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This gives corrections to the total and forward differ-
ential cross sections of about —0.4% and —0.8%,
respectively. For purposes of comparison, the corre-
sponding corrections due to the double-scattering term
are about —6% and —12%.

V. DISCUSSION

%e have considered a correction to the Glauber
multiple-scattering expansion which, in potential theory,
results from a three-body interaction. Because of this
interaction the potential seen by a particle incident on
a deuteron is not just the sum of the proton and
neutron potentials but has an additional contribution
which vanishes when the two nucleons are far apart.

%e have attempted to estimate the importance of
effects of this type by considering the possibility that
the incident particle may interact with a pion being

exchanged by the two nucleons. This correction reduces
the total cross section, but only by about 0.4%, which
is just outside the limits of present experimental ac-
curacy. "Our expressions are probably not accurate at
large angles, but suggest that three-body eBects may
become increasingly important as the momentum trans-
fer increases.

The correction considered here is of course only one
of many rather poorly understood corrections to the
Glauber expansion, and our estimate of its size is quite
crude. It should be kept in mind, however, if the un-
corrected expansion (including spin dependence and
phase variation of the input amplitudes) is unable to
6t accurately the scattering from composite system.

"R.J. Abrams, R. L. Cool, G. Giacomelli, T. F. Kycia, B.A.
Leontic, K. K. Li, and D. N. Michael (Brookhaven report of
work prior to publication).

PH YS ICAL REVIEW VOLUME 176, NUM B ER 5 25 DECEMBER 196S

Regge Asymptotic Behavior and the Bethe-Salpeter Equation

RICHARD A. BE&&NTDT+ AND MARTIN FEINEOTHt

Center for Theoretical Physics, Department of Physics and Astronomy, University of Maryland,
College Park, 3faryland Z074Z

(Received 25 July 1968)

Making certain assumptions, we directly take the limit of the Bethe-Salpeter equation at high energy (s)
for the elastic scattering amplitude A (s,t) in g@' theory. For a large class of planar kernels behaving likeI (t)s e (Ins) v, with integer p)0 and &1)1, we obtain a Volterra equation for the asymptotic amplitude. The
unique solution is of the Regge form s & &, with n(t) = &t+[p!K,(t)I—(t)7"&v+'& Here Kr is an.explicit func-
tion, independent of g. This result agrees with that obtained by summation of leading asymptotic behaviors
in each order of perturbation theory in all known cases. We explicitly justify our assumptions for the ladder
approximation. In this case we obtain an integral equation for the exact n(t) which agrees with the usual
result to order g'. We conclude with a discussion of nonplanar kernels in our formalism.

I. INTRODUCTION

A PART from the example of potential theory, '
there is little theoretical justification for the

assumption' that physical scattering amplitudes A (s,l)
possess Regge asymptotic behavior s &". Most previous
attempts' " at supplying such a justification have
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relied on the technique of choosing an ininite set of
Feynman diagrams (A„,n=0, 1,2, ~ ), determining the
asymptotic behavior A„of each, and 6nally summing
P„Z„ to obtain a hopefully good indication of the
asymptotic behavior of the sum g„A„.This procedure
has led to results which were sometimes in agree-
ment~'»"" " with Regge behavior and sometimes
not. ' "' "An exception is the example of the Bethe-
Salpeter (B-S) equation" in the ladder approximation,
where meromorphy of the scattering amplitude in the
comPlex angular-momentum half-Plane fRel) —ss) has
been established, "and where the cor&tp/etc set of terms
of the form s '(lns)" has been summed. "Also, Bjorkenr&&
has established Regge behavior at 5=0 for B-S ampli-
tudes dered by "nice" kernels.

"J.C. Polkinghorne, J. Math. Phys. 5, 431 (1964)."M. M. Menke, Nuovo Cimento 34, 351 (1964).'6 See Ref. 21 for further references, a general discussion, and
a useful summary.» F. F. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 455 (1951);M. Gell-
Mann and F. Low, Phys. Rev. 84, 350 (1951).

~8 B.W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962).» J. D. Bjorken, J. Math. Phys. 5, 192 (1964).
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S~ I FIG. 1. The (tt+ 1)-rung ladder
dIagram.

8

0 ~ ~ ~

FIG. 3. Diagram associated with X"(t).

In this paper we employ a new method for investigat-
ing scattering amplitudes at high energy (HE).' We
consider the 8-S equation in qP theory with a certain
class of kernels and directly take its HK limit in a some-
what heuristic fashion. This gives us an integral equa-
tion for the asymptotic amplitude A which we can
solve. The solution will have Regge behavior with a lead-
ing trajectory function &r(t) = —q+g't(~" V(f), where

q, p, and r are integers and g' is the lowest power of the
coupling constant occurring in the kernel. The trajec-
tory functions so obtained agree with the surrunation
of leading HE behaviors in each order of g' in all known
cases. In this sense our method should be considered as
an alternative to the usual summation technique.

In the case of the ladder approximation, we are able
to take the HE limit much more carefully and again
obtain an integral equation whose solution has Regge
behavior. &r (f) is now determined by an integral equation
which gives the usual result in order g' in agreement with
both our heuristic approach and the summation tech-
nique.

In summary, we obtain the following new results:
(i) an abstract characterization of a class of 3-S
kernels which lead to scattering amplitudes with Regge
asymptotic behavior (this class includes those kernels
given by Feynman diagrams for which P„g„ is of
Regge type), (ii) an integral equation for the trajectory
functions n(f) associated with the ladder kernel, and

(iii) the complete expressions of order g' for ot(f) for
the kernels in (i).

For later reference we now review some results of
the diagram sun~ation technique in more detail. The
simplest example involves the (n+1)-rung ladder dia-

gram of Fig. 1.The corresponding scattering amplitude
Az&") (s, t) has the HE behavior

dr, &")(s,t)-A. z&") (s, t)
gsLg'K(t)7 (1/tt!) (1ns) /s (1 1)

where K(t) is the amplitude corresponding to the
"contracted" graph of Fig. 2 with two-dimensional

loop momentum:

(1.2)

The occurrence of K" in (1.1) corresponds to the rele-

Fro. 2. Diagram associated with X(t)

vance of Fig. 3 to S. Summing the gz&") over all I
gives the Regge form

g g&(n) (& t) —g2&az, (t) (t) (1.3)

Fro. 4. The (a+1)-H exchange diagram.

A large class of other planar diagrams has been
similarly summed, but only in the approximation of
keeping the leading HE term in each order of g'. An
example is the (ts+1)-H exchange graph of Fig. 4,
which has been shown' to satisfy

g &(n) (g t) ~g&(n) (g t) —L+(t)7m+1LKI(t)7e

(lns)'~+'
X

(2ts+ 1)! s'
(1 5)

where H(t) is a function associated with the contracted
graph of Fig. 5 and K'(t) = —d/dttt'K(f). The factoriza-
tion of the coefficient of (1ns)'"+'/s' is depicted in Fig. 6.
Note, however, that, contrary to what is suggested by

FIG. 5. Diagram associated with H (t).

Fig. 6, K' occurs in (1.5) rather than E. Summation
gives the asymptotic behavior of p„err&") (g, f) to be
that associated with a pair of Regge poles with trajec-
tories

The general class of planar graphs for which such
summation has been shown"'5 to lead to Regge asymp-
totic behavior is defined by the requirement that the
lines which are contracted to And the HE behavior (d

where
nz&') (t) = —1+g'K(t). (1.4)

This does not, of course, show that the HE behavior
AL(s, f) of the ladder amplitude Az, (s,f)=g„pz&&) (z,f)
is given by (1.3). However, it has been shown" that the
leading HE behavior of A& is given by a Regge pole
whose trajectory function nL, is a power series in g'
given by (1.4) to order gs. Furthermore, the lower-
order terms s '(lns)" ', etc. , for each power of g' in
Al, " have all been summed" and lead to Regge asym-
ptotic behavior consistent with (1.4) in second order.

"A related method has been em loyed by Fubini et oL LNuovo
Cimento 22, 569 (1961); 25, 626 1962); 26, 896 (1962); 26, 247
(1962)g for the absorptive part of the amplitude in what is
essentially the ladder approximation. They obtain an integral
equation similar to our Eq. . (2.16).

FIG. 6. Factorisation of the asymptotic (et+1)-H exchange
diagram.
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FIG. tI. Schematic B-S amplitude.

lines" or t pathsr) do not intersect. In the context of 8-S
amplitudes (represented graphically in Fig. 7), this
means that the kernels I have this property. Then the
contracted diagram corresponding to the HK behavior
of I will have the form shown in Fig. 8. For simplicity
we shall explicitly consider only the case where the
extreme blobs I~ and Ig are point vertices. Then the
high-s behavior of I is independent of the external
masses and some of our equations simplify. Explicit
expressions for the trajectory functions Lanalogous to
(1.4) and (1.6)) have not heretofore been given for the
above general cases.

The remaining sections of this paper will serve to
partially justify and extend these results. In Sec. II
we give a heuristic derivation of the integral equation
for the asymptotic ladder amplitude Zl, whose unique
solution is of the Regge form. In Sec. III we give a
careful derivation of an integral equation for AL, whose
solution is of the Regge form and which reduces to
that of Sec. II in the approximation of taking n(t) to
order g'. An integral equation for the asymptotic B-S
amplitude de6ned by the H kernel is discussed in Sec.
IV. The general planar kernel is treated in Sec. V and
the general trajectory function u(t) is exhibited. Non-
planar kernels are discussed in Sec. VI together with
our conclusions. The Appendix contains some relevant
mathematical results.

II. LADDER APPROXIMATION: HEURISTIC
DISCUSSION

In order to display the essential simplicity of our
method, we present in this section a heuristic discussion
of what is involved. The justiacation of our procedure
will be contained in the more rigorous discussion of
Sec. III.

The B-S equation for the scattering amplitude with
the initial particles oG shell and the Anal particles on
shell as shown in Fig. 9 is

A (s t p1' p ') =I(s,t; pr' p ' 1,1)—
22r '

I I ~ ~ ~ ~
I P

FxG. 8. Diagram associated with the HE behavior of the kernels
that we consider.

k22, k42) is the off-shell two-particle irreducible kernel,
k2 and k4 are the momenta of the two internal lines,
while k~ and k3 are the momentum transfers for I and
A, respectively:

k1= k —p1, k2= k, kt= k —pt, k4= k —p1—p2,

=(P.-P.)', t=(P+p.)'. (22)
The HE limit is s —+ + ae for fixed t(0. For convenience
we have set the mass equal to unity. We also simplify
the notation by setting

ttr=k'2 p =p 2 i= 1)2~3,4.
Specializing to the ladder approximation, we have

I(S,t; p, )= g2/—(S 1+—ie)

(2.3)

(2.4)

We now change variables from the loop momentum k
to the It, . The Jacobian is

J=O(D)//4D't D= —det~ 2k,"kt~ . (2.5)

The function D can be found explicitly and has the form

D= s tt, (K2&K4&t)+E(s&t&Kt&pr) &

where 6 is the triangle function

6 (x,y,s)=x'+y'+s' —2xy —2xs—2ys

(2.6)

(2.7)

and 8 is a polynomial in s of degree I.
Our integral equation now becomes

A(s, t; p1,p2)=
gl gg2

S ttt2 4(22r)4—
dKldK2dK3(&4A (Kt)t i K2,K4) 0 (D)

X . (2.8)
(ter —1+ie) (tt2 1+ie)—(tt4—1+ie) D't

Assuming that the z; integrations are suitably con-
vergent, we see from (2.6) that, for large s, 6 can only
vanish at the edge of the integration region speci6ed
by e(D). It then follows from (2.6) and (2.8) that, for
large s, A(s, t; pt, p2) is independent of the masses p1
and p2. Thus we have

I(k12 t ~ p12 p22 k22 k42)A (k22 t k22 k42)
X d'k . (2.1)

(k22 —1+ie) (k42 —1+ie)
A (s,t; p1,p, ) A'(s, t), (2.9)

for large s. We mean by (2.9) that A —A' vanishes for
Our conventions are those of Ref. 21.Here l(s, t; P12,P22, s —+ Qe faster than A or A'. Thus Eq. (2.8) becomes

Fzo. 9. The 3-S equation.

= {A)=
Pg = ~ — Pg

+ P& (Z })2~p — I

k g
p2.(( A ):5 p

» R.J. Eden et at., The Attctytic S Mtttritt (Cambridge Univ-ersity Press, Cambridge, Engiand, 1966).
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equation
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A (.,t) = ———g'~('),
,

1

(2.16)dK A (K)t) )

foi large s

Zgg2

A'(s, t) = — + gdK;
whel e

dK2dK40( )
(2 17)

1+,,)(,—1+ )(—t')'"

(2.18)

1 (lns) "+'1 ' (in K)
dK (2.19)

for large s

A'(K„t)
2.12)f dK;

4~2 tt+1 sS
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III. LADDER APPROXIMATION: ANALYTIC
DISCUSSION

Our starting point is Eq. (2.8) of Sec. II. Keeping in
mind that as a result of (2.6) and (2.8) the asymptotic
behavior of A(s, t; pi, pz) is independent of the masses,
we set the masses p& and p2 equal to unity. Equation
(2.8) then becomes (a)

g Zg

A(s, t)= — +
s—1 4(2zr)4

Qd»;
i=1

Fro. 10. The function a=A'gp+j9'~+C'. (g) g'&O, gI~O
(b) C')0. (c) C'&0, B'(0.

must satisfy the following conditions:
8(D)

(3 1)
A (»z, t; »z, »4)

X
(»i I+z6) (»z 1+ze) (»4 I+zE) D

In this case the Jacobian simplifies somewhat and we

present it in a form which is convenient for doing the
Kl integral first:

D(s)t)») ) p)'= 1)=A»z +B»i+C ) (3.2)

A = —t(t—4),
B=4$t(»3 1)+2t(t —4)»z+ 2$t 2$t(Kz+»4) )

C= s'A(»z —»4 t))+)2st'»z 2st»z(»—z+»4)

t(t 4)»z 4$t(»2+»z+»4 1)

+4$(»z»4) +4$t»z»4.

There are no approximations in these expressions.
Ke now wish to evaluate the Kl integral

(a) C'&0, B')0mF= —iF(,
(b) C') 0 ~ F= i

~
F~,

— (3.9)
(c) C'&0, B'&0~ F=+ (F(.

Ke wish to do the K3 integral next, so we exhibit C'
as a quadratic function of K3.

C'= a»P+b»z+c,
a= —t(t—4),
b = 2$P 2st {»z+»4—)+0{$0),
c= s'& (»—2,»4, t)+0 (s)

(3.10)

d»z A (»z)t )»z)»4)
8 (B'—4A C) . {3.1 1)[—(a»z'+ b»z+ c)j'tz

Only the leading high-s term for each coeScient need
be kept, since we are taking the limit as s —+ ~. Q'e
have the following integral:

d»i 8{A»i'+B»i+C)

»i—I+i e (A»i'+B»i+C)'"
(3.4) Now 8'—AC can be written in the following way:

B'—4AC= s'(a'»zz+b'»z+c')+0(s), (3.12)

82—AC&0. (3 5)

Changing variables to N=Kl —1, we have

dl 8 (A'zz'+B'zz+C')

zz+ic (A)zz2+B'zz+C))iiz
(3.6)

A'=A, B'= 2A+B, C'=A+B+C. (3.7)

There are now three cases of interest as shown in

Fig. 10.The integral can be done in each case to give

F= Per/( C')'i'j8(B' 4AC—) . —(3.8)

Referring to Fig. 10, we note that in case (a), C'&0
and 8'&0, Ii will be real and negative, since the square
root in the integrand is positive and u&0 throughout
the region of integration. Similarly, in case (c), C &0
and B'(0,F will be real and positive. In case (b), C') 0,
we see from (3.8) that F will be pure imaginary. But
the sign of the ie in (3.6) shows that F must have a
negative imaginary part in this case. Summarizing, Ii

Since t is negative, A= —t(t—4)(0 and the integr»
will be zero unless

A. 4(~,,~4, t)(O
K3 $ K2 K4( ) ) ) )

L
—(a»z'+b»z+c) j'I' (3.16)

u'= 16P,
b'= 16t'(t »z »4 2), — — — (3.13)
c'=16th~(»2)»4)t)+t{»z»4+»z+»4 t+1)j. —

Again we need only the leading s term. Since a'&0,
8'—AC& 0 for K3 ~ ~~ . The only question is
whether the parabola in Eq. (3.12) has zeros or not.
To this end we calculate b"—4u'c' and find

b" 4a'c'= (16t)'—t(t—4)A {»2,»4, t) . (3.14)

Thus, for 6&0, b"—4a'c'&0 and there will be no zeros.
In this case Il' —AC is positive for all real K3 and the
integral in Eq. (3.11) goes over the whole real »z axis.
However, for 6)0, b"—4u'c')0 and there will be a
gap in the K3 integration between the points

»~= g(t(»z+»4+2 —t)at t(t—4)A(»z)»4)t) j ' ) (3 15)

It is therefore necessary to treat the two cases 6&0
and 6)0 separately.
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Since c——s'6 and a(0, the zeros of the square root
will be real. However, going back to Eq. (3.6) and
keeping a 6nite ie in the integrand, we dnd after
applying the standard analysis that the branch points
are really both in the upper half-plane. To choose the
correct branch of the square root we must apply the
boundary conditions (3.9). Between the branch points,
C =a«P+ll«g+c) 0 and the square root must have
the phase e' I'. Furthermore, 8' is given by

B'=«3$4st+2t(t 4)j+—O(1), (3.17)

so that Q (0 for «&
—+ + oo and 8') 0 for «3 + —~ ~

This means that the square root must be positive for
«3 + +~ and negative for «3 —+ —~ . A cut drawn
between the branch points will reproduce these phases.
The positions of the branch points are given by

&+—P 4ac—)'I j/2a= sf++0(gs), (3.18)
where

f~(«„«,t) = (t(K +«4—t)aL4t(a+t««4)]'12}

II-~(~-4)j. (3»)
To go further we must make two assumptions about

the analytic structure of A («a, t; «2,«4). Each individual
ladder graph has only a right-hand cut in res for ~2 and
«4 near 1. We assume that A(«g t' «2«4), which is the
infinite sum of such graphs, has no new singularities
in the upper half-plane coming from the sum. Our
other assumption is that we can neglect complex
singularities which occur in perturbation theory when

K2 and ~4 are varied. Some justMcation for this is pro-
vided by the fact that the ~2 and a4 integrals have good
convergence properties because of the presence of the
propagator poles and the eventual Ld, («2,«4, t)]'~2 in the
denominator. Therefore most of the contribution comes
from g2 K4 near 1, where there are no complex singular-

ities.
Under these assumptions the analytic structure of the

integrand of I. in the ~3 plane is shown in Fig. 11.
The contour goes over the right-hand cut because it is
the physical amplitude that appears in the integral.
Assuming that A(«a, t; «2,«4) ~0 as «3 —+ ~, we can
close the contour in the upper half-plane and get

d«8 3 («3)f ) «2)«4)I,(3.20)
(—a)" .s, D«3 sf+)(sf «—3)j'"-—

where the square root is now dehned to be positive.

B. cL (x2,x4, f) )0

ln this case the gs integral goes from — to a and
from «+ to +~, with «+ given in (3.15). We have

sf+ sf-

so

FIG. 11.Singularity structure for 6&0.

branch points of the square root will be oG the real
axis at complex conjugate points in the ~3 plane. The
boundary conditions (3.9) can be satisfied by drawing
the cut between the branch points and through the
gap in the ~3-integration contour. This is illustrated in
Flg. 12.

To check that this is consistent with the singularity
structure of Fig. 11 for 6&0, we fix b ~ («2+«4 t) and-
let d decrease through zero. For b&0 the situation will
be as shown in Fig. 12, with the branch points to the
left of the gap. As 6 is decreased, the branch points
will come to the real axis and move apart along the
real axis. The branch point in the lower half-plane
will move to the right as shown in Fig. 13. As 6 de-
creases further, the gap closes as the lower branch point
approaches it. At 6=0 the gap has closed and the lower
branch point has just gotten through into the upper
half-plane.

sf-
Fro. 12. Singularity structure for 6)0.

where C~ and C2 are shown in Fig. 14. The contour C~
can be closed in the upper half-plane and gives the
integral around the cut. The contour C2 gives the inte-
gral around the lower branch cut plus a small integral
along the real axis. This last piece can be neglected,
since ~ are s-independent and this integral will give
a term behaving as s ', while the dominant terms will
turn out to be s and n) —1. After evaluating the

To evaluate the integrals in (3.21) we consider the

configuration of Fig. 13 and add and subtract an
integration contour that goes around the lower branch
cut to get

A (Kg)f ) «2)«4)
«s— ~«3I, (3 22))L

—(a«32+ b«g+ c)$'12

A («3 3
' «2,«4)

L+—
I

d«~+=( '
(3.21)

)
I
—(a«32+ b«3+c)j'"

For h(«2 «4 f) sUfEciently positive, b' 4ac(0 and the—
sf-

so

I zG. 13. Movement of the branch points as 6 decreases.
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C) Cp

(~) (b)

Fro. 14. Contours C~ and Cs. (a) Cr. (h) Cs.

where A («s, &; «s,«4) can be replaced with its asymptot&c
form for «s(t(«s, «4,t)(0. The piece from L(«s, «4, t) to
h(«& «4, t) can be dropped, because it only gives a ermKg)K4q can
proportional to s '.

The integral equation then becomes

discontinuities, we get

22$ ~ d«s A (Ks)/i «sq«4g

(—o)'" ~+ L(«s—sf+)(sf —«s-)]'" (—~ '"

A (s,t) =
—2 z 2' d«sd«48 (6)

s 2(2s.)4 («s—1+is) («4—1+is) (—a)'I'

d«sA («s t) g~Ã

A («s,t; «s,«4)

C(~s gf+)—(«s gf )—j'"-
h=h(«s, «4, t) = ', t(«s+«-4+2 t), — (3.23)

where both square roots are real and p ositive. The
i . 13 is obtainedresult for con6gurations other than Fig. is

by analytic continuation.
Putting oget ther our results for h(0 and h&0, the

integral equation (3.1) becomes for large s

~ L(«s—~f+)(«s—~f-)j'ls 2(2~)'

tk2dÃ4

(«s—1+ie) («4 1+—ie) (—a)'»
ef 2(«s, t)

K3—S+ S

J(s,t) = —g's &'& (3.26)

Vfe now claim that the solution to this is of the form

2(s,g) = dK2dK4g g&

s 2(2s)'

d«sd«48(a («s,«4,t))

(«s—1+is) («4—1+is) ( a)'ls—

(«s—1+is) («4—1+is) ( a)'l—s

A (Ks,i & Ks~«4) tg 7r

I:(« «f+)(&f=—» )3" 2(2~)'

and that it is unique. 26 To see that this is the solution
we substitute it in (3.25). First look at the second term
on the right side of (3.25). We expand the square root
in a power series as follows:

1 1 ~ ( «s

( f+)'" ( —f+)'" *-' —& f &—

A(«s, t, «s, 4)

L («s—&f+) («s—&f—)j'"
A simpli6cation occurs in the integral from sf+ to sf
because we can replace A («s, t; Ks,«4)~ ~ with its asymptotic
form A («s, t) un er e inA, j d th tegral. For 6)0 this is obvious,
because sy+ an s~ ad j~ have the same sign and the integra
is onl over the asymptotic region, since s is very arge.is on y over
For 6&0 the contour goes through I(,3=0 bu=0 but it can be
distorted into a semicircle in the upp -p

~ ~ ~

er half- lane as
F' . 15. On this contour, A can be replaced

with its asymptotic form and the contour can en
shrunk back to the real axis. The integral from sf to
)'s in (3.24) can also be simplified by breaking it up
into two par s.t We integrate from sf to t(«s,«4, t),

(«s—sf-)'" (—~f-)'ls ~-o & ~f

1 («s)"

P(«s sf+)(«s sf—)j'" ~(—f+f )'" -o (si
where

(2i—1)!!
u;=

i!2'

Note that

+s~n—g
n

A„= P
'=' (-f+)*(-f-)" ' (3.2S)

(3.29)

The power series (327) converges for «s in the range of
integration and there is no difhculty with the end point
«s =f, because the integral of the square root converges.
Putting this in the sf=i integral and integrating

Fzo. 15, Distortion of the integration contour for A, +0.

se Since (3.23) is only an equation for the asymptotic amphtude
g, we mean that we have a solution if, when we substitute it on' ht-h d 'de we get back the left-hand side plus terms

nsured bni n f 1 er order as s-+ ~. The uniqueness is e yre uiring that E(s,t) reduce to the Born term —gs, in Qrin erst'. N th t Xs Inj'(s) would satisfy the erst criterion
Sgeof a solution but that the second allows on y —

g s .
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term by term, we get

oo $g
gzstt(t)

n=o 32~2

As g' ~ 0, (r(z) —+ —1. To order g' the second term in
(3.32) drops out and the last term contributes only if
there is a pole at n(t) = —1 from the last term in (3.25).
The only relevant integral is

dt(zdt(40 (6)A „f ")+"+'

(~,—1+t )( —)+t )(a)'"[ (()+m+1]) s(f~f )'
c43K3

+o( ') ( 3o)

where the s ' term comes from the upper limit l(t(z, t(4, /)

and can be neglected as long as n(z)) —1.
The last term on the right side of (3.25) also can be

handled by expanding the square root in a power
series, although care must be taken because diferent
power series are needed for different parts of the region
on integration. Again a factor —g's &'& will be common
to all the terms and will therefore cancel on both sides
of (3.25). There is no other s dependence left, and there-
fore s (') js a solution, provided that all the series that
are left converge. "

We are left with an integral equation for ot(t):

( zg
1= Zl

-~E32w'

g(g)A f (t)+ +i

!(.,-1+z.)(. -1+z )(~)'"5 (z)+~+»&

+contribution from last term. (3.31)

The contribution from the last term could be found
explicitly as indicated above, but it will not contribute
to the order-gz expression for n(t). To see this, separate
out, the tz=0 term from (3.31) and multiply through

by a(z)+1:

(r(t)+1=
Zg2 dt(zdt(48 (6)f

32trz (~z—1+ie) (t(4—1+ie) (&)'"

Zg

+l. (z)+15 2
1 327K'

dt(zdt(4g(h)A. f ("+"+'

(ttz 1+ie) (—t(4 1+ie) (—6)'"(n(t)+tz+15

+ Jot (t)+ 15&(contribution from

last term in (3.25) . (3.32)
"Since Jo dx/x'tt converges at x =0, we could change the lower

limit in (3.25) from sf to sf —8, 8 ~+0. The power series
(3.30) would then converge uniformly in the range of integration,
and therefore the integrated series converges, provided that the
integrals all exist. Noting that both f and f+ are linear in ~~

and a4, the integrals in (3.33) will converge at K2,~4~ ~ for
n(t) &0. This defines the region of validity of (3.33) as —1&n(t)
&0. One might also worry about the integral failing to converge
at the boundary 6=0, since the A„defined by (3.28) contain
some factors of 6 ", 0&m&n. This divergence is spurious,
since it is not present in (3.25), and it can be removed by a tech-
nique described kin Secs. IV and V which is essentially integration
by parts. It is understood that we do this wherever necessary in
(3.31l.

sa(t)[f a(t)+1 ( f )n(t)+15
(3.33)

(f.f-)'"l (z)+ 15

As (r(t) —+ —1, there is no pole because the numerator
vanishes, and therefore this piece gives no contribution
to order g'. It will contribute to order g4 and higher.

Finally, to get the trajectory function to order g'
from the 6rst term in (3.32) we must set f '("+'
=f "'("+'=1under the integral. This gives

E(()=
327r3

(rl, ")= —1+g'E (z) (3.34)

dt(zdt(40(h (t(z, t(4, Z))
(3.35)

(Kz—1+ze) ()(4—1+ze)D'"(t(ztl(4, l)

which agrees with the heuristic result of Sec. II and with
the standard result from surrnaing diagrams. '4

IV. H KERNEL

Having shown how Eq. (2.18) arises in a well-
dehned approximation from the correct integral equa-
tion, we return in this section to the heuristic type of
arguments employed in Sec, II and consider the planar
II kernel. More rigorous arguments analogous to those
of Sec. III will not be given here, but, upon iteration,
our equation will be seen to reproduce the correct HE
behavior in each order. Thus, on the one hand, we can
justify summation of leading behaviors for these graphs,
and, on the other hand, we can discuss the general
case (Sec. V). The ultimate justi6cation of our approach
must, of course, be based on more careful analysis and,
as we shall show in Sec. VI, such analysis is essential for
an understanding of nonplanar kernels.

We erst consider the 3-S equation corresponding to
the H-exchange graphs of Fig. 4. The appropriate
kernel Irr(s, t; pt) is given by the graph of Fig. 4 for
zz= 0 and, according to (1.5), satisfies

Isr(s, 1; p;) II(i)s ' Ins, (4 1)

for large s. Now, I~ satis6es a dispersion relation with
only a right-hand cut:

Iir(s, t; p;) = o(a,z;p;).
dc (4.2)

The relation (4.2) is strictly valid only for the masses
p; sufhciently small. We shall, however, assume that it
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our integral equation (4.10) is again Volterra and has
the unique solution

(s ~) 1~(~)L~()I)$-1($—2+B(t) $ ~B(t)) (4 14) A'(s, t; p~,p~) =1(t)s &(lns)"+
4(2s.)'

dK2dK4

(Kg—1)(»4—1)

as our first HE approximation to the 3-S equation,

where

R(t) = LE2(t)H(t)g'". (4.15)
t 8(D)&

X d» da a(a, .)A (»,&; Kg, »4)~
~

. (5.5)
kD'" ) „, ,

Thus, in view of (4.13), we obtain complete agreement
with the result (1.6) obtained by sununation of leading
HE behaviors in each order. Correspondingly, iteration
of (4.10) e times gives the result (1.5).

VVe next use

and write
D= s'6—(»2,»4,t)+4sta» (5.6)

V. GENERAL PLANAR KERNEL

The analysis for an arbitrary planar kernel is a simple
generalization of that given in Sec. IV. Thus consider
the amplitude I(s,t; pi, pg, »g, »4) corresponding to an

arbitrary sum of two-particle irreducible planar Feyn-
man diagrams. Since planar diagrams in q' theory have
no left-hand cuts in s, we assume that I satisfies a dis-

persion relation

- (2r-1)!! 2ta»~—
D-»'~$—'(—&)

—~&2 1+Q
~

(5 7)
r! $6)

This expansion is, of course, not valid for 5 0 and
we must keep in mind that this region is not important
in determining the asymptotic behavior of the integral
(5.5). Equation (5.3) and theorem 4 tell us that the
r=q —1 term in (5.7) gives the leading contribution,
so that (5.5) becomes

I (s,t ' p),pg, »2)»4) = O(a)$; Py')PI)»g)»4)
dc A "(s,t; pq, p2) =I(/)$ '(lns)"+

4(2m)'

dK2dK4

(»,—1)(»4—1)

and has a large-s behavior of the form

I(s,f; Py,P2,»2 K4) I(/)$ (lns) (5.2)
X dK

8/K

«o(a )A "(»»t; »2 »4)s-'( —a)—&~'

with integer p) 0 and q&1. In (5.1) we have neglected

the complex singularities which occur when the masses

are suQiciently large and positive. We believe that this

is justiied by virtue of the rapid convergence of the
mass integrations. In (5.2) we have assumed that the

asymptotic behavior is independent of the masses.

This is done for simplicity only, since the alternative

case would also result in Regge behavior with an

integral equation for the trajectory function.

We see that the class of kernels for which we shall

establish Regge asymptotic behavior is larger than the

class (described in Sec. I) given by summation of

Feynman diagrams for two reasons. First, we make no

explicit restrictions on the d lines and, second, our

kernels need not even be given by Feynman diagrams,

as long as (5.1) and (5.2) are satisfied.

It follows from (5.1) and (5.2) that

da o (a, ~ )a"=0 for 0&+&q—1, (5.3)

(2q —3)!!p —2ta»~ ~~
X

~ ~

0 (—s'6 —))), (5.8)
(q—1)! k $6

where the g term in 0 is again a symbolic prescription
to ignore contributions from the region 6 0. Our Anal
step is to use (5.4) in (5.8), note that A "(s,t; p~,p2)

A(s, t) for large s, and assume that the integration
region with K&&K2 K4 gives the leading contribution. Thus
we obtain

A(s, t)=I(t)s»(1ns))'+E (t)I(t)s &

f s&"
X d»

~

ln-
~

K~'Z(», t), (5.9)
K)

where

(2q —3)!!(2~)' '
K,(t) = lim'-"

(q—1)! 4(2m)'

d»2d»4 0 ( s'6 r))——
X (5.10)

(»2 y~2) (»4 r))2) ( g) 0-1l2

and so, by theorem 2 of the Appendix, we have

«o (a, )a~'—I (t) (!ns))'.

In order to put (5.10) in a form which is manifestly
independent of nonintegrable singularities at 6=0, we
use the rela. ion

(5.4)

Now we proceed exactly as for the B kernel and write, (
8 8 '))

+ — ~A= —4f
8»2 8»4)
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to write

E,(t) =
4 (2~)'(q —1)!

tI(-A)
dK2dK4

( A)1/2

(8 8)' ~

(«2 r—6)2'(«—4 r—w)

(B«2 8«4l

1 —8)' '
E(t) .

()—1))!()m')
(5.12)

In accordance with our remarks above, we have omitted
the 8(—s'A —

«I) terms, since they only give contributions
corresponding to 6 0.

Our general integral equation (5.9) is of the Volterra
type and its unique solution is of the Regge form. Ke
shall only exhibit the leading trajectory function a(t).
Using

( s)" so
d«« —'+o~ ln-

~

m! ) (5.13)
g-+i

we find that the solution to (5.9) is asymptotically
proportional to s &'), with

n(t) = —q+R(t), (5.14)

where

Thus, in our approximation, every kernel I satisfying
(5.1) and (5.2) defines a 8-S amplitude A(s, t) with a
Regge asymptotic behaviors(s, t)~s t'), with n(t) given
by (5.14), (5.15), and (5.12).This might be expected on
the grounds that the absence of a left-hand cut in (5.1)
and the fast decrease (q)1) in (5.2) represent simple
generalizations of potential scattering from nonsingular
potentials —a situation which is known to Reggeize.
Moreover, it is known that inclusion of a left-hand
cut" or more singular kernels' need not lead to Regge
asymptotic behavior.

The essential reason why the solution to (5.9) has
the Regge form is that the power of a inside the integral
is 1 less than the power of s ' outside the integral.
Indeed, the integral

(
d«~ ln-

~

«~'g(«)
«)

will lead to Regge asymptotic behavior only if e=q.
The occurrence of e=q in our integral equation can

~ V. ¹ Gribov and X. Ya. Pomeranchuk, Phys. Letters 2, 239
(1962).

= (2q—3)!!(2t)~'(—A) ))+'t' (5.11)

and we integrate by parts:

FxG 16 Iterated X diagram

be traced back to Eqs. (5.6) and (5.'i) for D, where the
ratios «"/s~' occur. The structure of D is, of course,
intimately connected to the two-particle structure of
the 3-S equation.

where

X(s)t ) p4p&) p«))p4) = o (s «t ) py) p2) pm) p4) ds

s s +St'

«r(s it ) p&)pm)p3)p4)ds
(6.2)

$—s —$6

VI. NONPLANAR KERNELS AND
CONCLUSIONS

We have given a heuristic argument to show that the
3-S amplitude corresponding to a planar kernel with
mass-independent HE behavior will Reggeize. The
trajectory functions so obtained agree with the known
results of summing the asymptotic forms of iterated
planar graphs. In fact, when the asymptotic integral
equation (5.9) is iterated, it produces exactly the HE
behavior for the iterated planar graphs that is obtained
in the usual analysis. 3 5 ~ This is the main justification
of the heuristic method.

Because of the simple analytic structure of planar
graphs (only right-hand cuts) we believe that a more
rigorous justification for the Regge behavior in the
planar case could be given along the lines of the argu-
ment in Sec. III for the ladder. This is not true for
nonplanar kernels. 3 priori one would expect the
heuristic argument to show that nonplanar kernels also
produce Regge asymptotic behavior, since all that was
really needed in Sec. V was the HE behavior of the
kernel. However, a closer inspection of the analytic
behavior of the nonplanar kernel shows that the heuris-
tic argument will not work.

To see what goes wrong, consider the simpler example
of obtaining the HE behavior of the iterated X diagram
shown in Fig. 16. In the Feynman parameter analysis,
one Ands that the naive "edge" contribution gives an
HE behavior s ' ln's, while the correct behavior, s ', is
obtained from a "pinch" of the Feynman parameter
hypercontour. ""A similar e8ect occurs in our formal-
ism. The diagram is proportional to

rr'- 'd 'X( ,t;

(«2—1+ie) («4 1+ia)—
8(D)

XX(«)bt ) «2)«4)ps)p4) ) (6,1)
Dl(2
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o (s', t; p;)ds'+ o (s', t; p,)ds'=0, (6.4)

s'o (s', t; p;)ds'+ s'0 (s', t; p;)ds'

=J(t) ln'(s) . (6.5)

Putting the spectral forms into (6.1), we obtain

dx2dK4
ds'ds "o (s')67 (s")

(K~ 1+i—e) (K4 1+i—e)

dK~dK88 (D)
(6.6)

(Kg s'+i c)—(K8 s"wi e—)D't'

where we have suppressed some of the arguments. If
we proceeded naively and neglected the i~'s, the last
two integrals can be done and yield a factor of lns and
an appropriate square-root denominator. When this
square root is expanded, the first term gives

o (s') ds' 0.(s")ds'=0

Drom (6.4)] and the next term gives a factor of ln2s

/from (6.5)$ for each of the s' and s" integrals. The end
result is s 2 ln'(s), which is wrong.

Being more careful, we have the following integrals
to evaluate:

The crucial point is the sign of the ie s. The z& and K3

integrations in (6.2) must go over the right-hand cuts
of X and under the left-hand cuts. (Of course, we still
neglect complex singularities. ) The fact that one must
go under the left-hand cut can be seen directly from
the Mandelstam representation for the Feynman
amplitude X.

The high-s behavior of X is known to be" "
X(s,t; p;) J (t)gin'(s)g/s', (6.3)

where we need not specify J(t), and by theorem 2 of
the Appendix we have

imaginary, it will have opposite signs in the two parts.
Remembering that c has a term s'6, we get

sf

dS +i~
(as"+bs'+ c)'t'

ds'o (s')

(as"+bs'+ c)'"

i~ t
ds' o(s', t; .

p )—
(c)

ds' (s t; p;)'), . (6.8)

Instead of cancelling as in the naive approach, these
integrals will combine. Furthermore, the quantity in
the large parentheses in (6.8) depends crucially on
the behavior of the spectral function for nonasymptotic
values of s', and so the information in (6.5) is noL

sufFicient to evaluate it. The explicit form of the
spectral function is needed for this, including its
dependence on the masses p;.

Since c is a quadratic function of s" and of res, we
can apply the same reasoning to the a3 and s" integra-
tions in (6.6). As a result, there will be an s ' that
survives from the s'6 part of D and thus gives the
entire high-s dependence of the double X graph as
expected. The coefFicient of s ' could be calculated
from (6.8) if we use the exact spectral function. The
spectral function is known for the X but this method
would not be useful for more complicated nonplanar
kernels where only asymptotic properties of the spectral
function )like (6.5)$ are known.

This example shows how the left-hand cut invalidates
the procedure of Sec. V for nonplanar kernels. The
actual asymptotic behavior of the 8-S amplitude with

the I as a kernel is a more diKcult problem because it
requires the explicit spectral function, but it should

be amenable to our techniques.
Finally, let us remark that the formalism that we

have presented can be easily adapted to include spin

and also self-energy and vertex corrections. In a future

paper we shall discuss this together with the related

problem of Reggeization in vector-spinor theory.

dKg 8 (aKp+ bK~+ c)
ds'o (s')

ds'o (s')

Ky s+zc (aKy +—bKy+c)

dKg 8 (aKp+ bKg+ c)

Ky s zc (aKy +bKy+c)
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The ~& intergals can be done exactly as in Sec. III,
with the result

m8(b' —4ac)/L —(as"+bs'+c)Jt'.
However, the branch of the square root is diferent in
the two terms of (6.7) because of the diiferent signs
of A. In particular, when the square root is pure

APPENDIX

In this Appendix we shall prove some elementary

theorems concerning the asymptotic behavior of func-

tions de6ned by integrals. The spectral functions o (a)
will be assumed to behave asymptotically like a&(lna)&

for some real numbers p and q. For functions f(s) and
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