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We construct the dynamics for a local quantum field theory in two-dimensional space-time. Our model
describes a scalar field ¢ with a A¢* self-interaction. We rely upon the fact that, in the Heisenberg picture, in-
fluence propagates at the speed of light. The resulting dynamics is independent of any cutoff, and hence the

theory is formally Lorentz-covariant.

I. INTRODUCTION

N this paper we obtain the dynamics for a local
quantum field theory in two-dimensional space-
time. We study a scalar N¢* self-interaction, and no
cutoffs appear in the solution. Formally, our model is
Lorentz-covariant, and a covariant local quantum field
theory should result.

This Ae* model is simple because the only mo-
mentum-space divergences are removed by Wick-
ordering the Hamiltonian density. The vacuum energy
has a divergence linear in the volume in each order of
perturbation theory, as is expected in any theory with
vacuum polarization. In perturbation theory the scat-
tering matrix for this interaction is nontrivial. However,
the perturbation series is known to diverge when
summed to all orders,! so we cannot solve the theory in
this manner.

We construct the dynamics in the Heisenberg picture
which means that we have a map o, which takes the field
operators from time zero to time . The main advantage
of the Heisenberg picture, is that the volume divergence
does not enter in this formulation.

In order to prove that the theory exists, we introduce
a spatial cutoff in the interaction Hamiltonian. Thus the
formal Hamiltonian expression

H(g)=Ho+)\f cot(x):dx

t=0

is replaced by the operator on Fock space,

H(g)=Hok f (@) g @)

=HotHi(g), (1.1)

where the space-dependent coupling constant g(x) is a
smooth, non-negative function which vanishes outside a
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large interval. We derive an estimate for fixed g(x),
—[Ho"2[Ho'"H(g) ]S eHi+b, (1.2)

where e is any positive number and b(e) a suitably large
number. This estimate, along with the previously known

estimate?:?
(1.3)

and a knowledge of the self adjointness of Hoand H(g),
allows us to prove that the total Hamiltonian H (g) is
self adjoint. The connection between estimates (1.2)
and (1.3) and self adjointness leads to a general theory
of singular perturbations developed elsewhere.*

We then discuss the Heisenberg picture dynamics

0i(A)=eH @ t4eiHW?E

of an observable 4 associated with a bounded region of
space at ¢=0. The locality of the Hamiltonian density is
essential to our method. As physicists have long known,
it ensures that influence propagates in the Heisenberg
picture at the speed of light. A local Hamiltonian
density, therefore, assures a local theory on the formal
level. Guenin pointed out that in perturbation theory
the finite propagation speed is not destroyed by a space
cutoff.’ Segal states this result as a rigorous theorem,
under the hypothesis that the total and the interaction
Hamiltonians both are self adjoint.® In other words
0:(4) does not depend on g(x), provided that g(x)
equals a constant, i.e., the desired coupling constant A,
for x in some suitably large region. By choosing an
appropriate g(x) for each bounded region of space-
time, we can patch together a time translation for any
operator. A similar argument shows that the theory is
local. Since we have proved that the Hamiltonian H (g)
is self adjoint, we have constructed a local quantum field
theory without a cutoff.

—Hi(g)<eHotb,

2 E. Nelson, in Mathematical Theory of Elementary Particles,
edited by R. Goodman and I. Segal (The M.I.T. Press, Cambridge,
Mass., 1966).
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II. ESTIMATES ON THE HAMILTONIAN

Let § be the Fock space for a massive, neutral scalar
field in two-dimensional space-time. The elements of F
are sequences of functions on momentum space. Let the
annihilation and creation operators be normalized by
the relation

La(k),a*(&")]=6(k—F"), 2.1)
so that the free-field Hamiltonian is

Hy= /a*(k)a(k)w (k)dk,
where

w (k)= (k*+m?)12,
The ¢=0 field
1 i * —1,

o= [T W e Rtk 03)

is used to construct the spatially cut-off interaction
Hamiltonian

Hi()= / A g ()i

N 2, (?)/a*(kl)' cra*(kj)a(—kjyp)- -+
Xa(—ka)g( 24 ks) ﬁ“(ki)_llzdke. 2.4)

The total Hamiltonian for the spatially cut-off inter-
action is

H(g)=Hot+H1(g).

We also need the number operator

(2.5)

N= fa*(k)a(k)dk, (2.6)

and the domain

Do= N D(Ho"). 2.7)
n=(

We let ©(R!) denote the Schwartz space of infinitely

differentiable functions, which, along with all their

derivatives, vanish faster than any inverse polynomial
at infinity.

Theorem 2.1: For any >0 and for fixed g&&(R!) there
is a constant & such that as bilinear forms on DyX Dy
—[H¢?[Hd2H 1 (g)J1< eH b (2.8)
and
Let us state two lemmas, which then yield the
theorem.
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Lemma 2.2: Let W be an operator of the form
W=]w(k)a*(k1)- cva(—kpn)dk. (2.10)
Then
| (N4-I)=i2W (N+ I)—m=ph|
Zconst ||w|[z2, |j|Sm (2.11)
| oIy CHG L H G W ] (H oLy Iyt
<const [l62( 3 k||, (2.12)
i=1
and

(ICH 2 LH W 1T (N 1)~

=<const || ﬁ w(kdw|[re.  (2.13)

Lemma 2.3: Let W be as above, and suppose that
w(k)=0 whenever |k;| >« for any i. Then

(|CH o2, CH o2, W 1] (NI )~ -]

Zconst 2||w|z:. (2.14)

Proof of Theorem 2.1: Introduce the t=0 field ¢, with an
ultraviolet cutoff :

1
2m)v2v2

Px (x) =

/ " oot (B a(— 1) T (B dk.

The interaction H7,.(g) is defined by

HI,,=/:¢,‘4(x):g(x)dx, (2.15)
and formally
Hi=limH;,.. (2.16)

If we write Hy as a sum of five operators of the form
W in (2.10), then by Lemma 2.2 taken for the case m=4

| o+~ [H 2 [H W 1 (Ho+-1) 7|
=const [Jw2( zj: kdwlles.  (2.17)

Since the kernel w(k) has an over-all factor g3 ;14 &.),
where g is the Fourier transform of the spatial cutoff
£(x), thefast decrease of g(k) ensures that w'/2(3_ ;-1tk)w
is in I2 Thus the kernel for the corresponding cutoff
interaction term w, approximates w in the sense that

b (S B0, (@18)

as k — oo, This is true for each W making up H(g), so
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we infer that there exists a ko such that for > o,
| Ho+I1)"[Ho'", [Ho", Hr—H1,]]

X Ho+I) Y| S3e. (2.19)
By Lemma 2.3, we have the relations
—[H 2 [Ho2,H 1, ] 1= const k?(N41)
<ileHP+const, (2.20)

on the domain DoX Dy. Thus combining (2.20) with the
estimate on the tail (2.19),
—[H"2[Ho?H ]]=—[Hd", [Ho* Hr—Hr,]]
- [Hollz’[H01/27Hl.K]]
Sel+0,
which is (2.8). In order to prove (2.9), we expand H 1(g)
once more as a sum of terms W of the form (2.10). Since
[N, W]=const W, and W is a fourth-order operator
with an L? kernel, we infer from (2.11) that
| QL[N WIW)| S const (¢, (N+I)%)
S3eWNY)+30WH)-

As H(g) has 5 such terms,
[N’[NrHI]]é eN3+b )

which completes the proof of the theorem.

(2.21)

Proof of Lemmas 2.2 and 2.3: Let 0 be an n-particle wave
function. Then (a(k)0)(k1, * +,kn—1) is an (n—1)-par-
ticle state defined by

(d(k)ﬂ)(kl, t "kﬂ—1)= (\/ﬂ)ﬂ(k,k], T ;kn—l) .

Using (2.22) and the Schwarz inequality, it is easy to
establish the bound (2.11).
Note that

([H01/2,a(k)]0) (kl) e 7k7v—1)
=M(k; by, -+ n) (@()0) (ky, - -+ kn1)
= (al(k)g)(kl:' . 7kn—1) )

(2.22)

(2.23)

where

)‘l(k: kl) ot :kn—l)
n—1 n—
=@+ E o) g kTR, (2.24)

For convenience, we have defined a modified annihila-
tion operator a;(k), which decreases the particle number
by one.

For x>0, we see that

(1+a)e—1<atn,
s0
[Ma; kaye - - lena) | <[ (R)JH2.

Furthermore, for x>0,

(14— 1<4s,

(2.25)
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n—1
[Na(; oy, - on1) | S 3w (R)L Z_ll w(®) I

<twkk)——. (2.26
St 229
In the same way
(CHM[Ho"a(R)]10) (1, -+ on1)
=Na(k; k1, + + kn1) (a(£)0) (Ba, -« * sKen1)
= (a2 (k)e)(kla ce ,kn—-l) . (2.27)
Here
Ne(%; kyye - lna) | < {w(k) . (2.28)
~ lconst w?(k)/n
Taking adjoints,
[H01/2:a*(k):]= —ar* (k) ) (229)
and
[Ho2[Ho"a* (k) ]]=a2*(%). (2.30)

Note that the double commutation [HV2[H M2, W]]
can be expressed as a sum of two kinds of terms. There
will be m contributions arising from double commuta-
tors of Ho'? with one of the m creation or annihilation
operators, and these will be of the form of the original W
in (2.10), but they will have one a(k) or one a*(k),
replaced by an as(k) or a,*(%). There will also be
im(m—1) terms arising from the commutator H /2
with two distinct creators or annihilators of W. These
terms will be of the form of the right-hand side of (2.10)
but will involve two of the modified operators (k) or
—(11* (k).

In order to prove (2.12), we use the definitions
(2.22)-(2.24) and (2.27). In order to estimate the matrix
element | (¢,[HoV%,[H2,W]16)|, we use the bound
(2.25) and the first of the inequalities (2.28). As in the
proof of (2.11), the Schwarz inequality then yields

ICH o [H =W TJ(N+ 1)~
<const || i w(k)w|| s, (2.31)

which is (2.13). The proof of (2.14) proceeds in a similar
fashion, using the second set of bounds for the |A;].
In order to prove (2.12), we investigate the operator

X = (Ho+I)"W (Hot+I){(N+I)-m=0r,  (2.32)

By following the proof of Lemma 2.41 and Theorem 2.43
of Ref. 7, we find that

(| X[| < const || E-*2e]| 22,

where
{supw(k,-)w(k,-) if m>1
F=l i
w(k,') if m=1.

7J. Glimm, Commun. Math. Phys. 5, 343 (1967).
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Replacing the operator W by Wf [H2 [ H 2 W], we
find that for the corresponding X,

2] < const B2 Y e (ke 1.

=1

Each w(k;) is dominated by a constant multiple of E'2,
unless k; is very much larger than the magnitude of all
the other momenta, or unless m=1. The former can
occur only when > ;_;™ k; is large in magnitude, and in
either case

w(k;) S const V2wl 2( 3" k).

=1

Thus
21| S const [w*( 5 &ullzs,

=1

which was to be proved.

III. SELF ADJOINTNESS OF THE INTERACTION
HAMILTONIAN

For a real spatial cutoff g(x) in the Schwartz space
S(RY), the interaction part of the Hamiltonian H;(g)
is self adjoint. This result was proved by Lanford, and
also by Doplicher and Jaffe. Statement of these theo-
rems are given in Wightman.® With a slightly different
formulation, the result has been announced by Segal.t

We initially define H(g) on the domain

Do= (\ D(Hy),

n=0

and we will prove that its closure is self adjoint. It
follows from (2.11) that H is well defined on D.

Theorem 3.1: If g=&(R) is real, then

Hi(g)= / : (2): g ) 3.1)

is essentially self adjoint on D,.

Let us introduce a domain D; obtained by applying
any polynomial of the (=0 fields ¢(f), fiES(RY), to
the no-particle state Q. Clearly D;C D, and any vector
Q in D, is an entire vector for ¢(f), which means that
the power series

S5 H<p(f)”9l|z"

n=0 n!

(3.2)

defines an entire function of 2. Since D; is dense in Fock
space, a result of Nelson,? shows that for real f, o(f) is

8 A. S. Wightman, in 1964 Cargése Summer School Lectures,
edited by M. Lévy (Gordon and Breach, Science Publishers, Inc.,
New York, 1967).

9 E. Nelson, Ann. Math. 70, 572 (1959); H. J. Borchers and W.
Zimmermann, Nuovo Cimento 31, 1047 (1963).
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essentially self adjoint on D;. A similar argument can be
made for the canonically conjugate (=0 fields = (f).

LetIN denote the von Neumann algebra of operators
generated by the spectral projections of all the {=0
fields ¢(f), fES(RY). The algebra P is maximal
Abelian. In other words, a bounded operator which
commutes with all operators in It is itself in PL.

Let us consider ¢(f) for supp fCOCR!, where O is an
open region of space. (The support of a function is the
smallest closed set outside of which the function vanishes
identically.) Define 2(0) as the von Neumann algebra of
operators generated by the spectral projections of all the
fields ¢(f) and = (), supp fCO.

Since

JA
o) = f (A(x—y, D)~ —G— t>¢(y>)dy, (3.3)

and A(x,f) vanishes outside the light cone, we infer that
e Ho[(0)e~HtCN(0,), (3.4)
where O, is the region O expanded by ¢.

Theorem 3.2: 1f g(x)E&(RY) is real and has its support
in an open interval O, then for the H; of (3.1)

expGH1())cAO)NM.
We now prove two lemmas.

Lemma 3.3: Let T be any operator with domain D; such
that

TD\CD(e(f)™), (3.5)
TD,CD(T|p,*), (3.6)
and
[T, e(f)*1D:1=0. (3.7
Then
MD:CD(T|p, ) (3.8)
and
[T~ IM]D:=0. (3.9)

Proof: For Q& Dy, from (3.5) and (3.7) we have
To ()= o(f)"T9.
But by (3.6), for real f

ITe(NmalP= (TQe (/) TQ)= (T*TQ,¢(f)*"2)
slT*rall le(f)mell.

Thus the convergent power series (3.2) shows that for
Q in Dl,

T eietNQ=gieNTQ. (3.10)

It is clear that (3.10) is still valid with exp(Ge(f))
replaced by strong limits of sums of such exponentials,
and hence (3.8) and (3.9).

Lemma 3.4: Let It be a maximal Abelian algebra of
bounded operators on a Hilbert space © with a cyclic
vector 2. Let T be a symmetric operator with domain
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MQo, and let T commute withIN. Then T is essentially
self adjoint.

Proof: Without loss of generality, IM=L_(X) and
H=L,(X) for some measure space X, and Qo is the
function 1. Let ¢=TQ,. Then {& L, and T is multiplica-
tion by ¢, with domain L,. Let f&L, and suppose
tfE Ly also and let

J@) i [f@)]=n

falx)= ]
0 otherwise.

Then f.&L,=D(T) and f.— f, t{fn— if in Ly norm
by the bounded convergence theorem. Thus {f,¢f} is in
the graph of the closure of 7. Thus the closure of T is
self adjoint, and T is essentially self adjoint.

Remark: Let T, be a sequence of operators with the
property of 7 in the lemma. Then T, — T strongly on
the domain INQ if and only if T,Q0— TQo.

Proof of Theorems 3.1 and 3.2: We apply the Lemmas
3.3 and 3.4 with the case T=H;(g), M in Lemma 3.4 as
in Lemma 3.3, the Hilbert space Fock space, and Qq the
Fock no-particle state. The hypotheses (3.5) and (3.6)
can be verified by a direct computation. Thus H(g) is
essentially self adjoint on D1C Dy, and hence Hy(g) is
essentially self adjoint on D.

If we assume that supp gCO, then as O is an open
interval, supp gC O, where O, is O contracted by some
small amount ¢>0. Since Hr(g) commutes with Jt,
and 9t is maximal Abelian, exp(:H1(g)t)EIN. Further-
more the argument in the proof of Lemma 3.3, can be
repeated to show that Hi(g) commutes with (0y),
where Oy is the complement of the closure of O1.!! Since
A(RY) is irreducible and H;(g) commutes with A(0,'),
exp(iH(g)t)EN(02) where O, is O, expanded by any
amount ¢>0.2 Taking ¢ <e, we have exp(iHr(g)t)
&(0), which completes the proof.

IV. SELF ADJOINTNESS OF THE TOTAL
HAMILTONIAN

Theorem 4.1: (a) For real g(x)ES(RY), the total
Hamiltonian H (g)=H,+H(g) is self adjoint with the
domain D(H (¢))=D(H)ND(H:(g))-

(b) The total Hamiltonian H(g) is essentially self
adjoint on the domain

D0= n D(Ho") .
n=0

In order to prove the self adjointness of H, we com-
bine the estimates of Sec. II, the self adjointness of
H;(g) proved in Sec. III, and a singular perturbation
theory developed elsewhere.* We need the following
result which is a special case of Theorem 8 of Ref. 4.

10 A, M. Jaffe, J. Math. Phys. 7, 1250 (1966).
11 A, M. Jaffe, Ann. Phys. (N. Y.) 32, 127 (1965).
2 H. Araki, J. Math. Phys. 5, 1 (1964).
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Theorem 4.2: Under the hypotheses (i)—(iii) below, the
operator H= H+ Hr is self adjoint.
(i) Both H, and Hi are self adjoint. The domain

Dy= ﬂ D(HO")
n=0

is contained in the domain of H;, and H is essentially
self adjoint on D,.

(ii) Let N=0 be a positive self adjoint operator,
commuting with Ho, and such that N =const H,. Sup-
pose that the operators (I4+N)7*H;(I+N)™' and
(I4N)HH(I4N)—2 are bounded.

(iii) Suppose that for any >0, there exists a number
b such that as bilinear forms on DoX Dy,

—H1<eN+0I, (4.1)
—[H"2[H?H ]S eH+0I (4.2)

and
—[N,[NH ]S eN3+-01. 4.3)

Proof of Theorem 4.1: In order to prove that H is self
adjoint, we apply Theorem 4.2 in the case that Hois the
free Hamiltonian, IV is the number operator, and Hr is
the interaction Hamiltonian Hr(g). Thus we need to
verify (i-iii). Condition (i) was dealt with in Theorem
3.1, while condition (ii) is a consequence of (2.11). In
Refs. 2, and 3, it is shown that for any >0, there is a
number b such that

—Hz(g)ééHo-l'-bI.

By following that proof, but using the smoothing opera-
tor exp(—tN), in place of exp(—1H,), one arrives at the
estimate (4.1) required in (iii). The remaining estimates
(4.2) and (4.3) were established in Theorem 2.1. Thus we
conclude from Theorem 4.2 that H(g) is self adjoint on
the domain D(Ho)N\D (H1(g)).

We now show that H(g) is essentially self adjoint on
D,. We first show that H(g) is essentially self adjoint on
Dy=D(H)ND(N?). By (2.11) it is clear that the do-
main of H(g) contains D.. For y&D(H(g))=D(H,)
ND(H:(g)), consider ¢,& D; defined by

Yn=n(nl+N)7.
Thus |[Yn—¢||+||Hopn— Hop|| — 0 as n — . We study
Hppn—Hpp=—N mI+N)"Hpp+n[Hr, (nI+N)].

Since N(nI+N)! is a uniformly bounded sequence
converging to zero on the dense set D(XV), it converges
to zero and ||N(nI+N)"Hpp|| — 0 as n—co. But for
the other term

W[ Hy, (hI+N)"
=[Hy, WI+ NI +N)nnl+N)y
= (nI+N)"[N,Hn(nI+N)"y
= (nI+N)"*(I+N)(I+N)"[N,H]
X T+NYyn(I+ N I+N)y.

(4.4)
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Note that as n—o, n(wl+N)1(I+N) converges
strongly to (I4N)y, that by (2.11), (I4+N)"'[N,H1]
X (I+N) is bounded, and that (wI+N)"1(I+N)
converges strongly to zero. Thus ||[Hr, (nI+N)"]¢||—0
as n—o0, and so |[Hpp»— H |l — 0. Thus we see that
H(y) is the closure of H(g) restricted to Ds, so H(g) is
essentially self adjoint on Ds.
Let D, be a Hilbert space with the norm

(o=l H ol V2.
From (2.11) we infer that

|| #¢|| = const[|¢/| n,,

so that H(g) is essentially self adjoint on any sub-
set of D, which is dense in the Hilbert space Ds.
For \//EDQ, Ip)‘= eXp(—)\Ho)\bEDc): nn___ow D(Ho"), and
ll¥r—¥llp,— O as A— 0. Thus H(g) is essentially self
adjoint on Ds.

V. REMOVING THE SPATIAL CUTOFF
AND LOCALITY

For the reader’s convenience, we sketch a proof of
Segal’s theorem® that the self adjointness of H(g)
allows the removal of the spatial cutoff. In fact,if A isa
bounded function of the free fields localized in a
bounded region of space at (=0, then

gt(A)::e“H(U)Ae'—'HH(G)

is independent of g(x) provided that g(x)=X, the
desired coupling constant, on a sufficiently large inter-
val, depending on ¢. Furthermore, if 4 is localized in the
region of space O, then ¢,(4) is localized in the region
0., where O, is the region O expanded by . (We have
taken the velocity of light to be one.) In other words, the
time translation ¢, gives rise to a local theory. If one
chooses for the operator 4 a spectral projection of the
t=0 field ¢(f), one can piece together the time transla-
tion operator for the fields themselves.

In section IV, we showed that H= Ho+H, which is
sum of two self adjoint operators, is itself self adjoint.
As a consequence of this fact, the Trotter product
formula®® says that for all ¢

eitHy =1im (e¥tHolngitH1Inym),
Thus
o (A)p=lim (¢iHotl ngiH1tInyn g (g=sH1ting=iHotlnm
Let O be the region defined by |x| <M, ¢=0, and let
AEN(0), where A(0) is defined in Sec. III.

Given an arbitrary, positive ¢, split g(x) into two
infinitely differentiable parts

g@)=gi(@)+g(),

18 H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959) ; E. Nelson,
J. Math. Phys. 5, 332 (1964).
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where supp gi1(*)CO., and supp gf1O¢2 is empty.

Write
Hi(g)=H1(g)+Hi(gs),

so that as a consequence of theorems 3.1 and 3.2, Hz(g1)
and H;(g.) commute, and

exp[iH1(g)t/n]=exp[iH1(g1)t/n] exp[iH1(go)t/n].

Furthermore,

exp[iH1(g)t/n]EAQ0),
and exp[iH 1(gz)t/n] commutes with %(0./s). Therefore,

A1(f) =exp(iH ot/n) exp[iH 1(g)t/n]A
Xexp[—iH 1(g)t/n] exp(—iHo/n)

depends on g(x) only in the region O., and by the free
propagation property (3.4),

A1EAOymy+e) -

We continue step by step, and after »n steps we
conclude that

A, (t)=[exp(iHot/n) expGH1(g)t/n)T"4
X [exp(—iH1(g)t/n) exp(—Hdt/n) "

depends on g(x) only in the region Oy, and

A.OEN(O yne) -

Since e can be chosen arbitrarily, 4,(¢) depends on g(x)
only in the region O, the closure of O;, and

4,(0€ NAWOw).

0

Thus A,(f) commutes with any local observable B
localized in open region of space O’ such that O’ and O
are disjoint. As this is true for each #, it is true for

o1(A)=strong lim4,(t).

Hence o,(4) is local, and it depends on g(x) only in the
region 0., where we choose g(x)=X\. We therefore con-
clude that the spatial cutoff has been removed and the
resulting theory is local.

VI. THEORY IN A BOX

We can consider a somewhat different cutoff theory,
namely the go* theory in a periodic box. This gives a
cut-off interaction which is translation invariant, and
therefore it is useful for the study of the vacuum
state4 In a finite interval, but with no ultraviolet
cutoff, we prove that the total Hamiltonian is self
adjoint and has a complete set of normalizable
eigenstates.

The theory in volume V is constructed by taking a
Fock space §v of functions defined on the momentum

14 A, M. Jaffe and R. T. Powers, Commun. Math. Phys. 7, 218
(1968); J. Glimm and A. M. Jaffe (to be published).
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space lattices I'y, I'v XT'y, etc., where

Ty={k: k=2an/V, n=0,+1,£2,---}. (6.1)
Thus the free Hamiltonian is
Hoyv= 3 av*(k)av(k)w(k), (6.2)
kSrV
and the /=0 field is
ov(x)= (2V)re
X X e ay*(k)tav(—k) Jo (k)12 (6.3)
kETY
The interaction Hamiltonian Hr, y is defined by
H[,V=g/ Z(pv(x)42dx, ggO (64)
v

and Hrp,y is self adjoint as was shown in Sec. III for
H(g). The total Hamiltonian in a box is

Hy=Hoy+Hr,y.

It is possible to regard v as a subspace of §§ defined
by functions on R, RXR, etc., which are piecewise
constant between lattice sites. The correspondence be-
tween ay and a is

V 1/2 p27|V
dv(k)=(-2—) / a(k—l—l)dl, kR&Ty. (65)

e

Therefore the estimates of Sec. II are valid for Hy,
and so Hy is self adjoint on the domain D(H,,v)
ND(H;,v), and Hy is essentially self adjoint on the
domain

Do= (N D(Ho,v").
n=0
Theorem 6.1: The spectrum of Hy is discrete with finite

multiplicity, so Hy has a complete set of normalizable
eigenstates.

QUANTUM FIELD THEORY

1951

Proof: Let T, y=Tv(N{k: | k] Z«}, so that an ultraviolet
cut-off field ¢,,v(x) is obtained from ¢y by summing
(6.4) over I'y,y. Then a sharply cut-off Hamiltonian
H,v=Hov+Hr,,y comes from

HI,x,V=g/ Lo, v(x)tidx.
Vv

The operator H, v has pure discrete spectrum with
finite multiplicity.’® Furthermore, Hy,.,v is the sum of
five expressions of the form W,,y of (2.10), such that
|lw,y—we v||z2— 0 as«k, ¥’ — . Therefore the bounded
operators ([4+Ny)"'Hr,, v(I+Nv)™! converge in norm
as k—» to (I+Ny)"'Hr,y(I+Ny)™'. We now appeal
to Corollary 10 of Ref. 4 to infer that the resolvents of
H, y converge in norm as k —« to the resolvent of Hy.
Since each R,,y=(H,v+c)™" is compact, so is their
uniform limit Ry, and the theorem is proved.

We further see that the projections onto each eigen-
value N\,.(k,V) of H,,y converge as k—. This is a
consequence of Theorem IV. 3.16 of Kato.!® Thus, in
particular the vacuum vectors for H,y converge in
Fock space to a vacuum vector for Hy.

VII. CONCLUSIONS

We have shown the existence of a local time transla-
tion for a two-dimensional \¢* theory without cutoffs.
The method relies on basic inequalities satisfied by the
first and second power of the Hamiltonian. Similar
estimates of all the higher powers of the Hamiltonian
proved useful to investigate the existence of vacuum-
expectation values in a Ag* theory with a sharp mo-
mentum-space cutoff.’® It does not seem likely, in our
case, that H¢®is dominated by higher powers of H, since
the ground state of H must be in the domain of H*, for
all #, and the first-order perturbation correction to the
Fock vacuum is in D(H ), but not in D (H*?).

15 A, M. Jaffe, Ph.D. thesis, Princeton University (to be
published).

16T, Kato, Perturbation Theory for Linear Operators (Springer-
Verlag, Berlin, 1966).



