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The XQ Bethe-Salpeter equation is studied exploiting the O(4) symmetry of the scattering amplitude
at t=0. Spinor O(4) spherical harmonics are developed and used in the projection of the Bethe-Salpeter
equation both at t =0 and for small 6nite t. With the choice of Toiler quantum number M =1 for the pion
trajectory at / =0, as seems to be implied by high-energy data, we 6nd that the 3f= 1 trajectory must mix
with another trajectory near t =0 in order to produce a physical pion. In addition, O(4) expansions are
given for the EN helicity amplitudes for both equal and unequal mass.

I. INTRODUCTION

FTER the discovery of 0(4) or 0(3,1) symmetry of
the scattering amplitude for equal-mass particles

at t=o, '2 the question of the 0(4), or Toiler, quantum
number 3f of the pion's Regge trajectory has been
considered by various authors. Fits to high energy-
nucleon-antinucleon scattering and pion photo-produc-
tion data seem to support the choice &=1,'4 as do
finite-energy sum rules. 5 Mandelstam has shown that
the choice of M for the pion trajectory is related to the
hypothesis of partially conserved axial-vector current
(PCAC). '

In this paper we use an off-mass-shell approach to
study the pion, considering it as a bound state of the
1VJtT system. We use the Bethe-Salpeter equation for
Eg scattering and expand the M-function in 0(4)
basis functions. Working with others. we have already
outlined this method for the scattering of particles of
arbitrary spins and masses. ' (Nevertheless, the present

paper is largely self-contained. ) In a later paper we will

use the same method to treat the scattering of unequal-
mass spin-0, spin-1 particles (e.g. , sr-p scattering). ' That
paper and this one, both containing a large amount of

formalism, have previously been summarized. ' The
results reached in both of these papers, as well as by
other workers, ' is that the pion's Regge trajectory can
have M= I (at t=o) only if there is trajectory mixing
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in the region 0(t&m ' such that the trajectory be-
comes pure M=O at J=O. If the trajectory remained
M= 1 at t= nz ' it would choose nonsense and therefore
not produce a physical particle (the pion) at 1=0.

In Sec. II we present the Bethe-Salpeter (BS) equa-
tion for the 3f function, the off-shell scattering ampli-
tude without the external spinors, and make the Wick
rotation. This puts the momentum vectors in a four-
dimensional Euclidean space. In Sec. III we And ex-
pressions for 0(4) spinor spherical harmonics, which are
the projection on 0(4) basis functions of objects which
transform like a direct product of a 4-vector times two
Dirac spinors. We use these in Sec. IV to expand the
3f function and get a projected BS equation. At 3=0
where there is 0(4) symmetry the equa, tion is nearly
diagonal and is easy to study. We And there are six
types of solutions at 1=0." In Sec. VI we find how a
solution of the projected BS equation will contribute to
a particular partial-wave amplitude. To do this we use
a group representation de6nition of the Dirac spinors.
Prom this we 6nd that three of the six types of solutions
do not contribute to any partial wave amplitudes at
1=0. We also reproduce the results of Freedman and
Wang, "including the fact that if the pion were mass-
less its trajectory would choose nonsense at J=O for
M=1 or sense for M=O.

After establishing these results at t=0 we show that
the same methods apply to study the properties of the
trajectory for t greater than zero. We start in Sec. VII
by calculating the symmetry breaking terms in the BS
equation and recalculating for )WO the projections from
0(4) basis to 0(3) helicity partial-wave states. From an
examination of these we ftnd an 0(4) analog to sense
and nonsense states in 0(3). This allows an easy proof
that the 6nite-mass pion's trajectory would choose
nonsense at J=O if it had 31=1at 1=0 and if it could
be calculated from simple perturbation theory. Since
we want to keep M= 1 at i= 0 to agree with the high-
energy data but not have nonsense at J=0 (pions exist)
we study in Sec. VIII forms of the solutions of the II'S
equation which come from degenerate perturbation

» While the report of this work was being completed, we
received a report from A. H. Mueller, who obtains the same
results for t =0 LPhys. Rev. 172, 1516 (1968)j."D. Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560
(1967), Eq. (39).
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theory. Here we show that we can get a trajectory with
M= 1 at t=0 which does not choose nonsense at J=O.
Included in this section is the justification of a 2&&2

matrix model used in the summary paper. Appendix A
gives group representation definitions for Dirac spinors,
propagators, and y matrices. Appendix B contains the
generalization to unequal-mass "&VX" scattering.

II. BETHE-SALPETER EQUATION FOR
NUCLEON-ANTINUCLEON SCATTERING

In this paper we consider only the ladder approxima-
tion of the BS equation although we believe that the
results hoM without this approximation. By the "ladder
approximation" we mean that the kernel (Born term) is
a single-particle exchange or a sum of single-particle
exchanges. We also neglect isospin although this could
easily be added.

To simplify the equation we use the fact that nucleon-
antinucleon scattering is equal to nucleon-nucleon scat-
tering if we change the sign of Born terms for the ex-
change of odd C parity particles (see Appendix A). We
write the scattering as

T)„)„,i,,i„(p',p,k) = u (sk+ p, kl )ut) (-,k —p, ).2 )
XM. t), p(p', p,k)u (sik+P, Xl)up(isk —p,)ls), (2.1)

where Xl, X2, and P are the initial-state nucleon helicity,
antinucleon helicity, and relative 4-momentum, respec-
tively, primed quantities are 6nal-state variables, and k
is the total 4-momentum. We restrict our attention to
the center-of-mass system where k = (+t,0,0,0).
M t), p(p')p)k) obeys the following BS equation:

~- t ,-t(p' p,k)

=B- t .-t(p'P») d'q~—- t ..4(P'q»)
(22r) 4

&(S„(q+-,sk)S44. (-', k —q)B;4,.4)(q,p, k). (2.2)

Let

M p, ,s(P')P)t)S~ (-,'k+P)Sss( sk P)—
=R. p,.p(p', p, t), k = (Qt,0,0,0) . (2.3)

Then R obeys the following BS equation:

R p, 4(P',P,t)S '„(-,'k+P)S '4s( sk P)—

[see Eq. (A6)$. Now, of course

p —pl~i+ Ps~2+ P2~$+ p474

After redefining E and 8 to absorb some i's, the BS
equation becomes

ES 'S '= B+—
(2)r) 4

with the integral over a Euclidean 4-space and J3 for a
scalar exchange given by

q,g 8 ~ happ
B ti. ti(P'P)=

(p p')'+t"— (2.5)

The relation between Cartesian and spherical com-
ponents in O(4J is

p4= P cos)P, p'= P sin)p cos8,
(2.6)ps= P sin)P sin8 sins) ) p'= P sin)P sin8 cos&p )

and

00 1r lr 2s

P'dP sin2)P diP sin8 d8 d 22. (2.7)
0 0 0 0

where p, and g, are the mass and charge-conjugation
parity of the exchanged particle.

The next step is to make the Wick rotation. "For
0&t& threshold, the integrand has no poles in the 6rst
and third quadrants of the complex q' plane. Assuming
the integrand vanishes as !q'! -+ ~ gives the integral
along the imaginary q axis equal to the integral along
the real axis. Next the integral is continued in ps to the
imaginary p' axis (no poles of the integrand cross the
new path of integration in the qs plane during this)
giving an integral equation for R as a function of
imaginary p'. Now we make the change of variables
p'=i p', q'= iq4. Since —(p')2= (p4)' we may use
Euclidean 4-space notation if we define k= (kl, k2, ks,k4)
=(0,0, 0, —i') and

( 0 I~-
!y4= iy'=! oi

=B.s.. p(p', p, t)
(22r) 4

III. O(4) SPINOR SPHERICAL HARMONICS

A. States for Tvro Dirac Field Fermions

, (p', q,t)B, (q,p, t), (2.4)

Z,&,(P',P,k) = n„(h-') n„.(h- )
xz, 4,.t, (hp', hp, hk) n...(h) n, ,(h), (3.1)~peg ~a'a~P'P

B- s .-s(p' P) =
(P P)'+u' &4— —)4 G. C. Wick, Phys. Rev. 127, 2266 (1962).

Considering R before the Wick rotation, its Lorentz

where S '(P) = (2P+2ii) (see Appendix A) and for scalar
exchange
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where K) ~ (A) is the representation (nonunitary) of the
Lorentz group to which the nucleon field belongs. When
n is replaced by the set (T,p), r=~1, p=~s, then (see
Appendix A)

'n„,,is(A)
n...(A) =I

0
(3.2)

where the S's are given by Eq. (3.2).
~hen a general 0(4) transformation g is expressed by

the standard 6ve rotations and a boost" )we shall call
an 0(4) rotation of the fourth direction to any other
direction a boost since itwas that in the Lorentz metric7

g(v eA', ~,P,V) =~(v, '0)Ss(4)~(~,P,v), (33)

the representation matrix S can be expressed as (see
Appendix A)

&- «(g) =-&"',"(g)

D,.„'(,8,0)e-' "'D„,i(,P,'). (3.4)
~-+&/2

As in any problem we want our final equation as
nearly diagonal as possible and so we consider the
operators which commute with M. This leads us
through a string of "change of basis. "We first construct
eigenkets of intrinsic parity (see the last part of
Appendix A)

lp,~,p)—=
I p, (Tp), («))= 2 c,.c)IP,UP eT) (35)

g, e=+1

where

~hen Fq. (3.1) is continued to the complex Lorentz
transformations and then restricted to transformations
which keep p imaginary and p'(i= 1,2,3) real, then the
new symmetry group is 0(4) and the above representa-
tions become the unitary representations of 0(4) with
the same eigenvalues. (These eigenvalues are explained
in the next section. )

We take advantage of the above fact to construct a
set of "0(4) spinor spherical harmonics" which will be
used as basis functions in the expansion of R. We start
by considering a ket

I p,n,p) which has relative momen-

tum p and 2 spinorial indices, n for the nucleon and p
for the charge-conjugated antinucleon. Each index
transforms according to the representation (-'„0)(O, s)
of 0(4). Thus the transformation property of the ket
under an 0(4) rotation, g, is

U(g) I P,~,P) = 2 &-'-(g) &s's(g) I gp,"')

"spins" into a total "spin"

lp, neSo)=BC(s s S' p, '~ p—)Ip,w, e(o p)—) (38)

which transforms according to Ds(R) for an 0(3)
rotation. Before projecting out 0(4) basis function
from these kets we will interject a review of 0(4)
representations.

B. Review of O(4) Representations

Since 0(4) is homomorphic to 0(3)30(3) or iso
morphic to SU(2) SSU(2), a possible basis for 0(4) is
the direct product of two SU(2) bases. '4 Then a state
i»abeled as ljtmtjsms), where j and m are the "total
angular momentum" and the "s component" in each of
the SU(2) groups. Then jt and js, the Casimir quantum
numbers, denote the particular irreducible representa-
tion of 0(4) and mt and ms enumerate the basis func-
tions of that representation. Thus, an 0(4) rotation g,
applied to one of these basis functions, gives

U(g) I jtmtjrms) p Sm) m) m)m) "'(g) ljtm&'jsms),

where S")'(g) is a function of the 0(3) representations
D" and D", the functional dependence being deter-
mined by the homomorphism. (The representation used
in Sec. A for a Dirac spinor is a special example of the
above. It is a reducible representation, a sum of two
irreducible representations, one with j&= 2, j2=0 and
the other with j&=0, j2= —,'. Those "m" subscripts
which are equal to zero are suppressed. )

Another basis is obtained by vectorially adding j&
and j2 to form a total angular momentum J:

I jtj&Jm)=p C(jtj~J; p,m p)l j»j,(m —„))—

U(g)ljtjs'm)= 2 &' ' ""(g)Ijtjs'm')

where' '

'J' J m(Pm)~)f)~)P)P)

=Z Dm„'(y, e,0)dg y„""(P)D, ~(&,P,y). (3.9)

Here dJ J-„j»' is the "boost" representation in this basis.
It is

d'»""Q)=Z C(itis 'v p v)—
&&C(gtgsJ';v, p v)e 't" —"l& (3.10)

such that

1(1 1~c=—
I

PIP4)Y/p)eT)='ge!P4) gp)eT). '

(3.6) and for any particular set of indicescan be conveniently
expressed as Gegenbauer polynomials in cosf. Refer-
ence 7 (App. ) summarizes the properties of the boost

37 functions which we shall use Notice that for a pure

"More detailed treatments of the O(4) representations may
/ext, we de6nc another basis by combining the two be found in Reft, 2 and 7.
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0(3) rotation R

Sg g '»''(R)=Rgb D ~ ~(R).

Instead of labeling the representation by j& and j2 it is
popular to use e and M, where

will project onto the same 0(4) state. We anticipate this
by writing the state as ~n, M,J,m, rt, e,Z) .(Our "Z" is
the same as Freedman and Wang's' "s".)

Using the standard technique, we construct basis
functions of the 0(4) representation (n,M) by

n=j i+j2 and M=j i jp. —

Obviously, then,

(3.11)

(3.12)

~nM JmgeZ) dg

After this brief review of 0(4) representations, we
return to the projection of 0(4) basis states, ~nMJm),
from the ket

~ p,n,p).

C. Construction of the Spherical Harmonics

Besides the 0(4) quantum numbers, other quantum
numbers will be needed since more than one 1 et

~ p,n,p)

Xng„z (" )*(g)U(g) i p4, rteZo), (3.13)

where g=g(y, 8,It,n,p,y) LEq. (3.3)j. We factor g by
g= Q(ip, 8,$)R(n,P,y) so that Q specifies a general
direction in 0(4) and R is a general 0(3) rotation. Then
dg=dQdR; dQ is over the surface of a 4-sphere )Eq.
(2.7)j, and dR is over the group 0(3). The integrations
over dR give

inM Jmn~Z) =&z'" ~' P dQ &~-,=.'" ~'*(Q)&(Q) IP4, v~Z~)

=&z'"' ' 2 dQ &z~, .'z"' '*(Q)Cn.C«C(k 2 Ziip rii0i) fJ(Q) IP4i(rp)i(tr))
o'rp t,r

rptrp'r'
d Q ng„,z(p+, )™*(Q)D, ,«(q, 8,0)D;,«(p, 8,0)

Xe '&"I'+"&&C„„C„C(2i;',-,Z; p, r) ~ p(Q), (rp'), (tr')). (3.14)

From this equation we define the 0(4) spinor spherical harmonics as (to simplify notation let T= (n,M,J,m, rt, e,Z})

Zr(Q, n,P)—=Z~ „z'"~&(Q,(rp), (tr)) =(P(Q), (rp), (tr)
~

nM JmqeZ)

=&z'"' ' Z &~ z& &'"' '*(Q)D~~ «(v 80)D- «(o 80)e ""'+"'~C(k 2»'p'»')C"C. i (31~)
pirl

With the normalization chosen as

D. Discrete Transformations

Before proceeding with the 0(4) projections, it is
worthwhile to note the invariants of the theory under

I, (3.16)
(( +M+ )( +1)~'" discrete transformations.

2(2Z+1)

RIld

dQ Z&*(Q,~,P)Z"(Q,n,P)

= bni=h&~ @sits &zz &mm &~~ &«&zz (3 17a)

Q Zr(Q n P)Zr*(Q' n' P') = 5'(Q —Q')8 8pp (3 17b)
T

where the sum over Y has the following range

m=012 ~

7 7 7 7

J=IMI IMI+I" »
Z=O 1 for M =0
=1 for )M(=1.

M=O, ~1,
m= —J, ,J, t&. 18)

6= &1)

Z is orthonormal and complete in the following sense:
First we consider parity; from Appendix A we have

(P ( p, rtp, er) = rte ~ Pp, rtp, er). Using this and the symmetry
properties of the "boost" matrices, ~ we find

tel nM Jm~eZ) =( )' zotel n( M—)Jm~~» —(3»)
Next we consider particle exchange. Nucleon-

antinucleon scattering is invariant under charge con-
jugation times particle exchange. But since we have
already applied charge conjugation to one particle, the
amplitude R p, e(p', p, t) is invariant under particle
exchange tt, delined by d~ p,a,p)=

~

—p,p,u).
Actually it will be convenient to consider 8 as the

product of two operators, one which interchanges the
spinorial indices and one which reverses the relative
momentum.

(3.20a)
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TAsrz I. Solution to the nucleon-antinucleon Bethe-Salpeter equation at t=0.

Amplitude'
Stateb

n —J even n —J odd Comments

I
II

IIIa
IIIb
IV
V

VIa
VIb

g (n 0)

g (neo)

7

(ni0)

gI (n~0)

g0 (ni0)

g (n~1)

g (n -1)

g ( 0)

g, ( .0)
(nil)
(ni —1)

1,(2)

0,2,0)

~ ~ ~

0

(2)

degenerate at t=0

de enerate at t=0 lg
Residue in partia1-wave

degenerate at t=0 amplitude has a zero at t=0

a The final-state quantum numbers have been suppressed. They must be equal to one of the initial states' quantum numbers in that type.
b 0(3) parity-conserving helicity State (see Table II) to which these amplitudes contribute. For those states listed in parenthesis the contribution is

from the amplitude with co = (+) and vanishes at t =0.

&.IP»P&= I
—P» P) (3 2ob)

~.lp, -,p&= lp, p,-&.

From Eqs. (3.13) and (3.8) we find that

(3.20c)

+.InuJm, &= , .= , »—j, —

0)=a, «= +. (3.23)

Suppressing the common (num), this is

I
z++ &=—(I++»+ I

——z))
v2

1
lz-+) =—(I+-z&+ I-+z&)

I
lz+-) =—(I++»- I--»),

1
Iz--&=—(I+-»- I-+»).

d, ln3f JmgeZ&= (—)' slnMJmi)eZ), (3.21)

and taking —p(q, e,|P)=p(q, 8,$—s.) and using the
symmetry properties of the boost representations, we

get

dln3EJmi)eZ)= ( )"+~—+' ~InÃJm, e,—i—),Z&. (3.22)

To make the final BS equation, after doing the O(4)
projection, as nearly diagonal as possible it is worth
another change of basis to construct Z's diagonal in d.
Therefore, we let ~ be the total intrinsic parity, co= pe
and define this new basis by

1
In%JmZar«&= f lnM

—Jm, i)=+, a=a), Z)

dlnMJmZ(0«)= (—)"+~+' s(1—28~8„)
X I

nM JmZa«). (3.26)

Since we are using 1V1V formalism to describe XE
scattering, the equations for 6' and 8 must be used with
care. We will find that an 0(4) state with a certain
parity, as given by Eq. (3.24), will only contribute to
Ã1V partial-wave helicity amplitudes of the opposite
parity, presented in Table I. Also O(4) states of an d
eigenvalue, Eq. (3.26), will contribute to a partial-wave
amplitude with the opposite value of C„, given in
Table I (cf. Table II). The Z in the new basis is

Z (n, i(l) (g ~ p)

(Z (a,M)+«Z (n,M))

(e,3f) Q ~, , (n,M)8(Q)

xD„.1(q,e,o)D„.&(q, t),o)

Xe '&""+"')-lC( '„'Z p' -r'-) t')„„C., & (3.27).
IV. O(4) PROJECTION OF THE BETHE-

SALPETER EQUATION

Finally we are ready to take the projections

R l. , s(p', p, t)

=Q Zr'(0', n', P')Rr'r(P', P, t)Zr*(Q,n,P), (4.1)

B- s .-s(p' P t)

=P Zr'(0' n' P')Br'r(P', P,t)Z'*(0 n P). (4.2)

Here P and 0 are the magnitude and direction of p and
likewise for the primed quantities. The projected SS
equation is

P RT'T"(P',P,t) (T"
I
5-'(-'0+P)6)S—'(-'k —P) I T)

Then the symmetries become

(P
I
nM Jmzux&= ( )l ski

I n,—M—, Jmz(—u«),

tel n~Jmx «&= ( )"+)««Inks JmZ~«&—,

(3.24)

(3.25)

BT'r(P', P,t)—
+ 0'd() Z R"'(P'0 t)B"(QP). (4.3)

(2~)4 Tll
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TABLE II. Parity-conserving helicity states for the NN system.

2059

Name
State in

~
Jmxq4) basis~ LS description

Singlet
Uncoupled triplet
First coupled triplet
Second coupled triplet

Cb Pb

( )J+I

( )J+1

Particles
(trajectories)

a The quantum numbers J and m are suppressed.
b See the warning after Eq. (3.26).

(Note that the homogeneous part is independent of the
final-state quantum numbers so we will often suppress
them. )

After finding expressions for the matrix elements of
the inverse propagators and for the kernels in terms of
the quantum numbers, this equation is continued to the
complex J,e, and rI,

' planes keeping n —J=X and
n' I= X—' integer. The Lorentz poles (at t=0) are at
those values of e for which the homogeneous equation
has a solution (i.e. , where the Fredholm determinant
is zero).

Because we have the 0(4) symmetry at t=0 the BS
equation is much simpler there, so we will investigate
first its properties at t=0.

In the Zew basis this is

P(P'a)+m')8„. 2iPm—b„, b„, „]
X&;.4r sr4 s& ~ &z z& ~ (5 2)

B. Expanding the Kernel in O(4) Basis Functions

We need to calculate the projected Horn terms to
find the structure of the coupled integral equations. Of
course, the symmetries limit the number of independent
Horn terms. At t=0 BT'~ is diagonal in n and M and
independent of J and m. For some simple exchanges
without vector coupling 8 is independent of t and so is
always diagonal in n and M and independent of J and m.

B' (P', P ~=0)=B..;...- (P'P). (5.3)

V. PROJECTED BETHE-SALPETER
EQUATION AT f=O

A. Propagators

At t=0 the inverse propagator is S '(p)= (ip+m).
The 0(4) matrix element of the progapators is

Qcg ~aa'~PP'2

B- e .-e(p' P) =
(P P')'+)"— (5 4)

In this section we consider only the exchange of scalar
. or pseudoscalar particles, and later we will show how a

more general interaction may be treated. Foi a scalar
interactiori

&T'~ S-i(p)oxS-((—p) ~
T)= p dn„

a'P'

xzT'*(n', ~',p')s-'. .(p)s-', ,(—p)z'(~, ~,p).

From Eq. (A2) for p we see that it can be expressed as

Pa a=—P(r'p'), (~p)

= —PI)„, „gDp.„&(p,8,0)e """&D,pl(0, —8, —p) ~

It is easier to work out this matrix in the geZ basis first.
(We use the notation AB for an operator in the
Hilbert space of the two 4-component Dirac 6elds. A is
the nucleon operator, 8 is the operator in the space of
our C-transformed antinucleon, and I is the identity
operator. ) We find

and for a pseudoscalar exchange

'peg Pa'a PP'P2 5 5

B- s .-e(P' P)=
(P P')'+I"—
g,g2rtb„„bgf, .Spy 5„

(P P')'+I"— (5.5)

Also, from conservation of parity we have

We note that these simple interactions are invariant
under (B commutes with) d~ as well as (P and d. From
this and Eq. (3.24—6) the projected Born terms have
the following properties:

K = K (—)z'(d '= (—) scan if M =0, Z' = Z if K=+,
and cv'=co if both Z'=Z and x= —.

(T'ipgI ir)= —P~S,.„ (5.1a) (n,—a)I) —( )
z'—z~~~B. . . (n, M)

so that
(r'iIgp i T)= —P 6, „ (5.1b) so that the M = —1 kernels are determined from the

M = 1 kernels.
For either scalar or pseudoscalar exchange 8 com-

(7'~S '(P)SS '(—P) ~T)=(P'))s—iPm()) —s)+m')br T. mutes with I87' (identity for one nucleon, y' for the
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other). We find

(Ijay')
l
nM JmZ&d/() =

l nM Jm&, —co, K),
(q'g I) lnM~m&~~)=~lnM~m&, —~, ~). (5 6)

Since B commutes with Isp' (or y'/3I) it depends only
upon the product om' and not upon both co and co'

individually.
To take advantage of all the above symmetries we

write

(nM)(P, ~ P) —b, B, „(n,M)(P& P)
f'= (eau'= cv'/co (5.7)

and for a given e the independent nonzero B~ ~,~„("~)

~00,++ '
y ~00,+— '

y ~11,++ '
y ~11,+- '

)

810, (n". The above properties of y' show that

Bz z,p,("™for pseudoscalar exchange is just ~ times the
corresponding kernel for scalar exchange. Thus, we
need only find the above eight kernels for scalar
exchange.

Starting with

gcg ~a'a~p'p
B- z, -z(P', P) =

(P—P')'+/"
=p Zr'(n', n', p') Br'(p', p)Zr*(n, n,p)

and putting p' in the 4th direction and using

~..... - Q=o,-,p)
=/Vz'" '8Jz8~ (p+p)c(»»Z; p, r)8„,«C„,(

we get

ol

where

Qcg ~a'a~p'p
do Z '*(0'a' p') =B ' Nz'" ~'4z&m, (p+T)C(g, 2,&l p)7)0c.«c~t

a1p/ P'+P" 2PP' cosg
—'+//'

'gcg
1Vz&" )Bz z t„&"~)(P,P)= Q dfl &z z r

'" '(~1,(&/)), («)) (k~k»i/))r) ~

rptt 2PP (z—cosf)

z= (P'+P"+/i')/2PP'.
The integration over q and 8 gives

2' gcg
(nM)(p& ,p)

((2m+ 1)(2Z'+ 1))i/2PP ..i=+ ..-+',
sin'()t d)/tdzz~o, + )

&" )(f)

ei (rp+tt) f
x c(2,2»;/, .)C(2,z»';/, .)~„,„,c«. (5.8)

z—cos)/t

The kernels are calculated from this using Ref. 7 (App. ), the Gegenbauer polynomial identities, and the following

integral".
i g~(1 g2) i/2

C '(x)dx=zz"l z+(z' —1)'/2]—" '.
(z—x)

We find the eight independent kernels for scalar exchange are

1
(n 0) p

n+ 1

j.
oo + (,o) &pn,

n+1

(n, o) L(n'+ 2n+ 2)z+ 2(n+ 1)(z' —1)'")F
n(n+1)(n+2)

—1
(n, o)

Lz+ (n+ 1)(z' —1)»')F.,
(n+ 1)Ln(n+ 2)$'"

(,O) P g11 (,1)

n+1
L(n+ 1)z+ (z' 1)'")F—,

n(n+2)

where

B '"')= F Bii y&" ') = Iz+(n+1)(z' —1)'"jF,
n+1 n(n+2)

Lz+ (z2 1)1/2g —m—I

F =F„(P',P) =2z'i/, g'— P2+p&2+~2
and 8=

15 Bateman Manuscript Project (IrItegral Transforms), edited by A. Erdelyi (McGraw-Hill Book Co., New York, 1953), Eq.
(&6.3.5).
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Some of these kernels have a pole at m=0, but the
residue of this pole is independent of the mass of the
exchanged particle.

Even for scalar (or pseudoscalar) exchange the BS
equation for nucleon-nucleon scattering is not of
Fredholm type. To avoid this we insert a cutoff in the
propagator of the exchanged particle. In some approxi-
mate way the cutoff represents the structure of the
exchanged particle. We replace L(p —p')'+tt'] ' by

To obtain the 0(4) kernels with this cutoff we just use
Eq. (5.9) and subtract a similar term with tt' replaced
by X'. This not only makes the equation of Fredholm
type but it also eliminates the pole at m= 0."The pole
at m=0 in the kernel seems to prevent Regge poles from
crossing J=—0 at 6nite t.

C. Six Solutions at 1=0

The Bethe-Salpeter equation is now (suppressing
final-state quantum numbers on R)

P Rz„„.& ~&(P)[(coP'+m')8„„2iPr/t8„, —8„., „$

6ejo8M/sjpK/K+zjz, (rd/Gtj)K (PfyP)

+ Z Q'dQ
(2z-) 4 z

of parity. We know of no reason (i.e. , symmetry) that
the first two should be degenerate. We will show later
that for an R amplitude to contribute to any 0(3)
helicity amplitude at t= 0 it must have to= (—). Thus
the Lorentz poles in the above four amplitudes produce
Regge poles in 0(3) amplitudes with a residue which
has a zero at t=0. These then are the evasive solutions
to the conspiracy condition. "They will be discussed
in Sec. VII D after we determine which 0(4) amplitudes
contribute to which 0(3) amplitudes for tWO.

The amplitudes Ri+ '"'), Ro &"", and Ro ("')
obey a set of coupled integral equations. Any Lorentz
pole in one will appear in all three. This pole will be
what Freedman and Wang' call a type-I Lorentz pole.
Similarly, the three amplitudes R+ ("",R +(" ), and
R ("" are coupled and will yield a Freedman and
Wang type-II trajectory. The two sets, &=~i, of
three amplitudes Rt++'" ~', Rt +&" ~), and Rt
satisfy identical coupled integral equations and produce
the parity-doublet type-III Lorentz poles. These results
(and certain results from later sections) are summarized
in Table I where we have continued Freedman and
Wang's numbering to the evasive Lorentz poles.

VI. REGGE POLES IN HELICITY
AMPLITUDES

Now we come to the important question of how a
I.orentz pole contributes to a particular (parity-
conserving) helicity amplitude. We consider this
question for general t.

This equation is continued to the complex e-plane. The
value of m for which the homogeneous equation has a
solution is the position of a Lorentz pole. Of course, the
equation is uncoupled to a large degree due to the 0(4)
symmetry at this special value of t. The amplitudes
Ro++"", Rg++"', Rg+ "", and Rg+ &" —'~ each
obey an uncoupled integral equation. The first two of
these amplitudes satisfy identical equations, as do the
last two. So the Lorentz poles of Ro++'" "and R~++&" '&

aredegenerate at t=0in thee plane. And R~+ ("') and
R~+ &" —"are another degenerate pair. This last
degeneracy is understood as a parity doubling, since I'
changes the sign of 3f and we have over-all conservation

A. Contribution of an O(4) Amplitude to a
Helicity Amplitude

First we continue R p, p(p', p, t) to the mass shelL
From

(-,'k+ p)'= —//ts= (-,'k —p)'

and k= (0, 0, 0, i'), it follo—ws that for tWO, Pemust
be zero; hence, f=-,'z.. (Although P4 is not required by
the above equations to be zero at t =0, it is required by
continuation. ) From p= f/P sinIt we lear-n that on the
mass shell P= —i(/rt' —-'t)'"=Q(t).

Next, we sandwich the M amplitude between spinors
to obtain the scattering amplitude. Then combining
Eqs. (2.1), (2.3), and (4.1), we have

2'x, x, ,xx, (p', p~) =2 I (lk+ p', ~t')Np (lk —p', &s')Z'(v' ()', l7r tr', i3')R"(Q(t) Q(t) t)Z'*(vr 0 zsr»&)

&&&-t „(-',k+P)S—'»(-', k —P)N. (-', k+P, Xt)ttp(-', k —P, ) s)

=p (tttcZr') lim [p Rr'r" (P',P,t)Fr"r(P t)](Zr*gtt)
P,P' ~g (t) T//

6 We are indebted to Professor David Y. Wong for pointing out this fortunate property."D. V. Volkov and V. N. Gribov, Zh. Eksperitn. i Teor. Fiz. 44, 1068 (1963) /English transl. : Soviet Phys. —JETP 17, 720
(1963)g; M. Gell-Mann and E. Leader, in Thirteenth International Conference on High-Energy Physics at Berhetey, D'66 (University
of California Press, Berkeley, 1967).
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where

PT"T= &V"IS- (P+p) g S- (-,'y —P) IT'&.

tude for integer J. Included in the sum over Y and Y' are

Of course Ii will have a pole on the mass shell and 8
will have a zero but their product will be regular (except
at a Regge pole where we expect a pole). Since the sum
iver RF is just the left-hand side of the projected BS
equation, RF= J3+J—'RB, we could substitute the
right-hand side for it.

The quantity represented by (ZTuu) is

(Z'*uu) =—g ZT*(q,8,—,IIr,n,P)u (-',k+P, XI)up(-,'k —P, l~s)
aP

and we show later that it can be factored:

(ZT*uu) = D~i, ~(p,8,0)XT(t,hi, hs), X= XI—Xs. (6.2)

The quantity (uuZT) when expressed in terms of the
0(4) angles (p,8,$) is just the complex conjugate of
(ZT*uu). We get this from using Eq. (A4) for u, (q,X) and
find that when it is expressed in terms of the 0(4) angles
of q it is given by

u (Q„X)=u *(Q„X).

Ke can understand this by observing that it is con-
sistent with the following facts:

g u. (q,X)u (q,X) =bid. . .

u.(q,) )= (1/V2) X),I,(q „8ii,rip„0,0,0), n= (r,p),

n=J n'=J

We wish to continue this equation to noninteger J and
have the partial-wave amplitude satisfy Carlson's
theorem. If each term in the sums over e and e' satisfies
Carlson's theorem and the sums converge uniformly
in J, then the amplitude will satisfy Carlson's theorem.
This happens if we let n= 1+X and n'= X+X' and
keep X and X' fixed as we continue J. Then

Q f(S,n,n') —+ Q P f(J, X+X,X+X').
n Jn, ' J X=0 X'=0

At the same time we continue the projected BS equation
to the complex J,e and e' planes keeping X and X' fixed
at integers. We shall show that this is the correct
prescription of continuation for general t later, but
now we note that at t=0 there is only onesum,
f(J;n,n') = 8„„f(n), and the arguments of Ref. 2,
Appendix 8, show that this continuation is correct.

The final step is to form parity-conserving helicity
amplitudes. For the nucleon-antinucleon system there
are four helicity states. For convenience we name the
four parity-conserving combinations by a single symbol
according to Table II. Then the parity conserving
helicity amplitudes of GGMW" are

and the fact that this 0(4) K) is unitary.
We have then

(uuZ') =D~ ~'(q ',8')0)XT'~(t, l~i', Xs'),

fo'= &0 ~ f'IO& f»'= &I I f'I2&
fi'=&ulf'lu&, fs '=&2lf'I2&,

f '= &half'Il)

(6.5)

we see that the partial-wave amplitude is given by

g,9„'~f'(t) |XIX,&

47r

p XT'*(t,XI',Xs')
2J+1 J',m fixed TT'

&& 11III $Q 2P' "(P',P,t)F " (P,t)j

Taking as the de6nition of a partial-wave amplitude

27+1
Ig'gs', iiiIs(P )P~ ) —Q y~p ( p )8 )0)

X&XIV.s'( f {t)~liihs&D„i, (p,8,0), (6.3)

As coeKcients to the parity-conserving helicity states
we de6ne

XT(t,i)= (1/K2) [XT(t)4)Xs)+XT(t) —XI, —Xs)],
i=0, u, 1, or 2, (6.6)

where A~,A2 and the choice of sign are determined from
Table II.

B. Syecial Results at t=O

At t=0 the calculation of X is quite simple. From
Eq. (A3) we have

u (p,XI)= (1/v2) n,g,&'(y, 8,np, 0,0,0), n= (r,p) .
p, p'~q, (t) Tr'

&&XT(t,'AI,Xs) . (6.4)
Using this and taking p(q, 8,$)= p(&p, 8,$—m), we have- .
for the second "nucleon"

From the above equation we observe that X (t,XI,Xs) is
really the projection' of an 0(4) basis function on an
0(3) state. In bra-ket notation it is written as

XT(t,hI,4)= &ntM JrNZcw ( tJmAIhs&.

Equation (4.3) along with Eq. (6.4), the 0(4) projected
BS equation, are the:basic equations of this paper. As
they are now written they give the partial-wave ampli-

u p(—p,hs) = (1/v2) S,, i„&'(q,8,t(f—m ),0,0,0), p = (t,r) .
Then these equations and the definition of Z~, Eq.
(3.27), used in Eq. (6.2) give

X (t=O,XI)Xs)= (i '"'/V2)Xgi" Idggi, i" ~i(Isir)

&& C(-'„-,', Z; X„—X„X)8., (6.7)
'SM. L. Goldberger, M. T. Grisaru, S. W. MacDowc'I, and

D. Y. Wong, Phys. Rev. 120, 2250 (1960).
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Next, this equation substituted into Eq. (6.4) gives the
same result as Freedman and Wang. "

We now see why 0(4) types IV, V, and, VI do not
contribute to partial-wave amplitudes at 1=0; they
have or=(+). It might seem odd that only co=(—)
amplitudes contribute at t=O when we have used an
EE formalism. But when we treat unequal-mass
scattering, Appendix C, we find that only co=(+)
amplitudes contribute at threshold and only co=(—)
contribute at pseudothreshold.

We can now observe the well-known conspiracy of
Regge trajectories produced by a type-III Lorentz
pole. ' Table V b gives the behavior of X~("~)dJ~("~&

(i2vr) near J=0. From this table we see that a type-III
Lorentz pole, I M I

=1, contributes to helicity states of
both parities. There are then two Regge poles degen-
erate at t=o. When we solve the BS equation for t/0
we will And that there are two different sets of equations
which reduce to the type-III equations at (=0, so these
two Regge poles are in general degenerate only at t=0.
We further observe from Table V b that if the pion
had zero mass and had IM I

= 1 it would choose non-
sense at J=0. That is, in the X=@=0 (sense-sense at
J=0) partial-wave amplitude the residue would vanish
like 0,, and the A, = p, =1 amplitude would be regular
at a=0.

VII. THE BETHE-SALPETER EQUATION
FOR NONZERO f

At t/0 the Bethe-Salpeter equation, and therefore R,
will not be invariant under simultaneous 0(4) rotations
of p and p'."(It is invariant to simultaneous rotations
of p, p' and k but this is of no use in the Bethe-Salpeter
equation where k is fixed. ) Even though R is not
invariant under the rotations of p and p' it is still useful
to expand Z in basis functions of the group 0(4). Then
E. is no longer diagonal in n and 3f, but since E still is
invariant to 0(3) rotations of p and p' it is still diagonal
in J and m and independent of m. The additional com-
plexity at f/0 in the Bethe-Salpeter equation occurs
both in the inverse propagators and in the kernels. For
instance, there will be k in the propagators which will
connect two different sets of (n,M) quantum numbers.
We 6rst consider this effect in the inverse propagators.

A. Matrix Elements of the Inverse Propagators

From

S-'(-'k+p) 85-'(-'k —p)= L-'(+~)v'+iP+~jL-:(«)v' —iP+mj (& 1)
we get

(T IS- (zk+p)g S- (-,'k —p) I
T&

= (T'I (zp+m) e(—ip+~) I T)-!~(v'~)&(T'lv' p- p~'I»
+-,'(Qt)m(T'lq48I+ISq'IT)

+l&(T'lv'7'I» (&.2)
"See Appendix 3 for a more detailed explanation of this.

rptr
dQ Z™(Q,rp, h-)Z~(Q, rp, —tr)

g, (n, ',M') g (n, M)

2J+1

XP sin'iPdiPEzz. i,""'(g)

where
XdJ z i '"''~'&(p)d J zi, &"'~&Q'),

Ezz.),""'(P)=PC(,', ', , Z-;0—,X o)C—(', , -'„Z-';~, X—0)

X I
col „.cos(2(X—0)P)—48, „.sin(2(X —0)P)j.

For the various values of Z and Z' the function E is:
Z' &zz i ""'(4')

0 0 o&8„ cosP
1 0 icoB„, „sing
0 0 iM„, „sing
1 —1, 0, 1 co(8„~ cosf iM„, „—sing)

Using Eqs. (B15—821) these remaining integrals are
calculated and presented in part a of Table III. Part
b of Table III for y4I results from similar steps.
These two parts are used to obtain parts c and d of
Table III which are more convenient.

0
0

1

B. General Born Terms

A general class of kernels can be represented by
f(k p,k, )/L(p-p')'+p'g with a possible integral
over p.'. The numerator is a polynomial in the possible
invariants which can be formed from k,p,p', and the
y matrices. It is assumed to commute with 8 and O'. For
such a kernel the projection can be found by considering
it as

f(k pA" )XL(p—p')'+p'j-'
and putting a complete set of ZZ* between the two
factors. The projection of the last factor has already
been done so we only need to Gnd the projection of such
factors as p k, 0, k"p"o„„ky',etc. But these connect the
same pair of amplitudes with the same powers of t
and J as the inverse propagator. One way to see this
is that k~ is an 0(4) (~,z) operator (i.e., Ji= Jq=m),
,thus it will produce nonhero Inatrix elements arith

Since we already have the matrix elements of PI and
Ip we only need calculate the matrix elements. . of
y'I and Iy' to be able to calculate the matrix
element of the above.

pO I~7'= —
I

&I Oi
and

(T'I I(xXy4I T)
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TABLE III. 0(4)-symmetry-breaking matrix elements, where A = [(n J+1)(n+J+2)/4(n+1)(n+2)]'", B„=[n(n+3)/
( n+1)( n+2)5 rn, C„~=[1/(n+1)5[J(J+1)/2n(n+2)5 s and G„~=[1/(n+1)]&s[J(J+1)]j'n.To get matrix elements connecting
states ppjth Jf= -1 note that the parity operator, (P, commutes with the operators p' and P and use Eq. (3.24). Part c of Table III
may be conveniently used to get &T'I p'8&4I T) from the equation (ISp'+p'8I) (18&'+&'SI) =2(ISI+&'8&').

(a) &T'IISv'IT)
M' z'

0 0 n —1
n

n+1
0

n+1
1 1 n —1

n
n+1

&b) &T'I v'8 I
I »

jtt/I' Z' n'

Oon —1

n+1
0 1 n —1

n
n+1

1 n —1
n

n+1

3f=0, Z=O &=1,Z=j
MBA& os n I

~ ~ ~

G08es& coA n

—~b„, [(n—1)/&n+1)]'"A
~ ~ ~

cab„, „[(n+3)/&n+1)]'"A„~
~ ~ ~

408osr, coGn
~ ~ ~

—(ab„, [(n+2)/n]'"A, gJ
~ ~ ~

cub „[.n/(n+2)]'"A„~
—COBoir oiBn—IA n—I

~ ~ ~

—coB„„B„A„~
~ ~ ~

ar[b„.—„+(n+1)b, „]C„~

ct)Best coGn
~ ~ ~

~ ~

re[ b —+~(n+1)b„],C ~
~ ~ ~

~( bra'ca+bee', —w)An —1
~ ~ ~

«(b ~ +b„—, )A„~

&T'Ip'SII»=by zb, b;, „&n'M'JmZ'co' rcIp48—IInMJmzcw)
M=O, x=1

~b ~„[(n,+2)/n5' "A„,~
~ ~ ~

zb„. „[n/(n+2)]'"A„~
—~~ eBn-iAn I

~ ~ ~

„B„A„~

M=O, Z=O
—S„.„A„~

&=1,x=1

~b„, „G„J
~ ~ ~

—S„.„A„~
—~b„, [(n—1)/(n+1) 5'~'A„,~

~ ~ ~

~b ~[(n,+3)/(n+1) ]'"A„~

~ ~ ~

[ b ~ r(n+—1)b„.—„]C„J'
~ ~ ~

~ ~ ~

—ab„, „G„J
~ ~ ~

~ ~ ~

[—b ~ +~(n+1)b„, „]C„~
—(b ~ +~b„, „)A„,~

~ ~ ~

(—b ~ +xb, )A„~

&T'I I8~4I T) = b~,b b;, ,&n'M'JmZ'~' .
I
I—S&4InM JmZ~. )

3f=0, x=1

(c) &T'IISv4+v48IIT)
M' Z' n'

0 0
n

n+1
0 1 n —1 —((a+s)b

n
n+1 (ca+~)b

1 1 n —1

n+1

~ ~ ~

(co+a)b„, „G„~
~ ~ ~

~ ~ ~

[ &1+ )b—;.+( .)( +n—)1.b.]C„~..
~ ~ ~

~ ~ ~

—((u+N)b, G ~
~ ~ ~

~ ~ ~

[—(1+co)b —(cu —r) (n+1)b„, „]C„~
[—(1+co)b „+(co—«)b, „]A„,~

~ ~ ~

[—(1+ca)b„.„—(cg —x)b„. „]A„~

&T'
I ISv'+~'8 I

I »= b~ zb- -b;, .&n'M'Jmz'~' K I ISy'+y'8 —I
I
nM Jmza&~)

35=0, Z=O 3E=O, Z=j 35=1,x=1
—(1+ra) b ~ A „ i~ (co+a—)b„, „[(n+2)/n]'12A„,~

~ ~ ~ ~ ~ ~—(1+a&)b ~ A „~ (co+~)b„[n/(n, +2)]'"A„~
„[(n 1)/(n—+1)5'"A „ i ~ —(1+co)b„B„iA „&~

~ ~ ~ ~ ~ ~

[(n+3)/(n+1)]'"A„~ —(1+a))b B A„~

~ ~ ~

ra(l-s)b, (n+1)C ~

cu(1 —«)b„, „A„g~
~ ~ ~

—co(1—z)b, „A„~

(d) (T'Iv'8$ AS&'I»-(T'
I v48P PSv'

I » =b J' jb—~ b;.P&n'M'JmZ'~'~
I v48P —PS&'I nM Jmzcu~)

3f' Z' n' N =0, Z=O 3f=0, x=1 3f=1,x=1
0 0 ~ ~ ~ -&u(1+x)b, [(n+2)/n]'"A„, ~

~ ~ ~

n ~ ~ ~ R (1+K)bli, (yG~n+1 0 ~ ~ ~(1+x)b~, [n/(n+2)5'~'A„~ ~ ~ ~

0 1 n-1 &u(2+~)b— [(n 1)/, (n+1)—]'"A, i~ ~ ~ ~

n ~ ~ ~ ~ ~ ~

n+1 cu(1+x)b, [(n+3)/(n+1)]'"A ~ ~ ~ ~ ~ ~ ~

1 1 n —1 ~ ~ ~ ~ ~ ~

n cu(1+~)b—„„G„~, (o(1 a)b— (n—+1)C,„~
n+1 ~ 0 ~ ~ ~ ~

gg=n', 3f=M'~i, or e=n'&1, M=31'. Therefore the
basic structure of coupling is not changed by general-
izing the kernels. We will henceforth consider only
scalar exchange kernels.

C. Perturbation Expansion

Now because of the symmetry breaking the various
types of O(4) amplitudes found at t= 0 will be coupled
together. This includes the parent amplitudes, n= e'= J,
and an infinite number of daughters, n'= J+X',
rt= X+X; X, X'= I, 2, 3, . But since the coupling

coeflicients are of order Qt or t, a perturbation expan-
sion is possible. Only the equation for R"" has a in-
homogeneous term, so from the coupling between
amplitudes we see that E"'"~(t/4m)~" "'~t &(E"'".This
shows us two things. First, to have a parent amplitude
R"",n =J, accurate to order (t/4ns)x and only 2X non-
diagonal amplitudes need be included, the amplitudes
R""', n'= J+I, ,J+2X. Second, in the expression
for a partial-wave amplitude as a sum of 0(4) ampli-
tudes, Eq. (6.4), the sum over X (after replacing n by
X+X) converges uniformly in J and rt' for t(4nss.
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There is also coupling from the M= 1 to the 3f= —1
amplitudes. Actually, we expect this since neither is an
eigenstate of parity. Parity transforms a state of M
into one of —M. When we were defining states in
Sec. III we could have made eigenstates of parity from
the M= &1 states but at that point it seemed that we
had already made more than enough changes of basis.
So now we take the equivalent step by adding and
subtracting the integral equations to obtain equations
for (E~='&E~ '). (The equations are unchanged at
t=0 since there E~ ' obeys the same equation as
R~='.) Because the two different combinations have
different parity they will couple to diferent amplitudes;
thus the two Regge poles, degenerate at t=0, will split
as t increases from zero.

Parity and particle interchange diagonalize the BS
equation so there will be four separate sets of coupled
equations. Since the eigenvalue of 8 depends on (e—J)
the parent and even daughter amplitudes will be in a
different set than the odd daughters. In terms of the
0(4) types found at t=0, Table I, the four sets are
("e" is for X and X' even including the parent, and "o"
for X and X' odd):

(a) II(e), III(o), V(o), and VI(e) which will contrib-
ute to the parity-conserving partial-wave EE state

I I),
(b) II(o), III(e), V(e), and VI(o) which will contrib-

ute to IO),
(c) I(o), III(o), IV(e), and VI(e) which will contrib-

ute to no mass-shell amplitude, and
(d) I(e), III(e), IV(o), and VI(o) which will contrib-

ute to I1) and I2).

In types III and VI, the combination of Sf=1 and
3f= —1 is chosen which has the same parity as the
other 0(4) states in the set. Since we are considering the
pion trajectory we only display the equations with the
pion's parity and charge conjugation. The equations
are of the form

g T'T"PT"T IIT'T+ ggrglfgglrg

We write this as
gT'T"HT" T gT'T

7

where H is the operator (Ii J'8). Table IV is the—part
of H containing all the parent and first-daughter ampli-
tudes which contributes to the (Ol fl0) partial-wave
amplitude (i.e. , the pion).

We will not explicitly solve these equations but rather
will use the t and J dependence of the nondiagonal
terms to infer the t and J dependence of the residue of
the pion trajectory.

D. X'8 for t/0
Finally we need to calculate XT for t/0 to determine

how these amplitudes contribute to partial-wave ampli-
tudes. As for the case of t=0 we use Eq. (A3) for u,

I (~k+p, 'Ag) = (1/v2) I) g,-*'0(q, 8,rgb, 0,0,0), n= (r,p)
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but here (t i is not the boost angle of p but rather the
boost angle of -',k+ p. For the second "nucleon" we have

u (-,'k —p,X )= (1/V2) S,i'(q, 8,t$,0,0,0), p= (t, )
where )p2 is the boost angle of haik

—p. Putting this all
together in (Zuu) we get

Z~uu=D ),~(y,8,0)XT(t,ki,X2), . X=4—4,
where

Xr(t,ki, )(g)

=-'1Vr(" ~)diaz), ("~)())t)C(-'„-,'Z;)(i, —7(p)

yg g
—(b»(4i—t)—(»(A-t))b„ iC„& (7.3)

The angle f is still the boost angle of p and for equal-
mass scattering in the center-of-mass system must be
-', ~).. The angle fi is defined by

costi ——(k4+ p4)/I k+ p

and, evaluated on the mass shdl for equal-mass particles
in the center-of-mass system, this is t'"/2m The cos. ine
of (t 2 has the same value. As t -+ 0 we know that/i —+ -', n.

and (t 2 ~ -', ir; this gives

costi= cosf2 ——t"'/2m,

sin)Pi = —sing~ ——(4m t) ')'/—2m

Using these, we 6nd that

XT(t,)(i,h2)

= (1/V2)1)1'z(" )dye), (" )(-', s)C(2, -', , Z;)(i, —Xg)

(4m' —t)'I'i
X & ()~—

I ()~»»+ 1%~» —»
2m

t1/2-

E. (r and v Designation of O(4) States

We are interested in the behavior of the pion tra-
jectory near J=O and of course near t=O. Therefore,
we have written the highest power of J and t of the
matrix elements in Table IV under each of the elements.
We did the same in part b of Table V for the X's, and
from these two tables we can see a very important
regularity of the J'~"s. When e and J are integer, Z
vanishes unless n& J&!M! and n&&&!M!.We there-
fore label 0(4) states "(r" or "v" depending on whether
the above conditions are satisfied or not satis6ed,
respectively, at J=O. 0 and v are then the four-
dimensional analogs of "sense" and "nonsense" in
0(3). Then we see (Table IV) that the matrix element
between 0 and v states is proportional to J' ', while the
matrix elements between 0- and a- or between v and v are
regular at J=O. The X's, which are the projection of
an 0(4) state, Y, on an 0(3) helicity state, !J44), have
the following regularity near J=O: An X between an
0(4) v state and an 0(3) nonsense state or between a v

state and a sense state vanishes like gJ, while an X
between 0. and sense or between v and nonsense is
regular at J=O. From this it is easy to see how the
pion chooses nonsense if perturbation theory holds and
if the pion is !M! = 1 at t=0 (or any other v state for
that matter). It is convenient to make use of the fact
that the residues of a pole in the 0(4) projected M-
functions factor, i.e.,

Mr'r(t)= lim L Q—Rr'T"(P', P,t)Fr"r(P, t)j

(7.5)

This allows the residue of a Regge pole in the parity-
conserving partial-wave amplitude to factor

For all the d's used in these equations

(n,M) (L~)—( )m 7+i)f+z+),d— {m,M) (1 )

and
(7.6)

)see Ref. 7 (App. )$; thus to calculate X we can consider
two separate cases d.epending on the sign of (—)" ~+~.
These are presented in Table V. Using this table we can
determine which 0(4) amplitudes contribute to which
0(3) parity-conserving helicity amplitudes. This im-
portant information is included in Table I.

From these tables we see that types IV, V, and VI
C'(4) amplitudes can produce evasive Regge trajectories,
i.e. , Regge trajectories whose residues are zero at t=0.
I arent evasive Regge trajectories of this type can occur
only in the singlet, !0) and uncoupled triplet, !u),
states. Dynamical evasion, where the residue of a
I.orentz pole in an 0(4) amplitude is zero at t=O, is
possible with type I, II, and III but we do not consider
it as likely.

If perturbation theory holds

where Yo is the 0(4) state which exhibits the pole at
t=O. Assuming the pion trajectory is !M! =1 at t=O
means Yo is a v state so that I'„(t) ~ 8 and I',(t) 0- J'(2t~.
Breaking the sum over Y in Eq. (7.6) into two sums,
one over 0(4) v states and one over o states we get

y,(t) ~ (tJ)'" i= sense
OC i= nonsense.

Thus the pion chooses nonsense, and since the pion's
conspirator also has !M! = 1 at t= 0, it too will choose
nonsense.
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TABLE V. XT's for general t.

State LS description Xr for ( )n—J+M —I T for ( )m J+—or—

(a) Xr(tp) in terms of iVz&" ~&diaz&, &" ~&(floor) (called M in this part of the table).

Singlet

Uncoupled triplet

First coupled triplet

Second coupled triplet

0

v2Ndbzob +b,+t'&ol2oN

( t . &ll/2

it&tdbz&b~ b.++b.
~

I—

llo
—zV21Vdbzob~ b. +-b„~~ I—

Mbzgb +b„ t'&o/2»&

t I/O

—iV2Nd'by. 18 8, +8,+ 1—
4m2

V2NdS»S. +a„+

( il &/2

iNdbzgb„b, ++b„~ I—

I /1jd/

J 1J 0 1J 0 0
J+1 1 1
J+1 0 1
J+1 0 0
J+2 I 1
J+2 0
J+2 0 0

vor0'

0'

V
0'
0'

V
0'

(b) Values of 1&rz&" ~&dJzo&" &(zzor) in the vicinity of J'=0
Sense at J=O

+z&n &&&&d~zo&e &&r&(1~).

J1/2
0
C

0

0
J1/2
0
C

Nonsense at J=O
1&tz&n,zr&d~z &n, z&& (z~)

C

C

0
C

0
0
C

Jl/2
0

VIII. CROSSING UNCOUPLED TRAJECTORIES then, assuming the equations are of Fredholm type

Although nondegenerate perturbation theory easily
leads to a trajectory that is M=1 at t=0 choosing
nonsense at J=0, it is not as easy to Gnd what happens
in a degenerate situation. Therefore it is instructive to
consider a simpli6ed model. We consider the following
equations

t&
s p&)&& s p

B'(P',P) =P (8.3)

where ~„~ and X„(~' are, respectively, the pth eigen-
function and eigenvalue of homogeneous equation and
are functions of J and t'. The ~„~'s are orthonormal, i.e. ,

j 1o2j=l,2
Q R"F's=)&B's+)& Q R'&B'~, i, k = 1]2,

P'dpr&„s(P) r&„s(P)= b„„.

(bJt) &1')

!)' (8.1)p-
(lJt) &lz

B'(J,t)8=
0

+)& Q'dQR" (P',Q)B'(Q,P)

0

Bs(J,t))

These equations are a model of the e= J, M=1 and
e=J, Z=O, 3f=0, parts of the equations which deter-
mine the pion trajectory. The superscripts one and two
correspond to these two parts. We have kept the oG-

diagonal part of p= (T'~S '&8&S '~T)—~ (Jt)'1s, but we
have made the following approximations: (a) We
approximated the three e=J, M= 1 equations by one
equation, (b) we suppressed the P dependence of P,
and (c) we set its diagonal elements equal to unity.
In solving these equations it is easier to consider X as a
function of J and t and then once this is found to solve

X(J,t)=constant for the trajectory J=&z(t). Now con-
sider the uncoupled equations (i.e., with F&a= F&s=0)

R"(P' P) =)&,b.sB (P' P)

Suppose that )&&&s&(J,t) =)&o produces two trajectories,
&z"(t), k= 1,2 which both have J slightly less than zero
at t=0 and which cross near t=0. Also we assume all
the trajectories determined from )&„s'(J,t)=)&o, t&) 1
are lower than either of these for aH t&ns 2. Then these
other trajectories can be omitted now and inserted later
using simple perturbation theory.

We expand the P dependence of R' (ps', P) in the
eigenfunctions of Bs(p',P),

R"(P' P) =g w ' (P') t& '(P) (8 4)

where the w„'"(P') are unknown functions which also
depend on J and t. Putting Eqs. (8.3 and 8.4) into the
coupled integral equations and integrating on the right
by J't&rs(P)Psdp gives

jk
w "(P)+(bJt)'" Q w„"(P)

p 1

n s(P) w &s(P)
—+X, jab, (8.3)

y (I) ),&(I)
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where

(
jk

r&v (P)r&„s(P)P'dP

is a function of J and t. The assumption that the other
uncoupled trajectories are far from those with p=1
and t= 0 allows the sum over p to contain just the p= 1
term. Then dropping the 1 subscript and setting i= 1
and dropping that superscript, the two coupled equa-
tions are (at )t=Xp)

(x&'& —)I. )w "&(p)
+),(r&(bJ()»P(2 (1)~(sl(P)=), ,(~&(P)

(X&a& —)tp) w &'&(P)
(8.6)

+) &"(bJt)'"(1 (
2)to&"(P)=0.

Expanding Xts&(J,))—Xp in a power series in J and 3

and keeping only Grst-order terms gives

() &'& —Xp)/Xp ——apLJ—ns(t)], (8.7)
where

ns(&) =—cg,+dst.

In the. coupling terms we approximate ) '~) by Xo and
set (1~2) sb=b' and then neglect its dependence on J
and t so that we get

(~rLJ—~r(~)] (b'J&)'"
(8 8)

(b'Jt)'~' a, t J—ns(t)] kw&'& 0 )
If the 6nal state were state two instead of state one, the
right-hand side would be

)Oq

Even without the approximations made at the begin-
ning of this section we would have two coupled equa-
tions, similar to the above, to solve. "

20 To relax the approximations of this model we must use the
three equations in Table IV as the uncoupled (from the M=O
amplitudes) %=1 equation. Then we have for the uncoupled
equation

Q R'&'(P'&P) F&"(P)= & 8'P(P', P)

R-=a„[J—n„(t)]t (P)t (P')/D
R" = (b'Jt)'i'n"(P)o (P')/D,
R""=a Pn(/)' ]—p"(P)n"(P')/D
R'"= (b'J/)"'tt'(P)v" (P')/D.

(8.10)

The residue of the poles obviously factor. If we had kept
the correct I' dependence in the inverse propagators we
would find that M on the mass shell factors into equal
factors for initial and final states

We see the nondiagonal parts of the matrix have the
same I and t dependence, near J=O and t=0, as the
corresponding elements in the (T'~S 'SS—

'~ Y) matrix.
Thus if we wanted to study the possibility that the
uncoupled trajectory crossing the M= 1 uncoupled
trajectory is a e= J+1, 35=0, Z= 1 we would have a
similar 2 X2 matrix but with t(J)'~' for the nondiagonal
elements. "Since we are assuming that one of the two
states in the model is the 3SI= 1 state which is a v state
the other must be an 0- state for the trajectory to have
the possibility of choosing sense. Then the nondiagonal
term is proportional to (t~J)'I', P= 1,2,

The trajectories are determined by the solution, o,,
of the equation

D=—a„a.$n —n„(t)]pn —n.(t)]—(b')'to J=0
n, (t)= c;+d;t—, i = v,o, (8.9)

where we have replaced the state labels 1 and 2 by the
more informative labels v and 0-. Since the equation is
quadratic it yields two solutions. At 3=0 and again at
J=O the two solutions are n=n„(/) and n=n (/). With-
out knowing the sign of g„a,/(b')' and whether o.„(t) and
rr (t) cross in the J(0, t)0 region, it is impossible to
determine anything more about the trajectories. In
Fig. (2) we show the various possible trajectories. We
only include cases where n, (0))n,(0) since the high-
energy data seem to require an iV =1 trajectory to be
highest at 1=0.

We find the residues of the trajectories by examining
the solution of the 2)&2 matrix equations. These are

M"= 1;I',/(J —n(t)). ij = v, o (8.11)
+Q Q'de'&' P' Q)B&'~(Q,P), z,j=1,2, 3,

i
where the three values of the indices correspond to the three sets
of co and ~ for the M= T trajectory. Then B(Q,P) can be written as

B"((),P) =P'~'((&)~'" ~ ' " LF'~'(
V

where

u,'(P)v„'(P)P'dP =8„,

and t
F'Is)'P is the z,kth element of the matrix F'", and the

eigenfunctions are
g I '(P)LF'"(P)g'&

After coupling these equations to the other equations, we use
R't(P', P) =P u '~(P')s '(P)LF'IP(P)g"

lp,

as a solution and get two equations similar to the previous
equation.

Examining these residues we see that the vertex func-
tions for the trajectory which at J=O crosses n, are
l„~o. )' and I' o- 1 and the vertex functions of the
trajectory which crosses 0., at J=O are F„~1 and
F ~ 0.'". Combining this with the properties of the X's
yields the following: The trajectory which equals
(crosses) n, at J=O chooses sense and the other one
chooses nonsense. The pion s position in Fig. 1 is
consistent with this.

The last drawing in I'ig. 1 seems the most likely to us.
It has the pion lying on the same trajectory which is
3f= 1 at 1=0. This would agree with the fact that the
vertex function used in the high-energy fits extrapolated

"This particular choice of an O(4) 0. state was used to compare
with PCAC in Ref. 9.
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Contravariant 4-vectors are defined by

p"= (p—'p'p'p')=( p p p)
and covariant by p„=g„„p". Then the mass-shell
condition is

a„8 a

crossing in

J&0, t&0

a,,

/~f
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/ v (r &0
(b)'

re
&0

FIG. 1. Trajectories from the 2)&2 matrix model. Dashed line,
uncoupled trajectory; solid line, trajectory with coupling; circle,
position of the pion.

to the pion-nucleon coupling constant at 1=m '. For
this case F,~ t't' and F.~ a'". Then the 0(3) vertex
function for the singlet partial-wave state is

7 = F,X (t,0)+F„X"(t,0)
=g,t+g„a. (8.12)

This causes the vertex function to have a first-order
zero in the vicinity of 1=0. This agrees with the photo-
production fit. But the charge-exchange scattering was
fit with a first-order zero in the residue while we predict
a second-order zero (from two vertex functions).

An obvious question to ask is, what is the other
trajectory' We see that it chooses nonsense at J=O,
and so produces no particle. Its 0(4) vertex functions
are F,~o.'~ and F„~f'~', thus its singlet partial-wave
vertex function is

p~p„= I
pI' —E'= —m'

Much of this Appendix is contained in, or follows
from, Weinberg's "Feynman rules for any spin"" and
is presented here only for completeness.

Using the transformation properties under the
homogeneous Lorentz group as a definition of helicity
(or spin) states of a particle we have

U[cg I px) =p D,.), [I,"(Ap)AL(p)] I
Apl('),

where if P'=m cosh', P'=m sinhP cos8, P'=msinh1t
&(sin8 sing, and p'= m sinh)I sin8 cos&p. 1.(p) = Rs(q)
XRs(8)Bs((P) if I('s are helicities, or L(P)=Rs(y)R(8)
XBs()P)Rs(—8)Rs(—&p) if I('s are spins.

We use the normal four-component Dirac fields for
the nucleon. We define the state Ip,n) as the state
created by the 0, component of the adjoint field. We
choose a representation for the fields which diagonalizes
the I.orentz transformation matrices. To use this
representation easily (s is replaced by the set (r,p),
r= ~, p= +si. The r=+ components transform
according to S,r= —according to X)". Thus we have

(8.13) where

so that it makes no contribution to forward scattering
in crossed channels. It does not have a parity-reversed
partner trajectory to contribute to other partial waves
as does the pion's trajectory above. So it could easily
escape experimental verification.

In the review paper we have shown that for certain
choices of the 0(4) state whose uncoupled trajectory
crosses the 3f= 1 trajectory, we get no obvious contra-
diction of PCAC.
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APPENDIX A: DIRAC SPINORS AS
REPRESENTATIONS OF THE

LORENTZ GROUP

So that we will end in the normal Euclidean metric
after the Wick rotation we choose the metric

&..'*'(A)
+(~'n') ~ (rn)(A)

Three important properties of the representations are

(1) K)'* t(A) = XP*'(A '), where A is any Lorentz
transformation,

(2) K)*'(R)= S"(R)= D1(R), where ¹lisa representa-
tion of 0(3) and R is any rotation, and

(3) Sis(1t)= S':(—))t), where )P is a pure boost.

If we express a general Lorentz transformation in terms
of five rotations and one boost by

A((,8A WP,v) =Rs(( )Rs(8)&sQ)Rs(~)Rs(P)Rs(v)

and use the last two properties above, we can reexpress
X) as

&("p).(.p)(A)=8- 2 D'.'*(p,8,0)
p=+k

&& &.,"(0)D.,'(,P,v) T': (A2)

. Since the Dirac spinors, I (p, I() are the coefficients of
the particle annihilation operators in the expression for

» S.'„Weinbers, sPhys. Rev.".133,'B1318 (1964).
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We have fixed the representation of the Dirac fields
by specifying their Lorentz transformation properties,
and, as a result, the representation of the Dirac matrices
is now determined. From the Lorentz transformation of
the Dirac equation we know that

the fields we have

!»)=Z -(P,&)!P,-},
&,PLI 9)3) (A~)

u.(px) =—
~ n.~"[L(p)j ~

Next N(P, X) is determined by the equation

Q u (P,X)e (P,X')=8),i, .
a

Because the representations of the Lorentz group used
to define N(P, X) are not unitary I (P,X) is not simply
the complex conjugate of I (P,X). Instead of unitarity
we use the first of the three properties of the S's
mentioned previously to reach the definition»,"'*LL(P)j&I (p,X)=-

42 n, ),&"[L(p)])
»""LL-'(P)j)

v2 ~,'&[L—'(p) j)

n(h)~ n(h- )=~~h ~

where n(h. ) is given by Eq. (A1). We next show that
for our choice of representation this is satisfied by

0=7"Pi =Y p & P

n"LL(P)3'
(AS)

-n"LL(P)3'

Proof:

where L(p) = R8(p)R2(8)BS(ip)R2( —8)RI(—q ) and
(A4) W= —p~p„.

t n"(h)
!

o

0 0

n"(h) n'-:[L(p)j'

n(h)q~p„n(h ') =q~h„"-p„=q~(hp)„,

n"LL(p)7 ~»'(h-')
!

o & o

E n'&(h) n'&[L(p) j'n&'(h-')

n&'(h) n&'[L(p) j'n'&(h-') ~

)0

Now considering only the upper right element and
using the fact that L(p) is a pure boost so that
nl'[L(p)j= n'&[L '(p)$ we have

n&'(h) n&'[L(p))n'&[L —'(p))n'&(h —') .
Now L '(hp)hL(p) is a pure rotation, called R„, so that
our element is

n-*'[hL(p))D'(R„-')Dl(R„) n'~[L-'(p)h. -'j
= n~'[L(hp)]n"*[L(hp) g
= n&'[L(hp)1'. Q.E.D.

Of course we have not established that our choice of
normalization is correct. To see that it is we consider
the anticommutation relation

v"v "+v"v"—a""I.

From Eq. (AS) and taking p at rest we find that

and is normalized by y'y'= I, and is diGerent from the
identity, it is (to within a sign)

~I 0~v'=
I

&0 -Ii
The Dirac equation for spinors is

(bp+ m)u(p) =0,

(A7)

where b is a constant determined by our choice of the
metric and the normalization of y'. For a particle at rest

1 fa)I=—
!

V2 &a)

Eq. (A3), where e is a 2-component spinor depending
on the helicity. At rest

~0 I~v'= —il
&s o)

' (A6)
(0 I~

p popo
o)

which has correct normalization to satisfy the anti-
commutation relation.

Since y' is invariant under proper Lorentz trans-
formation, that is, it obeys

n(h)q&n(h ') =q&-

and hence b= z. This gives for the inverse propagator

5 '(p)=ip+m

and for the propagator

S(p) = ip+m/p'—+m', where p'= p"p„. (A9)
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We note also that since a particle at rest has

v2(ni

and hence an antiparticle at rest must have

(oj ANTI FERMION LINE

p+k-q

-p-k

the intrinsic parity (or particle-antiparticle description)
is not diagonal. In fact, since &Pu(p') = y'u(p') we have

&I'I p', (rp) &=
I
p', (—rp) &

We can construct a new basis which is diagonal in the
intrinsic parity, p, and use p to label this basis, thus

tPI p, w&=el(I'p, m&.

Then the transformation between the two bases is

(b) FERMIQN LlNE

p+ k-q C

I p, m&=Z c"I p, (~I)

1~1 1~
vZ&1 —1i„„

(A10)

tp"In the (r,p) representation 8&, , &, &,» = —Cp] r r'
where C=

To see how to change an antiparticle line in a
Feynrnan diagram into a particle line, consider the part
of a 2-rung ladder diagram (box diagram) drawn in
Fig. 2(a) and the following expression for it:

(—P—A+im)
e(p, )t)1 Av(q, )&,') .

(p+ k) '+m'

Now since

t (g) = 6-'ur(g),

u(q) = 8 'v'(q),
and

eked:-i= —A,

where 6 is the charge-conjugation operator, " it is
possible to de6ne new vertex functions so that one may
use the Feynman rules for a particle line. Let
Fq=t F~C ' and hq=668 '. Then the following
expression for a particle line (Figure 2b) has the same
value:

(P+k+im)
u(g, )t') 6, r.u(p, )t).

(p+k)'+ m'

Since the vertex functions are invariant under the total
(meaning all three particles) operator 1'c= riel', where

gt. is the eigenvalue of the exchange particle under. .8.
Thus we may use the Bethe-Salpeter equation for the

FIG. 2. Replacing a fermion line in a Feynman diagram
by an antifermion line.

scattering of two nucleons if we change the sign of the
Born terms and kernels of odd-C exchange particles.
(If we included isospin, we would change the sign for
exchange of odd-G particles. )

APPENDIX 8: O(4) PROJECTION FOR
NOÃZERO ENERGY

In this Appendix we present an alternative way of
understanding our 0(4) projection for nonzero energy
(&).

We start by presenting the invariance (actually
covariance) of the scattering amplitude to a general
O(4) rotation, g. This follows from the Lorentz covari-
ance of the amplitude before the Kick rotation.

Tx x,xg (p',pP)= Q W ~ ~PL '(g, —&+p')g
PIPRPl Pi

XD~s's'L~ '(g~ s~ p') jT.r'. s .w.s(gp',—gp~g~)

XD„„,IL~.(g, —,'J+p)jD„„,~I ~.(g, -', &—p)g, (»)
where

&-(g,p) =I '(gp)gl-(p)

and Di is the normal J= s representation of the O(3)
rotation I or SU(2)g group.

One way to consider this equation is in the Hilbert
space of two particle (asymptotic) states. Then the
operator T which transforms the state before scattering
into the state after scattering commutes with the
unitary operator of an.o(4) transformation.

U '(g)TU(g)=T.

Eq. (81) is a matrix element of this equation.
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The two-particle states, with k and p the total and By comparing Eq. (B2) to Eq. (84) we see the
relative momentum, transform under an 0(4) rotation superiority of the spinorial Hilbert space; it can be
by considered the direct product of two Hilbert spaces,

one containing k and the other p and the two field
Ug kpX,X, = D„,&,

~ Z. g, ', k+p-)

&&D~4)4*LE~(g) kk p)j I gk~gp»»).
and we let

For comparison we write the 0(4) covariance of the
M amplitude

M-p. «p(p'p, k)= Z &-T(g ')&p4(g ')
~~1/$1

such that

and

U(g)= Ui(g)SU„(g),

U.(g) I»= Igk)

But now the Hilbert space is different. Ke call this the
spinorial space; it is actually the space of' field com-
ponents. A two-field ket in this space transforms
according to

U(g) lkp~P)= 2 &- -(g)&~ ~(g) Igk, gp, ~'&'& (B4)

We will show later that this transformation law is more
convenient for our use than Eq. (B2). But first we need
to determine the properties we want our 0(4) projection
to have.

In the BS equation k is held constant while the inte-
gral over p covers all of four space. And in the partial-
wave projection the final relative momentum P' varies
while k is fixed. Thus, we need an 0(4) projection which
keeps k fixed.

A particularly useful form of the partial-wave
projection for us is the "transformation to the angular
momentum basis" one would write if he did not know
that the rotations commute with T. It is

64~4
d~»), ~ (R) &AD),~ *(%)

&((k4pp p)Li pX2 I
U' (Ri) TU(E2) Ik4,p,hi, X2&,

where the integrals are over the 0(3) rotation group.
(Since the rotation operators do commute with T we
have

(~'m'4'li2'I T I~mxi~2&= ~zz ~ fi;i, .i,&„).
We need a transformation to an 0(4) basis, like the
above, but with the 0(4) rotation operators operating
only on the relative momenta and on the spins, but
not on k.

XM, 4,,4(gp', gp, gk) &4.(g) &p4(g), (B3)

where X), the 0(4) representation to which the Dirac
field belongs, is given by Eq. (3.4). M also can be
considered an operator in a Hilbert space and this is a
matrix element of the operator equation

U-'(g)M U(g) =M

U.(g) Ip~,&)= 2 &- -(g)&~4 (g)lgp, ~'»'&.
a'P'

ISU~(g) is then the operator we need for the 0(4)
projection. Since it is not possible to make a similarly
simple decomposition of the two-particle Hilbert space,
M instead of T is the "natural" function for the 0(4)
projection.

We can reformulate our 0(4) projection in the
Ip,n,p& space by defining M(k)= (klMlk)—. This is an
operator in the

I p,n,p) space which does not commute
with U, (g). In fact

Ui, '(g) M'(k) U„(g)= M(gk) .

Since it does not commute with U„, the operator used
in the 0(4) projections, M(k), will have nondiagonal
0(4) matrix elements.

APPENDIX C: UNEQUAL-MASS FERMION-
ANTIFERMION SCATTERING

In this Appendix we outline the generalization of the
paper to unequal-mass scattering. We will call this
baryon-antinucleon scattering to give different names
to the two particles. In the summary paper' this scat-
tering was used to investigate pion-nucleon s-wave
scattering. If the baryon is assumed to be a pion and a
nucleon in a relative s state the baryon-nucleon-pion
vertex is the pion-nucleon s-wave scattering amplitude.
In this particular case the baryon has the opposite
"intrinsic" parity than the nucleon.

Because of the unequal masses, C no longer is a good
quantum number in the neutral baryon-antinucleon
system. Hence the singlet partial-wave state, IO), and
the "uncoupled triplet, " lu), are coupled and there is
a new partial wave amplitude, (0 I f I N). This manifests
itself in the BS equation (using baryon-nucleon for-
malism) by not having I invariance. So for tWO there
are two instead of four disjoint classes of coupled
integral equations. Even at 1=0 there is coupling
between the 0(4) types. Type I and IV couple, as do
II and V and also III and VI.

The kernels of the 0(4)-projected BS equation do
not change in any important way.



176 O(4) SYMMETRY AND REGGE TRAJECTORY OF PION 2073

TABLE VI. X's for unequal mass NN states. Here dz»A&" ~& Q) =dq»&" ~&(p)+dJ( &&" ~&((b), r(t) = (2m&o+2mo' —t)'",
2'(t) =(t—(m& —mo)'g'" and N(t) =L(m)+ms)' —t]'" t), =m&' m—o' and G=PN.

State X(t,)(i4) X2 (m, mo) '"

(a) X's in terms ot Nz&" ~&dJzl&" &(4')
m, —m, ) ( m, +m, )

0 ~&Nz'"' )dzzo&"' &(&b) b'zob ~(t) b,~+b,
~

ibzgb—~ N(t)~ b,p+b„
(t) J & (t) J

1 mg —mo ) ( mg+mo—N&&" ~&bzg b +dg, g
&" ~&((b)P(t) b„„+b. I+t'8 dg»~("~& Q)N(t)

I
b„+ +b,

v2 r(t) / k r(t)

m1 m2 m1+m2
v2Nz&" ~&dgzo&" ~&(lb) bzgb +2'(t) b„++8, — obzob„—N(t) b,++8.

7 (t) r(t)

m1 —m2 ( m)+mo
~,r.. ia, t;.~„„r., &(o)zo) s., +s.— ~+ a.-d» -r":w(ojo'o)~ L +L-)

V2 r(t) / 5 r(t)

(b) Nz(~ )&c)dJzl (~ zc) Q)

)t (2d[ Z

J 1 1J 0 1J 0 0
7+1 1 1
7+1 0 1
7+1 0 0
1+2 1 1
1+2 0 1
1+2 0 0

in the vicinity of J=0

vol 0 (e,oc)d (,M)(p)

(Jt) '"r/G
gJ1/2/G

C

tIJ1/o/G
(c»' —G')/(t)'"Gr

a/(t) ('r(
(J)(Io(ct),o Go) /(t) &)oGr—

() pcJ(a'+&Go) G'j/tGr'—
(ca' G')/tr'—

(,))c)d (,)tc) ((b)

a/G
rt' "/G

0
(ca' G') /(t) ' "G—r

(J)1/oa/G
0

(ct).' G') 5/tGro—
(J)' "(ct).' G') /(t) '"Gr—

0

(n, M)d (nM)
(&t,),

C

0
0

a/(t)'"or
0
0

(cgo —G') /tr-'
0
0

The inverse propagator is changed by the introduc- These are the terms that provide the coupling between
tion of two new terms, both proportional to the mass the different 0(4) types.
difference. They are But the most important change produced by the

generalization to unequal masses occurs in the calcula-
—',(ms —ml)(T'

~
pI+I(3p& T) tion of the X's. Equation (7.3) for X(t,4,)(s) is still

valid but the angles in it have new values. The mass
shell constraints in the center-of-mass system yield
(see Ref. 7)

igl' —m2' NI'cosg=, sing=
(t(2ml'+2ms' —t)]'" P(2ml'+ 2mz' —t)]'"

COSlPl =

COS&)bz ——

t+ mls mz'—
2mlgt

t ml +m2—
2ms«

sin(J l ——

2mlgt

Sings =
2m,«

(C1)

where E= L(ml+ms)' —t]'t' and P= p —(ml —mz)']'t'. Using these in Eq. (7.3) gives

XT(t,)&l,)(z) = (1/V2)tVz™diaz),&" ~&(f)C(-' —' z )(l —)(z )&)

mt+ms
X s ' '(&~ t).z, ,),,+Ra, , x,

2(mm)&' (om +2m —t)&' )
8$] 1@2p

(C2)
2(mlmo)"' (2mlo+ 2mzz t)'"/—

From this we calculate the X's which are presented in Table VI.


