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A general expression is obtained for the leading long-range correction to the static
interaction of a slowly moving charged or neutral system at a large distance from a
spherically symmetric atom, and precise estimates are pregented of the magnitude for
the systems H, He (1S, 2S, and2S), Ne, Ar, Kr, Xe, Li (1S, 2S, and2S), Li,
Naj K~ Rb) Cs~ Hp& N29 and CH4 ~

I. INTRODUCTION 4(R, r, ) =$,F, ( R) X( R, r,.), (4)

Some years ago, Dalgarno and McCarroll' de-
rived an expression for the leading asymptotic
correction to the static interaction of a slowly
moving charge of arbitrary mass at a large dis-
tance from a hydrogen atom, and recently,
Kleinman, Hahn, and Spruch, ' Opik, ' and Cal-
laway et al .~ have derived an expression for the
case of a slowly moving electron interacting with
any spherically symmetric atom. It is a straight-
forward matter to extend the analysis of Dalgarno
and McCarroll to the general case of any charged
or neutral particle interacting with any other.
The resulting formulas involve dipole oscillator
strengths, and various techniques can be em-
ployed to obtain accurate estimates of the asymp-
totic nonadiabatic forces for all cases of interest.

II. THEORY

multiply by Xt *(R, r ), and integrate over the
configuration space of all the electrons. It
follows that

[r + E (R) - E)F,(l)+$,,e, ,F,, (R) = 0, (5)

where T& —(a /2%)——V ',

and 8«, = (0'/-23K)(2fXf*v Xf,dr v

+ fX,V„'X,,dr).

(6)

If the coupling terms &«I are neglected, Eq. (5)
is the Born-Oppenheimer approximation. If the
diagonal term

The Schr'odinger equation for a system of N
electrons of mass nz and of two other particles 4
and 8 of masses ~and M&, respectively, is

(
N

2 f/' o j 2 2M+

e«(R) =) X, *~+X, ~r

is retained, Eq. (5) reduces to

{T~ + [Ef (R) + e ff (R) j -E) Ff (R) = 0,

(8)

where the potential Vis a function of the inter-
particle separations r —

r&, rz being the position
vector of the ith particle. When the motion of
the center of mass of the entire system is separ-
ted out and all positions are referred to the center
of mass of A and B, Eq. (1) becomes

[ —(8'/2Ã) V~'+ H] 4 = E4,

where M = M~+ME, % =M~E/M, R is the vector
from & to B and

e ", eff=- —QV.'- g V. V. +V,2p. i 2M. . i j
2 —1 g~j

p. being the reduced mass mmI/(m+K). The Ham-
iltonian f1has eigenfunctions Xf (R, rf) and eigen-
values Ef (R), which depend parametrically on R.

Expand 4(%, rf) according to

so that the particles A and 8 can be regarded as
moving in an effective field Ef (R) + &«(R). The
correction "- «(R) is that recently de«rived by
Kleinman et al. ' and described by them as the
nonadiabatic correction. It was described by
Dalgarno and McCarroll' as the adiabatic cor-
rection, the term nonadiabatic referring to the
influence of the off-diagonal coupling terms.

Kleinman et al. ' proceeded by decomposing
the total wave function 4 (0, r ) into P4+Q4,
where & is the projection operator I X,(R, r))
x (X,(R, r) [. Then,

[T +E (R) + & (R) —E]jF (R)

= (x0ITftQ(E —QffQ) 'QTft I x0) F0(&).
(10)

Kleinman et al. ' then demonstrated that the non-
local potential on the right-hand side of Eq. (10)
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decreased asymptotically as A ' for the case
when system A consists of a single electron and
& is a spherically symmetric atom. We shall
offer here an alternative derivation and slightly
extend their result.

At large distances R, the system is assumed to
separate into two spherically symmetric systems
in their ground states, one of which has ng
electrons associated with particle A and the other
of which has nB electrons associated with parti-
cle R The eigenfunctions of the separated sys-
tems satisfy the equations

m m m
HA&A =EA &A

n n
HB$B

At distances such that the wave functions of &
and 8 do not overlap, we can write

we can write
f„(B)jP Z~ g g

&XtlTRIXt&=-2 6, 03 '(
2IIm R6 n (EB"-EB )

If particle A. is an electron, M~=K=mand we
obtain the correction term

3 (I
tt 2 R6 (E

n E 0)3
B B

(19)

n ng
g 2

— A-"B=R ~ ~ 'B"A' B&Ai=1 g=1

which is identical to the expression derived by
Kleinman et al .'
For neutral atoms & and B,

Xt(R, r.) =
pA (r.)QB (r.)

and we obtain

+ 2 z.Bz.A) + 0 (R '),
zB ~A

(20)

( 1, , )(PA (f& lH —HA —H I(A Q )I

m n E~ +EB —E~ +EB

0 0 m n m n
, ,&&A eB lH-HA HB1&A e-B&&&A yB I

SS
m n (EA +E ) —(EA +E )

&y [T ~y &= —~44 (h e /m) e (m/K)
22 32

xR—'. S Sf (A)f„(B)

EA "EB

+O((H-H -H )'),

in which the perturbation II-&~- @@ can be
written as a power series in R ' according to

H —
HA

—H =Q R V (R,r.).

(13)

(14)

+ O(R ). (21)

Consider now the off-diagonal coupling terms
in Eq. (5) for the case when excitation is not
energetically possible, so that

(15)

If system A is charged with an excess charge Z~e
and B is neutral, Eq. (13) can be written

Z
H —

HA
—H = Q z. + O(R S),

R' i=1

RF (R)-0 as R -~
t (22)

for t & 0. For a charged particle colliding with
a spherically symmetric atom, it follows from
Eqs. (14) and (15) that &tt, decreases at least
as fast as R 4 . Thus

where (xtB, ytB, ztB) are the Cartesian coordin-
ates of electron i referred to B, and the z axis
is chosen parallel to R Then, using Eqs. (13)
and (15), we obtain asymptotically

&Xt ITR IXt&
= —(k /23K)(6ZA e /R )

n i=1'

0+0R +OR (23)

F (R) -- 6 OFO(R)/(E —EB )+O(R ). (24)

Then, adopting an argument used by Castillejo,
Percival, and Seaton' a,nd noting that Et (R)
decreases at least as fast as R ', we can show
that

+ O(R 9).

Introducing the dipole oscillator strength

(16) Hence

I'to~'
S 60tFt(R) --$0 t Fo(R)+O(R ). (25)

(17)

f (B)=(2m/I e )(E E)-
nB

0 2
~B 'B ~B

The operator ~ 6t 0~' contains terms decreasing
as R 8, R 78/SR, and R 682/aR' For bo-und.
states, F,(R) decreases exponentially. For con-
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III. EVALUATION OF THE COEFFICIENTS

Kleinman et al. ' have presented a table of
upper and lower bounds to the summation

p, = 2 ~„f„/(E —E ), (26)

for He, Li, Ne, and Na. A variety of sources
exist that can be used to make precise predictions
of P, and of

r1 = A B EA -EA
m n

x(E " E)(E --E& +E E) I-, (27)

tinuum states, ' BIO/BR-kE, (R) and B'I'0/BR' -O'E, (R),
where k' = 2M(E —ER')/P

Similar arguments can be applied to the scatter-
ing of neutral spherically symmetric atoms to
show that the leading terms of the nonlocal poten-
tial behave asymptotically as R ", AA ', and
jpA

Taylor. ' In units of a,', the values are 0.702 and
0.706, respectively. A semi-empirical value of
0.705, has been reported by Bell and Kingston. '
A two-term fit to refractive index data" yields
0.73, and the series representation of refractive
index data by Dalgarno and Kingston" gives a
value of 0.708.' An estimate-of P, can also be
derived from Hartree- Fock perturbation the-
ory. ' ' The uncoupled apprpximatipn leads tp a
value of 0.767, and the coupled approximation to
0.656, the errors being comparable to those
occurring in Hartree- Fock calculations of the
dipole polarizability.

Metastable Helium

The accurate variational calculations of g, for
He(2'S) and He(2'S) yieldvalues of p, of 1.76 x]04',4

and 3.63 x10', 'respectively, to within a probable
error of 3%.

Lithium Positive Ion

Accurate variational calculations'4 of y, for Li,
Li+(2'S), and Li+(2'S) yield values of P, of 3. 5
x10 'a ' 9.97x10'a,', and 2.72 x10'a,4, respective-
ly to within a probable error of 1/o.

for these and for other atoms arid molecules.
The coefficient P, can be written in atomic

units in the form

P, = ,' f(y, (-r, ~ = 0) I'dr,

where (H E'+~)g, + g r-.P'=0.
i=1

If we introduce also (, by the equation

and define

4((u, u)') = fg, (r,i(u)g, (r,i(u')dr

+ fg, (r,i(u)g, (r, i(u')dr-

+ fy, (r, i(u)g, (r,i—(u')dr

+ fy, (r, —i(u)&, (r, i(u')dr, -

y, can be written

y, =, f, d&ufo d(u'4 ((u, (u')4 ((u, (u').

Atomic Hydrogen

(28)

(29)

(30)

(31)

(32)

Lithium

A variational calculation of X, for Li has been
carried out to somewhat lower accuracy than
have calculations for two-electron systems. " The
resulting value of P, is 1.18 x 10'cio', accurate
probably to within an error of 5%. The value is
in harmony with a semi-empirical value of 1.2
x10', which can be derived from the tabulation of
Dalgarno and Davison. "

Alkali Metals

Dalgarno and Davison's tabulation yields imme-
diately semi-empirical values of 1.1 x 10'a,',
2.5 x10'a, , 2.7 x 10'ao, and 3.8x10'a, for
Na, K, Rb, and Cs, respectively. The error is
controlled by the uncertainty in the oscillator
strength of the first resonance transition; it can
be as large as 20% for Cs.

Inert Gases

Semi-empirical values of P, for the inert gases
have been listed by Bell and Kingston' and by
Opik. ' We have obtained alternative estimates
from the representations of refractive index data
used by Dalgarno, Morrison, and Pengelly, ' and
a comparison is presented in Table I. The com-
parison suggests that the use of refractive-index

For a hydrogen ion in its ground state, X, is
known exactly, ' with the result'~' that P, =(43/8Z')
a,', where Zis the nuclear charge.

Helium Gas
Bell and

Kingston~ Opiks
Refractive-
index data

TABLE I. Values of P& for the inert gases
in units of ao4.

Precise variational calculations of y, have been
reported for helium on several occasions. Values
of P, can be derived immediately from the data of
Chan and Dalgarno' and of Victor, Dalgarno, and

Ne
Ar
Kr
Xe

1.27
8.33

14.50
29. 15

1.26
7.99

13.17
24. 4

1.28
8. 52

14.9
28. 9



TABLE II. Recommended values of p~ in units of a04. TABLE III. Values of y& in units of a06 for He inter-
acting with H, H2, He, and Li.

Atom or
molecule

Atom or
molecule

H
He (1&S)
He (2'8)
He (238)
Li (1~8) .

Li', (2'S)
Li (2'8)
Li
Na
K

5.375
0.706
1.76 x10'
3.64 x].03

3.53 x10
9.97 x 102
2. 72 x].02

1.18 x103
1.1 x10'
2. 4 x10

Rb
Cs
Ne
Ar
Kr
Xe

H2J
N2

CH4

2. 7 x103
3.8 x103
1.27
8.33
1.45 x10
2. 92 x10
6.69
4. 20
8.92
1.73 x10

alone is usually sufficient to give estimates of P,
to within an uncertainty of 5%.

Mole cules

Semi-empirical values of 8.92',' and 5.03m, ,
r espectively, can be derived from sets of oscillator
strengths for N, '7 and H„" and of 9.1a,', 5.1a,', and
17.3 ao', respectively, from refractive-index
data on N„H„and CH4. ' The sets of oscillator

H

H2

H2
He
Ll

1 ~ 27
2.06
l. 48
0.46

13.98

strengths for H, can be used to distinguish be-
tween the parallel and perpendicular contributions
to P,. They are, respectively, 6.69a,' and
4.20a 4.

Table II is a collection of recommended values
for all the cases we have considered. The error
is usually less than 5/0, in no case should it
exceed 2 P/q.

Because of the mass K in the denominator of
Eq. (21}, the long-range adiabatic correction
for neutral systems appears to have only little
more than formal interest. In Table III we pre-
sent results for y, for mixtures of helium with
the light elements H, H„He, and I i.
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