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Starting with a sequence of parallel rising trajectories in the s channel, we give examples of residue
functions for which the Regge-Mandelstam pole contributions can be explicitly summed. The sum has
Regge behavior in the s channel as well as the # channel, and satisfies fixed-¢ dispersion relations and finite-
energy sum rules. The residue functions we start with do satisfy the usual analyticity properties
and threshold properties, have the Mandelstam symmetry factor, and show the expected exponential
behavior for large |s|. These results are achieved without fixing either the slope or the intercept of the
leading trajectory and without specifying Ime in detail in the low- and intermediate-energy region. We
use these examples to clarify some of the problems related to the use of finite-energy sum rules, both as
phenomenological relations and as dynamical equations. The way a finite but large number of s-channel
resonances can be summed to give Regge behavior in s is explicitly demonstrated. We also indicate how
the observation by Schmid on the relation of the p-exchange contribution in pion-nucleon charge-exchange
scattering to direct-channel resonances can be understood in terms of a direct-channel Regge-Mandelstam
analysis. Finally, we point out a general method for generating more examples of other residue functions
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with the desired properties.

I INTRODUCTION

INITE-ENERGY sum rules! give a potentially
useful relation between Regge residues in the
crossed channel and the parameters of low- and inter-
mediate-energy resonances in the direct channel. In a
crossing-symmetric problem the resonances also lie on
Regge trajectories, and in that case the infinite-energy
sum rules, in the resonance approximation, give a set of
integral equations for the residue functions. Mandel-
stam? proposed to use such a set of integral equations
as the starting point of a dynamical bootstrap based on
rising trajectories.

There are several problems that arise in the use of
finite-energy sum rules both as kinematic restrictions
on the relation between couplings in different channels,
or as dynamical equations. It has been suggested that
as dynamical equations they have no solution unless
we have an infinite number of trajectories that arbi-
trarily approach each other as s — .? Another prob-
lem that comes up is the question of double counting.
Namely, can a Regge term which behaves like s2® for
large s be actually built up by summing Regge reso-
nances in the s channel? Or are the resonances and the
Regge term independent to the extent that one could
write the amplitude as a sum of s*¢ plus resonance
terms in some domain? With rising trajectories the
answer to this question has not been clear. Schmid*
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has made a very interesting observation in this connec-
tion. He considered the pion-nucleon charge-exchange
amplitude which for s larger than 2 BeV? is approxi-
mated by p exchange. He made a partial-wave projection
of the simple p-exchange term in the s channel and
plotted the resulting partial-wave amplitudes in an
Argand diagram. The plots described circles, and
Schmid identified the tops of these circles with reso-
nances in the (wp) channel. In a plot of / versus reso-
nance energy, Schmid obtained straight lines which ap-
proximated the known N* trajectories.

In this paper we construct explicit examples which
clarify some of the questions mentioned above. We
start by showing how one can directly sum an infinite
number of Regge terms in the s channel in such a way
as to get a function that behaves like s*® for large s.
The set of trajectories we sum over are parallel and they
have finite spacing even as s — «. We perform this
sum under the restriction that first our residue functions
must satisfy the usual analyticity, reality, threshold
properties, and must vanish at the Mandelstam
symmetry points. Furthermore, we insist that the
sum have the correct analyticity properties in s so that
the functions we get automatically satisfy finite-energy
sum rules and dispersion relations in s.

In a crossing-symmetric case we find that we can
get the same leading trajectory in the s and ¢ channels
without any restriction on the slope of the rising
trajectory. Furthermore, we find a finite region in £ in
which the residue function of one channel is numerically
equal to the value that one would have obtained if he
had used the expression for the residue of the direct
channel. Since our sums satisfy finite-energy sum rules,
then in that region of ¢ in which we have approximate
crossing symmetry in 8, we achieve a solution of the
finite-energy sum rule dynamical equations.
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The method in which we carry out the summation is
fairly general. It is easy to see how many more examples
can be constructed in addition to the ones we study in
detail. This leads one to the conclusion that, far from
having no solutions, the finite-energy sum rules con-
sidered as dynamical equations have many solutions
and are not a very restrictive starting point for a
dynamical calculation. Without a serious inclusion of
unitarity and other conditions, such a dynamical
scheme has little information in it.

Although we sum over an infinite number of Regge
trajectories, below any finite energy s, we have only a
finite number of resonances. In fact, the resonances
broaden out and disappear in our model beyond a cer-
tain energy, s> M,2. The examples we have provide a
very instructive ansatz to study the use of the narrow-
resonance approximation in the finite-energy sum rules.
We also explicitly show how in a certain high-energy
region both resonances and Regge behavior can coexist
with each other. Namely, the same function can be
written in two equivalent ways, either as a sum of NV
resonances where XV is proportional to s, or as a Breit-
Wigner term times a factor (sy)*(®.

In Sec. II is shown how one can sum an infinite
number of Mandelstam-Regge terms to get the desired
properties mentioned above. In Sec. III we discuss
crossing symmetry for the residues and the trajectories
of both channels. We show how this gives us a bootstrap
scheme essentially equivalent to that of the finite-energy
sum rule. A solution of this bootstrap is given for a
certain range of ¢ values. We use our example in Sec. IV
to study the resonance approximation used in the
application of the finite-energy sum rules. We also
show how both Regge behavior and resonance behavior
can coexist at some large energies. We close this section
by making a few remarks about imposing unitarity
bounds in our model.

In Sec. V we discuss the problem of including signa-
ture factors in both each terms of the summation and
in the result of the summation. The results of Schmid
on charge-exchange scattering are also discussed, and
it is shown explicitly how the p-exchange term can be
built up of s-channel and #-channel resonances. Finally,
in Sec. VI the general nature of the summation pro-
cedure used in this paper is discussed and it is shown
how more examples could be made up.

II. SUMMING DIRECT-CHANNEL REGGE
CONTRIBUTIONS

In this section we sum a sequence of direct-channel
Regge-pole contributions to construct a class of func-
tions, F(s,t), with the following properties: Each
function has Regge asymptotic behavior in both s and
t. Each function is analytic in the cut s plane and
satisfies a dispersion relation for fixed ¢ Since the
functions are built up by summing s-channel Regge-
pole terms, they have s-channel resonances at low and
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intermediate energies. The functions satisfy finite-
energy sum rules and give us an ideal tool for studying
some of the problems related to the sum rules mentioned
in the Introduction.

We start by considering an infinite set of parallel
Regge trajectories, a.(s), given by

n=01,2,---. (1)

We take the leading trajectory, ao(s), to be essentially
a linear trajectory satisfying the following dispersion
relation’:

an(s)=ao(s)—n,

s = Imay(s")
a(s)=as+b+~| ——ds, (2)
w)s $'(s'—s)
with
Imay(s)=0, 3)
and

a>0. 4

These last two conditions insure that ay(s) is a Herglotz
function; & is real. We shall later need to impose the
condition that for large s, Ima(s)~(Ins) as s— .
However, we can do this without changing the approxi-
mate relation ao(s)=~as+b at low energies by choosing
Imayp small at low energies. The asymptotic behavior of
a(s) will of course remain linear as |s| — =,

ao(s) = as+0(In%s). (5)

Explicit examples of Ima, will be given later.

The residue functions, 8,(s), will be chosen so that
they satisfy the correct analyticity and threshold
properties. They will also turn out to automatically
have the Mandelstam symmetry factor.

The first problem we face is what to use for a Regge-
pole contribution. Clearly, we cannot start with a sum
of the form

> Bn(8)Pa,(—2)[ 2an+1]sinmwa, .

For large enough #, Rea,<—3%, and the contributions
of these trajectories will behave like z72»1 for large .
There are several ways to write a Regge contribution
in such a way that it will have the asymptotic behavior
z%» regardless of whether Rea,<—3% or Rea,>—1.
The most natural and most convenient for our present
purpose is the way proposed by Mandelstam.t In the
Mandelstam-Regge representation a pole contribution
is proportional to Q_,—1(—2), where Q, is a Legendre
function of the second kind.

8 Equations (1) and (2) should be interpreted as an idealization
of a situation where

an(s) =as—!—b—n+£ [_” Ima, (s")[s' (s"—s) Tds’.
wJa

This way the stack of resonances of different / which we get at a
certain energy will not all have the same total width. Here Ima,
depends on 7 and the trajectories are only approximately parallel
to the extent that Ima, is small at low energies for all %.

8 S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).
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We define a function, F(s,f), by the following series:

o Op (87 1 e (s)—1(—
F(s,t)zzﬁ ()2t (5)+ 110 cy—1( z).
n=0 cosmar, ()

(6)

At this point we recall one property of the Mandelstam-
Regge form which is crucial to our discussion. Namely,
although we sum in (6) over an infinite number of
Regge poles, below any finite energy s, we have only a
finite number of resonances. For suppose Rea(sy)= 1N,
N an integer, and Ima(sy) is small. Then only the first
(N+1) terms in (6) give a resonance. The terms with
n= N1 have no resonance poles. Using the identity,
for the first N1 terms,

_ Q—an—l(z)= Pei(3)  Qaa(2)

sinmro,

) )

T COSTQn T COSTQp

we see that at s=~sy we have N-+1 resonances with
angular momentum &V, N—1,---,0.
The series we have to sum is of the form

F(s,t>=§ Y (5) Qe (+2). (®)

We have collected all the extraneous factors in v, and
set

Y (8)=[2an(s)+1]8a(s)e™0® /cosmas(s).  (9)

To perform the sum in (7) it turns out to be convenient
to use the following integral representation of the Q
functions’:

0.(5)= (bt /

0

00

eVl e (y)yHidy,

Rez>1, Rev>—1. (10)
We carry out our summation in the region ¢<0 and
s<4, where we can always find a domain such that

z=142¢/(s—4)>1,
(11)

and
Reap(s)< —1.

Later we shall analytically continue the final answer in
s to all values of s in the cut plane.

From (11) it follows that Re[#—ao(s)—1]> —3% for
n=0,1,2,---. Hence we can use the representation
(10) and get

0

F(s)= (m) f ey RH (sl (12)
0
The function H (s,y) is given by the series
H(s,y)= 2=:0 Y () nao-172(y) - (13)

7 Bateman Manuscript Project, Higher Transcendental Functions,
edited by A. Erdélyi (McGraw-Hill Book Co., New York, 1953),
Vol. 2, p. 56.
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This series is a special case of a Neumann series of
Bessel functions. The simplest example of such a series
is the expansion of an exponential in terms of Bessel
functions,

y"ew=2vr<u>§o GEn)Ca(an(y),  (14)

where C,’(n) are Gegenbauer polynomials in 7. We
set v=—ao—% and choose v,(s) as

va(s)=[27%0" T (—ao—3)
X (n—ao—3)Ca () ]f(s). (15)

The two functions f(s) and 5(s) will be specified below.
This last equation, however, determines the dependence
of the residues $8,(s) on #. With (15) we obtain

H(sy)=y 12w f(s). (16)

After substituting this result in (12) and carrying out
the integration we find

F(s,)= f(&)T (—ao)lz—n(s) J*@ Gm)'2. (17)

We note that the I" function will have all the resonance
poles on the second sheet in the s plane. It is also
relevant to remark that the result we have in (17)
looks like a Regge-type contribution of a simple Regge-
type pole coming from expanding an amplitude 4 (s,z)
in power series of (z—u), i.e., A=2_,a,(s)(z—n)". If
a,(s) has a pole at v=ay(s), the contribution of that
single pole in the » plane to the Watson-Sommerfeld
formula would be similar to (17).

At this stage we introduce the following transforma-
tion defining a new function A (s):

1(s)=142/r\(s) (s—4)—2¢/(s—4), (18)
where 7 and ¢ are real constants and »>0. Written in
terms of \(s), F(s,f) is given by
F(s,f)= (—1)2@[3r(s—4)N(s) 7T (—ao)

X G2 f()[1—7(t+e)N(s)]. (19)

Both f(s) and A(s) are still to be specified. To simplify
(19) we write

2 1/2
f(s)Eg(s)<—> (= 1)L s— () T, (20)
Finally, we get
Fs.) =g ()T (—an(s)1—r (H- ()]0 (21)

We want now to impose sufficient conditions on \(s)
and g(s) to insure that F(s,f) will be analytic in the cut
s plane and will for large s have Regge asymptotic
behavior. For large ¢ the Regge behavior is obvious in
(21).
The following conditions turn out to be sufficient:
The function A(s) should have the representation,
1 = a(s")
ANs)=—| ——ds,

m™Jo s'—s

a(s)=0. (22)
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In other words, we choose A(s) to be an analytic function
in the cut s plane, and furthermore the positivity of
o(s") guarantees that A(s) is a Herglotz function. The
weight function o(s’) is otherwise arbitrary except for
its asymptotic behavior, which we take such that

In(4—s
( ))+O(1/s2).

(23)

The two properties (22) and (23) are all we need for
A(s). From (22) we see that the bracket in (21) cannot
vanish for any complex s and real ¢ and therefore we
have no complex branch points in s. Moreover, for
values of ¢ such that

1
™" (4)

(24)

—c,

the bracket in (21) will not vanish in the region
— o0 <s<4. In this region \(s) is real, positive, and
decreases monotonically as s approaches — o« . Except
for g(s), which is still to be specified, F(s,f) then is
analytic in the cut s plane with a right-hand cut only,
for all real ¢ satisfying the inequality (24).

For fixed real s and for — o« <s<4, F(s,t) is analytic
in the cut ¢ plane with a cut starting at {=[7A(s)1—c.
If we take [#A(4)]'>¢, then this branch point always
occurs on the positive ¢ axis. For large values of (—s)
this branch point moves out farther and farther on
the positive ¢ axis. This unphysical nature of the
analyticity in ¢ of our sums is a demonstration of the
fact pointed out by Mandelstam in Ref. 6, that one
cannot completely ignore the background term in the
Mandelstam-Regge representation even if the back-
ground integral is pushed back to a line Rel— — .

As for g(s), we define it by an expression which
exactly cancels the asymptotic behavior of I'(—ao(s))
in any direction in the s plane for which |arg(—ao) | <.
We write

g(s)=4/(2m)'" exp(—ao) exp[ (ao+3) In(—ao)]. (25)

We choose the phase of (ag) such that arg(—aop)=0
for s<0 and arg(—ap) — — as s— -+ above the
cut and arg(—ao) — 4+ below the cut.

To simplify the discussion we limit ourselves at this
stage to the case where there are no bound states or
ghosts and take a(4)<0. In that case ao(s) does not
have any zeros on the physical sheet in the s plane. This
makes g(s) analytic in the cut s plane with the cut
running from s=4 to s= o . The branch point of In (—ay)
when ao=0 is on the second sheet of the s plane.

It is easy to verify now that with (23) and (25) the
asymptotic behavior of F(s,t) is given by

F(s,t)=A(4—s)erttare[140(In2%s/s) ],

e<args<2m—e. (26)

The product I'(—ao(s))g(s) approaches the constant 4
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by construction and the Regge behavior of the bracket
term in (21) follows from (23). The asymptotic be-
havior along the cut needs more careful handling.
However, if Ima(s) grows as s — o above the cut,
then we have the same answer as in (26). One only
has to rewrite g(s)I'(—ao) as

2T (—ao(s))=g(s)m/ —sinmao T(1+ao(s)). (27)

As s— - oo, sinrag~ (/2) exp[ —imao(s)], since the
other exponential in the sine function is damped by a
factor exp[ —m Imao(s)]. If Imay grows asymptotically
like Ins, then g(s)I'(—ao)~A(14+0(1/s)). Therefore,
with this condition on Ima, (26) holds in all directions
of the physical sheet of the s plane.

The function F(s,t) has all the desired properties we
are looking for. We are left with the task of checking
whether the form we have picked for the residue
functions also satisfies all the analyticity and threshold
properties. On substituting (15) into (9) we obtain

Bn(s)=g()[Er(s— 4N (s) ]t
Tao(s)+3)

Here g is given by (25), and 5(s) is related to A(s) by
(18). The Gegenbauer polynomial is a polynomial of
degree n in (3—39). As (s—4) = 0, C.’(p(s))~ (s—4)™
and it is easy to check that near threshold

Bu(s)~[(s—4)/2]=, (29)

which is the correct threshold behavior. Furthermore,
it is clear from (28) that the reduced residue functions
Ba(s)/[3(s—4)]x® are real analytic functions in s
with only a right-hand cut. The factor I'(ao(s)+3%)
gives zeros in B.(s) at negative half-integer values of
ao(s) as required by the Mandelstam symmetry.

As expected, the residue functions have exponential
behavior for large s; however, the behavior is different
from that suggested by Teplitz and Jones.? The leading
trajectory has a residue function Bo(s),

Bo(s)=g()[Er (s—HN(s) ]
X[1/T(ao(s)+8) Jam'2. (30)

For large positive s this grows like 4 exp[ as log logs |
We shall see later that this does not lead to a contradic-
tion with unitarity as long as Imao(s) starts to grow for
large s. We also show in Sec. III how our example can
be slightly modified so that the elastic widths of the
resonances decrease with s.

In closing, we point out that many other examples can
be generated from (21) by differentiation with respect
to the parameter r. The function F is a function of s,
and the parameters » and ¢. For example, we can define

FO(s,)=(—1)/rax(s)d/dr[F (s,t;7,c)].  (31)

8 C. E. Jones and V. L. Teplitz, Phys. Rev. Letters 19, 135
(1967).

().

(28)
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From (21) this gives
F®(s,8)= (ao(s)/a)g (s)T'(—ao(s)) (t+c)

X[1—=7(4-c)A(s) o1, (32)
The asymptotic behavior is now given by
FO(s,)=A(t+c)(—s)erttareti[14+0(ln2s/s)].  (33)

The residue functions corresponding to F® are calcu-
lated by differentiating (28) with respect tor. Given
any polynomial in ¢, P(f), we can, by taking a linear
combination of different F®(s,t;r,c) for different
values of ¢, construct a function A4 (s,f) which has the
asymptotic behavior

A(s,))=AP()(—s)*+ 140 (n%/s)]. (34)
The functions F ™ (s,¢; 7,c) are defined by
F® (s,t; 7,c)=(—1/rax(s)(d/dr))*F (s,t; c,r). (35)

III. CROSSING-SYMMETRIC TRAJECTORIES
AND RESIDUES AND ALMOST EXACT
SOLUTIONS TO THE FINITE-
ENERGY SUM RULES

The function F(s,f) given in (21) has Regge asymp-
totic behavior in both the s and the ¢ channels. In a
crossing-symmetric problem one would require that at
least the leading s-channel and f-channel trajectories
are the same. In our simple example this can be
achieved by setting

r=1
and (36)
ac=b.
With this choice the asymptotic behavior of F is
F(s,5)=2A4 (—s)ottd, 37

As long as Imao(s) is small for low and intermediate
values of s, we effectively have the same leading
trajectory in both channels, ao(s)=as+b and ao(f)
~qt-}-b.

The more difficult problem is to have the same
residues in both channels. We want to compare the
form of the residue of the #-channel Regge pole that
we can infer from (37) with the form of the s-channel
residue function. From (37) and the Regge asymptotic
formula we get

Bo(l)= A sinmap(t) T(A+ao(t))
N Ras()+1I TG+ ()

i—4 ao(t) 1r1l2
—_— . (38
() o

This result is obtained by comparing (37) with the
usual Regge asymptotic formula. Note that so far we
are ignoring signature factors and working with a pure
two-channel problem. In the recent literature the T
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functions in (38) are usually absorbed into the defini-
tion of Bo. We prefer to exhibit them. Our 8, is the
actual residue of the partial-wave amplitude at I=ay(s).
The fact that the usual factor [sinma(f) ] does not
appear on the right-hand side of (37) makes Bo(z)
proportional to sinmraq(t). However, since we are mainly
interested in the region <0, this does not lead to serious
problems. The function F(s,f) does not have #channel
resonances.

To have the residues in both channels have the
same mathematical form would require Bo(f) to be
given by (30),

Bo())=g(OLE (E—HA()J®
X1/T(ao()+3) X g2,

An exact crossing-symmetric bootstrap condition
would require (38) and (30") to be equal. Equating
(30’) and (38), we get the bootstrap condition

A/TL—ao(t) J=g(ODN(B)J®. (39)

It is immediately apparent that (39) cannot be satisfied
for all £ For large ¢, T'(—ao($))g(f) — 4, but \(f)
~[In(=#7J/(—¢). However, we can always seek
numerical and approximate solutions of (39) for some
finite range of ¢. Only the asymptotic behavior of A(¢)
has been specified so far and we can fix its value in a
finite # domain to approximately satisfy (39).

To give an example of a solution of (39) let us
concentrate on the region #<0. More specifically, let
us look at the region in ¢ for which ao() S —1, ie.,

—th<t<(—1-b)/a, (40)

where $p<KM)? and M)? is the mass value as A(Z)
becomes asymptotic to In(4—¢)/(—¢). In the domain
given in (40) [—ao(t)]>1. One recalls the remarkable
fact that I'(x) is extremely well approximated by the
first two terms in the Stirling expansion,

T (5)2e—2et=1Dna(14+-1/12) (20112,

(30"

(41)

The accuracy of this approximation is less than 19,
even at x=1. Substituting (41) in (39) and using the
definition of g, (25), we get

M@)o O=(1—1/12a0(8)), —te<t<(—1—0)/a. (42)
This gives the approximate numerical solution for \(z),
ANO=14-1/12a(f) ; —1<t<(—1—0)/a. (43)

One can arrange for the validity of (43) to a very good
accuracy without affecting the asymptotic behavior
of N(#) for |¢|>M)2 The expression on the right-hand
side of (43) is positive and decreases monotonically as
(—?%) increases.

For 1<0, F(s,f) satisfies a finite-energy sum rule. As
long as ¢ lies in the domain given in (40) we have also
a “solution” to the finite-energy sum rule, when it is
considered as a dynamical equation for B(f). The
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accuracy of this solution depends on how closely we
match A(¢) to the right-hand side of (43).

The approximate relation (43) still does not com-
pletely determine A(¢f) for values of £>4. Furthermore,
the slope ¢, and the intercept b, of the leading trajectory
are still not fixed as is the value of Imao(s) at low
energies. Even though we have only imposed crossing
at negative values of #, we must conclude that the
finite-energy sum rules are not very restrictive as a
starting point for a dynamical scheme. Without a
serious introduction of unitarity it is possible to write
many functions which contain most of the crossing
information in the finite-energy sum rules.

For >4, we can, of course, try to match both sides
of (39) numerically. However, the physical meaning
of such a matching would be obscure since the function
F(s,t) does not have any ¢-channel resonances.

IV. RESONANCE APPROXIMATION TO THE
FINITE-ENERGY SUM RULES

In this section we discuss some of the features of the
class of examples constructed in Sec. IT which clarify
some of the problems related to the use of finite-energy
sum rules. At the end of the section we indicate how
at least the simplest unitarity bounds are not violated
by our examples.

For large enough sy, the function F(s,f) we have
constructed satisfies the sum rule

SMao(t)+1
[ao(t)4+17

We are considering only the region /<0 and treating
for simplicity the case ao(0) <O.

There are two questions related to the application of
a sum rule like (44). First, what determines what we
mean by ‘large enough si’? Second, what happens
when we replace ImF on the left-hand side by a
sequence of resonance contributions?

It is clear from the construction of our examples that
we have two asymptotic regions intrinsic in the con-
struction. One is the asymptotic region for Imao(s) and
the other is the asymptotic region for A(s). In other
words, there could be two independent scale factors
M,? and M)? which determine the asymptotic region
for Imag and A(s), respectively. We have large squared
masses M2 and M,2? such that

Imay(s) =Ins+0(M2/s) , s> M2
As)=In(d—s)/—s+0(M/s?), s>M)2.

For example, we could think of a concrete ansatz for
Imay(s), to facilitate the discussion, and write

Tmaa(s)= o/p W[1+((6—4)/M)7], p21. (46)

As long as (s—4) <M 2, Imay(s) is small, and we have
a set of narrow resonances whenever Rea(sy)=N and

M
/ ImF (s’ t)ds’ =~ A sinmay(t) (44)
4

(45)
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SNKM 2 For (s—4)> M2, Imao(s) begins to grow like
Ins. The resonances become much broader than the
spacing between them and effectively disappear. Thus
the region s<M,* is the resonance region, while
s>M.,? is the no-resonance region. For large p in our
ansatz the transition between these two regions occurs
quite sharply and the end of the resonance region will
be a well-defined energy. However, it is more likely
that in the real world one moves more gradually from
one regime to the other.

Regge behavior begins where s is larger than both
M2 and M)% The sum rule (44) is exactly satisfied as
long as sy>M.? and sy>M,2% In actual practice,
however, one approximates the left-hand side of the
sum rule by resonance contributions and usually the
background is ignored. If M)\>>M,2, even though both
are large, then the resonance approximation is very
bad. For if we take sy=~M,2 then (44) is not valid
because Regge behavior has not set in yet. On the
other hand, if we set sy=~M,% then in the region
M2<s<M,® we have no resonances and setting the
integrand equal to zero in that region would be a
disastrous approximation.

The other possibility, M,22 M»2, is more interesting
and does not lead to difficulties in the resonance
approximation. In that case one must choose s = M,?
in (44). For values of s in the interval M2<s<M 2 we
have mixed resonance behavior and Regge behavior.
For example, suppose Reao(sy)= N, where N is a large
integer, and M)*<sy<M,2 Then for s~sy we can
write,

F(s,)=[g(sn)/T(A+N) J[(—m)/sinwao(sn)]
X[1—= (4N (s ¥
~[g(sw)/aT (A+N) K (= 1)¥/[(s—sw)+i(en/a) ]}
XM= (@+NsmIY, (47)

where ey=Imao(sy) and is assumed to be small. The
last bracket in (47) can be written'in two ways. Either
we can expand it in terms of N+1 Legendre polynom-
ials Py(z), Py-1(2)," - -,Po(2), and recover the original
resonances we started with. Or since sy is large enough
for A(sw) to assume its asymptotic value, we get

[1— @A (sw) IV~ syette, (48)

where N=~asy+b. At this stage we see how this class
of functions provide an explicit counterexample to
some of the assertions of Ref. 3. There is no difficulty
in using the narrow resonance approximation in (44)
as long as sy~ M2

In summary, we can say that for the resonance
approximation to the finite-energy sum rules to be
valid it is necessary that first one knows at what
energy Regge behavior sets in and that this energy be
roughly the same as that at which resonance behavior

8 Other counterarguments to some of the statements of Ref. 3

were given independently by C. Goebel [Phys. Rev. Letters 21,
383 (1968)].
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begins to disappear. If in the real world resonances
broaden out and disappear long before Regge behavior
sets in, then the resonance approximation is obviously
useless.

We close this section by making a few remarks about
unitarity. For s> M,? and M,2%, F(s,f) satisfies the uni-
tarity bounds for /<0, provided the constant 4 is not
large. For s<M,?, we can also choose 4 such that at
least near each resonance we do not violate unitarity.
The constant 4 can always be chosen so that for all
SN < M 02

[Bn(sw)[2an(sy)+1]/ en| <1, (49)
where Reay(sy)=N and Imao(sy)= en.

One feature of our functions B8.(s) is rather unphysi-
cal. In the region M 2<s<M.,% B.(s) grows like
exp[s In Ins]. This means that the elastic widths of our
resonances grow with energy in this region. To correct
this deficiency without changing any of the essential
features of the model we can replace the constant 4 in
(25) by a function A4 (s) which tends to a constant as
|s| — « and decreases for s <M,?. For example, take

A(s)=A"(—In[M2— (s—4)T/N(s)h(s))20@ . (50)
We take %(s) to be a Herglotz function defined by a
representation similar to (22) but with asymptotic
behavior (s) — s, as | s| — . Forlarge |s|, |s|>M,
the function A4 (s) approaches a constant. The function
F will now have two new branch points at s=M,?
but nothing else is changed. With a proper choice of
h(s), the elastic widths will decrease in the region
MR<s<Mp2 For sSS>M.2 Ba(s) will still grow like
exp[as In Ins] as s— 4, but in this region the reso-
nance picture is no longer applicable.

V. SIGNATURE AND THE CHARGE-
EXCHANGE AMPLITUDE

So far we have been working with a purely two-
channel set of examples and ignoring signature factors.
There are two questions regarding signature to consider.
The first is to include signature factors in the terms
of the original series (6). The second is to get signature
factors out on the right-hand side in (26).

As to the first problem, we take the set a.(s) to
have alternating signature in analogy to the daughter
sequence.’® We set the signature factor r, for each
a, to be

o= (—1)". (51)
The leading trajectory we have taken to be even, but
obviously a similar summation could be done with an

1D, Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967).
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odd trajectory. Instead of the series (6), we have

Als)=1 3 B () 2an(5)+11]

n=0  COSTay(s)
X [Q-an—1(—2)+ (= 1)"Q—ap1(3)].

This reduces to the series

A (s )=} (14 ere0) z=0 Y2()0ncrs(®).  (53)

(52)

The v,’s here are the same as in (9). We carry out
the summation in the same way and get

A (5,) =G ([T (—ao(s)/T(—Fx—3)]

X[1=r(t4cN(s) 0@, (54)
where
G(s)=24 exp[—3ao(s)(1—1n2)]
Xexp[ (Fao—3) In(—ao(s))].  (55)

The function f is now different than in (20) and is
given by

J(8)=(=1/m)G(s) (2/m)2(— 1)*0)[Fr (s—4)\(5) Jo )
X exp[-[—%imxojl" (%Olo—l-%) . (56)

The residues are given by (15) and (9) with f as in
(56). The new T function in (56) makes the residue
functions have poles when ao(s)=—(25+1), j=0,1,
2,- - -. However, these are values for which the signature
factor [1+4-exp(—irao)] vanishes and no poles appear
in A(s¢). The Mandelstam symmetry factor still
remains in B8.(s) as before, and the threshold behavior
is unchanged. However, one feature is now different.
The factor exp(+3irao) in (56) gives an extra phase
factor in B.(s). The ratio Bn(—2)20/[3(s—4) ] is
now real for s<4 instead of the reduced residue,
Bn/[5(s—4)]*». In view of the remarks in Sec. VI,
it should be possible to construct other examples where
this unphysical phase is not present.

The next question to consider is how to get signature
factors in the resulting sum. We propose to discuss this
in the context of the problem studied in Ref. 4, namely,
charge-exchange scattering. We consider charge-ex-
change scattering of pions on some spin-zero, I=1
target. The standard ¢-channel Regge analysis for the
charge-exchange amplitude gives us the contribution
of the p trajectory for large s:

MO=X(5,) ~ C{ (—5)or = (— oot/
(e, () sinma, (H)}.  (57)

This is essentially the same expression as that used by
Schmid in Ref. 4. For pion-nucleon charge exchange it
fits the data fairly well. In the region of ¢ in which the
fit -is made, the factor [T'(a(?) sinra() ]! can be
closely approximated by a polynomial in ¢:

MOX(5,)~CP(O[ (—s) O~ (—uyo®].  (58)



176

The charge-exchange amplitude can be written
MO (s,0) =V2[ M (xt)— M (v7)], (59)

where M (r%) is the amplitude for 7+ scattering on the
target. If we write M (z*) as a function of s and ¢,
M (s,t), then M (7™) is given by the same function of »
and ¢, M (u,t). Clearly, if we approximate M (z*) by a
sum of s-channel Regge contributions, 4(s,f), then
M (7™) is given by a sum of #-channel Regge contribu-
tions, 4 (u,t):

MO () ~V2L A (s ) — A (w,1)], (60)

where 4 is defined by a series like (52). An I=1
t-channel amplitude must have odd s <> % symmetry.

As we pointed out in (34), it is possible to construct
A (s,t) such that asymptotically

A (s,8) =CP(£) (—s)at+b,

Thus we obtain the same answer as in (59) by summing
s- and u-channel Regge contributions and taking their
difference.

A possible way to understand the results of Ref. 4
is as follows. One starts by carrying out a Regge-
Mandelstam analysis for 7tp and 7—p scattering in the
direct s channel. One writes a Regge-Mandelstam
formula for each of these amplitudes and pushes the
background integral to a line Rel— — . On taking
the difference between the two amplitudes, the differ-
ence of the backgrounds, though not negligible for all
s and ¢, is probably negligible in the region considered
by Schmid. The sum over the Regge-Mandelstam pole
contributions could then give for large s an expression
almost identical to that obtained from p exchange.

In the present examples there does not seem to be
any reason for the slopes of the p trajectory and
direct-channel =V trajectories to be the same. If they
are, it must be for some deeper physical reason unrelated
to the mechanism we are discussing here.

(61)

VI. REMARKS ABOUT THE METHOD
OF SUMMATION

One might raise two questions about the summation
performed in Sec. II. First, one might question whether
the particle spectrum is rich enough to accommodate an
infinite set of almost parallel trajectories an(s)=ao(s)
—mn. At present there is no good answer to this question.
However, one can say that such a rich spectrum
cannot be ruled out by the present experimental data.
In this connection one should mention the recent work
of Gell-Mann and Zweig based on the quark model,
which proposes such a spectrum.! On the theoretical
side, there is also a recent work of Toller which suggests

1 M. Gell-Mann and G. Zweig (private communication) (to
be published). See also H. R. Rubenstein, A. Schwimmer, G.
Veneziano, and M. Virasoro, Phys. Rev. Letters 21, 491 (1968).
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that the daughter sequence is parallel to the parent
trajectory.!?

The second objection one can raise to the examples
constructed in this paper is the fact that they seem to
depend on choosing a specific # dependence for the
residues, B.(s), namely, having 8, proportional to a
Gegenbauer polynomial. If this was the only choice
that would give Regge behavior, then our example
could only be of mathematical interest as a counter-
example, say, to the statements in Ref. 3, but of little
positive physical significance. This is by far not the
case.

The advantage of using the representation (10) is that
by expressing Q, in terms of modified Bessel functions,
I,12, we converted our summation to a standard series.

The series (13) is a Neumann series. Any function
h(y) which has the power series expansion

E(y)=3 azy? (62)
=0

can also be written as a series of Bessel functions of the
form

h(y)=y" 2 batnis (). (63)
n=0
The new coefficients b, are related to a; by
<12m T'(v+n—1)
—Qn—291. (64—)

by=2""(vtn) 3 27—
=0 I

Thus one can construct more examples by choosing an
H(y,s)=h(y,s)y~*~1/2 such that the Laplace transform,
(12), of H(y,s)y'? is a function F (s,f) which has Regge
behavior for large s. The residue functions of this new
example will be determined by the coefficients a;(s) of
the power series expansion of %(y,s) through (64). If
these new residue functions do not have any unphysical
properties, then we have another useful example.

Note added in proof. After the completion of this
work we learned of an interesting model proposed by
Veneziano for the wm — 7w bootstrap which exhibits
several of the features discussed in this paper. [See G.
Veneziano, Nuovo Cimento 57, 190 (1968).] However,
the hope that this model does give a unique solution
to an F. E. S. R. bootstrap has turned out to be over-
optimistic.
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