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Gribov's approach is used to investigate the asymptotic properties of production amplitudes. When it is
applied to an analysis of double Reggeon exchange, the results of previous authors are confirmed. In particu-
lar, it is verified that the amplitude f,~s for the coupling of two Reggeons, ai and ns, to a particle (of mass
M) depends not only on the masses qi" and qs" of the Reggeons, but also on qs"——(qr' —qs')'. (Primed vectors
are spacelike and perpendicular to the incident beam. ) On the basis of a diagrammatic model, the depend-
ence of f„,on qa' is elucidated. When M =m, a strong variation of f, s throughout the physical region
is expected. The same approach is applied to an analysis of a Reggeon triangle graph. Gribov's rules are
found to apply provided that certain extra factors are included in the integrand. Because of these factors,
the Reggeon "Ward identity" suggested by Anselm and Dyatlov no longer holds. The analytic structure
of the corresponding double partial-wave amplitude is investigated. It has ordinary two-Reggeon singu-
larities in each angular momentum separately, together with a leading curve depending on both variables,
For the triangle graph, it turns out that the leading curve determines the asymptotic behavior, which is
of the form ss/Ins, where the exponent 1' depends on q,"as well as on q&'s and qs's. This type of behavior
has no analog in two-body scattering, and it would be of interest to identify such behavior experimentally.
Finally, it is pointed out that underlying the definition of the approximate double partial wave used in
this paper is the asymptotic simplicity of analytic structure in energy variables of the production amplitude.

1. INTRODUCTION

ECENTLY, Chan, Kajantie, and Ranft' have
shown that a double-Regge-pole hypothesis sug-

gested by Kibble' and by Ter-Martirosyan' can be used
to provide a reasonable fit to the data for such processes
as vr+p —+ x+sr p. Bali, Chew, and Pignotti" have shown
that an extension of Toiler's work' provides a plausible
basis for generalizing the multi-Regge-pole hypothesis
to arbitrary production amplitudes. The asymptotic
form for production amplitudes that emerges from this
work appears to be consistent with calculations of
Polkinghorne7 based on perturbation theory and with
the results of Gribov's Reggeon calculus. ' '

In the case of two-body scattering, it is well known
that the asymptotic behavior of the amplitude is in-
fluenced not only by Regge poles )Fig. 1(a)) but also

by Regge cuts resulting from the exchange of two or
more Regge poles LFig. 1(b)j.Similar remarks apply to
production amplitudes. The simplest multi-Regge-pole
contribution to the process

1+2-+3+4+5
corresponds to Fig. 2(a) and the most straightforward
types of correction are shown in Fig. 2(b). In addition,
however, these are eRects associated with the Reggeon

' Chan Hong-Mo, K. Kajantie, and G. Ranft, Nuovo Cimento
49A, 157 (1967); Chan Hong-Mo, K. Kajantie, G. Ranft, W.
lleusch, and E. Flamino, ibid 51A, 696 (196.7).

s T. W. B.Kibble, Phys. Rev. 131, 2282 (1963).' K. A. Ter-Martirosyan, Nucl. Phys. 68, 591 (1965).
4 N. F. Bali, Geoffrey F. Chew, and Alberto Pignotti, Phys.

Rev. 163, 1572 (1967).' A set of references for various approaches to this problem is
given in Ref. 4.' M. Toiler, Nuovo Cimento 37, 731 (1965).

7 J. C. Polkinghorne, Nuovo Cimento 36, 857 (1965).
V. N. Gribov, Zh. Experim. i Teor. Fiz. 53, 654 (1967) t English

transl. :Soviet Phys. —JETP 26, 414 (1968)j.
'A. A. Anselm and I. T. Dyatlov, Phys. Letters 26$, $00

(&967).

triangle graph of Fig. 3 and with similar, more com-
plicated graphs

In Sec. 2, straightforward multi-Reggeon exchange is
examined, using Gribov's' approach. Some of the
properties of the amplitude for coupling two Reggeons
and a particle are examined in Sec. 3. Gribov's approach
is applied also to the triangle graph in Sec. 4, and the
resulting analytic structure and asymptotic behavior
are considered in Secs. 5 and 6

Of course, the observability of eRects due to the
Reggeon triangle graph depends on the strength of the
singularities with which they are associated. At present,
just as in the two-body case, these are unknown. How-
ever, these eRects have no analog in two-body scatter-
ing, so that their observation would be a striking
encouragement for the relevance of a Reggeon calculus
along the lines proposed by Gribov.

2. DOUBLE-REGGE-POLE GRAPH

The double-Regge-pole graph LFig. 2(a)j has pre-
sumably already been corisidered, using Gribov's
techniques, in a paper by Anselm and Dyatlov (Ref. 3
of our Ref. 9). However, the work is not yet available,
so that for completeness and to establish notation the
problem will be reconsidered here. The Feynman
amplitude, the asymptotic behavior of which is given
by the double-Regge-pole graph, is shown in Fig. 4.

FIG. 1. (a) Regge-pole exchange; (b) two-Regge
exchange giving rise to cuts.
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where
1

dji4Gi(ji, gi')(2pi k)"
4i

Fio. 2. (a) Double Regge-pole exchange; (b) multi-Reggeon
exchange in a production amplitude.

p;, = (e ' "+ri)/sinir ji, (4)

and the j»-integration contour lies entirely to the right
of the singularities of Gi(ji,gi ). The signature factor is

The blobs A» and A2 correspond to complete off-shell
scattering amplitudes.

It is convenient to de6ne the following momenta and
invariants:

where ~& is the signature. The large negative-energy
limit is obtained by making the replacement

(2pi k)» —+ ri( —2pi k)&'
gi Pi P» g~ P4 P»
$=(P +P )'=(P +P +P )' (1)

s "=(P+P )', =(P+P )',
in Eq. (3). Simple Regge behavior comes from a pole at
ji——ni(gis). Fully enhanced' multi-Reggeon effects come
from other singularities of G». Similarly, the important
part of A2 can be writtenso that g~' and g2' are the momentum transfers to be

held fixed while the energy variables $, $35, and $45

become ininite.
In the manner of Gribov' it is assumed that the most

singular behavior of the scattering amplitude A» occurs
when gis and the scattering masses k' and (k+gi)' re-
main 6nite and the "energy" 2pi k becomes infinite.
The Regge hypothesis then implies that the important
part
by

+2 g2(g2 )G2(g2 y 2P2'k)g2(g2 y
k

y (k+g2 )) y (5)

where

(6)G2 djstjgG2(j2)g2 )( 2P2'k)
4i

of A» can be represented for large positive energy Assuming for convenience that the masses of all lines
are equal to m', the Feynman amplitude of Fig. 4 is

&i=gi(gt')Gi(gi', 2pi k)gi(gis, k', (k+gi)'), (2) given by

B(s,sss&$4s&gi, gs )=— z d4k A»A2

(2ir)' (k' m'+t'e) P—(k+g,)' m'+is'jf—(k+gs)' m'+Zeg—
(7)

In order to investigate the behavior of 8 for large values
of the energy variables, it is convenient to follow the
Sudakov' method, as suggested by Gribov and dehne
momenta

Pi'= Pi—(m'/$)ps

ps' ——p, —(m'/s) pi,

such that Pi"~Ps's —+0 as s —+ oo. The loop momen-
tum k may be resolved into components in the plane of

pi and ps and perpendicular to it. That is,

k =nps'+ p pi'+ k',

where k' is a two-component spacelike vector perpen-
dicular to pi and ps. For large s,

The momentum transfers may be similarly resolved:

$4s—m +2gi
(Pi+Ps)+ (Pi—-Ps)+gi',

2$ 2(s—4m')

$45—m

$35—m sss—m +2gs
(P +P )+ (P P)+g '—

2$ 2(s—4m')

If particle 5 has mass M, then the mass-shell condition

(gi—gs)'= M' (12)

$3g$4g= 'g$
& (13)

implies, for large values of the energy variables, the
well-known result

d'k= Ps (dndPd'k' (10)

FIG. 3. Reggeon triangle graph.

"V. V. Sudakov, Zh. Eksperim. i Teor. Flz. 30, 87 (1956)
LEnglish transL: Soviet Phys. —JETP 3, 65 (i956)j.

FrG. 4. Feynman diagram giving rise to double
Regge-pole exchange.
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where
7/= M2 —(ql' —g2')',

and consequently that, in this limit,

f12 gl 2 f22 —
g2

2

It follows that when $35 and $45 are large, so is s, and
therefore

2k pl n—s, 2k p2—ps,

k'—nps+k",
(k+ql)' nPs+ ns45+ (k'+ql')',

(k+ q2)
'—nPs —Ps35+ (k'+ q2')'.

On substituting these relations into Eq. (7) together
with the asymptotic form for Al and A2 I

Eqs. (2) and

(5)$, the leading contribution to the production ampli-
tude is found to be

where

2

&=
I

——
I
gl(ql")g2(q2") &jl&j2&j,&,,G1(jl,ql")G2( j2,q2")&,„,( q'l, q'2, $3:, $4 )5,

42i

ZS
~ ~

U
2(27i) 4

/Ea/fp/t k gl(ql k (k+gl) )g2(q2 2 k2 (k+g )2)

I- I'ip I'Le(:)~0(--)350(—p)~0(p)j
X 18

(nPs+ k" m') f—aPs+ ns45+ (k'+gl')' m'5(—nPs P$35+—(k'+ q2') '—m' j
the ~ signs being determined by the signatures of the trajectories. Putting

it follows that for positive $35 $45,

where

ns45= 7/'/2X, Ps35 7/'/2y, ——

Bjyj2 $35 $45 fjlj3(gl yq2 ) &

(19)

(20)

I*I "lyl "I ~( )~|/(—*)jL~(—y)+t/(y)j
f = 7/

7/j~+ j» d-xdyd2k'g, g2
2(27r) 4 (zy+k~2 m2)I zy+. 7/1/2&+. (k&+.q&)2 m2jI 2;y 7/1/2y+. (k~+q2I)2 m2)

. (21)

The asymptotic behavior of B is then angle 0, between the production planes of particles 3
and 4 in either the lab or c.m. frame. That is,

B=g jg2 ~J&dJ»»"$45" ~x ~'s

42)
COS%'=ql 'g2 /(tlt2) / . (24)

XG1(jl,ql")G2(j2 g2 )f;„,(gl', g2') . (22)

The limit for large negative $» is obtained by making
the replacement

$3541~ rl( $35)71

and similarly for large negative $45.

When G~ and G2 have, as their right-most singu-
larities, poles at jl——nl(gl") and j2=a2(g2"), then the
leading asymptotic behavior is

8 glg2$35 $45 f~,~2(q 2q2l", (gl' —g2')'). (23)

This result agrees with the conclusion of those authors
mentioned in the Introduction. In particular, as
emphasized in Refs. 1—4, f, , depends not only on
tl ——gl" and t2=g2", but also on g3"=(gl' —g2')'. In
Ref. 1, this latter dependence is reduced to one on an
azimuthal angle in the rest frame of particle 5.'~ It is
also possible to interpret this dependence as one on the

"See Eq. |,'15) of Ref. 1. In this paper, particles 4 and 5 are
interchanged relative to the conventions of this reference.

This follows because, of course, —g~' and g2' are the
components of p3 and p4 transverse to the incident
beam.

The dependence of the production amplitude on this
variable is considered in more detail in Sec. 3.

Finally, note that Eq. (22) and related equations for
negative values of $» and $45 imply that asymptotically
the analytic structure of B is simply the product of the
$35 and $45-complex planes cut along their real axes. Of
course, complicated structure and overlapping cuts
may still exist at 6nite values of $35 and $45. This
property of asymptotic simplicity of analytic structure
exists for more complicated diagrams and is essential in
permitting the definition of an approximate double
partial-wave amplitude in these cases.

3. BEHAVIOR OF THE TWO-REGGEON
PARTICLE COUPLING

The dependence of f, , on q3'2 may be crudely
estimated by examining the singularity structure at
7/= 0. In order to do so, it is convenient to write Eq. (21)
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in the form

f~„g=rI &'~'+~" dxdy ~x( '(y( 'Pe(x)+8(—x)g(8(—y)+e(y)jF(xy xy+ri' 'x xy —g' 'y) (25)

d'k' gi(gt'r, w+k", u+ (k'+gt')')gq(g2", w+k", v+ (k'+g ')')
F(w, u, v) =

(2v ) ' (w+ k" m—'+ie) (u+ (k'+pi') ' m—'+i ejfv+ (k'+g2')' —m'+ie)
(26)

—$(a1+aS)a 1a2 'I dx dy xa'ya2

0 reasonable assumptions are made about g» and g2,
namely, that they are analytic in the planes of their
variables cut along the positive real axes, then F(w, u,v)
is analytic in the I, e, and m planes cut along the real
axes from m' to inhnity.

Equation (25) can be written

f —s (a1+ag)a1ag= )1 dx dy x 'y '
0

X(F( xy, ——xy+ri'"x, —xy+ v'"y)

+( —'-' —'-' )

XF(—xy, —xy —ri')'x, —xy —p'i'y)].

that the contributions from infinity are zero) is

(28)

XPF(—xy, —xy+ri"'x, —xy+ii'"y)

+riF(xy, xy—ri' 'x, xy+ri' 'y)

+r2F(xy, xy+g' 'x, xy —r)' 'y)

+r&r2F( xy, —xy —ri—) x, —xy —ri ) y)j (27).

The last contribution to the integrand is the simplest
one, since its singularities do not enter the integration
region. The second contribution can be put in the same
form by noting that for fixed (real) x the analyticity
assumptions made above, together with the ie prescrip-
tion, permit the y-integration contour to be rotated
anticlockwise through 180'. A similar analysis applied
to the third contribution shows that for fixed (real) y
the x-integration contour may be rotated. The distribu-
tion of singularities does not, however, permit the erst
term to be treated in this way. The result (assuming

Et follows that

N=xy —&»~2x,

v = xy —p»~'y

where

w= xy=-', (u+v+gaQE),
x= —', (v —u+ ga QE)/ri'i',
y= ', (u v+ rim +K-)/—r)'i',

E=K(u, v, r)) = (u+v+ri)' —4uv,

(30)

(31)

As indicated above, the 6rst contribution to the right
side of Eq. (28) is the more complicated and will be
discussed in detail. The second may be dealt with in an
analogous fashion, and only the results are given below.

The motion of the singularities of the integrand in
Eq. (28) makes it dificult to analyze the behavior of

f, , as y —+0. It is convenient, therefore, to change to
integration variables that render this motion un-
important. For the first contribution in Eq. (28),
convenient variables are

gu=-m
)g V

and E=0 yields the parabola P, shown in Fig. 5, which
touches the u and va xes at (0, —ri) and (—g, 0). The
Jacobian of the transformation is

J= 8(u, v)/8(x, y) =QE.

The singular curves are

(32)

U

and
(33)

that is,
(u+ m') (v+m')+ rimn =0. (34)

Fro. S. integration region and singularities in the (u,v) plane.

These curves are shown in Fig. 5. The attached cuts lie
in the negative s and v directions.

When the+ sign is chosen in Eq. (30), the integration
comprises the three quadrants in which either e or e is
positive, together with the hatched region shown in
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FIG. 6. Reggeon graphs for the process m+p —+ x+m'p.

0.~=0.2 but the residues are opposite. When o,~
——o.2, the

behavior is changed slightly to become

f, ,&'~—g (A —8 in') . (42)

The second term on the right of Eq. (28) yields
behavior of the same form and thus contributes simply
to a modi6cation of the coef6cients A~ and A2 in
Eq. (40). The behavior indicated in Eq. (40) agrees with
that suggested by Blankenbecler and Sugar. " Both
Eqs. (40) and (42) confirm the results of Zakrzewski, "
who has examined the two-Reggeon graph in perturba-
tion theory. Strictly speaking, the analysis set out
above is relevant to the variation of f, , with 41 when

g3" is Axed. In other words, the analysis really yields
the dependence of f „,on M'. However, when M' is
Axed and q3" is allowed to vary, one would, in general,
expect the same results to hold unless there is an
accidental relation between M and the internal masses.
If it is assumed that A1 and A& (or A and J3) do not vary
rapidly with ga", then Eqs. (40) and (42) provide an
estimate for the dependence of f, , on 41.

It would be of interest to test Eqs. (40) and (42)
experimentally. In order to do so, it is necessary that
variations in 0 produce appreciable changes in y. This
requires M' to be small (M'& (t1(, ~t2~), the most
favorable case being M'= m '. An interesting process to
COnSider iS 1r+p-+1r+m'p. The mOSt Clear-Cut SituatiOn

arises when' x is chosen as particle 5, since then there
is a single important two-Reggeon contribution corn-
prising the Pomeranchuk and A2 trajectories [Fig. 6(a)3.
When ~t1~ = ~t&( =0.25 BeV', then the physical range
for g is 0.02~& g~& 1 BeV'. If the estimates o,p= 1.0 and
nz, ——0.5 are accepted, then Eq. (40) predicts that
f ~ „,has one term that increases by a factor of 50 and
another that increases by a factor of 7 as p is reduced
through its physical range.

If ~+ is chosen as particle 5, then there are two
important contributions, shown in Fig. 6(b). In this
case, the estimates o,,—n„—n~,—0.5 lead to a variation
of the amplitude by a factor of 7 as p is reduced through
its physical range.

Vnfortunately, the small mass of the pion, which is
essential to the striking character of the above varia-
tions, also makes an examination of the entire physical
range for g out of the question at present energies. In
order that the entire range lie in the asymptotic region,
it is necessary that m 's~&so', where sp represents the
lower end of the asymptotic region for the subenergies
S35 and S45. This implies that the lab energy of the pion,
w, must satisfy w & so2/2m 'mz. If so—10 BeV' (a rather
low value), then w—2.5&(10' BeV. However, it, would
still be possible to examine values of q) 0.5 BeV' with
a pion lab energy of j.00 BeV. A variation by a factor
of 2 of the amplitude associated with Fig. 6(a) in the
range 0.5 ~& g ~& 1.0 BeV' would be expected on the above
reasoning

4. REGGEON TRIANGLE GRAPH

The Reggeon triangle graph of Fig. 3 determines the
asymptotic behavior of the Feynman amplitude illus-
trated in Fig. 7. That part of the diagram enclosed in
the dashed boundary is just the off-shell-mass version
of the amplitude 8 considered in Sec. 2. The Feynman
amplitude is therefore given by (the momenta are
indicated in Fig. 7)

d4kd4kgd4k2 BA3( i

k(2m)'3 (k1' m) [(p—1 k1) m—3[(k—1 k) m—'3[(p—1 k1 g1+—k) ——m'3

X{(k2'—m')[(p2 —k&)' —m'3[(k2+k)' —m'3[(p2+p2 —k2 —k)' —m'3) '. (43)

d'k;=-,' isI dn, dP;d'k;. (45)

The invariant quantities entering into the loop at the

'~R. Blankenbecler and R. L. Sugar, Phys. Rev. 168, 1597
(2968)."I would like to thank Dr. J. C. Polkinghorne and W. J.
Zakrzewski for discussions on this point. The work of Zakrzewski
will appear soon as a Cambridge University Report.

Once again, it is convenient to introduce the Sudakov
variables

ki=nip2 +Pipl +ki

so that, for large s,

left end of Fig. 7 are, for large s, s35, and s45,

k1'= n1P1S+k1",

(pl kl) &1pl& 411~+m'(1 Pl)+kl-
(k —k1)'= (a—n1)(p —P1)s+(k' —k1')',

(p1 kl+k gl) («1)(p Pl)

+ (1—S44/S) (n —n1) S

+ (1+P P, s44/s)m'— —
+ (k1' —k'+g1') '.

(46)

It will also be assumed here that the most singular
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p m'/s, (p —p ) m'/s,

n5-1, (n —n5)-1.
(48)

Hence, in other parts of the diagram P and P2 may be
set equal to zero. In these circumstances the asymptotic
energy variables become, for large s,

(ki+k2)'= n5p5s,

(P5—ki —k+P5)'= (1—P)s55,

(p4 k5 —k+p5)'=(1 —n2)s4;.

(49)

The important contribution from 33 may then be
written

A =g (k' k ' (k —k )')G (lP(ki+k )')

Xg,(k', k2', (k+k,)'),
1 (5O)

G5 ————dl5)t, G5(l5,k ) (n5Pis) ",
4i

and that from 8 may be written

behavior of the integrand arises when the internal
masses such as those given in Eq. (46) remain finite
and the internal energies (ki+k2)', (p3 ki+k+p, )'-,

and (p4 —k2 —k+p5)' become infinite. It follows, from
arguments entirely analogous to those used by Gribov'
in the two-body case, that any hnite region of the
invariants in Eq. (46) is such that

n~ m' s, n —n~ m' s,
p 1, (p—pi) 1,

for large s. Hence, if only the most singular contribution
to the asymptotic behavior is sought, then in other
parts of the diagram n& and n may be set equal to zero.
A similar argument involving invariants in the twisted
loop at the right of Fig. 7 shows that the leading
asymptotic behavior is controlled by regions where

/

pX~3

FIG. 7. Feynman diagram corresponding to the
Reggeon triangle graph.

It is easy ta check that T is even or odd in s» accord-
ing as the signatures of trajectories 1 and 3 are equal or
opposite. In fact, Eq. (52) can be regarded as yielding
the asymptotic behavior of. s» in the upper half s»
plane, while that in the lower half-plane is obtained by
replacing s55"+" ' with 7ir5( —s55)"+" '. Once again,
it is implicit in the analysis that asymptotically the
production amplitude enjoys simple cut-plane analy-
ticity in s» and, of course, in s» as well. With these
considerations in mind, it is easy to check that for
large positive s» the asymptotic absorptive part is
obtained from Eq. (52) by replacing i(&,$&, with p&. &„
where

vt, i,= -', «,«,(1+r»5~"'"+"'). (53)

(In fact, yi, ~, ——I&e(i,«, when li and t5 are real. ) A
similar discussion yields the s&5 absorptive part. Toe
double absorptive part is then

d'u' dl&dl2dls
t = i(-.', ir)' VZI Z37Z2Z3

(2ir)' (2mz)'

XcUi, i,iV), (,GiGgG5fi, (,s55" " 's~:""'. (54).

The "double partial-wave" amplitude, insofar as its
right-most singularities are concerned, may be calcu-
lated as

&=
I

——.
I gig5 dt, dt, «,(„.

4ii
2 2

Tj1ji ds» s»
gg

ds„s.„—»- 't, (55)

X (1—P,) '~(] —n, ) '5s55'~s45'5

XG1(il) (gl k ) ')G2(4) (g5 k ) )
where sz is some arbitrary lower limit. The result,
keeping only singularities furthest to the right, is

d'k' dlIdlgdlg

(2ir) ' (27ri) '
Xf(,i, (qi' k', q2' k') . —(51)—

Tj1jp

/
+ZIZ3+ZgZ3 YZIZ3+Z2Z3~1~ &~3J ZIZ2

X — —(56)
'(j i t, t5+ 1-)(j5——l5 ——t5+ 1)

d'k' dl&dl, dl,
T=

s55I 2ls45I (2ir)' (2iri)' (i5g" '
If now only the pole contributions from the G, are kept,

X1Vi,&,(qi )k )1Vi.,i,(g5,k') GiG2G5 fi, i,(gi' —k', g2' —k')

When these expressions are inserted into Eq. (43), the
result is

X «,«, (s55) "+"ji,4,( )'~s"45, (52)

where 1V&,&,(pi', k') is the amplitude defined by Gribov'
corresponding to the graph of Fig. 8.

Frc. 8. Graph for coupling two Reggeons
to two external particles.

t-k'
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FIG. 9. Contraction of the Reggeon
triangle graph.

J»3

2
+Col CX3+CX2CK3

(2~)' &-3~" '

the background terms being dropped, the result is

n, (t) =a;+b,&, (59)

Sa ANALYTIC STRUCTURE OF Tj 1j3

The complete analytic structure of T;», cannot be
understood without a knowledge of the properties of
the numerator in Eq. (57). However, it is possible to
give an account of that part which arises from pinches
caused by the vanishing of the denominator.

To simplify the discussion, it will be supposed that
the trajectories are linear, that is,

&aya3&a3a3faga3
X

(jt—nt —nt+1) (j3—nt —n3+1)

and that a~= a2= a, b~= b2= b. The zeros of the denomin-
(57) ator are two circles in the k' plane, one with center

where, of course,

nt= nt((k' —gr')'),

n3 =n3((k' —g3')'),

n3 ——n3(k") .
(58)

k'= [b/(b+ b3)fgt'

and radius r~, where

a+a3 —jt—1 bb3
Y] + gt

b+b3 (b+ b3)'

and the other with center

(60)

(61)

Equation (57) suggests that Gribov's rules with
suitable modifications will apply in calculating the
Reggeon graphs for production amplitudes. The modi-
6cations are that for each three-Reggeon loop to which
an external particle is attached, there must be (i) a
factor f~, t3 for the coupling of Reggeons 1 and 2 to the
the external particle, (ii) a factor y3333 for the "absorb-
ing" vertex as well as y~, ~3 for the "emitting" vertex,
and (iii) a factor i($33ri'3 ') associated with the third
Reggeon in the loop. One consequence of these changes
is that the Reggeon "Ward identity" suggested by
Anselm and Dyatlov' no longer holds when the particle-
two-Reggeon vertex is modified by a Reggeon insertion.

k'= [b/(b+ b3)]g3'

and radius r2, where

(62)

r2—2—a+a3 —j3—1
+ g3

b+b3 (b+b3)'
(63)

When j& and j2 are sufficiently large, r&' and r&' are
negative. The denominator never vanishes and the
function is analytic in both variables. When jj. is
reduced so far that ry =0 then the k' integration is
pinched and a singularity of T;„,results at the point

j & n»(gt") ——=a+ a3+ [bb3/(b+ b3) $g&" 1. (64—)

This is just the two-Reggeon cut corresponding to the
contracted diagram in Fig. 9. Similarly, when j2 attains
the value

j 3 =n33(g3") =a+ a3+ [bb3/(b+ b3)Jg3" 1, (65—)

r2 vanishes and T;», is again singular.
When j&(n», j2(n», so that r& and r2 are real, then

the leading singular curve, corresponding to the com-
plete triangle diagram, is encountered. It results from a
pinch occurring when the two circles touch (see Fig. 10),
that is, when

(r3~r3) [b/(b+b3)] g3 ~ (66)

This curve is a parabola (see Fig. 11) that touches the
hne jr= nr3(g] ) a't

j3 n33+ [bb3/(b+b3)gg3" (67)

FlG. IO. Pinch giving rise to the leading singular curve of the
triangle graph (a) in the limit (j3&33, 33&33), (h) in the limit
($1&$3j2+33)~

and the line j2=n» at the symmetrical point.
In determining those parts where the leading curve is

singular, it is necessary to take into account the cuts
attached to the branch points given by Eqs. (64) and
(65). Since the leading curve lies in a region through
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which both cuts pass, it is necessary to specify the sign
of the small imaginary parts ~& and e2 of j& and j2 at
points on the curve. When ~~ and e~ have the same sign,
the pinch that gives rise to the leading curve is eQec-
tive" when the circles touch as in Fig. 10(a). The
corresponding part of the leading curve lies between its
touching points with the two-Reggeon branch points.
It turns out that this is the part of the curve that deter-
mines physical asymptotic behavior. The remainder of
the curve corresponds to a pinch of the type shown in
Fig. 10(b) and is singular when et and es have opposite
signs.

The relationship between this analytic structure and
asymptotic behavior is examined in Sec. 6. In order to
make the connection, it is useful to understand the
discontinuities of T;», around its singularities.

The discontinuity around the branch point
jt——ts»(gt ') is obtained by replacing, in Eq. (57), the
relevant pole with a 8 function. The result is

jii, - «s(~, '&

- j -«„(j')

L
gj+y$ a$

FrG. 1I.Leading singular curve of the Reggeon triangle graph.

the integrand in Eq. (57) with b functions. The result is

~»&~'us

i —d'Js' 8(jt—nt —tss+1)b(js—ass —ns+1)

&[jt—~t(&")—~3((&'—at')')+1]
(2sr) 3

7ayas'Y asaS&alas&asaSfazas
(68)

5-s~"' '(js ~3 ~3+1)

The value of the discontinuity may be approximately
evaluated near threshold by replacing k' with
[b/(b+bs)]gt' everywhere in the integrand except the
5 function, with the result that

X (&assi ') 7asaspasag"asag asasfasas ~ (70)

It can be evaluated approximately in the neighborhood
of the singularity by replacing k' with its value kT' at
the touching point in Fig. 10, everywhere in the
integrand except the 8 functions. The conclusion is that
near the singularity,

A»Tj„,{(rt+rs)' —[b/(b+bs)]'gs" }—'"
X{(rt—rs)' —[b/(b+bs)]'as" } '" (71)

VasasTasas& t Pa' as sfaasaa 3

~~~ju —=
2(b+bs) &asrjas '(j 3 ns -ns+—1)—(69) so that the discontinuity has inverse-square-root

behavior.

It follows that in this approximation, where E, , does
not depend on jt, the singularity j t n»(gt ——') is
logarithmic. Although it is only approximate, Eq. (69)
exhibits the important property that while it contains
the leading singularity represented by a pole at

6. ASYMPTOTIC BEHAVIOR

The production amplitude is obtained from the
double partial wave T.';„,by writing

gs ——ass(gs")+ [bbs/(b+bs)]ps",

A~T;„, does not contain the two-Reggeon cut beginning
at js=n»(qs'3). This latter property is exact and follows
from the presence of the b function in Eq. (68) which
restricts the k' integration to the circle

{k'—[b/(b+bs)]ps'}'+rts= 0.

In general, this restricted contour will not be pinched
When js ——tsss(qs").

The discontinuity of T;», across the cut attached to
the leading curve is obtained by replacing both poles of

'4 The relevant theory of pinching is explained in the appendix
of P. V. Landshoif and D. I.Olive, J. Math. Phys. 7, 1464 (1966),
and also in M. J. Bloxhatn, D I, Olive, and .J. C. Polkinghorne,
Psd (to be publi. shed),

Since the analytic structure of T;„, is no longer a
product of two factors, each with singularities in one
variable, the asymptotic behavior of T no longer has a
simple product form. A convenient way of understand-
ing the asymptotic character of T is to introduce a limit
suggested by Polkinghorne~ on the basis of a
perturbation-theory investigation. Put

$33——), (sj$)*,

$43——X
—

'(Sj$) &,

x+y= 1.
(73)

j1$3 js —g jl js(si$)ajl+sjs (74)

T($ $33 $33 jt js) =
~

dj tdj 3)j $j Tj j $35 Sssjs (72).
4i j'
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j- integral'& cue

C,Cs~tC3ur

~j

j i&1+KCL~i~'
ce~fo~t~

'

Km'~~ —
.

— =--R j
pi&~a, h

Cs+'inn Of'

CeaAng Sl &Q~~ Osg'i~/

On making the change of variables

J=xjt+y j2,
(75)

Eq. (72) can be put in the form

FIG. 12. (a) The j-integration contour. (b) Pinch of the j con-
tour by the two-Reggeon singularities. (c) Pinch of the j contour
by the leading curve singularities.

coincidence of the two-Reggeon branch points [Fig.
12(b)] when

J= xn33(qt")+yn23(q2") (79)

CONCLUSION

and (ii) the leading curve when L becomes tangent to
it [Fig. 12(c)].

Pinch (i) is inefTective and results in no singularity
of &p(J) because, as pointed out in Sec. 5, htT, », does
not contain the singularity at js=n»(q2 ). It is easily
verified that this property implies that no discontinuity
of ir(J) results from continuing around the point given
in Eq. (79).

The right-most singularity of q (J) is, therefore,
produced by pinch (ii). This occurs at the point

J= xn33(qt'2)+yn23(q2")+ xyP2/(b+ b3)]qs", (80)

when also

(q ")+y'[f/(&+& )]q ",
»=n23(q2 )+x ~~/(~+~3)]q3

It is simple to check that the inverse-square-root be-
havior of At. T;»2 [Eq. (71)] implies that the discon-
tinuity of p(J) is analytic at the branch point. The
resulting asymptotic behavior is then

T-ss/1ns

at fixed (q&",q2",q3"), where J is given by Eq. (80). The
behavior arising from the Reggeon triangle graph
therefore differs from that due to a double Reggeon
graph, in that the exponent of s depends on q3" as well
as on q~" and g2". Associated with this extra dependence
of the exponent is a nonlinear one on x and y, which
determine the relative rates at which s35 and s45 become
infinite.

where

T= —— dJ q(J)(s)s,
4i

(76)

with

q(J)= ——dj (,,(,2) T,„„
4i

i t= J+yj

(77)

The J integration may be chosen to run from —i ~ to
+i~, with ReJ sufFiciently large. In that case, the
j interaction (at fixed J) runs between the singularities
that correspond to the branch points j,=n»(q&"),
j2 n23 (q2 2) aS indiCated in Fig. 12(a) .

The s-asymptotic behavior of T is determined by the
right-most singularity of q(J). Such singularities arise
from pinches of the j-integration contour in Eq. (77).
Since this contour lies in the complex part of the line

I, shown in Fig. 11 and given by

xi 3+F2=J
it is clear that pinches are brought about by (i) the

In this paper, Gribov's approach has been used to
investigate the asymptotic properties of production
amplitudes. When it is applied to an analysis of the
double-Reggeon-exchange graph, the results of previous
authors are confirmed. In particular, it is verified that
the amplitudes for the coupling of two Reggeons to an
external particle f, , depend not only on the masses of
the Reggeons qt''-and q2", but also on q3"——(qt' —g2')'.
On the basis of a Feynman-diagram model, the analytic
properties of f, , as a function of q3" are discussed. It
is shown that when nrem-"n2 and ri —&0, f, , Arri

+A22t ~2 a,nd when nt=ns=n, f (A B ln2i)ti . A—
means of testing this result experimentally is indicated
v hen M=m„.

In Sec. 4, the Reggeon triangle graph is discussed.
C.ribov's' rules are found to apply provided that
certain extra factors are included. Because of these, the
Reggeon "Ward identity" suggested by Anselm and
Dyatlov' no longer holds.

The analytic structure of the double partial-wave
amplitude corresponding to the triangle is investigated.
In addition to the usual two-Reggeon cuts correspond-
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ing to contractions, there is also a leading curve corre-
sponding to the uncontracted diagram. The curve bears
a relationship to the two-Reggeon branch points similar
to that of an anomalous threshold to normal thresholds.
In particular, it touches the two-Reggeon branch
points.

The asymptotic behavior of the production amplitude
turns out to be controlled by the leading curve. It has
the form T s~/lns, where the exponent J depends on

g3
' as w ell as on ql" and g2". This is quite diff erent from

the type of behavior that emerges from double-Reggeon

exchange and has no analog in two-body scattering.
The identification of such behavior experimentally
would be an important support for the relevance of a
Reggeon calculus.

Finally, it was noted that a necessary condition for
the appropriateness of the definition adopted in this

paper for the multi-partial-wave amplitude is the
asymptotic simplicity of the analytic structure of the
production amplitude. Such simplicity does seem to
emerge from Gribov's analysis applied to production
amplitudes.
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Two-Boson-Exchange ESects in Nucleon-Nucleon Scattering
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The two-pion-exchange contribution to nucleon-nucleon scattering is studied at scattering energies of
95 and 310 MeV through a partial-wave analysis of the exact relativistic scattering matrix. Additional
two-boson-exchange effects are also studied at these energies corresponding to the m+g and ++0 exchange
processes, with q the pseudoscalar resonance and 0 the scalar resonance. It is found that the two-pion-
exchange (TPE) phase parameters are large compared with one-pion-exchange (OPE) phase parameters
for low values of L, and OPE+TPE is a reasonable representation of the phenomenological phases for the
lower energy when L~&3 and for the higher energy when L &~ 5. The ~+p effect is found to be small com-

pared with the pion-theoretical effects, but the m+0 effect is large for a light scalar resonance if it couples
strongly with the nucleon.

1. INTRODUCTION

'HE description of the nucleon-nucleon inter-
action by resonance models consists of some

compensation for the core of the interaction and con-
tributions from the virtual exchange of a single m meson,
an g pseudoscalar resonance, the cv and p vector reso-

nances, and scalar resonances. ' Despite the fact that
the two-pion-exchange (TPE) mass is less than any
established resonance mass, resonance models either
exclude the TPE effect or simulate it by some approxi-
mation —perhaps by the introduction of scalar reso-
nances whose existences have not yet been conclusively

~ Present address: Bellcomm Inc. , Washington, D. C. 20024.
' R. A. Bryan and G. L. Scott, Phys. Rev. 135, B434 (1964);

A. E. S. Green and R. D. Sharma, Phys. Rev. Letters 14, 390
(1965); A. Scotti and D. Y. Won g, Phys. Rev. 138,
B145 (1965);J. S. Ball, A. Scotti, and D. Y. Wong, ibid. 142, 1000
(1966); R. A. Bryan and R. A. Amdt, ibid. 150, 1299 (1966);
R. A. Amdt, R. A. Bryan, and M. H. MacGregor, ibid. 152,
1490, (1966); A. E. S. Green, T. Sawada, and R. D. Sharma,
Isobaric Spin IN Nuclear Physics (Academic Press Inc. , New York,
1966);R. A. Bryan and B.L. Scott, Phys. Rev. 164, 1215 (1967);
R. D. Sharma and A. E. S. Green, Nucl. Phys. B3, 33 (1967).
These references may be gopsglted for additional work on reso-
p@pcg models,

established experimentally. Moreover, the eBect of the
virtual exchange of a pion and g resonance together has
not been considered even though the mass exchanged is
less than a single vector resonance mass. Finally, if a
light scalar resonance 0- is used in a resonance model,
the zr+o effect should also be considered. It would
therefore seem of interest to evaluate the TPE, zr+zl,
and zr+zr contributions to nucleon-nucleon scattering.

An exact determination of the relativistic scattering
operator for nucleon-nucleon scattering due to two-pion
exchange by Gupta has been available since 1960.'
It includes the total contribution of the pion-nucleon
pseudoscalar interaction through the fourth order in
the pion-nucleon coupling constant. A nonrelativistic
approximation is also presented from which a potential
is derived, and by using this potential Breit ef al.
obtained two-pion-exchange phase parameters.

In a later work, Gupta, Haracz, and Kaskas obtained
the relativistic scattering matrix corresponding to the
TPE scattering operator and evaluated it at nucleon

' S. N. Gupta, Phys. Rev. 117, 1146 (1960).
3 G. Breit, K. E. Lassila, H. M. Ruppel, and M. H. Hull, Jr.,

Phys. Rev, Letters 6, 138 (1961).


