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We construct the dynamics for a local quantum 6eld theory in two-dimensional space-time. Our model
describes a scalar 6eld q with a ) q

4 seM-interaction. We rely upon the fact that, in the Heisenberg picture, in-
fluence propagates at the speed of light. The resulting dynamics is independent of any cutoff, and hence the
theory is formally Lorentz-covariant.

H(g) =Hp+X
=0

:q'(x):dx

is replaced by the operator on Fock space,

H(g) =Ho+: q'(x): g(x)dx
t,=0

=Ho+Hr(g),

where the space-dependent coupling constant g(x) is a
smooth, non-negative function which vanishes outside a
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I. INTRODUCTION
' 'N this paper we obtain the dynamics for a local
- - quantum field theory in two-dimensional space-
time. We study a scalar ) p4 self-interaction, and no
cutoffs appear in the solution. Formally, our model is
Lorentz-covariant, and a covariant local quantum field
theory should result.

This X&4 model is simple because the only mo-
mentum-space divergences are removed by Wick-
ordering the Hamiltonian density. The vacuum energy
has a divergence linear in the volume in each order of
perturbation theory, as is expected in any theory with
vacuum polarization. In perturbation theory the scat-
tering matrix for this interaction is nontrivial. However,
the perturbation series is known to diverge when
sumined to all orders, ' so we cannot solve the theory in
this manner.

We construct the dynamics in the Heisenberg picture
which means that we have a map 0.

& which takes the field
operators from time zero to time t. The main advantage
of the Heisenberg picture, is that the volume divergence
does not enter in this formulation.

In order to prove that the theory exists, we introduce
a spatial cutoff in the interaction Hamiltonian. Thus the
formal Hamiltonian expression

large interval. We derive an estimate for fixed g(x),

[Ho" [EI—s"Hr(g)]]& eH p'+b, (1.2)

where e is any positive number and b(e) a suitably large
number. This estimate, along with the previously known
estimate' '

Hr(—g) ~ ~o+b (1 3)

and a knowledge of the self adjointness of Hs and H r(g),
allows us to prove that the total Hamiltonian H(g) is
self adjoint. The connection between estimates (1.2)
and (1.3) and self adjointness leads to a general theory
of singular perturbations developed elsewhere. 4

We then discuss the Heisenberg picture dynamics

(g) eiEI(o) tge—cH(o) t

of an observable A associated with a bounded region of
space at t =0. The locality of the Hamiltonian density is
essential to our method. As physicists have long known,
it ensures that inQuence propagates in the Heisenberg
picture at the speed of light. A local Hamiltonian
density, therefore, assures a local theory on the formal
level. Guenin pointed out that in perturbation theory
the 6nite propagation speed is not destroyed by a space
cutoff. ' Segal states this result as a rigorous theorem,
under the hypothesis that the total and the interaction
Hamiltonians both are self adjoint. ' In other words

oi(A) does not depend on g(x), provided that g(x)
equals a constant, i.e., the desired coupling constant X,
for x in some suitably large region. By choosing an
appropriate g(x) for each bounded region of space-
time, we can patch together a time translation for any
operator. A similar argument shows that the theory is
local. Since we have proved that the Hamiltonian H(g)
is self adjoint, we have constructed a local quantum field
theory without a cutoff.

'E. Nelson, in 3fathematica/ Theory of Elemerrtary I'articles,
edited by R. Goodman and I.Segal (The M.I.T. Press, Cambridge,
Mass. , 1966).' J. Giimm, Commun. Math. Phys. 8, 12 (1968); P. Federbush
(to be published).' J. Glimm and A. M. Jaf'fe, Commun. Pure Appl. Math. (to be
published).

~ M. Guenin, Commun. Math. Phys. 3, 120 (1966).
6 X. Segal, Proc. Natl. Acad. Sci. U.S. 57, 1178 (1967}.
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II. ESTIMATES ON THE HAMILTONIAN Lemma Z.Z: Let 8' be an operator of the form

W= w(k)a*(ki) a( k„—)dk.

(2.1) II (N+I) '"W(—N+I)
La(k),a*(k')]= 8 (k—k'),

Let 5 be the Pock space for a massive, neutral scalar
Geld in two-dimensional space-time. The elements of 5
are sequences of functions on momentum space. Let the
annihilation and creation operators be normalized by
the relation

(2.10)

where

The )=0 Geld

ao—— a'(k)a(k)~(k)dk,

co (k) = (k'+m')'t'.

so that the free-Geld Hamiltonian is
~«»t Ilwllz' I jl ~m (211)

II(&o+I) 'L&o"'L&o'" W]](&o+I) '(N+I) '" '"ll

~const lloFto(g k;)wllz~, (2.12)
i~1

IIL&o'" C&o'" W]](N+I) ""II

(2')ilov2
e 'o*lao(k)+a( —k)]oi(k) '"dk (2.3)

m

~«nst
II Z ~(k')wllz' (2.13)

is used to construct the spatially cut-off interaction «~ma Z.3: Let W be as above, and suppose that
Hamiltonian w(k)=0 whenever lk;l)K for any i The.n

az(g) =:q'(*):g(x)d*
IIL~.'",L~o" w]](N+I)-'=""ll

+const K
I Iwl I

z~. (2.14)

4

ao(ki) a*(kt)a(—k;+i)
g-0 J"

4 4

I'roof of Theorem Z.l: Introduce the t = 0 field oo„with an
ultraviolet cutoft:

Xa(—k4)g(P k;) bio(k;)-'t'dk;. (2.4) ~„(~)=i-i i=i (27z)i/o~g

The total Hamiltonian for the spatially cut-off inter-
action is

'"L *(k)+ (—k)]L (k)] '"dk

&(g) =&o+& (g)

%'e also need the number operator

a*(k)a(k) dk,

(2.5)

(2.6)

and formally

&z,. .o.'(x):g(——x)dx,

Hl = limIIr, ~

K~oo

(2.15)

(2.16)

and the domain

Do= fl D(&o").
nM

If we write Hz as a sum of Gve operators of the form
W in (2.10), then by Leznma 2.2 taken for the case m = 4

(2.7)
II(&o+1) 'L&o"',L&o'",W]](&o+1)-'ll

We let P(R') denote the Schwartz space of infinitely
differentiable functions, which, along with all their
derivatives, vanish faster than any inverse polynomial
at inGnity.

Theorem Z.l: For any o)0 and for fixed g&S(R') there
is a constant b such that as bilinear forms on D0)&D0

and

—L&o" L&o"' Jf z(g)]]~ ~o'+b

$1@,[X,H z(g)]]~ oN'+—b.

(2.8)

(2.9)

Let us state two lemmas, which then yield the
theorem.

~const lice'"(& k')wllz~ (2 17)
i=1

Ilio'"(P k,)(w —w, )llz, (2.18)

as K ~~.This is true for each W making uP gz(g), so

Since the kernel w(k) has an over-all factor g(P; zo k;),
where g is the Fourier transform of the spatial cutoB
g(x), the fast decrease of g(k) ensures that co'I'(P; z'k;)w
is in I.'. Thus the kernel for the corresponding cutoff
interaction term m„approximates m in the sense that
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we infer that there exists a Ko such that for K~Kp,

Ij(Ho+I)—'LHo'~' PHp'I' Hz H—z,.]]
X (Ho+I)-zjj &-,.

so

I Xg(k; kt, . ,k g) I
&-',co(k)L g cp(k)] '"

By Lemma 2.3, we have the relations

EH p"'~EH o'I' H r,.]]&const ccp'(N+ I)
&-,' pBps+ const, (2.20)

In the same way

& —',co(k) —. (2.26)
m'" (rs—1)"'

on the domain DpXDp. Thus combining (2.20) with the
estimate on the tail (2.19),

jH—o'r, pFo'r Hr]]= —LHo'~ I H '~oHr Hz,—.]]
—

I Hp I Hp Hz, „]]

((B(Pi' [Hp'i' a(k)]]8)(kz, ,k t)
=g, (k; kz, ,k„z)(a(k)8)(kz, ~ )k~z)
= (as(k)8)(kt, . ,k z).

Here
(2.27)

& pHps+b,

which is (2.8). In order to prove (2.9), we expand H z (g)
once more as a sum of terms W of the form (2.10).Since
LN, W]=const W, and W is a fourth-order operator
with an Ls kernel, we infer from (2.11) that

()
(2.28)

const cp'(k)/e
Taking adjoints,

and
I H p"',a*(k)]= —a ra (k), (2.29)

o) k
IX,(k; kt, . ,k t) I

&

1(WI N I N W]]4) I
&const (4(N+I)V)
& 5 p(4' NV')+ 5b(P,4) (2 21)

As H z(g) has 5 such terms,

LN, LN,H z]]& sNs+ b,

vrhich completes the proof of the theorem.

Proof of Lemmas Z.Z amd Z.3:Let 8 be an I-particle wave
function. Then (a(k)8)(kz, ~,k t) is an (e—1)-par-
ticle state de6ned by

(a(k)8)(kt, ,k„r)= (ge)8(k, kg, .,k„g). (2.22)

Using (2.22) and the Schwarz inequality, it is easy to
establish the bound (2.11).

Note that

(I Hp'", a(k)]8) (kz, . ,k g)

=) z(k; kt, ,k„z)(a(k)8)(kz, ,k„ t)
=—(at(k)8)(kz, ,k g), (2.23) IILHpzis, LH 'is W]](N+I)-"~ jj

LHo~is, LHotis aa (k)]]=as+ (k) . (2.30}

Note that the double cozznnutation LHp'I', LHo'', W]]
can be expressed as a sum of two kinds of terms. There
will be m contributions arising from double corrunuta-
tors of Ho'I' with one of the m creation or annihilation
operators, and these will be of the form of the original W
in (2.10), but they will have one a(k) or one a*(k),
replaced by an as(k) or as*(k). There will also be
—,'m(m —1) terms arising from the conunutator Hp'
with two distinct creators or annihilators of 8'. These
terms will be of the form of the right-hand side of (2.10)
but will involve two of the modified operators at(k) or
—at*(k).

In order to prove (2.12), we use the definitions
(2.22)-(2.24) and (2.27). In order to estimate the matrix
element j(P,LHP', LHp"', W]]8)j, we use the bound
(2.25) and the first of the inequalities (2.28). As in the
proof of (2.11), the Schwarz inequality then yields

where

Xt(k; k$, ~ .,k $)

n—1
=

I co(k)+ Q co(kc)]'I' —L Q co(k )]'". (2.24)

so
(1+@)'r'—1&x'~',

I X,(k; k„",k. ,) I
&L~(k)]'I'. (2.25)

Furthermore, for x&0,

(1+@)'"—1&—,'x,

For convenience, we have dehned a modified annihila-
tion operator a~ (k), which decreases the particle number
by one.

For x&0, we see that

&const Ij P co(k;)tolls, ', (231)
i~1

which is (2.13).The proof of (2.14) proceeds in a similar
fashion, using the second set of bounds for the

I &r j.
In order to prove (2.12), we mvestigate the operator

X= (Ho+I) 'W(Ho+I) '(N+I) ' "" (2 32)

By following the proof of Lemma 2.41 and Theorem 2.43
of Ref. 7, we fmd that

Ifxll «oust Ij~"~llama
where

supcp(kc)co(k;) if m) 1

.co(k;) if m=1.
'c J. Glimm, Commun. Math. Phys. 5, 343 (1967).
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Replacing the operator W by W= [Hp'r' [Hp"', Wjf, we
6nd that for the corresponding X',

m

II&II+const II& ' '2 &(kt)itrllzp ~

i=1

Each pr(k;) is dominated by a constant multiple of E'r',
unless k; is very much larger than the magnitude of all
the other momenta, or unless m=1. The former can
occur only when P; i k; is large in magnitude, and in
either case

Thus

pr(k;) ~const E"tp' '(P k;).
i=1

tn

I'll~const fl~'"(& k')~Ill',
i=1

which was to be proved.

III. SELF ADJOINTNESS OF THE INTERACTION
HAMILTONIAN

For a real spatial cutoff g(x) in the Schwartz space
P(R'), the interaction part of the Hamiltonian Hz(g)
is self adjoint. This result was proved by Lanford, and
also by Doplicher and Jaffe. Statement of these theo-
rems are given in Wightman. ' With a slightly different
formulation, the result has been announced by Segal. '

We initially define Hz(g) on the domain

essentially self adjoint on D1. A similar argument can be
made for the canonically conjugate t=0 fields pr(f).

Let Pg denote the von Neumann algebra of operators
generated by the spectral projections of all the t=0
fields ttr(f), f&S(R'). The algebra Pt is maximal
Abelian. In other words, a bounded operator which
commutes with all operators in gP is itself in K.

Let us consider ttr(f) for supp fCOt R', where 0 is an
open region of space. (The support of a function is the
smallest closed set outside of which the function vanishes
identically. ) Define 5(0) as the von Neumann algebra of
operators generated by the spectral projections of all the
fields ttr(f) and rr (f), supp fQO.

Since

86
~(*'r= (p(*—r, p (r) — (*—r, t)w(r) ltr

at )
and A (x, t) vanishes outside the light cone, we infer that

~iHptg (0)~—
tHp ting(0 )

where 0& is the region 0 expanded by t.

Theorem 3.Z: If g(x) QS(Rr) is real and has its support
in an open interval 0, then for the Hz of (3.1)

We now prove two lemmas.

L,emma 3.3:Let T be any operator with domain D1 such
that

Dp= n D(Hp"),
n=o

H z(g)=:q '(rp): g (x)dx (3.1)

and we will prove that its closure is self adjoint. It
follows from (2.11) that Hz is well defined on Dp.

Theorem 3.1:If gEP(R') is real, then
Then

and

TD,gD(q (f)"),
TDiCD(T

I
»*),

[T,p (f)"Ã =o.

/AD, gD(TID, )

[T,K]Di——0.

(3 3)

(3.6)

(3.7)

(3.8)

(3.9)
=0 Proof: For a&Dr, from (3.5) and (3.7) we have

is essentially self adjoint on Do. Ty(f) "0,= q (f)"TQ
Let us introduce a domain D1 obtained by applying

any polynomial of the t=0 fields tp(f;), f;PP(R'), to But by (3.6), for real f
the no particle state Qp. Clearly Di+Dp, and any vector

llT (f) ~II (T~ (f)p T+) (TgT+ (f0 in Di is an entire vector for &p(f), which means that
the power series ~ IIT*T0ll Ilp (f)'"&ll.

n=o

ttrt N

m~

- lip (f)"&II Thus the convergent power series (3.2) shows that for

(3 2) 0 in Di,
(3.10)

dehnes an entire function of s. Since D1 is dense in I'ock
space, a result of Nelson, ' shows that for real f, tt(f) is

A. S. Wightman, in 1964 Cargese Summer School Lectures,
edited by M. Levy (Gordon and Breach, Science Publishers, Inc. ,
New York, 1967).

'E. Nelson, Ann. Math. 70, 572 (1959);H. I.Borchers and W.
,Zimmermann, Nuovo Cimento 31, 1047 (1963).

It is clear that (3.10) is still valid with exp(iq (f))
replaced by strong limits of sums of such exponentials,
and hence (3.8) and (3.9).

Lemma 3.4: Let K be a maximal Abelian algebra of
bounded operators on a Hilbert space @ with a cyclic
vector Qo. Let T be a symmetric operator with domain
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KQp, and let T commute with//. Then T is essentially
self adjoint.

Proof: Without loss of generality, K=L„(X) and
@=Ls(X) for some measure space X, and Qp is the
function 1.Let t= TQp. Then t+Ls and T is xnultiplica-
tion by t, with domain L„. Let f+Ls and suppose
tf+Ls also and let

f(x) if
~ f(x) ~

(n
(x)=

otherwise.

Then f„+L„=D(T)and f„~f, tf„~ tf in Ls norm

by the bounded convergence theorem. Thus (f,tf) is in
the graph of the closure of T. Thus the closure of T is
self adjoint, and T is essentially self adjoint.

Remark: Let T„be a sequence of operators with the
property of T in the lemma. Then T„~T strongly on
the domain PPQp if and only if T„Qp~ TQ p.

Proof of Theorems 3.l and 3.Z: We apply the Lemmas
3.3 and 3.4 with the case T=Hz (g), PQ in Lemma 3.4 as
in Lemma 3.3, the Hilbert space Fock space, and 00 the
Fock no-particle state. The hypotheses (3.5) and (3.6)
can be verified by a direct computation. "Thus Hz(g) is
essentially self adjoint on Dx( Dp, and hence Hz(g) is
essentially self adjoint on Do.

If we assume that supp gt 0, then as 0 is an open
interval, supp g( Ox where Oi is 0 contracted by some
small amount «)0. Since Hz(g) comxnutes with K,
and gg is maximal Abelian, exp(iHz(g)t)QK. Further-
more the argument in the proof of Lemma 3.3, can be
repeated to show that Hz(g) coxxunutes with 5(Ox'),
where O~' is the complement of the closure of O~."Since
g(R') is irreducible and Hz(g) commutes with $(Ox'),
exp(iHz(g)t)&5(Os) where Os is Oi expanded by any
amount «')0." Taking (««we have exp(iHz(g)t)
gg(0), which completes the proof.

IV. SELF ADJOINTNESS OF THE TOTAL
HAMILTONIAN

Theorem 4.I: (a) For real g(x) QP(E'), the total
Hamiltonian H(g) =Hp+Hz(g) is self adjoint with the
domain D(H (g) )=D(Hp) QD (Hz (g) ).

(b) The total Hamiltonian H(g) is essentially self
adjoint on the domain

Dp= A D(Hp" ) ~

n=o

In order to prove the self adjointness of B, we com-
bine the estimates of Sec. II, the self adjointness of
Hz(g) proved in Sec. III, and a singular perturbation
theory developed elsewhere. 4 We need the following
result which is a special case of Theorem 8 of Ref. 4.

"A. M. Ja&e, J. Math. Phys. 7, 1250 (1966).
"A. M. IaAe, Ann. Phys. (N. Y.) 32, 127 (1965).
"H. Araki, J. Math. Phys. 5, 1 (1964).

Theorem 4.Z: Under the hypotheses (i)—(iii) below, the

oPerator H= H p+Hz is self adjoint.
(i) Both Hp and Hz are self adjoint. The domain

Do= A D(Hp" )
n=o

is contained in the domain of Hz, and Hz is essentially
self adjoint on Do.

(ii) Let ¹0be a positive self adjoint operator,
connnuting with Ho, and such that E~ const Ho. Sup-

pose that the operators (I+N) 'Hz(I+N) ' and

(I+N)+'Hz(I+N) ' are bounded

(iii) Suppose that for any «) 0, there exists a number

b such that as bilinear forms on DO&DO,

Hz~ «N—+bI,
—[Ho"' [Ho",Hz]](«Hp'+bI,

(4 1)

(4.2)

[N, [N,—Hz]] & «N'+ bI. (4.3)

proof of Theorem 4.I: In order to prove that H is self

adjoint, we apply Theorem 4.2 in the case that Ho is the
free Hamiltonian, 1V is the number operator, and Hg is

the interaction Haxniltonian Hz(g). Thus we need to
verify (i—iii). Condition (i) was dealt with in Theorem

3.1, while condition (ii) is a consequence of (2.11). In
Refs. 2, and 3, it is shown that for any e&0, there is a
number b such that

Hz(g) («H—p+bI.

By following that proof, but using the smoothing opera-

tor exp( —tN), in place of exp( —tIIp), one arrives at the

estimate (4.1) required in (iii). The remaining estimates

(4.2) and (4.3) were established in Theorem 2.1.Thus we

conclude from Theorem 4.2 that H(g) is self adjoint on

the domain D(Hp)QD(Hz(g)).
We now show that H(g) is essentially self adjoint on

Dp. We first show that H (g) is essentially self adjoint on

Ds ——D(Hp)QD(N'). By (2.11) it is clear that the do-

main of H(g) contains Ds. For QQD(H(g))=D(Hp)
QD(Hz(g) ), consider P EDs defined by

f„=n(nI+N) 'f. (4 4)

Thus [)tt-—p)l+IIHp1t- —Hppll ~0 as n ~" We study

Hzy„Hzy= N(—nI+N) —'Hzg+n[Hz-, (nI+N) 'j4. -

Since N(nI+N) ' is a uniformly bounded sequence

converging to zero on the dense set D(N), it converges

to zero and ~~N(nI+N) 'Hzp~) ~ 0 as n ~~ ~ B««r
the other term

n[Hz, (nI+N) ']P
=[Hz, (nI+N) '](nI+N)n(nI+N) 'f
= (nI+N) '[N, Hz]n(nI+N) 'P
= (nI+N) '(I+N) (I+N) '[N, H—z]

y(I+N) 'n(nl+&')-'(I+N-) f.
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Note that as ts-+m, e(tpI+N) '(I+N) converges
strongly to (I+N)tjt, that by (2.11,), (I+N)—il N Hzj
X(I+N) ' is bounded, and that (ttI+N) —'(I+N}
converges strongly to zero. Thus II I Hr, (ttI+N) —']lt II-+0
as I~~, and so IIHnt'~ —Hz4'III' ~ 0. Thus we see that
H(g) is the closure of H(g) restricted to Dp, so H(g) is
essentially self adjoint on D2.

I,et D2 be a Hilbert space with the norm

(II+Iln,)'= ll+II'+IIHp4 II'+ IINVII'.

From (2.11) we infer that

IIH&ll ~constll4 II

so that H(g) is essentially self adjoint on any sub-
set of D2 which is dense in the Hilbert space D2.
For tI/PDp, Pi exp( ———XHp)tP&Dp= Q p D(Hp ) and

lilt'/
—lt'Ilz&, ~ 0 as )i ~ 0. Thus H(g)-is essentially self

adjoint on Do.

V. REMOVING THE SPATIAL CUTOFF
AND LOCALITY

For the reader's convenience, we sketch a proof of
Segal's theorerns that the self adjointness of H(g)
allows the removal of the spatial cutoff. In fact, if A is a
bounded function of the free 6elds localized in a
bounded region of space at 3=0, then

o. t (A) = e "H«&Ae "H«&—
is independent of g(x) provided that g(x)=)i, the
desired coupling constant, on a suKciently large inter-
val, depending on t. Furthermore, if A is localized in the
region of space 0, then o, (A) is localized in the region

Ot, where Ot is the region 0 expanded by t. (We have
taken the velocity of light to be one. ) In other words, the
time translation 0& gives rise to a local. theory. If one
chooses for the operator A a spectral projection of the
t= 0 Geld tt (f), one can piece together the time transla-
tion operator for the fields themselves.

In section IV, we showed that H= Hp+Hz, which is
sum of two self adjoint operators, is itself self adjoint.
As a consequence of this fact, the Trotter product
formula" says that for all tJt

et'tHP lim(eitHp/nei tH1/t—t) Q

o t(A)P —lim(etHpt/neiHt t/tt) nA (e
—iHr t/tte iHot/tt) Q—

I.et 0 be the region defined by I x I (M, t= 0, and let

Agg(0), where 5(0) is defined in Sec. III.
Given an arbitrary, positive e, split g(x) into two

in6nitely differentiable parts

g(x) =gi(x)+gp(x),
't H. F. Trotter, Proc Am. Math. S. oc. 10, 545 (1959);E.Nelson,

I, Math. Phys. 5, 332 (1964).

where supp gi(x)( 0., and. supp gsQO. /s is empty.
Write

Hr(g) =Hr(gi)+Hr(gp)

so that as a consequence of theorems 3.1 and 3.2, Hz(gi)
and Hr(gs) commute, and

expLiHz(g) t/I j= expl iHz(gi) t/Ng expl iHz (gs) t/rig.

Furthermore,

expl iHz (gi) t/tp]&5 (0,),
and expl iH z(gp) t/n) commutes with 5(0,/4). Therefore,

Ai(t) = exp(iHpt/I) expgiHz(g)t/N]A

XexpL —iHz(g)t/Nj exp( —iHpt/I)

depends on g(x) only in the region O„and by the free

propagation property (3.4),

Aigg(0&t/ &+,).
Ke continue step by step, and after e steps we

conclude that

A (t) = Lexp(iHpt/I) e px(iH (zg)t/ )I]"A

XI exp( —iHz(g)t/n) exp( —Hpt/tt)j"

depends on g(x) only in the region 0,+„„and

A (t)&5(0,+.,).
Since e can be chosen arbitrarily, A (t) depends on g(x)
only in the region 0&, the c1osure of 0&, and

A-(t)& A @(Ot+.)
e&0

Thus A„(t) commutes with any local observable 8
localized in open region of space 0' such that 0' and 0&

are disjoint. As this is true for each n, it is true for

o, (A) = strong limA „(t).

Hence o, (A) is local, and it depends on g(x) only in the
region Ot, where we choose g(x) =)i. We therefore con-

clude that the spatial cutoR has been removed and the
resulting theory is local.

VI. THEORY IN A BOX

We can consider a somewhat diferent cutoff theory,
namely the gp4 theory in a periodic box. This gives a
cut-off interaction which is translation invariant, and

therefore it is useful for the study of the vacuum

state. ' In a 6nite interval, but with no ultraviolet

cuto6, we prove that the total Hamiltonian is self

adj oint and has a complete set of normalizable

eigenstates.
The theory in volume V is constructed by taking a

Fock space Sv of functions deGned on the momentum

'4 A. M. Jaffe and R. T. Powers, Commun. Math. Phys. 7, 218
(1968);J. Glimm and A. M. Jaffe (to be published).
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space lattices I"v, I"v&&l'v, etc. , where

I'V=(k: k=22rrt/V, st=0, +1,a2, ~ }. (6.1)

Thus the free Hamiltonian is

Proof: Let I'„.v= I'vQ(k:
t
k

~

~ K},so that an ultraviolet
cut-off fmld so„,v(x) is obtained from 4pv by summing
(6.4) over I'„,v. Then a sharply cut-off Hamiltonian
H. ,v =Ho, v+ H z ., v comes from

Hs.v= Z ~v*(k)~v(k)~(k),
agre

and the t=0 Geld is

(6.2)
Hz ., v=g:4z. , v(&)4: dx.

V'

9 v(*)=
(2 V)1/2

&( Q e "*b'av*(k)+ttv( —k)]4o(k) '" (63)
kgi v

The interaction Hamiltonian H~, y is defined by

Hz, v=g: 2 v(x)': dx, g&0
F

(6.4)

and Hz, y is self adjoint as was shown in Sec. III for
Hz(g). The total Hazniltonian in a box is

Hv Ho, v+Hz, ——v.

It is possible to regard $v as a subspace of g defined
by functions on R, RXR, etc. , which are piecewise
constant between lattice sites. The correspondence be-
tween ttv and tz is

1/2 2m /
V'

ztv(k) = — a(k+l)dl, k+I'v. (6.5)
2x 0

D.= n D(H. ,").
nM

Theorem 6.1:The spectrum of By is discrete with Gnite
multiplicity, so Hy has a complete set of normalizable
eigenstates.

Therefore the estimates of Sec. II are valid for H~,
and so Hv is self adjoint on the domain D(Ho, v)
QD(Hz, v), and Hv is essentially self adjoint on the
domain

The operator H„,y has pure discrete spectrum with
finite multiplicity. "Furthermore, Hz, „,z is the sum of
five expressions of the form W„,v of (2.10), such that
~)w„,v —w„,v)~zs —+ OasK K ~4C. Thereforethebounded
operators (I+Nv) 'Hz „v(I+Nv) ' converge in norm
as K —&oo to (I+Nv) 'Hz, v(I+Nv) '. We now appeal
to Corollary 10 of Ref. 4 to infer that the resolvents of
H„,y converge in norm as ~ —&~ to the resolvent of Hy.
Since each R„v= (H„,v+c) ' is compact, so is their
uniform limit Ey, and the theorem is proved.

We further see that the projections onto each eigen-
value 'A (K, V) of H„v converge as K —+~. This is a
consequence of Theorem IV. 3.16 of Kato. ' Thus, in
particular the vacuum vectors for H„,~ converge in
Pock space to a vacuum vector for Hy.

VII. CONCLUSIONS

We have shown the existence of a local time transla-
tion for a two-dimensional X&4 theory without cuto6s.
The method relies on basic inequalities satisGed by the
first and second power of the Hamiltonian. Similar
estimates of all the higher powers of the Hamiltonian
proved useful to investigate the existence of vacuum-
expectation values in a ) cp' theory with a sharp mo-
mentum-space cuto6."It does not seem likely, in our
case, that Ho' is dominated by higher powers of H, since
the ground state of H must be in the domain of H", for
all n, and the first-order perturbation correction to the
Fock vacuum is in D(Hs), but not in D(Hest').

"A. M. Jaffe, Ph.D. thesis, Princeton University (to be
published).

se T. Kato, Pertssrb44tson Theory for Lsneor Operators (Springer-
Verlag, Berlin, 1966).


