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A dynamical theory of currents is presented. For each current there are a complete set of Geld equations
and a complete set of equal-time commutators. These are related by expressing the energy-momentum
tensor solely in terms of the currents and not of derivatives of the currents. The requirements of Lorentz
covariance place severe restrictions on the commutators. Several models with and without internal symmetry
are discussed.

I. INTRODUCTION
' 'N recent years the algebra of current and charge
~ ~ densities has become a major tool in elementary-
particle physics. Although many of the results which
have been obtained are independent of any speci6c
dynamical model for the currents, it is clear that further
dynamical assumptions are required before one can say
that one has a complete dynamical theory, a theory
capable, in principle, of predicting everything. For ex-

ample, to complete the picture one might provide a
construction of the currents in terms of a set of canonical
6elds. ' This is old-fashioned Lagrangian held theory and
suffers (apart from ca1culational difliculties) from the
fact that we do not know a priori which are the funda-
mental 6elds and which couplings are to be included in
the Lagrangian.

An alternative which we should like to pursue in
detail in this paper is to consider the currents them-
selves as fundamental {though not necessarily canonical)
6elds. ' If in addition to the set of equal-time commuta-
tors between each pair of currents (which set constitutes
the current algebra) we also specify a erst-order differ-
ential equation of motion in time for each current, we
obtain, in principle, a complete dynamical theory.

In the course of constructing such a theory we might
be forced to introduce new operators which have no
direct physical interpretation in terms of currents. In
order to proceed, it is dear that we will have to treat
these new operators on the same footing as the others.

The equations of motion and commutation relations
are not independent of each other, but are connected
via the Hamiltonian I'0 through the Heisenberg
equation

&Q(x,t)/Bt = —ipQ(x, t),ps(t) j.
If we construct the Hamiltonian operator at a given
time as a function of current operators at that time,
then, given the Hamiltonian, the equations of motion

are determined by the equal-time commutators. If we
make the assumption that the Hamiltonian is the spatial
integral of a local energy-density operator, and make
the corresponding assumption for the momentum oper-
ator P~, we can write

I'o{t)= d'x T'o{x,t).

Part of our task, then, will be to specify the energy-
momentum tensor TI'" in terms of the currents. '

The equations of motion, the commutator algebra,
and TI'" must be consistent not only with each other
but also with the requirements of Lorentz invariance
and, to start with, parity, time-reversal, and charge-
conjugation invariance, as well.

At this point the reader is likely to object. He will-
ingly would admit that if only bosons are to be con-
sidered he could understand that TI"" could be written
in terms of currents. After all, boson fields are closely
related to currents, and in some models, such as the
algebra of 6elds, can be identi6ed with them. But he
reminds us that for fermions the kinetic part of the
energy-momentum tensor is normally given as

~"=—-'i(LP,v'BV3 t BV,vVj), —
which is apparently not expressible in terms of the
usual fermion currents. To allay this objection, at least
temporarily, we point out that, in the world of one
space and one time dimension, a massless free fermion
has a momentum density identical to that above. 4 How-
ever, dose examination reveals that all matrix elements
of this theory involving the spatial derivative 8&f are
unchanged if this spatial derivative is replaced by
',i {s(j'+-y'j )ps(}, where p'=ysy'. The current j& is
dehned as the formal limit, as the space coordinates
come together, of the biloca1 form -', Lg,yQ], with the
time coordinates set equal. We may therefore take

~This work was supported in part by the National Science
Foundation under Grant No. GP-6573.

'The inverse to this approach has been explored by R. F.
Dashen and D. H. Sharp, Phys. Rev. 156, 185/ (1968), and D. H.
Sharp, ibid. 165, 1867 (1968), who express canonical 6eld theories
solely in terms of currents.' Suggestions to this effect have been made by M. Gell-Mann,
Phys. Rev. 125, 1067 {1962);and in Proceedings of the Thirteenth
International Conference ol High-Energy Physics, Berkeley, 1966
(University of California Press, Berkeley, 1966).
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B&=l' (('+ '')0)
as an operator equation which, for some obscure reason,
is true in this simple model. We are thereby enabled to

3The program of this work, though developed completely in-
dependently, is essentially identical to that of H. Sugawara, Phys.
Rev. 170, 1659 (1968).

4 C. M. Sommerfield, Ann. Phys. (N. Y.) 26, 1 (1964).
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write

since by computing

Tot ~{jo jl) (2)
respondence is as follows':

S+ ,'[P-,Pj, V~~ ;'[P-,q+j, M~" +

~"~ oLP,V"VVl, ~~ s(4,isa l.

agp(x, t) =i p(x, t), dx'Tot(x', t)

=-,'i~ p(x, t), dx'{j'(x', t),j'(x', t))

and making use of the equal-time commutators

Lit(x, t),jo(x', t)j=lt(x, t)S(x—x'),

tp(x, t),j'(x', t)]=~":p(x,t) S(x—x'),

we obtain Eq. (1).
These considerations continue to apply even when a

current-current coupling is introduced for the fermions,
although the definition of j& must be changed slightly,
and a new numerical factor depending on the coupling
must take the place of m in T '.

The relativistic generalization of Eq. (2) which also
makes sense in these models is'

T""=l (j "j"+j"j" g""j"j~)—
It is perhaps asking too much for fermion fields, as

normally conceived in four-dimensional space-time, to
satisfy equations like Eq. (1). For this reason we will

suppress the problem of what to do with fermions until
after we have learned how to handle bosons.

In Sec. II we consider four-dimensional theories with
no internal symmetry, and discover that the procedure
proposed here leads to theories which are formally con-
sistent. However, we discover severe restrictions on the
commutator algebra.

In Sec. III we construct models which formally
satisfy all of the requirements, and which are applicable
to problems with SU(2), SU(2) &&SU(2), and broken

SU(2) )&SU(2) internal symmetry.
In Sec. IV we examine three specific models in detail.

Qf the first two, which involve no external symmetry,
we find that one is directly given in canonical form,
while the other can simply be put in such a form. The
third model, with broken chiral symmetry, is similar

to the nonlinear 0 model, but is not simply expressible
in canonical form.

II. THEORIES WITH NO INTERNAL
SYMMETRY

For the sake of definiteness we introduce a set of
Hermitian operators, called "currents, " with well-de-

fined transformation properties corresponding to those
of the 16 bilinear covariants for a spin--,' field. The cor-

'This way of writing the energy-momentum tensor is also
discussed by C. G. Callan, R. F. Dashen, and D. H. Sharp, Phys.
Rev. 165, &883 (i968).

For each component of the currents, we must have a
time-derivative equation. The demand of Lorentz in-
variance that time derivatives be accompanied by ap-
propriate space derivatives can be satisfied by insisting
that the form of the equation of motion be the specifica-
tion of the four-gradient for scalars, and the four-di-
vergence and four-curl for vectors and tensors. The
results of the two-dimensional world suggest that we
try a TI"" which is quadratic in the covariants. The only
formally covariant possibility is~

""=~v(l'" "—-'tr vg"" l "V))+&~(&"&"——,'rr&g&"2 "Ag)

+&~(~ "M
&
—-' ~g-u~ m, )

—-'X8g "S —3~g&"5——,gpgt p

Since the coefficients of the 5 functions in the equal-
time commutators of the usual spin-2 realization are
linear in the currents, we expect that the appropriate
gradients, divergences, and curls of the currents will be
given by expressions which are quadratic in the currents.
We thus anticipate equations of the following forms:

B„V~=R&,

~tt t y By Vp R2yy j

B„M~"=R3t',

8 M~"=R,l', (371""= ,' e»~.Jyl )-
B„A =R,

BPA 8 Alit R6@

8„5=R7„,

BpI —R8It

(3a)

(3b)

(3c)

(3e)

(3f)

(3g)

(3h)

BoVo(x) = i l, o(x—) dsx Too(x )

we must ask that the-right-hand side of Eq. (3a) be
equal to' —BI,V"+Rt.In order to obtain B&V",the equal-
time commutator of V' with at least one of the currents

' Our covariant notation is such that we distinguish between
upper and lower indices, and sum from 0 to 4 over repeated
Greek indices, and from 1 to 3 over repeated Latin indices (which
represent spatial components). The metric tensor is g»=g» ——g33= —

gpp = 1. The matrices y' and y~ = —iy y'y'y' are Hermitian,
while y" are anti-Hermitian. Furthermore, {y&, oN }= —2g»,
o&" ,'igyl', y"g and =e-„„q, is a completely antisymmetric tensor.
We take &pg&~= cf„-$~ where 6]23=1.

7 In this and in succeeding equations involving operators at the
same space-time point, we intend t',without explicit indication)
the product to be understood as appropriately symmetrized.' The subscript ET signiles an equal-time commutator.

where R~, R2, , R8 are quadratic expressions in the
currents which do not involve any derivatives.

In deriving Eq. (3a) from
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must contain a "Schwinger term" involving the gra-
dient of a spatial 5 function. ' Now T" can also be
written

where we allow, at most, single derivatives of 6 func-
tions. Then

so that

()0VO= P Q )((P) {()k[G (P)kj(P)]+Q(» j(P) )
P

P),(&)B,[G(@kj (~)]= iB, Vk-
P

From this we conclude that G'»"= —i/(l(pnv) for X(»
= V~, and G&&)~=0 otherwise. A similar consideration
of Eq. (3b) as derived from

80 Vk(x) = —o)kV0(x)+Rook(x)

i V—'(x), d'x'T" (x')

where the 16 currents are represented by j' '. Thus,
let there be a particular P for which

[V'(x),j(»(x')]zT ——Bk[G(» "(x)()(x—x')]
+Q(»(x) ()(x—x'), which exhibits an equal-time commutator as a sum of

an "ordinary" part and a Schwinger term, we may re-
write Eqs. (3) as

()„V&=—i(t', T' ),
o)„V,—B.V„=o(V„T0„),

B„M»= i(Mk", T'„),
()kMOk = '0i(MOk, Tok),

8„5=i(S,T0„),

together with relations obtained from these with the
replacements U„—+ 3„,M„,—& M„„and 5—+ I'.

We must also try to derive Eq. (3a) by considering

B„Uk(x)=i Vk(x), d'x'T (x').= ()kV"(x)

+i(Vk To )

representation for the two-point functions of the cur-
rents shows to have nonvanishing expectation values. "
Furthermore, the same Schwinger terms properly ac-
count for all of the derivatives when we consider cP~, t'~,
BkAl, o)kMok, and B~iOk.

Introducing the notation

[j( '(x),T' (x')]El ——(j' ', T" )t'(x —x')

+Schwinger terms,

using the commutators
—ET

We are thereby led to the constraint

[V'(x),j(» (x')],T = a,[a (» lk(x) S(x—x')]
+W'»'(x) 8(x—x'),

tells us that FI(0) lk= —iglk/P, p(2 —(rv)] for Xo') = V',
and H &&"~=0 otherwise. From comparison of the two
expressions for the equal-time commutator of U' with
V~ we learn that ny= 1.

Similar arguments can be applied to each of the other
time-derivative equations in the set (3). We learn that
n~=o.~= 1. We are also able to conclude that a neces-
sary and sufhcient condition for the structure of the
left-hand sides of (3) to be properly reproduced upon
commutation with T" of the opera, tor whose time de-
rivative is being computed, is that all equal-time com-
mutators have no Schwinger terms except for the fol-
lowing, which must have the c-number Schwinger
terms as indicated": (j (~)j (p)) = i Q c~pvj (v) (5)

(Vk TOk) —O

By starting with the spatial derivatives in ea,ch of Eqs.
(3), we obtain the constraints

(Vk Tol) — (Vl TOk)

(VO TOk) —0
(MOk TOl) —l~kl(MOm T0 )

together with their counterparts, obtained by replacing
U„and M„„by A„and 3II„„respectively.

We have assumed that the ordinary part of the
equal-time commutator between any two currents is
linear in the currents. Thus, if we introduce a 17th
j( ) which is just a constant c number, we find that the
commutators satisfy a Lie algebra

[l '(x), V"(x'))Er, sT ———il(p '8kb(x —x'),
[Ao(x),Ak(x')]pT sT= —ikey 'o)k()(x —x'),

[M"(x) M"'(x')]pT, sT= —l)(kr '()kb(x —x'),
(no sum on l).

It will be noted that these Schwinger terms are precisely
the ones which an analysis of the Kallen-Lehmann

' J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
"The subscript ST indicates the Schwinger-term part of the

commutator.

with real structure constants C». Since each current
j( ) has well-defined properties under space inversion,
time reversal, and charge conjugation, it is not hard to
show that there is at most one nonvanishing term in the
sum over y in Eq. (5), and that all of the nonva, nishing
commutators must be proportional to those obtained
from the spin-& realization of the currents. The only
exception is if C»/0, where j(&'& =-5, then C"~(") is

"L.S. Brown, Phys. Rev. 150, 1338 (1966).
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not necessarily 0. The most stringent requirement on
these commutators is that the right-hand sides of Eqs.
(4) must come out with the same covariance properties
as the left-hand sides. A detailed but straightforward
calculation shows that the following are the only possi-
ble nonvanishing (and more conveniently annotated)
ordinary commutators:

(A',S)=iCd',
(A',P) = iC—2S iC—2',

(AO, MO") = —iC3MpI„

(A,37OI,)=iC~ ~,

(M",M") =iCsej, („A

(Mop, M p() =iC6eg, („A",
(Vk MQl) — iC gklS iC lgkl

(V',M(g) =iCsg"'P

(6)

and that the conditions

C4Cv=C2CS, C3C8=C1C7, C4Cv'=Ca Cs. (8)

The equations of motion then read

B„V~=0,
B„l~'„B„V„=X~C7S—M„,+X~CSPM„,+X~C7'M„„

B„A&= (XsCQ X pC2)SP+-,'X~(C4 Cg)M~"M„, —
+(X~Cg Xg C~')P, —

B„A„—B„A„=0,
8„5=)gCjI'A„,
a„I"=—) gC2SA„—XgC2 A„)

B,M ~"= X&C7SV~+),&C—3M~ A„X&C&'V», —
B/If ~"= X&Cj'V~ X&C—~~"A„. —

There are ten C's and six X's, which seems to indicate&

given the 6ve constraint equations (7) and (8), that 11
parameters are needed to specify a theory of this type.
However, most of these may be eliminated by dimen-
sionless scale transformations on the currents, or by
changes in Xz, X z, X&. For example, any theory for which

C4 C7 C8, and the six ) 's are assigned to be nonzero is
equivalent to that for which C7=C8=1, C~ ——C3——C5,
Cg=C4=C6=1, C2'=C7 Xp'=kg=) ~, Ay=0, and
which contains only Ave arbitrary parameters, one of
which determines the mass scale.

We take Eqs. (6)—(9) as the complete formal solution
of the limited problem with no internal degrees of free-
dom. We defer discussion of specific choices of the par-
ameters to Sec. IV.

~MC5 ~AC3 ) ~31C6 ~AC4

must be satisfied as well. The signs have been chosen so
that each unprimed C would be 2 for the spin--,' reali-
sation. The Jacobi identity requires the following addi-
tional relations:

GL INTERNAL SYMMETRY

Our program is somewhat simpliaed when we con-
sider systems having internal symmetry. Then, many of
the commutation relations are merely statements of
how we expect the various operators to behave under
the transformations which make up the symmetry
group.

A. SU(2) Symmetry

If we introduce isospin invariance as an internal sym-
rnetry, we should include the isovector current V& as a
dynamical variable. "The significance of J'd'x Vo(x) as
the generator of isospin transformations means that
any quantity Z which transforms like an isovector must
satisfy the equal-time commutation relation

(a V',b.Z)=ia&(b Z,

where a and b are arbitrary unit vectors in isospin
space. AII isoscalars commute with Vo for equal times,
except for possible Schwinger terms.

An energy-momentum tensor incorporating V only
would be

T~"=&(V~.V" ,'g~"V" V—
&,)—.

Arguments similar to those in the preceding section
show that we must have the Schwinger term

as well as the vanishing of the commutators (V~, V').
The resulting equations of motion are then

B„V~=0,

B„V.—B,V„=—XV„&&V, .

B. Chiral Syxnmetry

A simple extension of the above to chiral SU(2)
XSU(2) internal symmetry requires the introduction
of an axial isovector current A&, and the interpretation
of 2Id'x(V'~i A') as the generators of two independent
SU(2) transformations. The corresponding commuta-
tion relations are then

(a V',1 V&)=(a A', b A~)=ia&&b V~,

(a V', b A~)=(a. A', b V&)=i &&ah A~. .

The generalization of the energy-momentum tensor to
this case is

2'&"=X(V& V"—,'g&"V" Vg)+X(A& —A" ,'g~"A" Ag). ——

Applying the analysis of Sec. II, we determine that the
only Schwinger terms are

fa V'(x), b V'(x')jET, sT=La A'(x), b A'(x')jRT, sT
= —9,—'a bBpb(x —x'),

and that all space-space commutators must vanish.

~'Isovectors will be indicated in boldface type and dot- and
cross-product notation will be used.
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The equations of motion read

a„V~=0,
a„A"=0,

a„V,—a„V,= —&(V„XV,+A„XA.),
a„A„—a,A„=—x(A„XV,+V„XA,).

(10)

The equality of the coefficients of the A and V parts of
TI"" is necessary in order that the right-hand side of
this last equation be antisymmetric in p and v."

C. Broken Chiral Symmetry

To break the chiral symmetry we should add a term
to 11""which does not commute with As. It must be an
isoscalar to keep isospin symmetry, and hence must
commute with V'. It if were a function of V& and A&,

new spatial derivatives would be introduced into the
Geld equations because of the Schwinger terms, and it
would be very diKcult (if not impossible) to preserve
the proper covariant structure of these equations. One
possibility would be to introduce a term containing new
vector, axial-vector, or tensor currents. But under simple
assumptions for the commutation relations, these
either do not do the job, or lead to very complicated
equations. Another approach is to introduce a g&" term
as follows'4:

2'&"=),(V& V"—-', g&"V" V),+As V"——',g&"A" Vg) g~"S. —

The nonvanishing equal-time commutator

(As,S)= iP

is taken to define a pseudoscalar isovector field P. We
ind that all other operators must commute with S.
The theory is still not complete, for we do not know the
commutation relations involving P. The isovector char-
acter of P requires that we take

(a V', b P)=iaXb P.

But what of its commutator with As? We may write,
in general,

(a A', b P)=ia Q, b

(iii) the algebra does not close, and 6, must be taken
to be an independent dyadic operator whose commuta-
tion relations must be speciied. %'e shall here discuss
only cases (i) and (ii).

The equations of motion are (10)-(12), together with

a„A~=P,
a„s=) A„P,
a„P=—) V„XPy)~ A„.

(13)

(14)

The operator C, is not entirely unrestricted. Our com-
mutation relations must be consistent with the Jacobi
identity or, equivalently, the equations of motion must
be consistent with one another. Thus the four-curl of
the right-hand sides of Eqs. (13) and (14) must each
vanish. From (13), we learn that A„Q, A„=A„Q, A„,
whereupon we infer that Q, is a symmetric dyadic.
From (14), we find

(a„G) A.+&V„XC A,—)iC.XV„A,—(p~v)
=) PX(A„XA.). (15)

For case (i), this is identically satisfied. For case (ii) we
expect that if C, depends on A& or V&, great complica-
tion will result from taking the gradient (since only
curls and divergences are simple for these operators),
and it is hard to see how Eq. (15) could follow. On the
other hand, if G, depends on P and S, we can use the
equations of motion themselves to take gradients of
P and S. Thus we write

a G b=a bX(SP')+(a P)(b P) I'(S,P')

and discover that Eq. (15) is equivalent to

La/as+2(x+ p'I') a/ap']x+1= xI .
On the other hand, multiplying Eq. (14) by P and com-
paring with Eq. (13), we learn that

a„(-,'P')=(x+P'z)a s
so that there is a differential constraint connecting S
with P. Thus X and F may be considered functions of
S only, and we find that Eq. (15) now reads

(d/dS)X(S)+1=XI .
and distinguish three cases:

(i) The algebra closes in the sense of the o model" and

a G.b= —a bS

Introducing

S'= exp — dt/X(t) (16)

(ii) the algebra closes, but involves isospin two terms,
e.g.,

a G b=(a P)(P b);

"It has been shown that these equations can be obtained from
those for a Yang-Mills field PC. N. Yang and R. L. Mills, Phys
Rev. 96, 191 (1954)g in the limit that the bare mass and charge
vanish, but that go'/mo'=X remains finite. See K. Bardakci, Y.
Frishman, and M. B.Halpern, Phys. Rev. 170, 1353 (1968).

~4This method of breaking the symmetry was also given by
Bardakci, Frishman, and Halpern, Ref. 13.

» M. Gell-Mann and M Levy, Nuovo Cimento 16, 705 (1960).

and P'= —i(As,s'), we learn that

(a A', b P')= —ia bs'.

Thus, if we solve Eq. (16) for S as a function of S' and
substitute that in T&", we recover the commutation
relations of case (i) in terms of S' and P'. Therefore the
choice of energy-momentum tensor

T~"=) (Vs V"—,'gi V" V),+As A"—,'gs"A" A-g)—
g""f(s) ( &)—
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where f is an arbitrary function, and the commutator

(a A', 1 P)= ia —bS

covers both cases (i) and (ii)."The equations of motion
are then (10)—(13) and

B„A~=f'(s)P,
a„P= —) sA„—~V„XP.

IV. EXAMPLES

tions of motion are now

B„S=—XgI'A„,
B„I'=XgSA „,

B„A„—B„A„=0,
8„A =XJ.SI'.

It is clear that the combination P'+S' is a constant
operator, which we may take to be equal to 1 by ap-
propriate choice of ) p. Then if we write

In this section we should like to analyze in somewhat
more detail several specific models.

Model (a) we discover

P= sing, ~'~'p),

S=cos() g'~'P),

A o= yo/)~&»',

These are canonical commutation relations for a psuedo-
scalar and a vector field, respectively, with their con-

jugates. If we then choose

s=ha=0 ~v=mv',

Leaving out internal symmetry, we consider a choice
of parameters in Eqs. (6) such that the only non-

vanishing ordinary commutators are

(A', P) =i,
( )rspf ol) igkl

(O'A) =i,
dA=4~,

r) P"=8'g = ', ) r) ~'I' s-in(2)t~'I'P)

which can also be obtained from the Lagrangian density

Z= yea„y+ ,'—goy„+ 4) -~ cos(2)t-~'~'y)

for a canonical, self-coupled pseudoscalar Geld.
It is clear that this kind of theory can be generalized

to allow for the X& term in TI"" to be any arbitrary func-
tion f(P), so that

we obtain, as equations of motion,

B„V~=0,

B„V„—B„V„=M„„
B,M""=0,
8 M&"= —mg'V~

B„P=-A„,

B„A„-B„A„=0,
8„5=0,

or
B„Ao=) If'(P)S,

)t p~A 'f'(sm(Xg' 'g)] cos()t~'l'y) =g'Q )

Hence an arbitrary self-coupled pseudoscalar inter-
action in 2 can be reproduced with the present

(19) formalism,

Model (c)

The last model we consider is for the case of broken
chiral symmetry. We choose the function f(S) appear-
ing in Eq. (17) to be

which characterize a system of noninteracting pseudo-
scalar particles of mass m p and noninteracting spin-one
particles of mass m &. Clearly 5 is an irrelevant, constant
c number.

Model (b)

The next case is to take the nonvanishing ordinary
commutators to be

(A',P) =is,
(Ao S) iP, —

(ys ~oi) ig"—
Again, the choice of P,~= 1, Xy=m~' leads to the first
four of Eqs. (19). But with )ts ——X&——0, the other equa-

"This equivalence has been pointed out in the context of
Lagrangian models by L. S. Brown, Phys. Rev. 163, 1802 (1967).

so that
f(s)= —cs,

a„A~= —CP.

'7 Canonical realizations of this theory have been given by K.
Sardakci arid M. 8. Halpern, Phys. Rev. 172, 1542 (1968), and
by H. Sugawara and M. Voshimura, i'. 173, 1419 (1968).
However, unlike our models (a) and (b), in these cases one cannot
invert the procedure and express the canonical 6elds in terms of
the currents.

The procedure analogous to that followed with model
(b) would be to introduce a canonical isovector Geld P
and its conjugate P„, to write P=pg(p'), and to ask
that A„be linearly related to P„. However, this pro-
cedure does not work because of the complication of
isotopic spin.

There are several features that allow for some simpli-
Gcation. First, Eqs. (13) and (14) tell us that S'+Ps
is a constant c number. Secondly, all of the equations
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of motion are invariant under a common scale transfor-
mation of S and P, with the exception of Eq. (18). But
a redefinition of C can compensate for this. Thus, we
are free to choose the constant B=S'+Ps to 6t our
own convenience, and may furthermore consider 5 to
be given directly in terms of P.

One can look at sum rules derived from application
of the commutation relations to the spectral repre-
sentations of certain two-point functions. Consider, for
example,

(0 f La V„(x),b V„(0)j f
0)= a b ds

Xpe(s) (g„„—8„8„/s)h(s, x),

from the Schwinger-term commutators involving A& and
V&, we obtain

(Of/a P(x),b.P(0)j f0)=a b ds pi(s)A(s;x), (2o) ds pv(s)/s,

where h(s, x) is the invariant commutator function for
a free scalar field of mass gs, and where p~(s)~0.
Computing (Of La 8gP(x), b P(0)jET fO) on the left-
hand side of Eq. (20), using the equations of motion
and commutation relations, and on the right-hand side,
using the fact that 8,6(s,x) f,o s———r'8(x), we obtain
the sum rule

a b dspp(s)=X(Of(a b)(S'+P') —(a P)(b P) fO.)

=7 a b(B——.,'(OfP2fo)}.

which, taken together, constitute Weinberg's first sum
rule. "Weinberg's second sum rule,

dsLpv(s) —pg(s) j=0,

comes from the identity

(0f La (8„V.—8„V„),b VgjET f0)
= (0 f f

a (8„A,—8„A„),b AgjaT
f
0).

There is an additional sum rule based on

Since B=S'+P' ~P' (assuming that the formal posi-
tive-definite property of S is valid) we may write) which ls
(OfP'f0)=Bn, where O~n&1, and so obtain

ds pi (s) =XB(1—-',n) .

(Of(a A„b P fo)=sa b(0[sfO),

C ds p p(s)/s= (0 f
S

f 0),

Now we would expect that B is infinite. But in fact, ac-
cording to the scale invariance, it is ours to choose, and
so we may take B=1.

Similarly, writing

(OfLa A„(x),b A„(0)]f0)=a b dsLp~(s)(g„„—8„8„/s)

-Csp~(s) 8„8,/s']4(s, x),

and which also holds in the 0 model.
Clearly, all of the usual model-independent results

of broken chiral invariance will hold here as well. What
is needed to proceed further in this model is to find a
small parameter such that there exists a perturbation
theory in this parameter. EBorts in this direction are
continuing.

"S. Weinberg, Phys. Rev. Letters 18, 507 (1967).


