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ing to contractions, there is also a leading curve corre-
sponding to the uncontracted diagram. The curve bears
a relationship to the two-Reggeon branch points similar
to that of an anomalous threshold to normal thresholds.
In particular, it touches the two-Reggeon branch
points.

The asymptotic behavior of the production amplitude
turns out to be controlled by the leading curve. It has
the form T'~s’/Ins, where the exponent J depends on
¢3'? as well as on ¢1'? and ¢»'2. This is quite different from
the type of behavior that emerges from double-Reggeon
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exchange and has no analog in two-body scattering.
The identification of such behavior experimentally
would be an important support for the relevance of a
Reggeon calculus.

Finally, it was noted that a necessary condition for
the appropriateness of the definition adopted in this
paper for the multi-partial-wave amplitude is the
asymptotic simplicity of the analytic structure of the
production amplitude. Such simplicity does seem to
emerge from Gribov’s analysis applied to production
amplitudes.
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The two-pion-exchange contribution to nucleon-nucleon scattering is studied at scattering energies of
95 and 310 MeV through a partial-wave analysis of the exact relativistic scattering matrix. Additional
two-boson-exchange effects are also studied at these energies corresponding to the =-+» and =+o exchange
processes, with 7 the pseudoscalar resonance and o the scalar resonance. It is found that the two-pion-
exchange (TPE) phase parameters are large compared with one-pion-exchange (OPE) phase parameters
for low values of L, and OPE+4TPE is a reasonable representation of the phenomenological phases for the
lower energy when L>3 and for the higher energy when L2 5. The w9 effect is found to be small com-
pared with the pion-theoretical effects, but the =+o effect is large for a light scalar resonance if it couples

strongly with the nucleon.

1. INTRODUCTION

HE description of the nucleon-nucleon inter-
action by resonance models consists of some
compensation for the core of the interaction and con-
tributions from the virtual exchange of a single = meson,
an 7 pseudoscalar resonance, the w and p vector reso-
nances, and scalar resonances.! Despite the fact that
the two-pion-exchange (TPE) mass is less than any
established resonance mass, resonance models either
exclude the TPE effect or simulate it by some approxi-
mation—perhaps by the introduction of scalar reso-
nances whose existences have not yet been conclusively

* Present address: Bellcomm Inc., Washington, D. C. 20024.

1R. A. Bryan and G. L. Scott, Phys. Rev. 135, B434 (1964);
A. E. S. Green and R. D. Sharma, Phys. Rev. Letters 14, 390
(1965); A. Scotti and D. Y. Wong, Phys. Rev. 138,
B145 (1965); J. S. Ball, A. Scotti, and D. Y. Wong, ¢bid. 142, 1000
(1966); R. A. Bryan and R. A. Arndt, sbid. 150, 1299 (1966);
R. A. Arndt, R. A. Bryan, and M. H. MacGregor, ibid. 152,
1490, (1966); A. E. S. Green, T. Sawada, and R. D. Sharma,
Isobaric Spin In Nuclear Physics (Academic Press Inc., New York,
1966) ; R. A. Bryan and B. L. Scott, Phys. Rev. 164, 1215 (1967);
R. D. Sharma and A. E. S. Green, Nucl. Phys. B3, 33 (1967).
These references may be consulted for additional work on reso-
nance models,

established experimentally. Moreover, the effect of the
virtual exchange of a pion and 5 resonance together has
not been considered even though the mass exchanged is
less than a single vector resonance mass. Finally, if a
light scalar resonance ¢ is used in a resonance model,
the m+o effect should also be considered. It would
therefore seem of interest to evaluate the TPE, w7,
and 7+o contributions to nucleon-nucleon scattering.

An exact determination of the relativistic scattering
operator for nucleon-nucleon scattering due to two-pion
exchange by Gupta has been available since 1960.2
It includes the total contribution of the pion-nucleon
pseudoscalar interaction through the fourth order in
the pion-nucleon coupling constant. A nonrelativistic
approximation is also presented from which a potential
is derived, and by using this potential Breit et al.?
obtained two-pion-exchange phase parameters.

In a later work, Gupta, Haracz, and Kaskas obtained
the relativistic scattering matrix corresponding to the
TPE scattering operator and evaluated it at nucleon

2S. N. Gupta, Phys. Rev. 117, 1146 (1960).

3 G. Breit, K. E. Lassila, H. M. Ruppel, and M. H. Hull, Jr.,
Phys. Rev, Letters 6, 138 (1961),
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scattering energies of 95 and 310 MeV.* The n+1 and
m+o scattering matrices were derived and evaluated
at these same scattering energies by Barker, Gupta,
and Haracz.5® These relativistic scattering matrices
are further studied here. To avoid the core effects of the
nucleon-nucleon interaction, a partial-wave analysis is
made and the .S waves excluded. This is done by obtain-
ing phase parameters from a field-theoretical quantity
called the W matrix.

2. RELATIONSHIP BETWEEN THE W MATRIX
AND PHASE PARAMETERS

The field-theoretical scattering operator .S can be
expanded in powers of the boson-nucleon coupling
constants so that the expansion is unitary to all orders
by expressing .S in terms of a Hermitian operator K as’

S=(1—4K)/(1+¥K). )

The operator K is expanded as

K=Y K(n), @

n=1

where K (n) contains coupling constants to the order
n. Thus, if the series (2) is terminated and substituted
into (1), a unitary approximation to S is obtained. If
the incident nucleons have propagation four-vectors
# and ¢ and the scattered nucleons p’ and ¢/, respectively,
the W matrix in the center-of-mass (c.m.) system, where
q=—Dp, ¢'=—p’, and po=go=po'=¢0’, is defined by

W= ‘2‘, W(n),
K (n)= (1/ch)(2m)*%(p—p'+9—¢) (3)

(e (W (@)W )y (vt (p)]:-

The real matrix W (») is a function of the scattering
energy, scattering angle, and contains coupling constants
to the order #. The ¢ are large-component Pauli
spinors.®

Phase parameters are usually defined in terms of the
M matrix® which is related to a direct expansion of the
scattering operator S in powers of coupling constants.

¢S. N. Gupta, R. D. Haracz, and J. Kaskas, Phys. Rev. 138,
B1500 (1965).

5 B. M. Barker, S. N. Gupta, and R. D. Haracz, Phys. Rev.
142, 1144 (1966).

6 B. M. Barker, S. N. Gupta, and R. D. Haracz, Phys. Rev.
161, 1411 (1967).

7 See Ref. 2 for a discussion of the operator K and its relation-
ship to the various orders of S and the effective-interaction opera-
tor W.

8 For the relativistic reduction of matrix elements involving
the ordered products of Dirac spinors to those involving Pauli
spinors, see S. N, Gupta, Phys. Rev. 122, 1923 (1961).

9 The relationship between phase parameters and the M matrix
is given by R. A. Bryan and R. A. Arndt, Phys. Rev. 150, 1298
(1966).
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Thus, if S and M are expanded as
S=2 St), M=% M(n), (4)

n=1 n=l

M (n) is related to S(n). However, if these expansions
are terminated, the resulting approximation to S is
not unitary. Since effects through the fourth order in
boson-nucleon coupling constants are the main con-
cern of this work, it would seem that a unitary approxi-
mation to the scattering operator from these effects
might be more desirable than a nonunitary approxi-
mation, hence the W-matrix approach will be used.
It may be of interest to note that the relationship
between corresponding terms of W and M through the
fourth order are

M(2)=— (po/4wct)W (2),

Re (&)= — (po/drch) TV (4), )

where ‘“Re” means ‘“the real part.”

In accordance with the notation of the Yale group
for phase parameters, let the singlet and triplet phase
parameters be related to the parameters a as

ar=(1/2i)[exp(2iK1)—1],
CZLL= (1/21')[6Xp(21:51‘1,)— 1] y
asP=(1/20){[1—p,* ] *[exp(2i6*,)]—1},
ay=%ps exp[i(071s+071) ],
where K, is the singlet phase shift, 6%, the uncoupled
triplet phase shift, 6% the coupled phase shift, and ps
the coupling parameter. If the parameters o and the

phase parameters are expanded in powers of the coupling
constants as

(©)

L]

a= 3 al), $=3 $51(n), 6= 3 0% (n),

W

ps= 2::1 pr(n),

and terms of like power equated in Eq. (6), the result
to the fourth order is

Kp(2)=ar(2),

8:5(2)=ar®(2),

677 (2)=a"s(2),

ps(2)=2a;s(2),

The fourth-order corrections to the phase parameters

are thus related to the real parts of a(4), and the
Rea(4) are in turn related to the spin matrix elements

K1 (4)=Rear(4),
8.7(4)=Rear"(4),
8%, (4)=Rea; (4),
pr(4)=2 Reas(4).

®)

19 The Yale notation is similar to nuclear bar notation with
8s-1=07"1;, 674,1=07"1;, p;=sin(2&,). See G. Breit and R. D.
Haracz, in High Energy Physics, edited by E. H. S. Burhop
(Academic Press Inc., New York, 1967), Vol. I, Chap. 2, p. 50,
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of W(4) by
Rear(4)=B:"(4),
Real,(4) 1[ s+ 2D, )]
ea = —_— ,
lray T L+
1 /L—1\1e
Reais®)=——(——) (BB H@ U4 DG+~ Lo ),
1 /L—1 (L—1)(L+2)
REQLL—1(4)=2-L—*I< 7 B (4)+3(L— 1)62"(4)-*-——‘—-——631‘(4)—64L(4)+Lﬂs"(4)), ©)
L2\
Reawx(4)=a‘é(m) (see@— s+ 0B -1 - D+BI G+ L+ 08,
and
1 /7 L+2 (L—1)(L+2)
Reatzpa(8) =~ ) HH L DB+ B +R )+ (LA DB ®),
2L+3\ L+1 2(L4+1)
where o]
gor ()= — 220 / W oo(4) P, sinddd,
8wch 0
L(4)—M—L “w (4) (cos6P— P1_1)do
= ey ), | D cosITem Pl
62L(4)=—p0|p‘ / W11(4)P1, Sinede,
47I'Ch 0
BsE(4) poll L “w (4)( COSG(P 6 Pr)— (L+1)P ) inf do (10)
=— _ —cos — sinf df ,
? brch (-4 )e " Nsin# " -
polp| ™
Bsk(d)=———L| Wi(4)(cosd Pr—Pr 1)db,
21/2(41r6h) 0
and o]
ﬂSL(4)=_PO ? f Woo(4)PL sinfdf .
87rch 0
In these relations, the matrix elements are defined by W= BS+iC sinf(c,P+0.?)
Woo="X'W 'Xo and W_y1=3X_4'W 3X,, etc., where X +1G(1 001D+ 0Dy ®) T
are the usual singlet and triplet spinors. Further, F1H (01D, — 0 O @) T+ NonOon® T, (1)

Pr=Pr(cosd) is the Legendre polynomial with 6 the
c.m. scattering angle.

Thus, the first two orders of the phase parameters are
related to the first two orders of W, or by Eq. (5) to
the real part of the first two orders of M.

3. TWO-PION-EXCHANGE EFFECTS

The relativistic W matrix for nucleon-nucleon scatter-
ing, assuming a pion-nucleon coupling constant of 14,
was presented by Gupta, Haracz, and Kaskas in terms
of coefficients of W similar to those used for the M
matrix by Wolfenstein,? namely,

11 The relationship between phase parameters and the various
orders of field-theoretical quantities was clarified by Breit. See

G. Breit, Ann. Phys. (N. Y.) 16, 346 (1961).
127, Wolfenstein, Phys. Rev. 96, 1654 (1954).

where ¢, om, and o, are components of the Pauli spin
matrices along the directions of p’—p, p’+p, and (p’—p)
X (p’+p), respectively, and .S and T are spin singlet
and triplet projection operators. The relationships
between the coefficients B, C, G, H, and N, which are
given at 95 and 310 MeV over a range of c.m. scattering
angles between 0° and 180°, and the spin matrix ele-
ments of W are

Weo=B, Woe=N-+H cosf,
Wio=—W_10=V2 sind(C—3H),
Wo=—Wo1=—V2 sinf(C+3H),
Wu=W_1_1=%(G—H cosb),

Wia=Wi1=%(G+H cosf—2N).

(12)
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TaBLE I. One- and two-pion exchange phase parameters and Yale phenomenological phase parameters® at 95 and
310 MeV for the isosinglet state (7'=0). The coupled and uncoupled phase shifts are in radians.
95 MeV 310 MeV
Pion Pion

Phase = OPE A(OPE) TPE sum Yale OPE A(OPE) TPE sum Yale
K, —0.2061 —0.0310 0.1043 —0.1328 —0.1954 —0.2170  —0.1590 0.0251 —0.3509 —0.6798
(0.0194) (0.0910)
p1 1.1065 0.0920 —0.9792 0.2193 0.0910 1.9596 0.4598  —2.2900 0.1294 0.1859
(0.0220) (0.1321)
9P,  —0.1851 —0.0016 0.0409 —0.1458 —0.2090 —0.4759  —0.0035 0.1590 —0.3204 —0.4432
(0.0044) (0.0584)
350, 0.2435 0.0021 0.1326 0.3782 0.3155 0.5582 0.0015 0.6337 1.1934 0.4602
(0.0078) (0.0860)
9P;  —0.0320 —0.0003 —0.0787 —0.1110 0.0183 —0.1066 —0.0017 —0.5340 —0.6423 0.0951
(0.0037) (0.0248)
K3 ~—0.0397  —0.0003 0.0043 —0.0357 —0.0362 —0.0747  —0.0007 0.0296 —0.0458 —0.0144
(0.0063) (0.0326)
p3 0.1242 0.0010  —0.0022 0.1230 0.1120 0.3140 0.0043 —0.0188 0.2995 0.2506
(0.0085) (0.0530)
%  —0.0141 —0.0001 —0.0026 —0.0168 —0.0150 —0.0612 —0.0011 0.0203 —0.0420 —0.0187
(0.0047) (0.0473)
356, 0.0346 0.0003 0.0064 0.0413 0.0370 0.1231 0.0054 0.0222 0.1507 0.0704
(0.0058) (0.0481)
3% —0.0041 —0.0031 —0.0072 —0.0044 —0.0235 0.0002 —0.0162 —0.0395 0.0173
(0.0035) (0.0173)
Ks —0.0089 —0.0001 0.0006 —0.0084 OPE —0.0298 —0.0003 0.0035 —0.0266 —0.0374
(0.0288)
Ps 0.0238 0.0002 —0.0012 0.0228 OPE 0.0973 0.0001  —0.0018 0.0956 0.1058
(0.0223)

7, —0.0020 —0.0005  —0.0025 OPE —0.0146 0.0002 0.0025 —0.0119 OPE

3574 0.0068 —0.0005 0.0063 OPE 0.0395 —0.0034 0.0023 0.0384 OPE

a The 7 =0 phase parameters correspond to fit (Y-IV)pp4np in Ref. 15. The number in parentheses under each phase parameter is the uncertainty in the
phase parameter as given in Table VI of that paper. These uncertainties are obtained by parallel shifts of the phase-energy curves within specified energy

intervals.

The fourth-order pion theoretical contributions to W
correspond to diagrams (a) through (i) in Fig. 1 in the
paper by Gupta.® After renormalization, the contribu-
tions from vertex and self-energy diagrams (c)-(e)
produce W-matrix coefficients B=—G=—H as does
the one-pion-exchange diagram; hence these can be
regarded as contributing a fourth-order correction to
OPE and are denoted A(OPE). The crossed and un-
crossed diagrams (a) and (b) are regraded as the TPE
part of the W matrix.

The relativistic phase parameters, excluding S waves,
are numerically obtained from the W -matrix coefficients
of Gupta, Haracz, and Kaskas by putting Egs. (12)
in (8), (9), and (10), and the results in radians are
presented in Table I for isosinglet phase parameters
and in Table II for isotriplet phase parameters. The
one-pion exchange and recent Yale phenomenological
phase parameters'® are included in these tables as a
standard for reference.

13 See Ref. 2, p. 1147.

14 The A(OPE) W-matrix coefficients are presented in Table I
and the TPE W-matrix coefficients in Tables IT and III of Ref. 4.

15 R. E. Seamon, K. A. Friedman, G. Breit, R. D. Haracz,
J. M. Holt, and A. Prakash, Phys. Rev. 165, 1579 (1968). Isosing-
let parameters are taken from Table III and isotriplet para-
meters from Table IV. The parameters at 95 MeV are obtained

The A(OPE) isosinglet phase parameters, shown in
Table I, are small compared with OPE at a scattering
energy of 95 MeV, although the coupling parameter p;
is close to the Yale phenomenological value. At 310
MeV this fourth-order correction to OPE is comparable
to OPE only for K; and p;. In contrast to this, the TPE
isosinglet phase parameters, also shown in Table I,
are large compared with both the OPE and phenom-
enological values through D waves at 95 MeV and
through G waves at 310 MeV.

The isotriplet phase parameters are shown in Table I1,
where it is again seen that A(OPE) is a small correction
to OPE. Indeed, only 37%; at 310 MeV is significantly
large. The TPE phase parameters are large through D
waves at 95 MeV and through F waves at 310 MeV.
It isinteresting to note that although the TPE I¥-matrix
coefficients are larger than OPE coefficients owing to
the large coupling constant, the TPE phase parameters
become smaller than OPE for large values of L.

It is further observed that the pion contributions
through the fourth order in the pion-nucleon coupling
constant, called pion sum in Tables I and II, show a

by a linear interpolation of the Yale values between 90 and 100
MeV.
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TaBLE II. One- and two-pion exchange phase parameters and Yale phenomenological phase parameters®
at 95 and 310 MeV for the isotriplet states (7'=1).
95 MeV 310 MeV
Pion Pion

Phase = OPE A(OPE) TPE sum Yale OPE A(OPE) TPE sum Yale
P, 0.0370 0.0003 0.1600 0.1973 0.1912 0.0952 0.0011 —0.1381 —0.0418 0.2764
(0.0016) (0.0098)
P —0.3225 —0.0222 0.2976 —0.0471 —0.2286 —0.6205 —0.1116 0.9821 0.2500 —0.4756
(0.0021) (0.0150)
K, 0.0292 0.0003 0.0318 0.0613 0.0646 0.0412 0.0010 0.2086 0.2508 0.1749
(0.0019) (0.0101)
P2 —0.1081  —0.0009 0.0025 —0.1065 —0.0930 —0.2227 —0.0034 0.0364 —0.1897 —0.0883
(0.0022) (0.0141)
97, 0.0149 0.0001 0.0048 0.0198 0.0104 0.0497 0.0004 0.0440 0.0941 0.0056
(0.0027) (0.0099)
33F;  —0.0286 —0.0002 0.0061 —0.0227 —0.0279 —0.0808 —0.0007 0.0476 —0.0339 —0.0617
(0.0024) (0.0082)
9Ty 0.0037 0.0021 0.0058 0.0052 0.0159 0.0001 0.0083 0.0243 0.0498
(0.0014) (0.0052)
K, 0.0062 0.0001 0.0009 0.0072 0.0062 0.0156 0.0001  —0.0075 0.0082 0.0205
(0.0009) (0.0047)
pa —0.0176 —0.0002 —0.0002 —0.0180 OPE —0.0562  —0.0005 0.0017 —0.0550 —0.0422
(0.0098)
39H 4 0.0017 0.0008 0.0025 OPE 0.0096 0.0001 0.0045 0.0142 0.0134
(0.0062)
33" —0.0050 —0.0003 —0.0053 OPE —0.0226  —0.0002 0.0046 —0.0182 —0.0281
(0.0074)
39Hg 0.0006 0.0006 0.0012 OPE 0.0041 0.0018 0.0059 0.0092
(0.0041)

K 0.0014 0.0001 0.0015 OPE 0.0064 —0.0050 0.0014 OPE

I —0.0037 0.0002 —0.0035 OPE —0.0195  —0.0001 —0.0196 OPE

a The T =1 phase parameters for #- p scattering correspond to fit (Y-IV)ppsnp in Ref. 15. The number in parentheses under each phase is the uncertainty
in the phase as given in Table VI of that paper obtained by the parallel-shift method. The phase parameters appearing in Ref. 15 were obtained by inter-
polation from those at data-deck energies in the fit (Y-IV)pp4np, and the authors estimate that the reproduction of these values are good to at least 0.4%
but more frequently to 0.2% of the total range between maximum and minimum of the phase parameter within the energy range analyzed.

general agreement with the phenomenological phase
parameters at 95 MeV with only 3P; and 367, differing
markedly, but they do not reproduce the low L
phenomenological phase parameters at 310 MeV. At
310 MeV, many phase parameters are at variance to
values of L of about four. However, even at 310 MeV,

the pion-theoretical phase parameters are a reasonable
approximation to the phenomenological phase param-
eters for L>4.

Additional corrections to these pion contributions
are clearly necessary for values of L4 at higher
energies.

TaBLE III. Two-boson exchange phase parameters corresponding to =+ and v+ at 95 and 310 MeV for the isosinglet and
isotriplet states. The coupled and uncoupled phase shifts are in radians.

T=0 95 MeV 310 MeV T=1 95 MeV 310 MeV
phase T+n T+ T+n T+ phase w+n T+ ] r+o
K, —0.0247 —0.8399 —0.0308 —2.2545 39P, 0.1563 —0.0453 0.4465 —0.0918
p1 0.2099 1.1436 0.4388 —2.1642 3P, —0.0342 —1.1048 —0.0968 —2.2819
39D, 0.0008 —0.1274 0.0027 —0.6773 K, 0.0004 0.0155 0.0023 0.0540
3D, —0.0117 0.1478 —0.1447 0.6804 p2 —0.0018 —0.0410 —0.0086 0.0453
39D, 0.0086 —0.0194 0.1905 —0.1089 397, 0.0003 0.0018 0.0013 0.0236
K3 0.0005 —0.0061 —0.0014 —0.0318 33F, —0.0003 —0.0030 0.0022 —0.0341
p3 0.0008 0.0112 0.0004 0.0107 39F, 0.0001 0.0004 —0.0036 0.0055
39G; —0.0002 0.0001 0.0006 —0.0100 K4 —0.0001 —0.0007 cee 0.0021
335G, 0.0011 —0.0013 —0.0021 0.0176 P4 0.0001 —0.0007 0.0002 —0.0027
399 cee —0.0002 0.0016 —0.0029 39H, ce 0.0002 —0.0005 0.0010
Ks oo —0.0003 —0.0004 —0.0012 33H, —0.0001 0.0003 0.0003 —0.0016
Ps —0.0002 —0.0001 —0.0004 0.0023 39H g —0.0001 0.0002 —0.0004 0.0004
391y cee —0.0001 0.0008 —0.0006 K¢ 0.0001 0.0001 0.0002
357 —0.0004 —0.0008 —0.0006 0.0009 pe —0.0003 —0.0001 —0.0006
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4. ADDITIONAL TWO-BOSON-
EXCHANGE EFFECTS

The pion-theoretical contribution to nucleon-nucleon
scattering is supplemented in resonance models by
employing the contributions from the boson resonances.
The masses of these resonances exchanged between the
nucleons is about 780 MeV or less. It would then be
consistent to include all processes where the total
exchanged mass is less than or equal to the above value.

This means the 747 exchange contribution should be
included since the combined mass is only 686 MeV.
The relativistic W-matrix coefficients for the w+9
process was obtained by Barker, Gupta, and Haracz
for scattering energies of 95 and 310 MeV by evaluating
the crossed and uncrossed diagrams.® The phase
parameters corresponding to this I matrix are pre-
sented in Table III, arbitrarily taking the value 14 for
the g-nucleon coupling constant. In the case of the
isosinglet phase parameters, it is seen that only p;
is comparable to the corresponding OPE values at
95 MeV, while at 310 MeV only pi, 36P,, and %P; are
comparable to OPE values. For the isotriplet states,
%P, is the only large w-+7 phase parameter, being larger
than both OPE and TPE at 310 MeV. Hence, the 747
contribution is small compared with the pion-theoretical
results, and it would be negligible if the p-nucleon
coupling constant were given the SU(3) value of two.

Scalar resonances are somewhat peculiar since light
scalar resonances have not been observed and yet they
are essential to the success of one-boson-exchange
resonance models. Since the TPE effect is not included

16 See Ref. 5, Fig. 1. The remaining fourth-order diagrams are
not calculated since they proved to be small compared to the
crossed and uncrossed diagrams in the pion case.
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in such models, the appearance of scalar resonances may
well be a way to replace TPE. However, if a very light
scalar resonance is included, with mass about 400 MeV,
it is necessary to study the n+o effect as well. The W
matrix for this effect corresponding to crossed and
uncrossed diagrams was obtained by Barker, Gupta,
and Haracz,!” and the phase parameters representing
this W matrix are included in Table III, arbitrarily
taking the o-nucleon coupling constant to be equal to
14. Tt is observed that the m+o phase parameters are
comparable to TPE phase parameters. Thus, if a very
light scalar resonance exists with a large coupling to the
nucleon, the w4 effect is large.

5. DISCUSSION

It is evident from the results presented here that the
two-boson-exchange contributions to the nucleon-
nucleon interaction are large for the low-L phase
parameters and cannot be neglected. Therefore, a more
reasonable model for the two-nucleon interaction should
include the contributions from the virtual exchange of
one and two pions, the n resonance, the 5 resonance and
a pion together, the w and p vector resonances, and
perhaps the scalar resonance and the ¢ and pion
together. It is felt that an attempt should be made to
obtain a fit to nucleon-nucleon scattering data without
using the unobserved scalar resonance.
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