
P H YS ICAL REVIEW VOLUME i 76, NUMBER 5 25 DECEMBER i 968
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A complete set of rules is presented for evaluating the master meson-trajectory exchange contribution to
high-energy scattering between mesons (M) and baryons (8) in U(6)QxU(6) theory. The practical imple-
mentation of these rules is illustrated in considerable detail for quark-quark scattering as well as for the
BSg -exchange contribution to MB and BB charge-exchange amplitudes.

(~~,Wtv) with the external particle multiplets, like
M= (6,6) and 8= (56,1).The rules needed to construct
these U(6)n -preserving couplings are provided in Sec.
2, where the question of S signature and its relation to
charge conjugation for meson couplings is also discussed.
The vertex-progatator-vertex product that represents
the pole contribution to the amplitude in question is
then rewritten as a product of derivatives of the basic
rotation function (illa' itl'i)~C~'(tl tI') which describes
the scattering of U(6) 3U(6) supersinglets —the analog
of the solid harmonic (iqi itl'i)sPs(tl tI') which occurs
in ordinary Regge theory. Section 3 is concerned with
expanding such derivatives et~"'CN/Bg"rig'"' as a series
of kinematic functions 8; (products of q and q') multi-
plied into invariant functions 6; (r+r derivatives of
Ctv+tr'). To familiarize the reader with the use of these
Reggeization rules we have treated the example of
quark-quark scattering in Sec. 4 as this is the erst
nontrivial case which contains all the significant ideas.
In Sec. 5 we have pursued the physical program by
considering the BSn exchange contribution to high-
energy MB and BB scattering.

1. INTRODUCTION

2. INVARIANT COUPLINGS OP THE
MESON TRAJECTORY

The degenerate class4 of U(6) U(6) representations
to which we assign the physical particles means that
we can only encounter auxiliary U(6,6) tensor fmlds of
the character C(~,...~„~(~&"' » and@(+1 ~ p +3)&~'" »
subject to the usual Bargmann-signer equations' for
projecting the free-particle states. Consider now the
coupling of three such free fields. Since we wish to pre-
serve the U(6) n subgroup in the spirit of supermultiplet
theory, we shall only allow derivative (kineton) coupl-
ings out of the large number of possible Lorentz-invari-
ant couplings. The total number of couplings which we
wish to consider then directly equals the number of
U(6) sr scalars that can be formed out of the W-multiplet
components contained in the U(6) U(6) states. To see
how this works in practice, we shall construct the
effective Lagragian couplings in momentum space for a
few important cases. The construction for other cases
will then be rather obvious.

have 4 Y. Dothan, M. Gell-Mann, and Y. Ne'eman, Phys. Letters
17, 148 (1965).
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ECENTLY a U(6)U(6) Reggeiza, tion program
has been developed' during the course of the last

year with the aim of combining Regge-pole ideas with
the attractive results of supermultiplet schemes in the
hope that the merger will serve to systematize the pos-
sible choices of Regge parameters in current fits to the
experimental data. The program has been clearly out-
lined in a series of recent publications and the rules for
calculating Regge-pole amplitudes have been stated for
a few simple cases involving quarks and supersinglets.
In this paper we shall give the complete set of rules for
calculating the master meson trajectory contributions
to high-energy scattering of the physical (6,6) and (56,1)
multiplets and shall show explicitly how these rules are
applied.

From the outset our work is purposely cast into the
M-function framework of U(6,6) theory' in order to
avoid crossing and other complications of the canonical
approach and especially in order to take account of
symmetry-breaking effects (resulting from physical
mass shifts) in the simplest possible way. Just as the
Regge J-pole contribution to an 3f function may be
viewed as the continuation from integer to complex
J=n(t) of the invariant amplitudes (occurring in the
M-function expansion) corresponding to spin J ex-
change, so we can obtain the master meson E-pole con-
tribution to the U(6,6) M function for scattering of
U(6)8U(6) states by exchanging an elementary meson
6eld of quark number E and continuing to complex
E=u(t). "Sense-choosing" factorization is thus built
into the formalism from the very beginning. 'The residue
functions for the meson trajectory are thereby related
to the invariant couplings of the exchanged multiplet

~ Imperial College, London, England.
t International Centre for Theoretical Physics, Trieste, Italy.

On leave of absence from University of Islamabad, Pakistan.
'Abdus Salam and J. Strathdee, Phys. Rev. Letters 19, 339

(1967);R. Delbourgo, M. A. Rashid, Abdus Salam, and J. Strath-
dee, Phys. Rev. 170, 1477 (1968); R. Delbourgo, Abdus Salam,
and J. Strathdee, ibid. 172, 1727 (1968}.

~ R. Delbourgo, M. A. Rashid, Abdus Salam, and J. Strathdee,
in Proceedings of the International Seminar in High Energy Physics-
and Elementary Particles, Trieste, &65 (International Atomic
Energy Agency, Vienna, 1965). This is a review article of U(6,6)
theory.

'H. Jones and M. Scadron, Nucl. Phys. B4, 267 (1968),
used the same technique for conventional J Reggeization.
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(i) (1,1)-(1,1)-(W~,F'E):

zi ——He(op+q)e(x2 q)—qa,"' qaa e(Ag. ..AB)
'" pg (p).

(ii) (6,1)-(1,6)-(Wpp, Wp():

g2 $B( p+q)[GOBBAqa Ag+G1BBAgBB Aj+A(2p q)qB A2. ' 'qaa pg@(Ag AE)( i'" N)(p)

(iii) (56,1)-(1,56)-(WE,WE):

go —@(ACE)( p+q)[GOBABBCD4Fqa Agqa Agqa Ag+G14AgBB BBCDBEFqa Agqa Ag

+G2BA BB Bc BB BE qB +G3BA BB Bc 4 BE BB j@(BDF)(2p g)qB ' ' 'qapg C'(A Apg) (p)

(i~) (6,6)-(6,6)-(Wpg, WE):

~4 @A ( p+q)[(HOBB BD +Ho qB qD )qB gB +H2BA Ba BC BB

+(Hiqa 4,CBD '+Hi"qDC4A'4 "+Hi'BBCBD"'BB,A+Hi"'BDA4A'4, C)qa2"2]jgg

All such eRective Lagrangians are automatically parity conserving because parity is of the U(6) U(6) opera-
tions; however, they are not necessarily invariant, as they stand, under particle-antiparticle (6) conjugation. To
see the consequences of imposing 8 invariance on the 2 we recall' that the action of charge conjugation on 6eld
operators is given by

('-C'(A, ...A„)( '" )(x)8 '= (C ') ' g (C—') C'(D, ...D2g)
'"

(x)CcgA, Cc„A„,

where C is the usual charge-conjugation matrix having the property (C ')AakacCcD= —kDA. Applying this to Z
we discover that mesons with odd quark number lV cannot couple to supersinglets, which couM also have been
deduced on the basis of Bose statistics. On the other hand, 6 conjugation gives no restrictions on X values in Z~
and 22. Finally, for Z4 we find from Bose statistics and charge conjugation that Fli (=Hi"), Ho, Ho' and H2 are
associated with even Ã whereas H~'= ~H~"' according as E is odd or even. We see therefore that E signature
arises in U(6) 8 U(6) for meson couplings. Taking all these constraints into account we may summarize vertices
(i)—(iv) most elegantly as follows:

Z =p, '-"h(+)C (~p+g)C (~p —g)C '")(p,g),

22=2)2—"+B(2'p+g)@A(2p—
g)~ g04A+2)2gi ~C' (p,g),

BqABI

8
Z& &» g ( +p) ACg(p»g)(g g IID g &+»&»g&&II» g&'

~pa

+ppog2 BFE+paoga, Ic'E)(P g) (4)
Bgx~8gc~ BgA BgC Bga

B2 f B B,)~4=v' "C'A (2P+q)@c (~P—g) Ip (+)40&Dc+@ 'ho'+'gD"gac+p'h '+' +hi(+)~ gD" +ga'
Bgc BgA & Bgc BgA

B B '&I B B
+g, '-&(g +g»~ ~+g&'&& 4" —II»&&—

~

4&"&(p,g), (5)
Bgc BgABI BqcD BgAai

@(X)(pq) qA
Bg. ' 'qA Bgg&fp(B" B )(Ag" ~ A)g)(p) (6)

All coupling constants (whose intrinsic E dependence has been suppressed in the formulas) have been rendered
dimensionless by introducing mass scales p and m for mesons and baryons. The ~ superscripts on them refer to the
E signatures with which they are associated. When these do not appear it is implied that both signatures contribute.
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The remaining subscripts (0,1,2,3) are connected with the W spin representation coupling of the master meson
trajectory (viz. 1, 35, 405, 2695), the precise connection being stated in Sec. 3. The values of these coupling con-
stants are of course known at integer lV from the actual decay rates of the physical meson resonances.

Coming now to the evaluation of the (W~,W)()-exchange pole diagram, we have simply to combine the vertices
at each end and insert a free-particle propagator for a meson of quark number S. Only products of couplings
with the same signature need be taken. We shall now demonstrate that every scattering process can be expressed
as a product of derivatives applied to the basic rotation function C~'((1 (1 ).

To begin with, consider singlet-singlet scattering

with

where

T'= t '+" ' ' ~ (P q q')

~~(P; q, q') = q'~, "—' . q'~ ' '(C'a '"~ '" ""'("P)@'(—~,- ~~)"' '"'(P))q~,"-q~~""
= (I(ll l(l'I)'C~(4 0')/(P' —~~'),

(| (1'= qq'+q—pq' p/M'= I(1I I(l'I cosg.

Next we treat the case of quark. -quark. scattering

(6,1). ,+(6,1)'.:, (6,1):;+(6,1)-: .',
which is described by a 4-index 3f function,

8
TQQ' —

I
g0)II+ +mg) — g05~ '+mg) m ' 4~(P; q, q') .

Bqg Bqg)
(10)

Similarly the Jjt/I functions for more complicated reactions can be cast as factorized products of 6& derivatives; to
take another example, meson-baryon scattering mediated by (W&,W&) exchange is characterized by a 10-index

M function

(56 1)~«, —:~a+(66)~ . --;~~ ' ~ (56 1)—~~. +(6 6)~ . :~."'

namely,

B'D'ACE h (+)g B)rr D)+ —lh (+)'qr B)qr D)+ 2h (+)

Bg g)~ Bg ~~

+)) (+)(r r )r +r
og ~.

l3
— +r)) ' )(r

Bg gI

8 8 8 8
+~a~' +t4'+) 4" —&a~'

Bq (r) Clq ))) Bq O) Bq g) )j

838 8
g06g 5g) 5P mgy5g) 6P m'g28P — — m'g3 P' m Ag, 11

Bgg Bg~ Bgg Bgg Bgg BgJ,

where signature projections are explicitly indicated, and so on. Using formulas (2) to (5), the reader has all the

equipriient needed to construct master meson pole contributions to other processes.
Further progress necessitates knowledge about the derivatives 8"+"'C))(/Bq"Bq'"' Once th.ese have been found

(in Sec. 3) in the form P, X,( ,qq) C& &+,.
"("+'

,)the Reggeization prescription can be straightforwardly applied;
it consists in making the replacement

tr~(+)g r(+)C~ ~(r+r') ~(+)(~ t)~r(+)(~ t)(1+g(r)r)C (r+r')

(12)
t—M~' SlnVl g

in the usual way to the invariant-amplitude components U(6)SU(6) symmetry breaking due to physical mass

appearing in the cV function. Detailed examples are shifts is also discussed as well as the problem of Qt
provided in Secs. 4 and 5, where the crucial question of singularities as t —+ 0.
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3. GENERALIZED U(6)oxU(6) REPRESENTATION
FUNCTIONS

This section is devoted to the invariant expansion of
the derivatives B~"CB/(BqBA)' (Bq'A B')"', but before
we tackle this problem, a few remarks about the re-
lationship between these derivative functions and the
functions du s ~(8) of the canonical approach are in
order. ' The main thing to grasp is that a one-one corre-
spondence exists between the two formulations, 3E-func-
tion and canonical. Thus there is a direct connection
between couplings (2) to (5) and the U(6) s symmetric
vertices (Clebsch-Gordan coefficients); suppose for
instance that we have incoming nucleon (56,1)~~q and
an incoming antinucleon (1,56)l~„as is well known,
these provide the U(6) s representations 1, 35, 405, and
2695 which couple to the self-same components con-
tained in the (WB.,Wiq)-exchanged meson, and the
effective Lagrangian Z3 demonstrates just this fact, for
gq relates to 1, gi to 135, gq to l358405, and gs to
1354052695, so that the total ls residue is
given by a linear combination of go, g&, g2, and g3
whereas the 2695s residue arises from gs alone.

As we already know, supersinglet scattering provides
the function C~'(cos8) and since lu representations
can ever appear at the vertices, we immediately deduce
that this is proportional to d„=i, =i (8) in the canoni-
cal representation, the analog of Eg(cos8) of the rota-
tion group. On the other hand, more complicated func-
tions like dss, ss~(8) can be recovered from the gis
terms in Eq. (10) by taking appropriate projections of
B'C&/BqBq' as we shall illustrate below. In any case,
regardless of whether or not we establish connections
between the derivitive functions and the du s B(8),
expressions like (10) and (11) give the entire answer
for the pole-dominated scattering amplitudes. They
have the added advantage over the canonical forms
that crossing properties are trivially stated and that
symmetry-breaking prescriptions are more readily
formulated in 3E-function terms.

Returning to the expansion problem itself, we must
first examine the detailed representation for the basic
function' in U(v) U(v) theory (v = 6 in our case):

With a single derivative one first establishes by
inspection that BCiq/Bq must reduce to the linear combi-
nation Cir, +CqI' „where Ci and Cs are invariant
functions of q q' which can be determined from the pair
of relations,

qA BC'/BqA =NC~, q'A BC+/BqA =(N+v —1)CB i.

A simple calculation gives C~ and |'2 and the formula

v BC~/BqA I', CB——' —I', C~ i'. (15a)

Obviously also

vBCx/Bf A = r+qC~' —r+q Car i ~—(15b)

We are now in a position to determine the double-
derivative expansions. Again the complexion of kine-
matic terms arising in B'C~/BqABBqcD is obtained by
inspection to be a linear combination of the three terms

and, in the same way as before, the invariant functions
which they multiply can be deduced from the pair of
equations

~CN
qoD = (N —1)

BgA Bgg BQ'A

BCN-~
q'D~ ——(N+ v —1)

~gAB~geD BQA

Thus a straightforward computation gives

L92CN

v(v+2) = Q [I' q.BAI', .DoC~"
ggA @lpga

distinct Perm

r qB I q D CB i +r qB r—qD CB'—s ), (16)

(r—'B r—'D +r—'D r 'B )—
(r—qB r—q'D +r qD r q'B- —

+r, , r,D+r, , D r „),
(r, 'r, +r,D r „),

XI',.B,"'~ ~ ~ I', BBA"/N!, (13)

The mixed derivative B'C~/BqA Bq'B
'

is more
complicated to handle because of the greater complexity
of kinematic terms, namely the six terms,

where

r~g =—(Mw p)k(M& p)/4M'
=r,kr, («)

r B(r+ ' A' r B+r-+A' r— 'B —)
I'-~q B ') ~—q B I'+qA

'
)

A , B' , A ,B'

(r- B"r A +r- B"r A ) r—B"r
and k is to be understood as the unit four-vector k/ ~

k )

so that between r and r+, qAB reduces to tI (y)AB in
the rest frame (p=0). We proceed to build up the de-
rivatives '+B'"'

C/B'Bq'B"qstep by step.

where

I'~is~ —= (M& p)k(MW p)k'(M& p)/SMs . (17)

' R. Delbourgo, J. MathPhys. (to be p, ublished).

The determination of the invariant functions which
multiply these follows the previous steps and gives us
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the formula and so on down to

~'Car.(.+2) =r+.'r .s CN+,"+(r,'"r+,"
BQA Gal

—r+~q ~ "F s ' F~—~. F qq s ')C~"

+.(r, Ar, B' r, AF, ,B'

r—qs r+qg ')C~ g"+r,s"r+q g. 'Cll 2" (1.8)

The underlying structure and simplicity of the general
expansion

8"+"'C~

ggA ggQ ~ ~ 0 ggBl gg l ~ ~ ~

=Z X'(qq)sr ~ c' " " ' '" (19)

should be apparent from Eqs. (16) and (18). We shall
in fact now state the rules for writing down directly the
X; and 6;. Their correctness can be checked explicitly
case by case and is left to the reader.

A. The number of kinematic terms X; in general
equals the number of U(3) g U(3) components of
(W„W,) on one side which overlap with (W, ,W, ) on
the other side, since U(3)U(3) is the conserved co-
planar subgroup. For example, that there are six kine-
matic terms occurring in B'C/BqBq' is evident from the
reduction

(6,6)= (1,1)+(1,8)+(8,1)+(1,1)+(3,3)+(3,3) .
B. The 2(r+r')-indexed quantities

Rl r———r' —when xl (r,)"(I'+,.)".
Finally the + sign in front of C&+z is Axed by the num-
ber of times that r~, „F ~, and r+~ appear; it is +
when they occur in even numbers, —when they occur
in odd numbers.

Armed with these rules the reader may construct the
3E-function forms of the ds s ~(8) for the degenerate
class of U(v)U(v) representations. In practice the
only physically important ones involve three derivatives
of each momentum at most. %e have already given the
explicit formulas for B'C/Bq' and B2C/BqBq' so the only
other ones needed are B4C/(Bq)'(Bq')' B4C/(Bq)'(Bq')'
and B'C/(Bq)'(Bq')~ and these are straightforwardly
obtained from the rules. Although they are certainly
required in the general analysis of hadron scattering,
we shall not make use of them in the following sections.

To close this section, it may be worthwhile to de-
rive the precise connections between the M function
and the canonical d(8). Speciically, suppose we require
ds s '~(8). Under U(3)3U(3), 35~ decomposes as

35= (1,1)+(8,1)+(1,8)+(3,3)+(3,3) .
In M-function language this is translated into a state-
ment about transformation properties of various (yT)
matrices of the 143 representation of U(6,6). Thus,

+3T ) p]T belong to (1,8)(8, 1) of 35',
+1 belongs to(1,1) of 35',
y2T', y2, y~T' and y5 belong to (3,3)+(3,3) of 35',

while

X BB"AlCl AC "BD ". V3 belongs to (1,1) of 1s.

are built up from products of the eight types of tensor

I +A' I+q' qA' y
I —B, A , A B'

I'—qB, I'—q B, I'+qAA A Bl

BlI'—q qB

BlI+ql Al

X,-L(r,)"(r .)"-r, ,
+(r.)"-'(I-) F.„3(r., )-"',

and X (I' )"'(F )"'(F+,.)" " 'I' „

with distinct symmetric permutations taken over indices
of like type (AB ., CD, . and, separately, A'J3'
C'D' ).Observe carefully the crisscrossing of indices.
This is most important for understanding what follows.

C. The function 8,(cos8) which a given X;multiplies
equals &Cz+z,.&"+"'~(cos8), where R; is given by the
complexion of the X;. Indeed to see how the character
of X; determines R;, take r~& r' for definiteness. Then,

Ri rwhen Xi (I'+)"'(I' )"'(——I'+ )" "', R2=Ra=r 1—
when

Correspondingly we can project out each conserved
U(3)U(3) piece by appropriate tracing with these
matrices. In the simplest instance suppose we are in-
terested in the U(3)3U(3) singlet piece of 35~, the
answer comes out easily as (yi)s (pg)g' B C/s Bq'g
in the frame where P is at rest and q, q' are con6ned to
the XOZ plane. Hence from (18),

d, s(, ,ia, (8)0-C~+, —2cos8Cll —cos 8C~ i . (20)

Other more complicated ds s '~(8) are derivable from
other tracings over the covariant d(8).

4. QUARK-QUARK SCATTERING

Although unphysical, quark-quark scattering is the
simplest nontrivial case which exhibits all the rami-
6cations of the Reggeization scheme and for this reason
it is a useful example for acquainting the reader with
the techniques presented so far. In the U(6)U(6)
symmetry limit the amplitude for the reaction mediated
by (Wz, Wz) exchange has already been written as
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formula (10).Nevertheless, by itself (10) cannot satisfy
the (Fermi?) statistics of quarks; in order for the ampli-
tude to do so one must add the pole contribution with
quarks (A' and 8) interchanged. Since, however, one
is interested in near forward high-energy scattering
one may expect the inclusion of the crossed amplitude
to be insignificant (it only serves to relate the forward
to the backward amplitude) so we shall carry on using
formula (10). It receives contributions from both
E signatures in ln and 3Sn exchanges. As it happens,
a split into the two signatures before Reggeization need
not be carried out because it is a dynamical accident that
even- and odd-signature trajectories approximately
coincide, "meson exchange degeneracy. "' If we are deal-
ing with charge-exchange amplitudes in the SU(3) gen-
eralized sense, the ls contributions disappear (gs cou-
plings are irrelevant); on the other hand, for elastic
processes where ls and 35s are important we may
anticipate that even these are insufficient for a correct
description of high-energy scattering and that they must
be supplemented with the (fixed pole?) Pomeranchuk
contribution.

By substituting relations (15a), (15b), and (Ig)
into (10), we obtain the explicit form of the quark-
quark scattering amplitude, which may be further
simplified by making full use of the Bargmann-signer
equations satisfied by the external spinors. We shall
not write down the full expression as it does not teach
us very much, but we shall rather focus our attention
of the particular piece of it which describes the charge-
exchange processes. The leading cos8, (=s/2m') de-
pendence is simply given by

(Ei/2M)'
T. .= I'(M+ p)ts

t—M'

, (ltII la'l ~"
&(N(~ —p) I'l

l
Civ+t" (21)

m'

at the elementary-particle pole; after Reggeization this
assumes the form

v'(&) (lal ltI'I )
l
c-+i"

sins-n(t) k ms )

All the above is in the limit of exact U(6) g U(6). To
make contact with experiment (hypothetical though
this case is) it is absolutely vital to take account of
symmetry-breaking sects. If we draw the lessons of
supermultiplet theory in the physical-decay region2 it
would seem that the most crucial role of U(6) U(6)
breaking is in shifting masses, leaving invariant cou-
pling constants relatively unaffected. %e shall apply this
conclusion to the unphysical (Regge pole) region in t by
assuming that the trajectory functions are changed from
the symmetry to the physical values but that residue
relations are essentially unaltered. If this were not so,
all vestige of the symmetry would be lost and there
would be no point in Reggiezing supermultiplet theories
in the first place.

These considerations can be taken over very simply to
the leading contributions to the charge-exchange ampli-
tudes which come from p and E* exchange. If these
vector-meson trajectories are

l SU(3)j split to their
physical values, predictions (23) are modified to

p(a,+1)n, ( s
Ts st-sts =

sins. tr, &2m6 '3

p(«+1)«*
~d'~ x6'=~X& x%= . (24)

sinful «e 2'(ptÃil

Of course this is not the end of the story, as apart from
SU(3) breaking, there is the U(2) U(2) spin splitting
which alters the p

—vr trajectory spacing from the sym-
metry value of 1 to the physical value of about 0.5,
i.e., n —+O.y for the vector projection and n—1 —+ o.~
for the pseudoscalar projection. (But this is to lower
order in s.) Algebraically the split is carried out via the
decomposition

(cV+ p) -'(~ p)& s= V.&
"s—+I'.s '

where

~-s "'=
z L(~+p)» j-'L(~ p)V s)u ".—

General SU(3) mass splittings can likewise be incorpo-
rated by performing the appropriate projections and
substitutions.

predicting that

)&I'(gt+ p)N4(+t —p)N (22) S. MESON-BARYON CHARGE-EXCHANGE
SCATTERING

P(rz+1)n( s
Test st6=Ta), is=Tet), set= l, (23)

sins tr (2rws

where ct(t) (=0.5+1 in units of GeV/cs) is the master
meson trajectory function.

~ This has been exp1oited by R. C. Arnold LPhys. Rev. 162,
1334 (1967)j in the l-Reggeized version of (6,6)i for the orbital-
excitation theory.

%e finally make contact with physics by considering
meson-baryon scattering. It is described in its entirety
(including production processes of vector mesons and
decuplet resonances) by expression (11) of Sec. 2. I.et
us concentrate on those pieces which describe charge-
exchange processes, as it is for these amplitudes that the
Regge-pole predictions have been most spectacular
(and to which the Regge revival is due!). Now inost
charge-exchange processes are dominated by vector and
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tensor meson trajectory exchanges. In our terms these
would be given by the negative X-signature piece
(which comprises vector-meson exchange) which arises
from the h1& & coupling in (11).Retaining only the 35s-
exchange contributions, ~ the charge-exchange processes
will therefore be described by the amplitude

with F and D having the usual SU(3) cannotations. The
invariant amplitudes are found to be Lq—= (s—u)/4mp7

al ' ' 1I& lql lq'I)
-'

AD ——— 1+—
I

P' —M2 2z12 mp,

TC.e.
gyh]( )pw 8

fc(—lp+~') c(—lp —~')& "-,
p' 3I2- ,A'

M 2
— AD

2m
X

m)

~ (lqllq'I
X

I CN(q q'). (2S)
agAB& mz

Upon substituting expansion formula (18) into (25), we
have

gh &-~

~Cue. f C(——:p+a')C(—2p —V'))B "'
p2 jI12

(I q I I
q'I )X "u( lp+~)»—oB( lp a)1- —

m'

XLI+A' I B~N+1 +—I yq'qA' I qq'B +N —1—
(~+q'qA' I —B +I+A' I —qq'B )CN 7~

whose leading behavior is

g,h, (—)

T, .= uBoB (I' fC,C )I' ) "
p' —M2

+NACD CN+,". (26)
mp,

Even at this stage (26) describes a host of charge-
exchange processes, reactions like vr"E*+ —+x'E*++
and p'p-+ p+n. We restrict our attention still further
by focussing on 0 12+ reactions mediated by 351p-ex-
change Lairing C= —1. A little Dirac algebra simplifies

(26) to

':"'.",
( —,„)( '.)

29b

Hence the non-fhp amplitude which contributes to the
forward scattering cross section is (at the pole)

A'= A+ qB/(1 —l/4m2),

PI"),(Srn')=,
' '

(&y—
)(&+ )
X (N+1)NqN (30)

i.e., a Product of charge F couPliqzgs at either ~erlex. After
Reggeization we should predict that the forward scat-
tering amplitude is given by

TpN Np (0=0)= [p(1—e " )/sinzrn7

X(PP') p(NIV) p(n+1)n(s/2m')", (31)

which is the usual answer when one has vector-meson

trajectory exchange.
Thus the perfect symmetry prediction ensuing from

(31) would be typically that in the forward direction

p~m n 2~m p~K z

g1h1& ' t' 3l Iqf fq'f
Tpw-p N=

I
1+— CN+1

p2 —3II2 k 2p mz4

p(1 B
—iaa)

(12+ 1)Qq
slnxn

(32)

X(PP') p' uBoB
I 1+——y„T' zzAoB.

On the other hand, the mass-breaking prescriptions
presented previously would modify (32) to

If we use the standard results of the U(6,6) currents'
u(YT)u, the amplitude can be reduced to the conven-
tional form

T--p--' =

~» p~X'Z'-

sine',

p(1 &
—ia axe)

(~x +1)ax*

2P(1—c *") cKp

(n,+1)u,
2mN~m

Tp,v Np = (PP') p[A(NN') p+AD(NN')n
+ 1/ufB p(Nq'N') p+Bn(Nq'AT)D)7 (28)

7 In the canonical formulation we are retaining the d35, ~5NC'8)

piece of the amplitude. and so on.

sin~o. ~*

S CX~g

X
mN (m.+mrc)
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There are obviously a host of other consequences
that we could tabulate concerning resonance production,
etc. At this stage, however, one must mention a difB-
culty common to all Regge approaches; the problem of
singularities at t=0. This concerns the Mandelstam
analyticity of the invariant amplitudes after Reggei-
zation, a problem which is common to all Reggeization
procedures where high external spins are involved.

The difhculty has to do with the M= gt singularities.
The present formalism inherits these difhculties; to
see them here note that in the Feynman pole, numer-
ators that enter basically as positive and negative
parity projections of U(2) 3U(2)

2(1~P/~) ~(P'—~')

and which produce typical coupling factors (1+2m/M),
etc. , after contraction over external spin wave functions;
these factors persist after Reggeization of the particular
U(2) U(2) multiplet. For instance even if A ~ in (29a)
has the correct analyticity properties, Ap does not,
owing to the presence of the glaring (M/2m) factor in
the residue at the pole. One way to circumvent this
trouble is the conspiracy theory which doubles the num-
ber of bosons in analogy with the Gribov doubling
mechanism for fermion exchange. For instance let us
introduce a (6,6) partner to the original (6,6) multiplet.
We should thereby supplement

y'= (gh/p2 M2)u(1+ p/~)—q'uCx+i" (27')

with
T = (g h /p —M )u(1—p/M)q uC~+y (28 )

giving the total Reggeized amplitude

ps ' pi p's' ' p)
u 1+ tq'u+ a 1— ~q'N.

sinsn gt) sinn. n'

Providing then that we choose P(0)=P'(0) and n(0)
=n'(0), the Qt —+ 0 singularity cancels and all is well.
The fact that (6,6) calls for new multiplets at p ~ 0
should not come as a surprise in view of the expected
U(6,6) symmetry in that limit. We believe that a cor-
rect treatment of these difhculties will come by Reggei-
zation of U(6,6) rather than U(6) X U(6) in the manner
of Toiler. For non-spin-flip amplitudes (which corre-
spond in the present formalism to lV-spin-conserving
amplitudes), the problem is trivial since the answer is
essentially obtained by replacing C~' with C&"~'. For
spin-Qip amplitudes the problem is much more compli-
cated and is under further study at present. Assuming
these difhculties can be satisfactorily overcome, we see
no further snags to the Reggeization scheme.
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