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X*(S90) Photoproduction in the Regge-Pole Modelt
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ln this paper the Regge-pole model is applied to E (890) photoproduction. Conspiracy relations, kine-
matic constraints, factorization, and the question of when to set m~=0 are discussed. Predictions are ob-
tained, in the limit of large s and small t, for tgo/dQ, the density matrix, and the Z -decay angular
distribution.

L INTRODUCTION

ECKNTLV much interest has been shown in the
application of Regge poles to high-energy pro-

ceases. ' E*(890) photoproduction is an interesting
reaction to consider here; the particles all have spin,
and the masses are all unequal.

In this paper we apply the Regge-pole model to the
process

f d. bi= (sjnsre, )tb—al (cossre&)l&+at fcd.abc (2)

singularities we shall follow the method of Wang~;
possible modifications will be discussed in Sec. III.

Each t-channel helicity amplitude f,d, b' contains
factors of sin~a& and cos-,'0& arising from a partial-wave
expansion in terms of d functions; these are separated
out according to

(&) where A=a —b and p=c—d. fc+ is then defined by

fcd;ab ~f c d;ab —=—~cd;ab (&)fcd;ab (~cr), (3)where E* is the |meson at 890 MeV, and I' is either
a A or a Z hyperon. Kinematic singularities are separated
out of the helicity amplitudes, and the questions of
conspiracy relations, kinematic constraints, factoriza-
tion, and when to set m~=0 are investigated. We
investigate the values of t where constraints may arise
and discover that the leading amplitudes for the
process (1) are not involved in any constraint relations
at t=0 or at t= (m„my)'—We a. lso discuss why the
crossing matrix should yield the same conspiracy
relations as those obtained from invariant amplitudes.
Predictions for the large-s and small-t behavior of
da/dQ, the density matrix p, and the Ee-decay angular
distribution are obtained; no data are as yet available
for comparison with these predictions.

The plan of this paper is as follows: In Sec. II, we
de6ne our kinematic-singularity-free amplitudes and
find the dominant contributions in the limit of large s
and small t; Sec.III discusses possible modifications due
to conspiracy relations, kinematic constraints, factoriza-
tion, and m~ ~ 0. In Sec. IV, we obtain our predictions
for do/dQ, the density matrix, and the K* angular
distribution.

where E contains the kinematic singularities. fc is the
kinematic-singularity-free amplitude which is Reggeized
according to

j ~& iraO)~ —
& ~

a(O sr-
f„,(1,s) ~ p(1)

~

~

sins.n(t) ) ss)
(4)

where M=max(~h~, ~li~). The factor M would be
absent in the spinless case; in the case with spin it arises
because some of the powers of s are absorbed by
separating out the sin-,'0& and cos-,'8~ factors before
Reggeization. The rest of the powers of s are assumed to
contribute full strength in our unequal-mass case
(i.e., we are assuming the action of daughter trajectories
when writing sa'" ~).

We note that for small t and a given u(t), the highest
power of s occurs when M=O. (The sin-,'0, and cos-,'8,
factors do not contribute any powers of s here, since we
are dealing with an unequal-mass case, rnrArn&c. )
Thus w'e expect the M=O amplitudes to dominate.
LAn estimate of a typical range of ~t~ is as follows:
Table I gives a list of the "parity-conserving" helicity
amplitudes, together with their low (behavior (obtained-
from the prescription of Wang' ). The last four ampli-
tudes in the table have been given an extra factor of 3

(we are assuming evasion at t=0 for these amplitudes;
see the following section for more details). The last
column of Table I gives the contribution of each
amplitude to the differential cross section. One can now
estimate when to expect dominance of the M=O
amplitudes: The contributions of the helicity ampli-
tudes to do/dQ (see Table I) contain factors of s s or

II. t-CHANNEL HELICITY AMPLITUDES

In this section we shall investigate the t-channel
helicity amplitudes associated with K*(890) photo-
production. We shall construct t-channel helicity ampli-
tudes that are free of kinematical singu/arities; these
will then be Reggeized. In separating out the kinematic

$ Work supported by U. S. Atomic Energy Commission.
f. Present address: HH Wills Physics Laboratory Royal Fort,

University of Bristol, Bristol, England.
~ For a summary of recent work on Regge poles, see L. Bertocchi,

Rapporteur's talk at the 1967 Heidelberg Conference,
references therein (unpublished).

and 2 L.-L. C. Wang, Phys. Rev. 142, 1187 (1966).
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TABLE I. The low tb-ehavior and contribution to do/dQ of the helicity amplitudes in E photoproduction.
Evasion at t=0 has been assumed for the last four amplitudes in the table.

Amplitude

fll;ii +f 1 lli-i-
fll;if f-1-1;ii
flo;ii'+f lo;ii'
flo;ii' f 1o—;ii'-
fl-I'ii +f-11'ii
fl-I;ii' —f-«;ii'
f»; i-i +f-1-1:i-i
f»;i i' f-1-1;i-i'--
flo;i i'+f-lo;i i'-
flo;i-i' —f-lo;i-i'
fl-I;i-i'+f-»;i-i'
fl-li —i f—11;i-i

Dominant
parity

(—1)'
( 1)J+I

( 1)J+1

(—1)~
(-1)'
( 1)J+1

(—1)'
( 1)J+I

(—1)'
( 1)J+I

( 1)1+1

(—1)'

Low-t behavior

[t (—m„—my)15»
t-1/2

t »[t (m—o m—y)15»I
t '[t—(m„my—)151

t1[t (-m„—my—)'5»
t '[t (mo —my—)15'~I
t-1/2

[t (mo my)151/I

j.
t '~I[t (m„m—y)—15'&

»[t (m my)I51

167r'sP; der

Contribution to —(omitting factors of sla)

Py dO

[t- (m„—my)15 1

S2't ' Sin'88

s 414t '[t (mo ——my)'5'sin184

s Iht~[t (mo —m—y)'5' sin484

sculpt~[t —(mo —my) 17' sin484

s~ot '[t (mo —my)—'5' sin184

s~-,'t ' sining

I Ix ($[t—(m„my)—151(1+cos'84)+41(1+cos'8l)
+Re cos84[t—(mo —my) 45'~I)

s 4X (+~t '[t—(m„—my)15' sin184(1+cos184)

+1st 'ft —(mo mr)—I51 sin 84(1+cos'8l)
+A4 Re cos84 sin'84t '[t—(m„my—)'5»)

where

(1~8—iaa(4) ) ( 8 ) a(4)

f»;i &I+~ &(t) I'i sim.a(t) i Espi
(6)

4 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
~ As pointed out to the author by Dr. Frank Henyey, keeping

only amplitudes with M =0 requires care. We assume the absence
of poles near the forward direction in those M /0 amplitudes not
required to vanish by angular momentum conservation: In the
forward direction P=(—1)~ exchange can also contribute to
flo'i i+f lo'i~ This amplitude has no kinematic singularity at
t= (mo my ', and a—possible pole at t=0 is assumed to be can-
celled by letting this amplitude choose evasion.

s-4 (when MAO) times functions of t and 84. When
s=10 and ~t;„) & (t~ &0.7, for example, and if the
dominant parity is (—1)~, then these functions of t
and 84 are &10, whereas s '=10 '. Thus, for P= (—1)~
amplitudes, the kinematic factors times s™are the
largest when M=O, for 8= 10 and

~
t

~
in the range

where we might expect Reggeism to be a valid model

(~t~ &0.7 Bev). Exactly the same conclusion holds
for P= (—1)~+' amplitudes. ]

Next we apply parity conservation4 to the pE*-
Reggeoo vertex and expand in partial waves; we
hand that exchange of natural-parity trajectories
$P=(—1)~j can contribute to f4+)l „p, but not to
f'—)1 „p. Exchange of unnatural-parity trajectories
(such as those associated with the K and KA mesons)
would contribute to f' ), „p, but the trajectory
values n(t) lie lower than those for natural-parity
exchange. (The Wang kinematic factor' for f'—)l & p is
(t—(o)I„—my)sj 'I'; this pole is assumed cancelled by
evasion at t= (om„—oooy)s. ) We hence neglect exchange
of unnatural-parity trajectories. Thus the amplitudes
we shall need are those f'+ amplitudes having ) = t4 =0.'
Using parity4 to reduce the number of independent
amplitudes, we are left with the following amplitudes
at large s and small t:

and Ell, if+(t) is a kinematical factor. Using the pre-
scription given by Wang for the unequal-mass case
(and setting m„—4 0 in this result), we find that

@11.4 i+(t) = (t—(o)os+ oly)sy)is(t o)ox—» ) I —(7)

Actually, some caution is needed with respect to this
form of E+, and before proceeding further, we shall
discuss possible modifications of the factor E+ due to
conspiracy relations, kinematic constraints, factoriza-
tion, and the question of when to set m, =0.

III. CONSPIRACY RELATIONS, KINEMATIC
CONSTRAINTS, FACTOMZATION,

AND M~~0
There are several points to be discussed in connection

with the factor Ell,.if+(t). The general form of J4' has
been derived by Wang, 2 who examined the singularities
in the crossing matrix relating s- and t-channel helicity
amplitudes. In addition, however, the questions of
conspiracy relations, kinematic constraints, factoriza-
tion, and how to treat m~ —+ 0 may arise. Consideration
of these points could lead to a modified Z.

One can ask at which points to expect special condi-
tions on the t-channel helicity amplitudes. In J)TE
scattering, angular momentum conservation applied
at cos8,=&1 leads to conspiracy relations, e but in
the unequal-mass case (i.e., o)o~/f)s)ro) there are no
such relations at cos8,=&1. (This has been shown by
Hogaasen and Salin~; the proof depends on the fact
that for unequal masses, cos8,=&1 implies cos8&= ~1.
Angular momentum conservation then says that each
f1~„4 must vanish at cos8,=&1, and no relatioyos

between f"s arise. )

6 D. V. Volkov and V. N. Gribov, Zh. Eksperim. i Teor. Fiz.
44, 1068 (1963) [English transl. : Soviet Phys. —JETP 17, "/20

(1963)5.
~H. Hogaasen and Ph. Salin, CERN Report No. TH788

(unpublished).
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Conspiracy relations among parity con-serving helicity
amplitudes can still arise at t= 0 when all the masses are
unequal, but no such relations occur for X=0 or p, =0,'
which is the case of interest here. This can be seen as
follows': The Wang prescription allows a maximum
singularity (1/gt) ~" I" ~ at t= 0 in the individual
amplitude fg&f; g 'b ~ Tllus fgd; @

b' and f, q, ,s' would in
general have digererit maximum singularities at t=0,
and f,d, ,b'&f, d, ,s' would be allowed the larger of
these two singularities. One can then show' that
constraint equations between f,z, ,&'+f, d ,&' .and

f,~ ,s' . f —
d,,s' would arise at t=O. But if X=O or

ti= 0 (the case of interest here), the maximum singular-

ity at t=O is the same for f,z,,b' and f, z, ,&' and thus
mo constraint equations involving these parity-conserv-
ing helicity amplitudes arise at t=0.

In general, we might also expect special relations
between helicity amplitudes to arise at those points
where the helicity becomes undefined. ' One can define
the helicity four-vector res(p;) for a two-particle state
by the conditions Ns ns ———1 and (in the c.m. system)
I13' p~+0

m''&- (P' J')P'
sss(P~) = —I,

&s m, Lt—(mi+ ms)'Q'I'ft —(mi —ms) ') 'I'I

where p= p,+p, . It is evident that troubles arise when

t is at a threshold or pseudothreshold t= (mi&ms)',
and constraint conditions can occur between t-channel
amplitudes at precisely these points. Another way of
seeing that constraint cnoditions arise at t= (m, &m;)'
has been discussed by Jackson and Hite, "who note that
in a special basis system certain amplitudes vanish at
precisely these points.

Having thus discussed where one can expect con-
straint conditions, we next turn to the question of
constructing them. One way of deriving constraint
conditions is to express the invariant scalar amplitudes
for the process in terms of linear combinations of t-

channel helicity amplitudes. Since the scalar amplitudes
have no poles in t, one then derives certain conditions on
linear combinations of t-channel helicity amplitudes.
These are the conspiracy relations. The point to be
noted is that the only property of the scalar amplitudes
that is used is that they have no poles in t. Thus one
could have started with any other complete set of
s-channel amplitudes having no poles in t, and the
results would have been exactly the same. Hence it is
equally valid to start with f' amplitudes. Since these
are related to the f"s by crossing, one can thus obtain
the conspiracy relations by examining the crossing
matrix at the values of t in question. This approach has
been investigated in detail by Cohen-Tannoudji et al.'

s S. Frautschi and L. Jones, Phys. Rev. 167, 1335 (1968).
a G Cohen-Tannoudji, A. Morel, and H. Wavelet, Saclay

Report, 1967 (unpublished).
io I D Jackson and G. E. Hite, Phys. Rev. 169, 1248 (1968).

We now turn to explicit construction of the desired
constraint relations for E* photoproduction. We need
those relations which involve X=p,=0 helicity ampli-
tudes (these are the relevant amplitudes for large s,
as noted in Sec. II); the point of interest is t=ts
=(m„—mv)s. The other three threshold or pseudo-
threshold points for this reaction involve much larger
values of t and are thus not needed for a study of the
behavior at small t. Following the method involving
the crossing matrix' as illustrated by Hogaasen and
Salin, we discover that there are indeed constraint
relations between several t-channel helicity amplitudes
at t= tp, but none of these relations involves f„,'

+f. ..„' amplitudes, i.e., those amplitudes which
contain the leading s behavior (as discussed above) are
not involved in any conspiracy or constraint relations.

This result can be partially understood in the follow-
ing way: The f...„'+f.. ..„"s cannot be linearly
related to other f"s whose leading s behavior is also
governed by natural-parity f2= (—1)~] exchanges at
t=to, since the leading powers of s would be different.
On the other hand, f.. '+f,,

' cannot be related
to a polynomial in s times other f"s, since none of the
f"s has any kinematic singularities in s.

Thus in finding the kinematical factor K„, + we can
completely avoid the question of possible extra factors
due to conspiracy or constraint relations. We next note
that factorization of residue functions will also not yield
any new information. The residue factors K factor
automatically at thresholds and pseudothresholds, and
for our unequal-mass X=p, =O helicity amplitudes there
are no factors of t in E for the relevant processes, so
factorization with respect to these pieces is auto-
matically satis6ed.

To Gnd the kinematical factors, we thus gain no new
information from constraint conditions or from factor-
ization. The only remaining uncertainty in ending
E„,„+ arises from . the question when to put mv=0.
One could put m~=0 in Wang's general prescriptionm
for K„,. +, or one could put m~=Oin the crossing matrix
and derive a modified prescription for E„, +."The end
result for the two cases can in general differ in the net
power to which (t—mrs~') should be raised. Since for
small t this factor is smooth, the exact power need not
concern us, and we will simply use Wang's prescription
and set m~ —+ 0 at the end. We thus obtain the result

Ki; *, i+(t) = $t (m„+mr)'7+spt —m&+sp~ —(7)

This result for the kinematic factor K can be checked
by means of simple angular momentum and parity
arguments. " As an example of the method, consider
the point t= (mal+mr)'. Setting I (orbital angular
momentum) for the EY system equal to zero, the
possible EY states have J~=O- or 1—.Since the XF
system is coupled to a P= (—1)~ Reggeon in our model,

"S. Frautschi and L. Jones, Phys. Rev. 163, 1820 (1967)."S. Frautschi and L. Jones, Phys. Rev. 164, 1918 (1967).
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J~ is restricted to 1 . Now expand the helicity ampli- at trs+(t) =0 (Chew ghost-eliminating mechanism" ).
tudes in terms of partial waves: Thus we set

fll;1 tt +f 1 1—;ar—aa
=p +11;ft 1 dpp (coset) .

J

The FJ's have the threshold behavior q~p', and cosset
is proportional to 1/q)v Y. Hence, we deduce the behavior

F dt)p (cosot) ~ (itvY (1/(INY) = ((f)vY)

i.e., near t=(m„+tttY)' the kinematic factor E+(t)
goes as gs(Y 'te nt (m„+m—Y)'j ", in agreement with
(7). For t near the other threshold or pseudothreshold
points, analogous arguments go through Lthe Y is
treated as having positive parity at t=(tttt, —tNY)'1,
and one obtains exactly the Wang kinematic factor (7).

IV. CROSS SECTION) DENSITY MATRIX) AND
EP-DECAY ANGULAR DISTRIBUTION

The differential cross section in the c.m. frame can
be written

dtr pf
—:Elf'I',

dQ 4m'sp;

where the sum goes over the s-channel helicity ampli-
tudes. Orthogonality of the crossing matrix" then gives

px
t 2

dQ 4trssP;

where the sum is now over all t-channel helicity ampli-
tudes. We take the limit of large s and use the results
(5), (6), and (7) of the preceding sections. Thus

large s pf
[t (tN„+tttY)—'[ 'I t mtr*'5—4

dQ erne)' ' 16tr'spt

yg-=0,
ps+= —4+(2(r), pp -+ E*'Z+,

v '=-'V'~ yp ~ E*+Z',

s+———(1/4/3) ga, ~p ~ E*+Ao

(12)

We note that g~~(i-)~~ and g~*(i-)~N are small, " so
that p&- is probably small even though E* exchange is
rot prohibited by C invariance.

Thus we obtain the prediction Lusing (9), (10), (11),
and (12) and setting s()—1 BeV'j

Vl-(t) =V -(t),
ps+(t) =ps+(t)(rs+(t),

where the y's are assumed slowly varying in t. The
E*(1 ) and E*(2+) trajectory functions are taken
parallel to those of the p and A2. We take' ot, (t) t-
+0.57 and ng, (t)=t+0.35; thus

n,-(t)=t+ 0.37,
(lt+(t)—1+0.02.

To determine the y; s appearing in the residue functions

y;, we fjrst examine A2 and p exchange in p' photo-
production; then we obtain the corresponding residues
in E*photoproduction.

Since a photon does not couple to two p"s by C
invariance, only the A2 contribution need be studied.
Maheshwari" has used universality and vector dom-
inance to estimate the A2 contribution to p' photo-
production. Evaluating his results at t—0, we 6nd that

"Y»=—zVct& Vp~ p p

Thus for ps photoproduction y, =0 and y~s= —sgn.
Using universality" to relate y, and y~~ to yi- and y2+

for E*photoproduction, we obtain

1~ terai(t) g i rti(t) 2

&& Z~;(t)
sinwa;(t) s()l

(9)
dQ,

priori'&'(t) i1+e 'r. (t)
[ s .(')

7
am»' ' 16tr'sp;i t—(m~+tttY)'i I t—mx 'j' sin'1m(t)

(13)

n(t) =t+0.02

The sum is taken over the E*(1;890) and EY(2+; )«ge r

1420) trajectories. '4

We make the following choices for the residue func-
tions and Regge trajectories: yl-(t) is assumed roughly
constant, while ps+(t) is put proportional to ns+(t) in
order to cancel the pole in

1+a trua+(t)—

Sln&(rs+(t)

1'T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964).

'4 As emphasized by Jackson and Hite (Ref. 10), ifo/tfQ does
not have kinematic poles at t =ttttrea or t= (ttt„+tlY)' (these poles
are cancelled when one includes constraint conditions between
the amplitudes at these points). Since these two values of t are
far from the physical region, however, empirical 6tting will give
essentially the same results whether we incorporate the constraint
conditions at these two points or not (Ref. 10).

v(t) = —-'&(2~) ~p ~ E*'~+
=14', 7p -+ E*+Z'
= —(Qn)/443, Vp -+ E*+As.

"G. F. Chew, Phys. Rev. Letters 16, 60 (1966).
'6 F. Cooper, Phys. Rev. Letters 20, 643 (1968).
iv A. M. Maheshwari, Phys. Rev. 170, 1523 (1968).
i The coupling at the K* vertex is pure d by t' invariance;

we take the pure f coupling given by universality (Ref. 16) at
the baryon vertex.

"H. Hogaasen and J. Hogaasen, Nuovo Cimento 40A, 560
(1965).
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FIG. 1. Theoretical prediction of (do/dt) ~/(da/dt) & &, versus
) t ( for the process 7+P ~ K*+A; s =10.

The cross section for y+p-+ E*+A (divided by its
value in the forward direction) is plotted in Fig. 1.

The density matrix may also be found in our formal-
ism. The density matrix can be expressed in terms of
t-channel helicity amplitudes" (we go to the Ee rest
frame; the s axis is taken parallel to the incident
photon momentum as seen in this frame):

a, b, d

Inserting the result (5) into this expression, we obtain
the predictions (for large s and small t)

1pzz=p-z-z= g & poo=p~gm =0.
These results hold true when exchange of one Regge

trajectory is assumed (as was done in this and the

~K. Gottfried and J. D. Jackson, Nuovo Cimento 33, 309
(1964).

preceding sections). If other trajectories are also
permitted, then conspiracy relations arise at t=0, for
example, between parity-conserving amplitudes with
X and p, nonzero. Such amplitudes would then have
extra factors of (1/t) (if conspiracy is assumed); these
extra factors could effectively restore the powers of s
which were removed by the sin~&& and cos~8& terms in
the definition of f' Th. us P+'s with X and tt&0 could
become as important as those f'+'s with X=tt=0. In
particular (if 3E= 1 amplitudes are assumed important),
p~yo po+&, and p«would no longer be required to vanish,
and could be of the same magnitude as p~~ and p ~ ~.

The E*-decay angular distribution has been written
in terms of p ~ by Gottfried and Jackson" ":
IF(8,$) = (3/4s. ) (pea cos'8+ p„sin'8 —pr q sin'8 cos2&

—V2 Repro sin28 cos$) . (16)

Hence we directly obtain Drom (15)j the prediction
(for large s and small t)

IF(8,$) = (3/87r) sin'0,

where 0 is the angle made with the s axis in the frame
described above.

The only data on E~ photoproduction give an upper
limit" of 0.1—0.05 ttb on the cross section for y+ p ~ E *
+Z+, so no comparison with experiment can be made
at the present time.
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