200, 1961 (unpublished). This U-spin symmetry implies
that the Cabbibo angle 8, appearing in (58a) is not well dined
unless the SUg-violating part of the strong interactions is

specified.

and St= (B t,B 't), (58c)

and the F(s are three new heavy fermions, all with mass,
M. The combinations Str,@and St sr;trf represent the
results of matrix multiplication; similarly, the usual
matrix multiplication of juxtaposed spinor operators
and Dirac matrices is implied. %ith the addition of 2,
the Lagrangian (58), together with the methods and
assumptions used in Sec. IIIB to derive (35)-(38)
predicts that low-energy (energy«M) leptonic and
semileptonic processes can be described by the phe-

"SuKcient suppression of the decay (30b) and the low-energy
elastic scattering v+hadron ~ v+hadrons can be obtained with-
out the addition of 2' if the equality of the B,B",and B+coupling
strengths is altered. For example, if the constant describing the
weak coupling of neutral bosons B' and 8"is set equal to one-third
of the charged boson's coupling constant Li.e., the Lagrangian
(58a) is modified by multiplying the fields 8 and 8 ' by s' wherever
they appear j, then the rates for these processes are reduced by a
factor of 0.013 relative to the rates for the transitions E+~ m'e+v

and v„+hadron ~ p,+hadrons.
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nomenological Lagrangian

G
&i,&

=——Q (i& iy" (1+pe)lLJgi'& cos8+ J&, i" sin8j+il*y" (1+y,)l(J&,&'& sin8 —J&, i'& cos8j
Z=e, p

G+—',it&" (1+y&)lLi(Py" (1+&&)P]+Hermitian conjugate) ——P Llv" (1+y&)»ipi p" (1+&&)l'
Z, Z'=e, p

+tv" (1+75)i*t'*7"(1+75)f'+ 2&7"(1+75)«'7"(1+75)i'+2 ~iv" (1+76)Pl sl 7"(1+75)~l

+six'(&+vs)i*i'*v" (&+vs)~i+2t*v" (1+v~)t*t"v"(1+v~)t'*j (59)

where the currents J„("and J„"'are the strangeness-
conserving and strangeness-changing hadronic weak
currents so normalized that J„"=J~i'& cos8c+J„o&sin8c.
In addition to the usual terms found in (1) this La-
grangian describes the coupling of certain neutral
leptonic currents and the leptonic and semileptonic
weak interactions of the new neutral leptons e* and p,*.
For m, * and nz„* greater than the E-meson's mass, the
phenomonological Lagrangian (59) is consistent with
experiment.

1. M= 0. Strangeness-conserving weak processes
and, in particular, 65=0 parity violation are of the
same sort as those predicted by the two-boson model
described in Sec. IVA. Consequently, the discussion
and rough estimate given previously in the paragraphs
dealing with the two-boson model are applicable here.

Z. AS= l. Any strangeness-violating nonleptonic
process A -+ C must involve the leptons virtually. To
order g', the amplitude for such a transition is repre-
sented by Fig. 9 and has the value

. g
(—i) d'q, d4q, d4k

6m' (2s)'

Xd'x(C~ T(X(x)(1—~,)(ft+q, )Z(0)) ~a)

tracet (1+y~)qm(1+y, ) (q,+q,)]
X

(q 2+M')'L (qi+ q2)'+M'jL (qi+k)'+M'j

1 1
X —

~

sin8c cos8c.
q22 q22+mi")

(60)

X(C~%(x)(1—ys)y" li(x)
~
&), (61)

BXy

where a regulator term of mass A has been added to the
I.io propagator. The presence of the ln(A'/M') in the

We will assume that the integral over the hadronic
momentum k& converges suKciently rapidly that, to
lowest order in m»&'/M', k& can be neglected with respect
to qip. If also only the lowest power in mi*'/M' is re-
tained, (60) reduces to

4g4 m +m„"
sin8c cos8i-, Pln(A'/M2) —-'j

9m' M'

expression (61) indicates that the amplitude must be
renormalized and consequently cannot be computed
within the framework of renormalized perturbation
theory. We may, however, attempt to estimate its size
by replacing the terms within the square brackets by
one. If the resulting numerical coefficient of the matrix
element (C~ K(x) (1—y&)&I 8/Bx„'A(x))

~
3 ) is required to

be less than 10 ' sin8~, then

m,"+m„*'&10m+ (62)

and no new restriction is placed on M.
3. hS=Z. It can be concluded directly from the

structure of 2„&,given in (58) that
~
65~ = 2 nonleptonic

transitions can occur only to order g' or higher and
must also contain the factor sin28cmi~'/M'. Thus, for
mz* m~, such an amplitude will contain the factor
sin 8c g m& /M~10 ' sin 8& and may consequently be
expected to have the correct order of magnitude.

The model specified by the Lagrangian (58), the
requirements (49) and (62), and various assumptions
made throughout this section, is thus in qualitative
agreement with the observed nonleptonic weak inter-
actions. The size of the heavy mass M is no longer
limited by the magnitude of observed nonleptonic
strangeness violation. However, M probably cannot be
arbitrarily large: (i) If perturbation theory is to be
applicable, g cannot be very large; for g less than one,
M&200m~. (ii) Although, under certain assumptions,
~=0 parity violation of order g' decreases with in-
creasing M, there may exist parity-violating terms of
order g' which contain no factor of 1/M2 and will
therefore increase with increasing M. The presence of
such parity-violating terms of order g' might require M
to be as small as a few BeV. However, as was discussed
in part A of this section, the existence of such terms is
not certain. (iii) The weak renormalizations of order g'-

of the vector coupling constants gp and g„, appearing in
P decay and muon decay, will in general be different.
For large g', gp

—g„may be sufficiently large to conQict
with the observed near equality of these coupling con-
stants (28). We can roughly estimate the size of such
renormalization effects by computing the order g'
renormalization of the fundamental lepton —heavy-
lepton —intermediate-boson vertex. In the case of the
e—L, —8+ vertex, the weak corrections to the unre-
normalized coupling constant go are produced by the e
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and I„'wave function renormahzation, and are given by

g2

g„~=gp 1——L.", 1n(A.'/i1IP) ——,'] (63)

For

(64)

this is less than a 2% correction if, as before, the cutoR-
dependent part within the inner square brackets is re-
placed by 1.In addition to nine new heavy particles and
their antiparticles with mass between perhaps 5 and
50 BeV, this model requires relatively light, weakly
interacting, neutral leptons with masses of the order of
j. BeV whose weak coupling to the hadrons is identical
with that of the neutrinos if the Cabbibo angle Hq,

found in the usual neutrino coupling, is changed to
Og —~~.

V. CONCLUSION

As Secs. II and III demonstrate, one can deduce the
usual phenomenological form for low-energy leptonic
and semileptonic processes from a two-scalar-exchange
theory with only minor difhculty. The minimum number
of new particles required is four, and at least the leptonic
part of the interaction Lagrangian is renormalizable.
However, the situation becomes much more dBBcult
when nonleptonic processes are also considered. Under
favorable circumstances the experimental absence of
large parity violation in nuclear processes is consistent
with the predictions of the models discussed, provided
that some of the intermediate particles are quite heavy
(with masses of at least 4 BeV and most likely larger).
However, in the simple model discussed in Sec. IV A the
large weak coupling constant associated with the heavy
intermediate masses produces strangeness violation
whose strength may well be too large to agree with
experiment. The size of this strangeness violation can
be reduced, if a more complicated model is adopted.
Such a model was discussed in Sec. IV B and in the most
favorable situation allows intermediate particle masses
perhaps as large as 50 BeV. (It must be remembered
that even these very qualitative conclusions rest
critically on a number of unproven assumptions. ) A
natural and appealing model containing heavy inter-
mediate particles (3I)10 BeV) and predicting the
correct size for M= 1 and M= 2 processes has not been
found. Even in the absence of a really attractive model,
this two-scalar-exchange theory serves as a useful
example of a comp/eke weak-interaction theory which
reproduces the usual current X current form for low-

energy weak phenomena but is so modified (or eRec-
tively cut oR) at high energies that it is renormalizable.

Finally, let us summarize some of the possible con-
sequences of such a two-scalar-exchange scheme:

(i) the production of new, heavy, weakly interacting
fermions and bosons in high-energy reactions. In

particular, these particles may be produced by very
energetic neutrinos with cross sections considerably
larger than those found at low energy for the reaction

(65)

Such neutrino production of new heavy particles may
be most easily detected in underground experiments
where the heavy charged particles could be observed

directly or the muon Aux produced by the chain of
reactions

y„+X-+I„+I'i)
I.„+X +P +I'p— (66)
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right be observed. The states I'~ and F2 in the reactions

(66) contain a combination of hadrons and new, heavy,
weakly interacting particles, lV is a nucleon state and
I.„is a new heavy lepton, carrying muon lepton number,
of the type required by the specific models previously
described. Although the model Lagrangians discussed

in Secs, IIB, IIIB, IVA, and IVB require that at
least one of the heavy particles be stable, it is certainly
possible to add additional weak couplings so that all the
heavy particles are unstable.

(ii) significant deviations of weak amplitudes from

the predictions of the usual phenomenological Lagran-
gian (1) for energies of the order of 50 BeV or lower.

(iii) two new leptons, e* and p*, with masses of the
order of the nucleon mass and greater than the K
meson's mass. These particles are required by the model

discussed in Sec. IV B. If their properties are correctly

specified by this model, they are quite hard to detect,
being neutral and having their cross section for produc-
tion by neutrinos reduced by a factor of m&4/M'

relative to that for the reaction (65).
(iv) weak electron-proton scattering, competing

with the eRects of electromagnetism at large (momen-

tum transfer)'.

(v) a possibly significant energy dependence in non-

leptonic, strangeness-conserving parity-violating proc-
esses. The presence of the operator g' in Eq. (46)
suggests that parity-violating effects may be enhanced
in hadronic reactions at large energies or momentum

transfers.
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a3+a4=ssZ D '
I 2I s( X„, X )—Is(X„,X„)1, (A1)

nnl

u, —a4 ———', Q D„„+Is(X,X ),

s (63 84) 1

ds = 28s—s (cs+84) y

where
X„=M„'/M',

D„„.+=g C;"( „)C;"(&)*

(A2)

(A3)

x I cy. '(e)c;"'(3,)*Ac;"'(e)c,"'(3,)'$,

and the functions I;(x,y) are given by

1 y' lny x' lnx )
I&(x,y) = +

(x—1) (y—1) y —x (y—1)' (x—1)V

11 S(x+y) —4
Is(x,y) =

6(x—1)(y—1) 2(x—1)'(y—1)'

(*-y)'

(x—1)'(y—1)' y —x

( y'lny x'lnx )
xl

E(y—1)'

1 1 f x' y'
I (*,y)= + I +

(y—1)~(y—1)~ (y—x)'((x—1)' (y —. 1)')

x+y x' lnx y' lny 2

(y —*)' (*-1)' (y-1)' (y-*)'
)(' x'lnx y'lny )

XI +
k (x—1)' (y—1)'I

y —3 x (xy+2y —3x')tI4(x,y) =
2 (y —1)'(x—1)' (x—1)'(y—x)'

g' lnx —
I
2x+Sx—3y —4)

(y —x)'(x-1)'

2xy+y —
3x( y' lny x' lnx

(A4)
(y-x)' (y-1)' (*-1)'

APPENDIX A

De6nitions of the constants c; and d; which appear in
the )((-decay amplitude (9a) are given below:

ui =Q D„ It (X„,X„),
nnt

as ——-,'Q D „.$I,(X„,X„.)+I4(X„,X„.)],

Equations (A2) and the expression (9a) imply that,
to order frs„s/M, the muon decay amplitude predicted
by any two-scalar-exchange model of the weak inter-
actions will depend on only four parameters. '~ These
four parameters a~, u2, u3, and a4 can be chosen to
be real if time-reversal invariance is assumed. In con-
trast, 6ve real parameters are necessary to specify the
most general time-reversal-invariant amplitude for the
decay (8), which (i) is at most quadratic in the external
momenta, (ii) is consistent with the usual two-com-
ponent description of the neutrinos, (iii) contains the
approximation m, =0, and (iv) allows the emission of
only left-handed electrons. Thus the presence of only
four parameters is a model independent prediction of
the two-scalar-exchange theory. In the case d&=d2=0,
the nonlocal eBects in muon decay implied by the
amplitude (9a) are identical to those found to order
m„s/M)v in an intermediate vector boson theory of the
weak. interactions where M)v ——MA/as is the vector
boson's mass.

APPENDIX 3

(81)
(82)
(83)
(84)

E+~m+e+e,

E+—+ z+vv,

) +hadron -+ v+hadrons,

may occur in higher orders. In this appendix we in-
vestigate the rates predicted for such transitions by the
model discussed in Sec. IIIB. These reactions are
forbidden to lowest order in mlv/Ms in this model.
However, the reactions (83) and (84) can occur to
order Grl)v/M". , while the decays (81) and (82) are
allowed at sixth order in g and first order in univ /Ms.

The amplitude for the decay (83) to order g is
represented in Fig. 10 and is given by"

4g4 e '~'"
singe coseo d'q d'q' U„(1—ps)

m2 (2m.)4

q+0 q+0'
X Uy

(q+k)'+Ms (q+k')'+M'

&
+I2'() (0)(q+q')(1+v )&( )) I&+&

X (BS)
(q'+M') L(q+q')'+M')L(q+0+ 0')'+M']

'y Our derivation of (ga) and (A2) contained the assumption
that all the intermediate scalar bosons have the same mass M. In
fact, the expresson (9a) and the equations (A2) are valid for the
general case of unequal intermediate boson masses M~;)N.

~SThe signi6cant cancellation between the two amplitudes
represented in Fig. 10 was pointed out to the author by F.E.Low
and M. L. Goldberger (private communication). This cancellation
is, of course, evidence that the Eqs. (37) are satisfied.

As was discussed. in Sec. III A, the conditions (24),
(26), and (27) on the hadronic operators S;s(x) ensure
the correct form for low-energy semileptonic weak
interactions only to lowest order in g and zero order in
m)v /M'. In particular, processes involving a neutral
lepton pair, such as



2100 N. CHRIST 176

Lo

I I
I

&B lB
l

4 I

fI(q')

K' m+

lL v ), L

I

I
(BO
1

8'i
FO

r&(k')

'III

g

vp(k)

LO L

FIG. 10.The Feynman diagrams representing the amplitude for
the decay E+ —+ ~+vv as predicted by the model described in
Sec. III 8 to order g .

where k and k' are the momenta of the neutrino and
antineutrino, and U„and U„- are their respective spinors.
If we assume that the integrand vanishes rapidly when
the hadronic momentum q'& increases beyond mz and
keeP only the lowest nonvanishing order in harv /Ms,
this amplitude becomes

(g'/15M4)sin8q cos8c&rP (k—k') U„P(1+ps) U„-, (86a)

FIG. 11.The Feynman diagrams representing the amplitude to
order g6 for the decay E+ —+ m+e+e as predicted by the model
described in Sec. III B.

which for
~

&r
~

= 1 and M) 2m' lies below the present
experimental upper limit' of 1.1&&10 . We can expect
a similar suppression (by about a factor of 100) of the
cross section for the reaction (84) relative to that for
the allowed process

where we have set
)s+4S +p +P. (89)

(z+
~
X(x)y (I+ps) (cl/c)x. )at(x)

~

E+)
=~.p ~.+~.e o.+~.I a.

+~ g9P~+ ~ &9~46Psgi+ ~ gp~ (86b)

The decays (81) and (82) can occur to order
g'G)vs)v'/M'. The amplitude for the decay (82) is
represented by the diagram in Fig, 11.A rough estimate
of this diagram suggests a branching ratio

The four-momentum P is the sum of the pion and kaon
four-momenta, while Q is the difference. The amplitude
(86a) leads to a rate for the decay (83), summed over
the two types of neutrinos, given by

I'(E+~ 9r+e+e—
) mx)'

= 1O-'
I'(E+ —& all modes) M 1

(810)

f ~ (r t
G 4)tran sin go cos go'l

(X e.sing
96009rsM4 J

(1—9l +66k' —91'+X')) (S7)
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where X =m s/mx'. This expression implies a branching
of

I'(E+~ 9r+) 4) 'mz) '
=5.7XIO- [t, js (, (88)

I'(E+ 9 a.ll modes) M I

which is to be compared with the experimental upper
limit" of 1.2&(10 '. Thus, although transitions of the
type (81)—(84) are not forbidden by the model of Sec.
III 3 they are suSciently suppressed that no conQict
with experiment arises.

Similar considerations apply to the models discussed
in Secs. IV A and IV B.

"D.Cline, thesis, University of Wisconsin, 1965 (unpublished).
The author is indebted to W. J. Willis for informing him of the
existence of such an upper limit.

"V. Camerini et a/. , Phys. Rev. Letters 13, 318 (1964).


