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In this paper we study the possibility of bootstrapping the unnatural-parity meson states, using 6nite-
energy sum rules. Previous work on this bootstrap scheme was conGned to natural-parity states. We Qnd a
large number of sum rules involving particles which are not 6rmly established, with results that are in good
agreement with experiment (10%).The equations, though not mathematically consistent, are such that the
two sides (Regge and resonances) are equal when t is varied over a large region, and we End several mass
formulas, including mrr'=2m, '—$m~s, me=ms, m, —2mes=0. 5 BeV'+2mp+m '+m ', and relations
between coupling constants.

INTRODUCTION
' 'N the last year, signidcant progress has been made in
- ~ the understanding of the relationship between
analyticity and Regge asymptotics. After the funda-
mental paper by De Alfaro, Fubini, Furlan, and
Rossetti on superconvergence, ' it was realized that
saturation of superconvergence relations by means of a
few one-particle states led to contradictions. Two im-

portant developments soon took place: (a) the realiza-
tion of the importance of the Regge tails and (b) the
generalization of the equations for trajectories with high
intercept. ' In particular, Horn and Schmid emphasized
the importance of the change in the limit of integration.

In previous work," some reactions of the form
P+P ~P+J (where P is a pseudoscalar meson and J
is a natural-parity state) are considered. The advan-
tages of such a class of reactions has been duly empha-
sized in Ref. 5. The agreement with experiment is very
good in spite of the very rough approximations involved.

For completeness we repeat some of the main points
involved in the method, making this paper self-con-
tained. For more details we refer the reader to the
aforementioned works.

Here we are concerned with reactions of the form

2+8—& A+I,
where A and 8 are now scalar or pseudoscalar mesons
and I is a vector or axial-vector state.

The introduction of external unnatural-parity states
permits coupling to unnatural-parity trajectories, and
in this way we hope to learn about their properties. By
keeping our interest in inelastic reactions we avoid many
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problems' arising from the I=o trajectories. The main
limitations of our work result from the uncertain
situation concerning some states from the experimental
point of view. Our calculations, however, support both
the existence and the assignment of the H(990, I0=0,
J' =1+), the 8(950, I = 1, J =0+), and the B(1210,
I0=1 J~=1+).

In Sec. 1 we study the reactions of the form P+P ~
P+A both in the SU(3) limit and in two interesting
SU(2) examples: 7r7r —+ erg and ng -+ 7rP.

In Sec. 2 we study reactions involving the 8 meson.
We feel that the absence of the other members of the
scalar octet at the present time does not justify the
SU(3) generalization.

o" ImA&"&(v, t)do=
a—n

pm+1 (3)
a—n+ m+1 ps

where n is the minimum helicity fIip in the t channel, vo

is the scale factor, and n(t) is the leading trajectory
function. The Regge residue function P(t) is assumed to
be of the form

P (t) =clI'(~ n+1)—(&)

This prescription contain& all the ingredients required
by analyticity, and the only dynamical assumption

e It was suggested recently by H. Harari t Phys. Rev. Letters 20,
1395 (1968)g that a signi6cant bacirground exists only in reactions
to which the Pomeranchuk. can couple.
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1. REACTIONS OP THE FORM p+p —+ p+g
~e consider first the reaction Pr+Ps~p, +g,

where P; are members of the pseudoscalar meson octet
and the indices label their four-momenta. A is the axial-
meson octet of negative charge conjugation whose non-
strange members are presumably II and 8. The scat-
tering amplitude can be written as

&= ',L~ (,t) (p "+p ")+&(,t) (p "—p ")3, (1)
where v=s —I, t= (ps —ps)', and e„ is the polarization
vector of the vector meson. SU(3) invariance, combined
with charge-conjugation restrictions, allows for the
following set of SU(3) independent channels:
1, 8t—8e, 11,8e—8t, III, 10—10; and IV, 10—10. (2)

The analyticity equations with the assumed form of
Regge behavior read':
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based on simplicity is to assume c to be practically
constant in our region of t. (It could have been any
entire function. ) It is perhaps important to emphasize
that this simplest choice can only be achieved if one
uses perturbative amplitudes since the use of an helicity
decomposition implies restrictions on the residue func-
tions (conspiracy conditions) that cannot be fulfilled by
such a simple form.

Our parametrization, as in the case of the natural-
parity states, is carried through by means of v and not s.
At this point our choice differs from Mandelstam and
Schmid's for example, and gives a rather diferent t

dependence.
The limit of integration is chosen halfway between the

last resonance included and the first one left out. This

choice is not unique, but its u posteriori justification is
based mainly on the detailed agreement of the t de-
pendence of Eq. (3).

The saturation problem is attacked as in the previous
cases: the resonance side of Eq. (3) is approximated by
narrow resonances and the Regge side by one leading
trajectory. Third-spectral-function eGects are consist-
ently ignored. Channels I and II are controlled re-

spectively by the vector and tensor trajectories while
the absence of particles in other than the 8 and 1
representations implies no contribution in the 10 and 10
channels. As we take sum rules that behave the same
way (approximately) at high energy, we get the follow-

ing set of equations:

V ( v ~
~v+'

v ImAS~&dv= Cv ~1' (nv) && (nv+1) '~ —
~

vA

V v l ~v+

1mB' dv=Cv&s&1' '(nv+1) X (nv+1)—
'~ —

~
vs,

0

I' '(nT) ( v-

I~sf~dv =CT'"'
~

— vs,
0 nT (vs

(6)

V ISA y0, y0dV =0,

Ima/0 $Q
=0. (9)

The choice of sum rules is fixed by the crossing proper-
ties of the amplitudes that can be read directly from (1).

The resonant side of the foregoing equations receive
contributions from the scalar, vector, and tensor octets.
Using the narrow-resonance approximation, one can
evaluate these contributions by use of standard tech-
niques (see Ref. 5). The definition of the coupling con-
stants is given by extrapolation of the residue functions

from the physical region to positive t, at the mass of the
particle. This value is not in the region where the sum
rule is evaluated, and we have assumed that the
extrapolation is possible.

The couplings are easily expressed in terms of the
residue at the pole.

We combine Eqs. (5), (6), (8), and (9) to isolate the
vector part. Then the equations reads:

(t+mv'+Zv) (pv" 2t+Zv) Pv"vA' ( v ) &+'

C2(2t+Zv)gv qv'j+pv'—
nv' &qv' vs l 21'( +2) k

1 (pvA (2t+Zv)i Pv vs ( v )
C2(2t+Zv)&v+3qv'3+Pv'

v J 2r(nv+2) kvsl

(mT'+t+ZT) pT"8T ( mT' 3mv'—
g~ (ms+t+Zs)+

~

(2t+ZT)' — qT' ~, . . . .

gs nT nT VAqT- 3mT' i '

p A

+ ((t+mA' —mv') 8T—2mA'(mA' —m„') )(2t+ZT)
AT VAST

(1O)

( mT 4mv l —pv nv /v) ++, , l
(2t+ZT)'—,qT'I =

I

—i, (»)
2v 'nT' E BmT'. I 21'(nv+2) kvAJ
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Pr" mr2 —4m„'
g8 + (2t+Zz)'8& — q&' I+I 8&+ (mv'+Z&) (8& —2m&') —Sm&'m„'].(2t+2&)

AT VAST 3m, ' )

pre ( (mr2 4m„') pvnv// t' v ) v+'

+
I

(2t+~r)' — qr' = —
I

—I, (»)
2vtiGr k 3mz' 2l'(vv+2) kvn/

where v~ and v/i are scale factors Z;=m;2 —m~2 —3mv2, 8;= (m;2+m~2 —mv2), and qx'=Imx' —(m~ —mv)']
&& I

mx2 —(m~+mv)2]. Equations (10) and (11)are of the pure bootstrap type, a situation analogous to the case of
the PP —& PV. As stated before, we impose on our solutions the condition that the two sides of the equations be
equal to each other in a given interval of t.

To find a solution, we impose the conditions obtained by the reactions already solved. This implies
n'= (2mv —3m„') '. We require that the equations are exactly satisfied at n= 0 and a= —1. This transforms the
equations into an algebraic set and the a posteriori justification of the correctness of the procedure is given by
verifying good agreement for the whole region in between. The choice of this interval is of course not arbitrary;
it is determined by demanding that the first neglected state (3 ) gives a negligible contribution in the whole range.

The solution demands vg= v~=4my', a mass formula m~' ——2m'' —~m„', aIid the ratio of the couplings gT and

g~ of the vertex VPA given by

gr/gz = (3mv4+m~4+4mv4 7m—v2m„2 S—m~ m2)v/22 m~ m(v2mv2 3m—„'),
where the couplings are defined by the effective Lagrangian

Z=fgip„qi, +(gr/mrs')(e" »e& '~'&p
q//p q//)]ei, e„&.

(14)

To check the solution we go to physical processes. We start with m-m ~ mII. Sy going through the same procedure
as before, we find that the first two equations are identical to the ones obtained in SU(3) except of course for the
appearance of physical masses. The trajectory involved is in this case the p trajectory. The mass formula is well

verified for the H and 2r (to 10%%uo) and we predict gr/gr ——1.This predicts s-wave distributions for H decay and is

in agreement with the values deduced from the m-p sum rules. '
Another interesting reaction is 2r+r/ ~ 2r+B. The equations can be easily written down. The main differences

are (a) that scalar intermediate states can contribute, and (b) that the high-energy behavior is dominated by the

A2 trajectory. The logical candidate for the scalar particle is the 8(962);however, its coupling to the external states
can be neglected. '

The resulting equations read (neglecting scalar states and saturating with A2)

3 cos'8 —S 'S~e' cos8" cos8" (m~ '+me' —m ') —S~ii'(m~ '+m '—m ')
7

3 cos'8 —S~ 'S„/2' cos8n cos8 (m~ '+mii' —m ')+S~ii'(3m~ '+m '—m ')
where

2 (m +m )2]1/2LmA 2 (m m )2]i/2

and cos8~, n are the values of cos8, (where 8, is the scattering angle in the s channel) for which the 2 and B anipli-

tudes, respectively, vanish.
The solution to these equations is not unique. However, the following solution exists: S & ——0, hence m+2= mn+m

(notice linear masses), and we predict gi/g2=0, where gi and g2 are the A2B2r coupling constants defined by the

effective Lagrangian:

Z(A2B~) =e" (A2)I g,p„&-&g„,yg2p„&-&p„&-&p.&-&]e (B).

Improvement of the t Dependence

If the method is successful as a step-by-step approximation as in the PPP V case, one expects that adding more

resonances shouM enlarge the region where the 3 dependence is well satis6ed. If one looks to the first iteration of
xx —+H in which only the p drives the resonant side, it can be seen that for positive t the agreement deteriorates

very badly very soon. In this section we study whether inclusion of further states (3 ) improves the agreement. As

discussed in Ref. 5, if the Regge amplitude and the resonant side satisfy a local average, then every extra piece of

7 Notice that our deanition of v divers by a factor of 4 with respect to that of Ref. 5. Such a factor appears also in the values
we found for the scale factors.

The spin-parity of the II, was established supposing a pure s-wave decay. Moreover, there are indications from other sum

rules that the II has indeed a pure s-wave decay. M. Bishari and A. Schwimmer, Nucl. Phys. (to be published).
& The small width of the 8{ 5 MeV) puts an upper limit on its possible couplings to m-q. The neglect of 8 led to consistent results

for other sum rules. F. Gilmsn snd H. Hsrsri, Phys. Rev. 165, 1803 (1968l.
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amplitude added must compensate for the Regge part by itself. (This behavior turns out to be so in the case of
7'.~ s.~.) The new contributions to the two invariant amplitudes are (in tr7r —+ s H)

P" 5 (m~'+mrr' —m ')(2n+II)' 3(mg' —4m ')(mn'+mrr' —m ')(2n+II)
A(3-) =

Qto vg -2 quan,
/3

m&' 4m—.'~ Sm&'(2n+II)'

10m'' knp'(mg' 4m—')qg ) E

2m@ Qp

(mg +mlr m—)
(2n+11)

~I
Qp

and

pB (+
~

(2n+ II) s—
q

vg np (6np

2 P"(mas —4m ') Smg'(2n+II)'
B(3-)= —A (3-)—— qg —1

5 mg'vgsn, ' (mg' 4m—.')n, "qg

(mg' —4m, ') (2n+ 11))
(16)

2np mg

where
II=n '(3m '—3m ' —mar')

v~n'= v~n'=1. 8. We plot the two sides of the sum rule

in Fig. 1 and find reasonable agreement for

2 (n+,
I'(n+4) k 1.8

(18) 2. REACTIONS INVOLVING THE 5 MESON

In this section we study reactions involving the 6

meson, presumed to be a scalar object. There are two

diferent types of reactions which involve this particle,
as is shown below. Here we only study the SU (2) limit

because (a) there is little evidence for the other mem-

bers of an SU(3) multiplet, and (b) the SU(3) restric-
tions are less powerful in this case since the external

octets are not identical.

We have changed slightly our choice of vz and v& to
maximize the smoothness of Eq. (18).The result implies

r
//

//

I / I

t0 Io g s a

and other symbols have been already defined. We pulpy = —6,
extract a function that is constant (to 10%) within the
interval of interest to convert the system into an alge- and the best mass for H comes out to be 1100MeV. AVe

braic one. This function is defer the detailed discussion of the result for Sec. 3.

- 2

0 I

(c)

i

2 0

-2

t'cj)

With the parity angular-momentum restrictions im-

plied by this reaction, the s and I channels can only

couple to states of E=(—)~+' and 10=1+. The t

channel is dominated by trajectories having I' = ( —)~,
and hence the logical candidate is the trajectory that for
positive t materializes in the p meson.

Since the 8 meson, fi,rst contributor to the resonant

side, is below threshold, we add the next member of the
trajectory directly, as in Sec. 1. We have investigated,
however, whether a solution exists for the 8 alone and

found that this is the case (see below). We write our

equations without explanation since the procedure is

identical to the one Sec. 1.
The amplitude reads:

Fro. 1. (a) The t dependence of the two sides of the sum rule for
the A amplitude after saturation with p. The dashed line repre-
sents the Regge contribution and the solid line the resonance
contribution. (b) The same as (a) after saturation with E. (c) The
same as (a) for the 8 amplitude. (d) The same as (b) for the 8
amplitude.

T(v)t)=e„„~ppr qs"ps e (qs)A(v t).

The four-momenta are defined by 6(P t)+s.(q&) ~
b(ps)+op(qs) and v = (pr+ ps) (qt+qs). The corresponding
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sum rule is found immediately to be

(2m2 g+—t)+ (2M &'—2+t)
10v '

&& L—,', I"(M s2, t)—(p'M s)q'(M 2)j
n (t)n' v

v'8,
4r (n,+2) vt

where
Z =2m22+ m~2+ mrs

&

(m '—m ')(m '—m. ')
7 (M ss, t) =2t+M 22—Z+

Me'

(2o)

The last ratio is also determined by equating the 0.'
coefficients and turns out to give 8=0.45 in satisfactory
agreement with the previous number.

In these reactions the same states are involved in the
respective channels. However, there are two inde-
pendent couplings Baca. We start by considering the
contribution of the 8 alone.

The scattering amplitude is now

T(v, t) = LA (v, t)Pv+B(v, t)Q"je„(qr), (23)

Here, Ms is the B(3+) mass, P(Ms) and q(Mb) are the
center-of-mass (c.m.) momenta of the initial and final

states, respectively, at the S(3+) pole, and vt, v2 are the
scale factors of the p and 8 trajectories, respectively.
Also, t=&g, ~„g, 22/g»~sgg„&&is a ratio of coupling con-

stants. We assume our p trajectory as given from the
previous work. 4 If we start by cutting the integration

just after the 8, we find that the sum rule at +=0 re-
duces to 2m»2 —Z —0.5=0. Thus, mrr2=1. 49 BeV' (ex-

perimentally, 1.46 BeV'). Because of this interesting
result the next member of the trajectory must also give a
vanishing contribution at the dip point or nearby. This
condition imposes a restriction on the mass of the 3+

meson, and if we assume linear trajectories and impose
the condition that O.p vanishes at I,=—0.5, then we get
the expression

ng(t) = t/m .&22 (21)

This is in agreement with the trajectory used by
Sarmawi" to fit high-energy data. We proceed as before.
We cut the integration at the point halfway between the
last resonance included and the first left out, and

extract a function from the Regge side that equals one

in the interval to 10% accuracy. We then get algebraic
relations demanding equality of the coefBcients of the

powers of o on both sides. These restrictions demand

(equating n and n' coeKcients)

vt=2.8 BeV2 vs=2.6 BeV' 8=0.55. (22)

where P=pt+p2, Q= pt —p2, 2r(pt)+e&(q, ) ~ &r(p2)

+8(q2), and the crossing properties of the invariant
amplitudes are

A(v, t) =+A( v, t),—
B(v,t) = —8(—v, t),

leading to the sum rules

Ctnv t' v

v ImA (v, t)dv=
~

— v2

I'(n, +2) l vt

C&& /v
ImB(v, t)dv= —

~

— v,
p I'(n,+2) l vr'

where

Ct=2«v (mv )q& (mv)gr' "
gv&«»

C&&= ',«v'(m-, 2)vt'

(24)

(26)

(27)

t'( ,m+2m„' —m22)
g"""'+g"&'"&

lg, &-&,
2mp

and v&v&' are the scale factors of the p trajectory in A
and 8, respectively. Also,

q 2(m, )= fm, s (m, +m—„)2j(m,2 (m, m—„)2g/—4,2

By performing the algebra, we find for vA&'&

vg(X(ms, t)gr, & "&—$4gs'(ms'+ms' m') (ma'+—m m—, )X(ma'—,t))gr & "&)ga& 2&

= —(2/2r) C n,/I'(, +2) (v/v, )
—'p2 (28)

and for 8(')

(X(m»' t)gl, &~"&+$4qss(3m&&2+m ' m22)+ (m2&—'+m —m 2)X(mr&2, t) j/2m'&'gr &~~&)ger

=—(2/~)C&&/I'(n v+2) (v/»') "v, (29)

X(m&r' t) =2t+m J&2 Z+ (m ' m~s) (m&&—
2—m~2)/m&2—'

Z= 2m 2+m„2+m22,

qs2 Lm22 (m +m )2jLm~2 (m m )2j/4m~2

'2 M. Barmawi& Phys. Rev. Letters 16, 595 (1966).

.,= »'= S.9 SeV&. (30)

Using the condition on the dip of the v~~'~, we d&etermDM

Using the explicit formula of the 8 trajectory de-

termined in the previous example, and cutting at the
point corresponding to spin 2, we find by the same

method as before
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the ratio of the couplings to be

B&scu&/g B&r~& 1 19

The linear and square terms in 0, give also conditions
that read

g B&sce&/g'B&r(e& () 99

gr" "'fn&-2&/gr"'"'go&-& = 2—8 (32)

The results are again consistent to within 10% and
they are of course testable by analyzing the angular
distribution of 8 decay. This combination predicts a
large amount of d wave to be present.

3. CONCLUSIONS

The problems attacked in this paper concern mainly
the unnatural-parity states. However, they necessarily
involve the normal-parity particles as well. As a result,
the consistency of the lowest part of the spectrum of
meson trajectories generated by this bootstrap pro-

cedure can be tested. The results are in agreement with
experiment, if one is satisfied with 10% agreement. Of
course these states are not completely well established
and some of the couplings cannot yet be tested. Never-
theless the results seem to confirm the general features
discovered in previous papers: (a) that saturation can
be achieved with a low cutoff after a few resonances,
and (b) that reasonable agreement can be achieved in a
rather large region of t. One might wonder why the
agreement is not as spectacular as in the mw —+ xcv and
&~~md~ cases. ' Though we cannot give a precise
answer, we feel that it could be that the reactions con-
sidered in this paper have some continuum contribu-
tions, that the states neglected do contribute, or anally,
that higher thresholds make the saturation by a few
resonances less reliable.
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To avoid the mutual inconsistency between interaction, quantization, and subsidiary conditions of the
Rarita-Schwinger spin-, Geld, an additional subsidiary Geld is introduced in the spirit of the StQckelberg
formalism. Relativity is violated in the time development of the subsidiary Geld, but no observable con-
sequences seem to follow. The unvranted states are removed invariantly from the asymptotic states through
a Gupta-Bleuler kind of subsidiary condition. Energy has a positive-definite expectation value in the
physical states.

I. INTRODUCTION

HE sixteen-component Rarita-Schwinger field
4'„, (2:) transforms according to the reducible

representation of the Lorentz group

D&k 1& g (D&k o&(i) D&e 1&)=D&1.o&(I)D&o.i&6)D&i.i&(f&D&k, i&

It carries two spins of —', and a spin of ~3. The spin-~~

constituents may be taken as

Za„@:(x) and se ""r(&,&).;&)„+,,;(te),

where, in terms of the usual Dirac y matrices, Z„„
=22(y„y„y„y„) I—n t'ne . literature one often Gnds

go%„ in place of the latter spin--', constituent. The
advantage of our choice lies in the commutability of
~I'"~~X„q8„with the Dirac operator iy~8„—M.

In order that the 6eld may represent only the spin ~3,

one might consider imposing the subsidiary conditions

id'"~I'Zygo%'q =0.

These equations, although consistent for the non-
interacting case, will conQict with the time development
governed by an interaction. There also arises the ques-
tion of consistency with the quantization postulate. '
Consequently, the subsidiary condition is formulated
in a diferent way as a selector of physical states from
an extra-large Hilbert space.

II. FREE ZIELD
We shall adopt a generalization of the Stuckelberg

formalism' to enunciate a suitable subsidiary condition.
However, before proceeding further, we wish to examine
a free Rarita-Schwinger Geld p„, (2:) without the sub-
sidiary condition. We assume the expansion into the
annihilation and creation operators of all possible spins,

(tLf') 1/2

A. (*)=(2~) '" d'pl —
I

XP L&s„.(y) e„'"&(y)N. '& (p)e-'o*
Frt

+b„t (p) s &"&(y)s &'&(p)e'"j, (3)
,
' K.Johnson and E. C. G. Sndarshan, Ann. Phys. (N. Y.) 13, 126

(1961).


