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This gives corrections to the total and forward differ-
ential cross sections of about —0.49, and —0.8%,
respectively. For purposes of comparison, the corre-
sponding corrections due to the double-scattering term
are about —6%, and —129%,.

V. DISCUSSION

We have considered a correction to the Glauber
multiple-scattering expansion which, in potential theory,
results from a three-body interaction. Because of this
interaction the potential seen by a particle incident on
a deuteron is not just the sum of the proton and
neutron potentials but has an additional contribution
which vanishes when the two nucleons are far apart.

We have attempted to estimate the importance of
effects of this type by considering the possibility that
the incident particle may interact with a pion being
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exchanged by the two nucleons. This correction reduces
the total cross section, but only by about 0.49, which
is just outside the limits of present experimental ac-
curacy.®® Our expressions are probably not accurate at
large angles, but suggest that three-body effects may
become increasingly important as the momentum trans-
fer increases.

The correction considered here is of course only one
of many rather poorly understood corrections to the
Glauber expansion, and our estimate of its size is quite
crude. It should be kept in mind, however, if the un-
corrected expansion (including spin dependence and
phase variation of the input amplitudes) is unable to
fit accurately the scattering from composite system.

B R. J. Abrams, R. L. Cool, G. Giacomelli, T. F. Kycia, B. A.
Leontic, K. K. Li, and D. N. Michael (Brookhaven report of
work prior to publication).
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Making certain assumptions, we directly take the limit of the Bethe-Salpeter equation at high energy (s)
for the elastic scattering amplitude 4 (s,) in g¢* theory. For a large class of planar kernels behaving like
I(#®)s™e (Ins)®, with integer >0 and g>1, we obtain a Volterra equation for the asymptotic amplitude. The
unique solution is of the Regge form s*®, with a(f) = —g+[p!K, ()1 () J/®*D). Here K, is an explicit func-
tion, independent of g. This result agrees with that obtained by summation of leading asymptotic behaviors
in each order of perturbation theory in all known cases. We explicitly justify our assumptions for the ladder
approximation. In this case we obtain an integral equation for the exact a(f) which agrees with the usual
result to order g% We conclude with a discussion of nonplanar kernels in our formalism.

I. INTRODUCTION

PART from the example of potential theory,!
there is little theoretical justification for the
assumption? that physical scattering amplitudes 4 (s,?)
possess Regge asymptotic behavior s*¢), Most previous
attempts®16 at supplying such a justification have
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t—= |l |2 [3eces |+l Fic. 1. The (n+1)-rung ladder
i diagram.
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In this paper we employ a new method for investigat-
ing scattering amplitudes at high energy (HE).2 We
consider the B-S equation in ¢® theory with a certain
class of kernels and directly take its HE limit in a some-
what heuristic fashion. This gives us an integral equa-
tion for the asymptotic amplitude 4 which we can
solve. Thesolution will have Regge behavior with a lead-
ing trajectory function a(f)=—q+g"/ @V (§), where
g, p, and 7 are integers and g” is the lowest power of the
coupling constant occurring in the kernel. The trajec-
tory functions so obtained agree with the summation
of leading HE behaviors in each order of g2 in all known
cases. In this sense our method should be considered as
an alternative to the usual summation technique.

In the case of the ladder approximation, we are able
to take the HE limit much more carefully and again
obtain an integral equation whose solution has Regge
behavior. a(£) is now determined by an integral equation
which gives the usual result in order g? in agreement with
both our heuristic approach and the summation tech-
nique.

In summary, we obtain the following new results:
(i) an abstract characterization of a class of B-S
kernels which lead to scattering amplitudes with Regge
asymptotic behavior (this class includes those kernels
given by Feynman diagrams for which X, A, is of
Regge type), (ii) an integral equation for the trajectory
functions «(#) associated with the ladder kernel, and
(iii) the complete expressions of order g* for a(f) for
the kernels in (i).

For later reference we now review some results of
the diagram summation technique in more detail. The
simplest example involves the (r--1)-rung ladder dia-
gram of Fig. 1. The corresponding scattering amplitude
A1™ (s,t) has the HE behavior

Ar™ (s,)~AL™ (s,0)
=g K ()]*(1/nY)(ns)"/s, (1.1)

where K(f) is the amplitude corresponding to the
“contracted” graph of Fig. 2 with two-dimensional

loop momentum :
1 ! da
1672 /; m2——a(1——a)t.

The occurrence of K* in (1.1) corresponds to the rele-

=X
£

2 A related method has been employed by Fubini ef al. [Nuovo
Cimento 22, 569 (1961); 25, 626 (1962); 26, 896 (1962); 26, 247
(1962)7] for the absorptive part of the amplitude in what is
essentially the ladder approximation. They obtain an integral
equation similar to our Eq. (2.16).

K(t)= (1.2)

FiG. 2. Diagram associated with K (¢).
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F16. 3. Diagram associated with K#(f).

vance of Fig. 3 to 4. Summing the 4™ over all n
gives the Regge form

= A0 (s =g, (13)

where

arW()=—1+gK (). (1.4)

This does not, of course, show that the HE behavior
A1(s,t) of the ladder amplitude A (s,)=3", A1™ (s,2)
is given by (1.3). However, it has been shown!® that the
leading HE behavior of Ay is given by a Regge pole
whose trajectory function ay is a power series in g2
given by (1.4) to order g2 Furthermore, the lower-
order terms s~(Ins)*, etc., for each power of g2 in
A have all been summed! and lead to Regge asym-
ptotic behavior consistent with (1.4) in second order.

n+1

| 2 3

Fic. 4. The (n+1)-H exchange diagram.

A large class of other planar diagrams has been
similarly summed, but only in the approximation of
keeping the leading HE term in each order of g% An
example is the (n+1)-H exchange graph of Fig. 4,
which has been shown?® to satisfy

Ag® (s,0)~A g™ (s,)=[H ) I P[K' ()]
1 (lns)2n+l
X -

2n+1)! s

where H (¢) is a function associated with the contracted
graph of Fig. 5 and K’(f)= —d/dm*K (¢). The factoriza-
tion of the coefficient of (Ins)?**+1/s? is depicted in Fig. 6.
Note, however, that, contrary to what is suggested by

7=

Fig. 6, K’ occurs in (1.5) rather than K. Summation
gives the asymptotic behavior of X . Az (s,f) to be
that associated with a pair of Regge poles with trajec-
tories

, (L5)

Fic. 5. Diagram associated with H (¢).

an=® ()= —2=[H K’ () ]=. (1.6)

The general class of planar graphs for which such
summation has been shown'®:1® to lead to Regge asymp-
totic behavior is defined by the requirement that the
lines which are contracted to find the HE behavior (d

F1c. 6. Factorization of the asymptotic (n-+1)-H exchange
diagram.
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S0=O == O

Fic. 7. Schematic B-S amplitude.

lines® or ¢ paths?) do not intersect. In the context of B-S
amplitudes (represented graphically in Fig. 7), this
means that the kernels I have this property. Then the
contracted diagram corresponding to the HE behavior
of I will have the form shown in Fig. 8. For simplicity
we shall explicitly consider only the case where the
extreme blobs I; and I; are point vertices. Then the
high-s behavior of I is independent of the external
masses and some of our equations simplify. Explicit
expressions for the trajectory functions [analogous to
(1.4) and (1.6)] have not heretofore been given for the
above general cases.

The remaining sections of this paper will serve to
partially justify and extend these results. In Sec. II
we give a heuristic derivation of the integral equation
for the asymptotic ladder amplitude 4 whose unique
solution is of the Regge form. In Sec. III we give a
careful derivation of an integral equation for A, whose
solution is of the Regge form and which reduces to
that of Sec. II in the approximation of taking () to
order g2 An integral equation for the asymptotic B-S
amplitude defined by the H kernel is discussed in Sec.
IV. The general planar kernel is treated in Sec. V and
the general trajectory function «(f) is exhibited. Non-
planar kernels are discussed in Sec. VI together with
our conclusions. The Appendix contains some relevant
mathematical results.

II. LADDER APPROXIMATION: HEURISTIC
DISCUSSION

In order to display the essential simplicity of our
method, we present in this section a heuristic discussion
of what is involved. The justification of our procedure
will be contained in the more rigorous discussion of
Sec. IIL.

The B-S equation for the scattering amplitude with
the initial particles off shell and the final particles on
shell as shown in Fig. 9 is

A(st; psp?) =1 (s,t; p,pe2,1,1) — 2m)*

I(klzit 5 PIZ)P227k22)k42)A (k32)t 5 k22;k42)
X / a*k .
(kf—1+ie) (ki—1-+ie)

Our conventions are those of Ref. 21. Here I (s,¢; p2,p2?,

(2.1)

Fi16. 9. The B-S equation.
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Fic. 8. Diagram associated with the HE hehavior of the kernels
that we consider.

k2,k2) is the off-shell two-particle irreducible kernel,
ks and k4 are the momenta of the two internal lines,
while %; and %; are the momentum transfers for I and
4, respectively :

ki=k—p1, ko=Fk, ks=k—p, ki=k—p1—ps,
s=(p1—p3)?, t=(prtp2)?. (2.2)

The HE limit is s — - oo for fixed < 0. For convenience
we have set the mass equal to unity. We also simplify
the notation by setting

K= k,‘2, p,-=p¢2, 'I«’—‘— 1,2,3,4:.
Specializing to the ladder approximation, we have
I(s,t; pi)=—g*/ (s—141ie). (2.4)

We now change variables from the loop momentum %
to the ;. The Jacobian is

J=0(D)/4D'2, D= —det|2k,k;|. (2.5)
The function D can be found explicitly and has the form

(2.3)

D= —2A(ko,ka,t)+E(5,8k5,0:) , (2.6)
where A is the triangle function
A(x,y,2) = 82432+ 22— 2wy — 2wz — 2y 2.7
and £ is a polynomial in s of degree 1.
Our integral equation now becomes
Al pop)=— g
s—m? 4(2n)*
dr1dradisdiad (ks,t ; ko,ks) 6(D)
/ (k1—144€) (ka— 14-i€) (ca— 1+4i€) D2 28

Assuming that the «; integrations are suitably con-
vergent, we see from (2.6) that, for large s, A can only
vanish at the edge of the integration region specified
by 6(D). It then follows from (2.6) and (2.8) that, for
large s, A(s,t; p1,p2) is independent of the masses p;
and p.. Thus we have

4 (S;t; pl)pZ)NA/(Syt) ) (29)

for large s. We mean by (2.9) that 4 —A4’ vanishes for
s— o faster than 4 or 4’. Thus Eq. (2.8) becomes

k2

= TG+« 2T (A
p2_>_L_/ ; . Pq

!

2 R. J. Eden et al., The Analytic S-Matriz (Cambridge University Press, Cambridge, England, 1966).
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for large s

g2 ,l:g2 4
A (s)=——F / 1T dx:

s 4Qmr) =

A (ks,t; ko,x4) 6(D)
X .
(k1—141¢€) (ke— 141€) (ka— 1-+1¢) D'/2

Now we assume that the major contribution to the
integral in (2.10) comes from ks>>ksks. This will be
justified by the final solution and, more generally, by
the analysis of Sec. ITI. Then, in view of (2.9), Eq.
(2.10) becomes

g g S
aron==" f TLax
A" (ka,t) 0(D)

X 5 ; )
(k1— 1+17€) (ke— 147¢€) (ka— 14-7€) D2

where A~4" for large s.

Our next step is to perform the «; integration in
(2.11). A standard Landau-type analysis shows that
for large s the only important singularity of

4 A’ (k3,t) 0(D)
1T dk: - - 21
=2 (ki— 147€) (ka— 14-d€) (ks— 1--1€) D12

in the lower half «; plane comes from the pole at k;=1
and there is sufficient convergence to close the j-inte-
gration contour there. After the «; integration we arrive
at

(2.10)

(2.11)

2)

g fI
A" (s )= ——+ g? dk;
(1) s 4wy i=2
A" (k3,l) 6(D)
(ks . (2.13)
(ke— 14-1€) (ka— 1-+1¢) D2
where A~4"".
Next we write
Dits(—AVELE[2s(— AN (214)

and use theorem 1 of the Appendix to write?

0 A'"(Ks,t) 1
dK3 :J_
o D1/2 S(—-A)Il2

/ dK3 A”'(Ka,t) y (215)
1

where we have chosen the lower limit to be 1 for con-
venience.?? Thus we finally arrive at the integral

2 The theorem actually gives an upper limit of the form
sf(keyks,) in this case. Using this more correct limit would only
change our final trajectory function «(f) in orders g* and higher.
See Sec. III.

3 Clearly the choice of this lower limit cannot affect the HE
behavior of A4, Furthermore, we have neglected terms of order
1/s so that our inclusion of the inhomogeneous term in (2.13) is
also done for convenience only. The fixing of the lower limit and
inclusion of the inhomogeneous term will simply give us an equa-
tion with a unique solution. Alternatively, the solution can be
made unique by the requirement that it reduce to the Born term
in second order.
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equation
2 1 s
A= —— g2 ()- / WA, (2.16)
where ’ o
dszK40(—A)
K()= / (2.17)
3273 ) (ko—1-+1€) (ka— 14-1€) (— A)1/2

and approximately
A~4

for large s. Note that Egs. (1.2) and (2.17) define the
same function K (f).2*

Equation (2.16) is of the Volterra type? and has the
unique solution

A(s,f)=—ges HaE® (2.18)

which is precisely the same function as (1.3) obtained
by summing the asymptotic behaviors of the ladders in
each order of g2

That the solution to Eq. (2.16) is the sum (1.3) of
the terms A.™ given in (1.1) can also be seen, as
follows: Since

1 s ].K" 1 ln n+1
_/ dK(n) _ (Ins) ’ (2.19)

s K n+1 s

the nth term in the Neumann series for (2.16) is
precisely A1, and since (2.16) is a Volterra integral
equation, the sum of this series is its exact solution.?s In
view of this, Eq. (2.16) can be looked upon as a simple
tool for the derivation of the rigorous relation (1.1).
Whereas for the ladder graphs (1.1) is itself rather
easy to derive, for more complicated planar graphs
the analogs of Eq. (2.16) offer much simpler derivations
of results, such as (1.1), than do the usual explicit
treatments.

Our treatment above is incomplete for two reasons.
Our derivation of Eq. (2.16) was only heuristic and
the solution to (2.16) only corresponded to the exact
trajectory function to order g2 Both of these defects
will be remedied in Sec. III, where a more exact integral
equation will be derived whose solution is a Regge
amplitude with a trajectory expressed as a power series
in g2 which agrees with that given above in order g2.

#That (1.2), (2.17), and (3.35) define the same function K (f)
can be seen by starting for the expression for the Feynman graph
of Fig. 2 with two-dimensional loop momentum:

K@)=—

¢ &%
16x f (kz‘“mz+ie)t(k—p)2_m2+ie] , pr=t.

By introducing Feynman parameters one is led to (1.2). If,
instead, one changes variables to xa=£#2, ks=(k—p)?, one is led
to (3.35). Finally, if the ko contour is rotated by 90° first and then
the variables kp=~£?%, k4= (k— p)? are introduced, where £ and p
are Euclidean 2-vectors, one obtains (2.17). Therefore they are
all equivalent.

% See, for example, W. V. Lovitt, Linear Integral Equalions
(Dover Publications, Inc., New York, 1950).



176

III. LADDER APPROXIMATION: ANALYTIC
DISCUSSION

Our starting point is Eq. (2.8) of Sec. II. Keeping in
mind that as a result of (2.6) and (2.8) the asymptotic
behavior of 4 (s,t; p1,p2) is independent of the masses,
we set the masses p; and p, equal to unity. Equation
(2.8) then becomes

g g 4
+ f dk;
1 ey ) L
A (ka,t; Ka,k4) (D)
X .
(k1— 14-17€) (ko— 141¢€) (ka— 1+1€) D12

In this case the Jacobian simplifies somewhat and we
present it in a form which is convenient for doing the
k1 integral first:

A(s)=—

3.1)

D(S,t; Kiy Pi= 1)=AK12+BK1+C, (32)
A=—t(t—4),
B=4st(x3— 1)+ 2t (t— 4)is+ 25— st (ka+xs) ,
C= —-s2A(x2,:c4,t)+2st2x3—2st:<3(xg-l—x4) (33)

- t(lf—4)K32—4St(K2+K3+K4—' 1)
+4s (kg—ka)?+4dstrors.

There are no approximations in these expressions.
We now wish to evaluate the «; integral

/ dKl 0(AK12+BK1+C)
B k1—1-+7€ (AK12+BK1+C)”2'

Since ¢ is negative, 4= —1(t—4)<0 and the integral
will be zero unless

(3.4)

B*—44C>0. 3.5)
Changing variables to #=«;—1, we have
du 6(A'w?+B'u+C")
=[ , (3.6)
u+tie (A'u*+B'u+C’)12
where
A'=A, B'=24+B, C'=A+B4+C. (3.7)

There are now three cases of interest as shown in
Fig. 10. The integral can be done in each case to give

F=[r/(—C'y12]0(B:—4A4C). (3.8)

Referring to Fig. 10, we note that in case (a), C'<0
and B’>0, F will be real and negative, since the square
root in the integrand is positive and #<<0 throughout
the region of integration. Similarly, in case (c), C’<0
and B’<0, F will be real and positive. In case (b), C’>0,
we see from (3.8) that F will be pure imaginary. But
the sign of the 7e in (3.6) shows that F must have a
negative imaginary part in this case. Summarizing, F
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Frc. 10. The function D=A"u?+B'u+C'. (a) C’'<0, B'>0.
(b) C’>0. (c) C'<0, B'<0.

must satisfy the following conditions:
(a) C'<0, B>0=F=—|F|,
(b) C'>0=F=—i|F|,
() C'<0, B'<0=F=+|F|.

We wish to do the «; integral next, so we exhibit C’
as a quadratic function of «;:

C'= GK32+ bK3+C ,
a=—1(—4),
b= 25— 251 (k2+x4)+0(s%) ,
c=—52A (ko) +0(s).
Only the leading high-s term for each coefficient need

be kept, since we are taking the limit as s — «. We
have the following integral :

dK3 A (Ks,t; Kz,K4)
L= 9(B:—44C). (3.11)
[— (ax?+bis+c) ]2

Now B?*—4AC can be written in the following way:

(3.9)

(3.10)

B —44C=s}ak¢+bks+c)+0(s),  (3.12)
a'=162,
b'=162(1—ko—xs—2) (3.13)

"= 16 A (kayea,t)+t (karatxotra—t4+1)].

Again we need only the leading s term. Since a’>0,
B*—44C>0 for k3— ==. The only question is
whether the parabola in Eq. (3.12) has zeros or not.
To this end we calculate 52—4a/¢’ and find

V2—4a'c' = (1602 (t— DA (kost) . (3.14)

Thus, for A<O0, 2—4a’c’<0 and there will be no zeros.
In this case B*—4AC is positive for all real x; and the
integral in Eq. (3.11) goes over the whole real «; axis.
However, for A>0, ?—4a’c’>0 and there will be a
gap in the «; integration between the points )

e =5{l (ko4 2— ) E[1(t—4)A (koyes,t) 2} . (3.15)

It is therefore necessary to treat the two cases A<Q
and A>0 separately.

A. A (K2’“4y i) <0
A (k,t 5 Koyka)

L_=f dK3 .
—c0 ['— (dK32+ bK::.‘}'G)]l/z

(3.16)
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Since ¢=2—s?A and a<0, the zeros of the square root
will be real. However, going back to Eq. (3.6) and
keeping a finite 7e¢ in the integrand, we find after
applying the standard analysis that the branch points
are really both in the upper half-plane. To choose the
correct branch of the square root we must apply the
boundary conditions (3.9). Between the branch points,
C'=ark+brs+c>0 and the square root must have
the phase ¢*/2. Furthermore, B’ is given by

B =i[Ast+2(—4)]+0(1), (3.17)

so that B’<0 for x3— -+ and B’>0 for x3— — .
This means that the square root must be positive for
k3— <+ and negative for x3— —. A cut drawn
between the branch points will reproduce these phases.
The positions of the branch points are given by

[—b=(82—4ac)?]/2a=sf+0(/s), (3.18)
where
S (eayiast) = {t(kotrea— 1) 2= [48(A+tears) ]2}
J[—t@—4)]. (3.19)

To go further we must make two assumptions about
the analytic structure of A4 (ks,?; ko,x4). Each individual
ladder graph has only a right-hand cut in «; for ; and
ks near 1. We assume that A (ks,t; kexa), which is the
infinite sum of such graphs, has no new singularities
in the upper half-plane coming from the sum. Our
other assumption is that we can neglect complex
singularities which occur in perturbation theory when
ke and k4 are varied. Some justification for this is pro-
vided by the fact that the «, and &4 integrals have good
convergence properties because of the presence 9f the
propagator poles and the eventual [A(ke,k4,t) /2 in the
denominator. Therefore most of the contribution comes
from «o,x4 near 1, where there are no complex singular-
ities.

Under these assumptions the analytic structure of the
integrand of L in the ks plane is shown in Fig.'l%.
The contour goes over the right-hand cut because it is
the physical amplitude that appears in the integral.
Assuming that A (ks,; ka,ks) — 0 as x3— ©, we can
close the contour in the upper half-plane and get

_ —2 /sf” dK3 A (Ks,lf; K2,K4) , (320)
(—a)2 oz, [lks—sfs) (sf-—ka) I
where the square root is now defined to be positive.
B. A (1:2,1:4, t) >0

In this case the 3 integral goes from — o to «_ and
from k4 to + o, with k. given in (3.15). We have

A (K;;,If Kz,l(4)
e[,

dx
3}[ ((IK32+I)K3+C)]”2
For A(ksuks,t) sufficiently positive, 5*—4ac<0 and the

(3.21)
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F16. 11. Singularity structure for A<0.

branch points of the square root will be off the real
axis at complex conjugate points in the «; plane. The
boundary conditions (3.9) can be satisfied by drawing
the cut between the branch points and through the
gap in the ks-integration contour. This is illustrated in
Fig. 12.

To check that this is consistent with the singularity
structure of Fig. 11 for A<0, we fix b « (ka+x4—£) and
let A decrease through zero. For 5<0 the situation will
be as shown in Fig. 12, with the branch points to the
left of the gap. As A is decreased, the branch points
will come to the real axis and move apart along the
real axis. The branch point in the lower half-plane
will move to the right as shown in Fig. 13. As A de-
creases further, the gap closes as the lower branch point
approaches it. At A=0 the gap has closed and the lower
branch point has just gotten through into the upper
half-plane.

sf+

D

sf -

F1c. 12. Singularity structure for A>0.

To evaluate the integrals in (3.21) we consider the
configuration of Fig. 13 and add and subtract an
integration contour that goes around the lower branch
cut to get

L ( d d A (Ki’nt) K2’K4)
- / “ ./ “ /[ (arc32+b/c3+c)]”2

where C; and C; are shown in Fig. 14. The contour C;
can be closed in the upper half-plane and gives the
integral around the cut. The contour C; gives the inte-
gral around the lower branch cut plus a small integral
along the real axis. This last piece can be neglected,
since ky are s-independent and this integral will give
a term behaving as s7, while the dominant terms will
turn out to be s* and a>—1. After evaluating the

(3.22)

sf+
T

sf- s

F1c. 13. Movement of the branch points as A decreases.
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¢ 2
m | & e
(a) (b)
F1G. 14. Contours C; and C,. (a) C1. (b) Cs.

discontinuities, we get

L - 21/ /- sz A (Ka,t; Kz,K,;) 2
T (= Ly, Cleamsf (/)2 (—a)it
A A K3yl 5 K2yK4
9 /‘ des (ka)t ) ’
o= [(ks—sfy)(ks—sf) T2

(3.23)
h= h(Kz,K4,t) = %t (K2+K4+2'—' lf) 5

where both square roots are real and positive. The
result for configurations other than Fig. 13 is obtained
by analytic continuation.

Putting together our results for A<0 and A>0, the
integral equation (3.1) becomes for large s

—_— g2 gZ,n.
Asn-—+= |
(=) s 2(2m)t

ngdK,;
(ko— 14-7€) (ka— 141i€) (—a)'/2

ig'r

dK3

fv Lla—sf(sf-——xa) 2 2(2m)*
dr2drk0(A (k2,k4,1))
X/ (k2— 14-1€) (ka— 1+-1€) (— @)1/

" A (K3:t; K2,K4)
X f dis . (3.24)
sf— I:(Kg— Sf_,_) (Ks—' sf_)]l/Z

A simplification occurs in the integral from sf; to sf—
because we can replace A4 (ks,t; ko,k4) With its asymptotic
form A4 (ks,f) under the integral. For A> 0 this is obvious,
because sf; and s f_ have the same sign and the integral
is only over the asymptotic region, since s is very large.
For A<O0 the contour goes through x3=0 but it can be
distorted into a semicircle in the upper half-plane as
shown in Fig. 15. On this contour, 4 can be replaced
with its asymptotic form and the contour can then be
shrunk back to the real axis. The integral from sf_ to
k in (3.24) can also be simplified by breaking it up
into two parts. We integrate from sf— to I(kekat),

8/~ A (Ks,l; K2,K4)
J)

Fi1G. 15. Distortion of the integration contour for A<O0.
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where A4 (ks,l; k9,x4) can be replaced with its asymptotic
form for k3<l(kexs,)<0. The piece from I(ke,kst) to
h(kepks,t) can be dropped, because it only gives a term
proportional to s7%.

The integral equation then becomes

—g  ighw /‘ dradrdd (A)

s 202wt ) (ke—14i€) (ka— 1+ie) (—a)2

v /’ dia A (ks,t) N
or- Lles—sf1) (ks—sf) T2 2(2m)*

A(s)=

g

x/ dszK4
(ko= 14-€) (ks— 1+1€) (—a)1/2
af- J(Ka,t)
X / dks . (3.25)
oy Lls—sfi) (sfo—ka) ]2
We now claim that the solution to this is of the form

A (s,f) = —g2se® (3.26)

and that it is unique.?® To see that this is the solution
we substitute it in (3.25). First look at the second term
on the right side of (3.25). We expand the square root
in a power series as follows:

1 1 i ( K3 )'
(amsfo )l (—sfopi s \—s7,)

1 1 L K3 i
(K3_8f~)1/2= T E) aj(_—sf:) , (3.27)

1 1 f: K3 n
= — ) 4., ,
Llks—s/4) (ks— ) T2 s(fof)H2 wmo ( s)

where

(2i—1)1!
a;=
VA
y }’1_: QiQn—i
n= —_— 3.28
S0 (= fai(= Sy 28
Note that

—afif_=A. (3.29)

The power series (3.27) converges for «; in the range of
integration and there is no difficulty with the end point
xs= f_, because the integral of the square root converges.
Putting this in the sf-—I integral and integrating

% Since (3.25) is only an equation for the asymptotic amplitude

, we mean that we have a solution if, when we substitute it on
the right-hand side, we get back the left-hand side plus terms
which are of lower order as s — . The uniqueness is ensured by
requiring that 4 (s,$) reduce to the Born term —g%7Y, in first
order of g% Note that As® In?(s) would satisfy the first criterion
of a solution but that the second allows only — g2se,
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term by term, we get

w  1g2
_gzsa(z)(z g

n=0 3272
diodk B (A)A , foO+nt1 )
X/ (ka—14i€) (ka— 1+i€) (A) V2 [a(t) +n+1]
+0(s™), (3.30)

where the s~ term comes from the upper limit #(ke,xs,£)
and can be neglected as long as a(f)>—1.

The last term on the right side of (3.25) also can be
handled by expanding the square root in a power
series, although care must be taken because different
power series are needed for different parts of the region
on integration. Again a factor —g%>® will be common
to all the terms and will therefore cancel on both sides
of (3.25). There is no other s dependence left, and there-
fore s*(® is a solution, provided that all the series that
are left converge.2’

We are left with an integral equation for a(Z):

w g2
=% (
n=0\3273
diodiiB(B) A, f_atortmit )
X X
f (ke—1+13¢€) (ka— 1+1€) (A) 2 [a(t)+n+1]
+contribution from last term. (3.31)

The contribution from the last term could be found
explicitly as indicated above, but it will not contribute
to the order-g? expression for a(#). To see this, separate
out the #=0 term from (3.31) and multiply through

by a(f)+1:

1= /
t =
o)+ 3278

dradisf (A) f_x O+
(ke— 1+12¢€) (ka— 1+-1€) (A)1/2

© 'lgz
O+ 2 3278
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dradrf (A)A , fa®Fntl
/(Kz—1+ie)(l<4-1+ie)(A)”2[a(t)+n+1]
+[a(t)4+1]X contribution from
last term in (3.25). (3.32)

27 Since /5 dx /%12 converges at =0, we could change the lower
limit in (3.25) from sf. to sf-—8, § — +0. The power series
(3.30) would then converge uniformly in the range of integration,
and therefore the integrated series converges, provided that the
integrals all exist. Noting that both f_ and f, are linear in «;
and ks, the integrals in (3.33) will converge at sks— » for
«(#)<0. This defines the region of validity of (3..3_3) as —1<a(?)
<0. One might also worry about the integral failing to converge
at the boundary A=0, since the 4, defined by (3.28) contain
some factors of A=™?2, 0<m<s. This divergence is spurious,
since it is not present in (3.25), and it can be rem‘oved. by a tech-
nique described jin Secs. IV and V which is essentially integration
by parts. It is understood that we do this wherever necessary in

(3.31).
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As g2— 0, a(f) — —1. To order g? the second term in
(3.32) drops out and the last term contributes only if
there is a pole at a(f) = — 1 from the last term in (3.25).
The only relevant integral is

1 sf-
_____/ diaes®®
S(f+f—)1/2 —sf_
sa(t>[:f_a(t)+1__ (_f_)a(tH—IJ
C (fe®+1]

As a(#) — —1, there is no pole because the numerator
vanishes, and therefore this piece gives no contribution
to order g It will contribute to order g* and higher.

Finally, to get the trajectory function to order g
from the first term in (3.32) we must set f_x(®+
= f-=@®+1=1 under the integral. This gives

(3.33)

ar®W=—1+gK (), (3.34)
K()=
3278
X/‘ Aradr (A (ka,ka,l)) 6.33)
(ka—14-1€) (ka— 1+1€) A2 (kg k4 t)

which agrees with the heuristic result of Sec. IT and with
the standard result from summing diagrams.2

IVv. H KERNEL

Having shown how Eq. (2.18) arises in a well-
defined approximation from the correct integral equa-
tion, we return in this section to the heuristic type of
arguments employed in Sec. II and consider the planar
H kernel. More rigorous arguments analogous to those
of Sec. III will not be given here, but, upon iteration,
our equation will be seen to reproduce the correct HE
behavior in each order. Thus, on the one hand, we can
justify summation of leading behaviors for these graphs,
and, on the other hand, we can discuss the general
case (Sec. V). The ultimate justification of our approach
must, of course, be based on more careful analysis and,
as we shall show in Sec. VI, such analysis is essential for
an understanding of nonplanar kernels.

We first consider the B-S equation corresponding to
the H-exchange graphs of Fig. 4. The appropriate
kernel Ix(s,t; p;) is given by the graph of Fig. 4 for
n=0 and, according to (1.5), satisfies

Iu(s,t; pi)~H(#)s 2 Ins, 4.1)

for large s. Now, Iy satisfies a dispersion relation with
only a right-hand cut:

O'(G,t; p,‘)

ITy(sy; pi)=/w da (4.2)

S—a

The relation (4.2) is strictly valid only for the masses
p; sufficiently small. We shall, however, assume that it
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is correct for all p;, relying on the damping of relevant

integrals for large p;.
Since Ip~s2, we have

/ dao(at;p:i)=0.
0

Thus application of theorem 2 of the Appendix to (4.2)
gives

Lutstipr~s [doceipre. @3
0
Comparison with (4.1) now gives
/ dao(at;pa=H() Ins. (4.4)
0

With the kernel (4.2) the B-S equation (2.1) becomes

4(21)4 / %

/‘ di1dkodiesdso (@t ; pryp2ko,ka) A 1 (ks,t s koyka) 0(D)

(k1— a+1€) (ka—1) (ks—1) pie’
4.5)

We assume that, as before, the x;-integration contour
can be closed in the lower half-plane and that only the
propagator pole is important for large s. Thus our
first HE approximation to (4.5) becomes

Au(s,t; prp2)=TIu(s,t,p1,02)—

AH (Stypl-:pz) H()'_—"+

2 4(27)?
drodks
Xf f / ddo’(a L p1,p2,K2,K4)
(ke—1) (xa—1)
An'(ks,t; o) 4.6)
XA (ka,t 5 kapks) ) . (4.

We next want to use (2.14) and apply theorem 4 of the
Appendix, so that we need the term in E proportional to
saks. One finds

(E) yma=4staks+- - -,
so that (2.12) becomes
DYezs(— A)242¢(— A)~ 2ak;.
Thus (4.6) becomes essentially (x=«3)

(4.7)

( V= ( \lns . 1 dradiy
Ar"(s,t; p1,p2)=H( /
" VTR e T a0 ) (= 1) (e=1)

8 s/x
X/ dk / da U(a:t; Plyp2yK2)K4)
1 0

2taxf (— s*A—1n)
X A" (k,t; kgpks)——————, (4.8)
s2 (___ A)S/Z
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where the remainder » in the argument of 6 has been
kept in order to avoid the spurious divergence of the
Kko,k4 Integration at A=0.

In view of (4.4), this becomes

ZtH(t)/‘ dkadks
2 4@nst ) (ke—1)(ki—1)

Ins
An" (s,t; p1,p2)=H (t)—

6(—s2A—n)

(ayn / de Ag" (kt; kexa)x In(s/x).  (4.9)

Since the right-hand side of (4.9) is independent of the
masses p; and ps, we have Ax” (s,t; pr,ps)~Ar(s,t) for
large s. We now introduce the final assumption, to
be verified by the solution, that the integration region
with ©>ks,k4 gives the major contribution to (4.9) for
large s. Then we obtain as our final integral equation

Ins
An(st)=H()—+K:()
32

1 8
XH(t)—2/ de Au(k,)k In(s/x), (4.10)
where?8 S

Kz(l) lim

/‘ dradky 0(—s2A—n)
8> 4(2#)3 (Kz—m2) (x4—m2)

(—ayn
(4.11)

1 dlc 2dl€4
=lim /
820 4(27)3 ) (koa—m?) (ke—m?)

XO(—szA—-r’)(—— i - i) (—A)-1r2

Ko 8x4
0(— s2A—
= hm / dl(zdx4 —(—s——n)
8> 4(21!')3 (_ A)1/2
I¢] a
X (—+—) (Kz"‘ m2)—1 (K4—' m’)—‘
axz 6K4
—1 0(—A) 9
= / drodrs (=4) —
4(2m)? (—AY2 gm?
X (koe—m2) 1 (kg—m?)~1  (4.12)
i)
———K@)
Om?
=K'(1). (4.13)

In deriving (4.13) from (4.11) we have neglected the
contribution from the apparent §(—s2A—y) term, since,
as is clear from (4.6), the neighborhood of A=0 does
not contribute to the asymptotic behavior of Ag. In
(4.12) the singularity at A=0 is integrable, so that the
n—> 0 limit can be taken directly.

28 Previously we set the mass m equal to unity. We now rein-
state the symbol 7 for purposes of differentiation.



1994

Our integral equation (4.10) is again Volterra and has
the unique solution

An(s)=3HOLROT (s HHEO—s2RO), (4.14)
where
R()=[K.()H (5)]"=.

Thus, in view of (4.13), we obtain complete agreement
with the result (1.6) obtained by summation of leading
HE behaviors in each order. Correspondingly, iteration
of (4.10) n times gives the result (1.5).

(4.15)

V. GENERAL PLANAR KERNEL

The analysis for an arbitrary planar kernel is a simple
generalization of that given in Sec. IV. Thus consider
the amplitude I(s,?; p1,p2,k9,ks) corresponding to an
arbitrary sum of two-particle irreducible planar Feyn-
man diagrams. Since planar diagrams in ¢® theory have
no left-hand cuts in s, we assume that 7 satisfies a dis-
persion relation

o (a,t; p1,paka,Ks)

o0
I (S:rt; PI,PZ,K2,K4)=/ dg ———8m8M8M8M8 ,
0

S—a

(5.1)

and has a large-s behavior of the form

I(S,t; p,,pz,xg,m)~I(t)s“1(lns)1’ ’ (5'2)

with integer >0 and ¢>1. In (5.1) we have neglected
the complex singularities which occur when the masses
are sufficiently large and positive. We believe that this
is justified by virtue of the rapid convergence of the
mass integrations. In (5.2) we have assumed that the
asymptotic behavior is independent of the masses.
This is done for simplicity only, since the alternative
case would also result in Regge behavior with an
integral equation for the trajectory function.

We see that the class of kernels for which we shall
establish Regge asymptotic behavior is larger than the
class (described in Sec. I) given by summation of
Feynman diagrams for two reasons. First, we make no
explicit restrictions on the d lines and, second, our
kernels need not even be given by Feynman diagrams,
as long as (5.1) and (5.2) are satisfied.

1t follows from (5.1) and (5.2) that

f dao(a,-)ar=0 for0<n<g—1, (5.3)
0
and so, by theorem 2 of the Appendix, we have
/ dao(a, - Yo (1) (ns)e. (5.4)
0

Now we proceed exactly as for the H kernel and write,
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as our first HE approximation to the B-S equation,
dszK4
(K2— 1) (IC4— 1)

X / d f daa(a,---)A'(x,t;m,m)(g%))w. (5.5)

We next use

A7(s3 pupe) = (52l —
e |

> — §2A (ko,k4,t)+ 4sta (5.6)
and write
w (2r—1D)1ly 2dax\*
D“”Es—l(—A)—W[H— > ——-——(———) ] 5.7
r=1 7! SA

This expansion is, of course, not valid for A~0 and
we must keep in mind that this region is not important
in determining the asymptotic behavior of the integral
(5.5). Equation (5.3) and theorem 4 tell us that the
r=g—1 term in (5.7) gives the leading contribution,
so that (5.5) becomes

dszK4
(Kz'— 1) (K4- 1)

1
A7(s,0; prope) =1 ()s=(Ins)>-+ /
4(2x)?

8 8/
X/ dx/ daa(a,- - +)A" (k3,1 ; Kopka)s™H(— A)~1/2
1 0

(29— 3)!1/—2tax\ o
NCR LR 6

(g— ! sA O(=sa=n),

where the n term in 6 is again a symbolic prescription
to ignore contributions from the region A~0. Our final
step is to use (5.4) in (5.8), note that A" (s,t; p1,p2)
~A (s,t) for large s, and assume that the integration
region with K>>ks,k4 gives the leading contribution. Thus
we obtain

A (s,t)=I(t)s¢(Ins)*+K o ()1 ()5~

X / | dx (lnf)pxq‘lﬁ &), (5.9
where ' ‘
Ko(i)=lim (2g—3)!1! (2t)a1
o (g—1)1 4(2x)?
f dszK4 0("‘SZA—’I]) (

(ko= ) (ki—m?) (—A)r2

5.10)

In order to put (5.10) in a form which is manifestly
independent of nonintegrable singularities at A=0, we

use the rela.ion
9 J
(—-l———)A =—4f
Ok 2 3/(4
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to write
a d\!
(__ - _) (—A)-12
3/(2 6x4
= (2¢—=3) 1 (2)r 1 (—A)y—H2 | (5.11)

and we integrate by parts:

Kq(t)z

————1—-—/dK2dK4 0(_~A)
4(2m)*(g—1)! (—Aye

a 9\t
X <—‘+-‘“> (Kz‘— mz)‘l (K4—' mz)”l

akz 6x4

N (q—1 1) 1<a:£>q_lK -

In accordance with our remarks above, we have omitted
the 6(—s2A—1) terms, since they only give contributions
corresponding to A~0.

Our general integral equation (5.9) is of the Volterra
type and its unique solution is of the Regge form. We
shall only exhibit the leading trajectory function a(Z).

Using
8 s\™ SQ
/ dk K_1+Q<ln—> ~ml—,
K Qm—H

we find that the solution to (5.9) is asymptotically
proportional to s*(®, with

a(f)=—g+R(),

(5.12)

(5.13)

(5.14)
where
R(t)=[g'K (I (t)J/ =D, (5.15)

Thus, in our approximation, every kernel I satisfying
(5.1) and (5.2) defines a B-S amplitude 4 (s,f) with a
Regge asymptotic behavior 4 (s,£) ~s*®, with a(2) given
by (5.14), (5.15), and (5.12). This might be expected on
the grounds that the absence of a left-hand cut in (5.1)
and the fast decrease (¢>1) in (5.2) represent simple
generalizations of potential scattering from nonsingular
potentials—a situation which is known to Reggeize.
Moreover, it is known that inclusion of a left-hand
cut?® or more singular kernels® need not lead to Regge
asymptotic behavior.

The essential reason why the solution to (5.9) has
the Regge form is that the power of « inside the integral
is 1 less than the power of s outside the integral.
Indeed, the integral

s S\?
s f dk (1n—-> «*14 (k)

will lead to Regge asymptotic behavior only if n=gq.
The occurrence of #z=g¢ in our integral equation can

(1;6‘2,)‘ N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 239
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— Xf><

F16. 16. Iterated X diagram.

be traced back to Eqgs. (5.6) and (5.7) for D, where the
ratios «7/s*! occur. The structure of D is, of course,
intimately connected to the two-particle structure of
the B-S equation.

VI. NONPLANAR KERNELS AND
CONCLUSIONS

We have given a heuristic argument to show that the
B-S amplitude corresponding to a planar kernel with
mass-independent HE behavior will Reggeize. The
trajectory functions so obtained agree with the known
results of summing the asymptotic forms of iterated
planar graphs. In fact, when the asymptotic integral
equation (5.9) is iterated, it produces exactly the HE
behavior for the iterated planar graphs that is obtained
in the usual analysis.®%7 This is the main justification
of the heuristic method.

Because of the simple analytic structure of planar
graphs (only right-hand cuts) we believe that a more
rigorous justification for the Regge behavior in the
planar case could be given along the lines of the argu-
ment in Sec. III for the ladder. This is not true for
nonplanar kernels. 4 priori one would expect the
heuristic argument to show that nonplanar kernels also
produce Regge asymptotic behavior, since all that was
really needed in Sec. V was the HE behavior of the
kernel. However, a closer inspection of the analytic
behavior of the nonplanar kernel shows that the heuris-
tic argument will not work.

To see what goes wrong, consider the simpler example
of obtaining the HE behavior of the iterated X diagram
shown in Fig. 16. In the Feynman parameter analysis,
one finds that the naive “edge” contribution gives an
HE behavior s~2 In®s, while the correct behavior, s7, is
obtained from a “pinch” of the Feynman parameter
hypercontour.®®! A similar effect occurs in our formal-
ism. The diagram is proportional to

G / TLieatdis X (k1,t ; p1,p2,K 2K )
(Kz"‘ 1+1/€) (Kr— 1+’L€)

6(D)
XX(K3:t 3 K2)K4)937P4) D2 ’ (6’1)
where
® U(S’,t; p1,P2,P3,P4)d5,
X (5,5 prp2,p3,04) = / L
in s—s'+1e
L g (s',t;5 p1,p2,p3,04)dsS’
+/ > ’,"’ . (6.2)
e s—s'—1e
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The crucial point is the sign of the 7¢’s. The x; and ;3
integrations in (6.2) must go over the right-hand cuts
of X and under the left-hand cuts. (Of course, we still
neglect complex singularities.) The fact that one must
go under the left-hand cut can be seen directly from
the Mandelstam representation for the Feynman
amplitude X.
The high-s behavior of X is known to be?®:!

X (s,t; ps)~J (H)[In2(s)]/s?, 6.3)

where we need not specify J(f), and by theorem 2 of
the Appendix we have

SL 0
/ a(s't; pi)ds’—i-f o(s't; p0)ds’'=0, (6.4)
—c0 SR

sL &
/ s'o(s'1; p2)ds'+ / S0 (st p2)ds”
SR

—8

=J () In2(s). (6.5)
Putting the spectral forms into (6.1), we obtain
dszK4 @
I=/ ds'ds"a (s")a (s"")
(ko—1417€) (ka— 1-+-1€) J —o
dKldkeﬂ (D)
X / - - , (6.6)
(k1—s'==1¢€) (k3— s"'4=1€) D'/2

where we have suppressed some of the arguments. If
we proceeded naively and neglected the ie’s, the last
two integrals can be done and yield a factor of Ins and
an appropriate square-root denominator. When this
square root is expanded, the first term gives

00

f_ " (s /_ o (s")ds"=0

[from (6.4)] and the next term gives a factor of In%
[from (6.5)] for each of the s” and s integrals. The end
result is 52 In%(s), which is wrong.

Being more careful, we have the following integrals
to evaluate:

® drkr O(ax+beitc)
/ ds'o (s") f
SR k1—§"+1¢€ (ak®+br1+c)'?
o dk1 0((1K12+b1<1+c)
+ | ds'e(s) / )
—o0 K1““S/—ie (aK12+bK1+C)1/2
The «; intergals can be done exactly as in Sec. III,
with the result
0 (0*—4ac)/[— (as"+bs'+c) .

However, the branch of the square root is different in
the two terms of (6.7) because of the different signs
of 7e. In particular, when the square root is pure

(6.7)
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imaginary, it will have opposite signs in the two parts.
Remembering that ¢ has a term s2A, we get

Y a(s") L ds’a(s")
—17rf ds’ ——————~-I—i7r/ —_—
R (as"+bs'+c)1/2 sry (@s4bs'+c)12

i o sL
(/ ds' a(s't; p0)— ds' o (st pi)). (6.8)

NG

R —o0

Instead of cancelling as in the naive approach, these
integrals will combine. Furthermore, the quantity in
the large parentheses in (6.8) depends crucially on
the behavior of the spectral function for nonasymptotic
values of s/, and so the information in (6.5) is not
sufficient to evaluate it. The explicit form of the
spectral function is needed for this, including its
dependence on the masses p;.

Since ¢ is a quadratic function of s’” and of k3, we
can apply the same reasoning to the «; and s” integra-
tions in (6.6). As a result, there will be an s~ that
survives from the s?A part of D and thus gives the
entire high-s dependence of the double X graph as
expected. The coefficient of s could be calculated
from (6.8) if we use the exact spectral function. The
spectral function is known for the X but this method
would not be useful for more complicated nonplanar
kernels where only asymptotic properties of the spectral
function [like (6.5)] are known.

This example shows how the left-hand cut invalidates
the procedure of Sec. V for nonplanar kernels. The
actual asymptotic behavior of the B-S amplitude with
the X as a kernel is a more difficult problem because it
requires the explicit spectral function, but it should
be amenable to our techniques.

Finally, let us remark that the formalism that we
have presented can be easily adapted to include spin
and also self-energy and vertex corrections. In a future
paper we shall discuss this together with the related
problem of Reggeization in vector-spinor theory.
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APPENDIX

In this Appendix we shall prove some elementary
theorems concerning the asymptotic behavior of func-
tions defined by integrals. The spectral functions ¢ ()
will be assumed to behave asymptotically like a?(lna)?
for some real numbers p and ¢. For functions f(s) and
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g(s) we shall write f(s)~g(s) if limssio[ f(s)/g(s)]
=const.

We first prove

Theorem 1.1f | f1°da o (a)a™| < ® and fy°da o(a)0,
then

Proof. The result is obvious if | fy*da o(a)| <, and
so we assume that fy*da o(a)= . Then fi*da o(a)—

o, but
8 s s
/dacr(a)——=7(s)/ das(a),
0 s+a 0

where 1< 7(s)<1. Therefore, Jv°da o(a)~s So'da o(a)
X (s+a) or s fy¢da o(a)~ Sov'da o(a)(s+a). Since
Jov'da o(a)(s+a) 1~ fo°da o(a)(s+a)™, the result fol-
lows.

An immediate corollary is

Theorem 2. If fy*dao(a)a’=0 for 0<j<k and
Jv*da o(a)a*##0, then
da o(a)(—a)®.

Proof. By theorem 1 we have

1~ o(@(—a)F 1 r*
— | da——~— | dao(a)(—a),
sk /o st+a sk /o

and using

1 a\*1 1k a\"
(R
s+a s/ sta sa=0 s
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it follows from the hypotheses that

©  g(a) » gla)f a\*
/ a————/ da——-<——>
0 sta Jo st+a\ s

1 k-1

5 ol Yo

A similar theorem for double integrals is

Theorem 3. If o1 and o, satisfy the conditions of
theorem 1, then

/:dk / ,ea(@) 1 / e f daa(x)oa(a).

s—l—xa
Proof. We have

*© ® 0102 2 i 0102
/dK/dd N/dxfda
0 0 s+«ka 0 0 s+xa
~/ dx—/ da
0 S/K‘*“d
8 g1k s/x
N/ dx——/ da oy
0 K SJo
1 8 s/k
=—/ dK/ dlla'10‘2.
sJo 0

Theorem 4. If oy satisfies the conditions of theorem 1
and o satisfies the conditions of theorem 2, then

/ i / al(x)oz(a)

s+xa

Finally, the generalization is

8 slx
dl(/ da o1(k)o2(a) (—ax)*.



