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The large-momentum-transfer behavior of the electromagnetic form factors of composite hadrons is
shown to be model-dependent. Integer-spin bound states are treated in the ladder approximation to the
two-body Bethe-Salpeter equation. Both spinless and spin-} constituents are considered, interacting through
regular or singular renormalizable interactions. It is found that the asymptotic behavior of the form factors
depends on the kind of singularity at the origin for the regular interactions and on the coupling constant
for the singular ones. This dependence is different for spinless and spin-} constituents. For spinless con-
stituents, the form factor vanishes more rapidly than 1/¢2 in all significant cases, but for spin-} constituents
it does not; in all cases, however, it vanishes at infinity, and the behavior is better than in the corresponding

elementary-particle case.

I. INTRODUCTION

HE asymptotic behavior of electromagnetic form
factors has been recently investigated by various
authors'™5 by using composite models of nucleons and
other hadrons. For a completely bootstrapped particle
the form factors seem to be exponentially falling,! while
if the nucleon is thought of as a bound state of two
elementary particles, the (1/¢%)? behavior is obtained in
some simple models,2~% in which the binding force is
assumed to be given by the exchange of a scalar
particle. In a previous paper! Menotti and the present
author also examined some more singular interactions
and pointed out, though not giving the precise asymp-
totic behavior holding in these cases, that the (1/¢%)?
behavior no longer holds.

The aim of this paper, which is intended to be the
continuation of the previous one, is to examine to a
greater extent the model dependence of the large-¢
behavior. The general hope is to obtain results which
are independent of the particular interaction, such as
an upper asymptotic bound to the form factors of a
composite particle, as opposed to an elementary one.
However, the only general features we shall find are
that the form factors vanish at large ¢? and that the
asymptotic behavior seems to be better than the “ele-
mentary” one. Another suggested result, e.g., super-
convergence,® will be shown to be model-dependent
and therefore not peculiar to composite particles.”-8
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The models we shall examine refer only to integer-
spin, two-body bound states, in the ladder approxima-
tion to the Bethe-Salpeter’ (BS) equation. Thus,
nucleons are not considered here. However, both spin-
less and spin-} constituents will be treated, so that the
results apply to realistic models of pseudoscalar (and
vector) mesons. The mathematical technique we shall
use is not completely rigorous, being based on consist-
ency requirements for some ansatz made for the high-
momentum behavior of the wave functions.

For spinless constituents (Sec. II) we consider both
regular and singular renormalizable interactions.’® We
assume an attractive and continuous four-dimensional
potential which in coordinate space has a singularity
R~ at the origin, and we let s vary from O to 4, s=4
corresponding to the singular interactions.!'’?> The
simplest cases, g¢® and g¢* theories, give s=2 and
s=4, respectively. The intermediate cases (which need
a continuous mass distribution) are not by themselves
completely academic, because the exchanged particles
may be composite and so the singularity of the potential
may depend on their propagators and vertex functions.
The first result, rather surprising at first sight, is that
the large-¢* behavior depends on s for regular potentials
also (0<s<4), becoming less and less convergent as s
approaches 4. The critical behavior is (¢%)~! (which is
also essentially the elementary-particle behavior in the

the composite particle. However, the extent to which the fixed
pole is shifted to the left of the / plane is probably model-depend-
ent.
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E. E. Salpeter and H. A. Bethe, 7bid. 84, 1232 (1951).

10 The interaction is said to be regular if the leading behavior
of the BS wave functions (Ref. 9) does not depend on the strength
(or on the singularity) of the interaction; singular otherwise. For
classifications of the interactions according to their singularity,
see Bastai ef al. (Ref. 11) and Domokos et al. (Ref. 12).
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Nuovo Cimento 30, 1512 (1963).
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absence of the Born term) and therefore the form factor
is always superconvergent for regular interactions.
However, the (1/¢?)? behavior is obtained only for s=2.

In Sec. II the g¢* model is also treated for J>1, and
the asymptotic behavior of the electric-charge form
factor F(q?) is explicitly given. This behavior is always
worse than that of the regular case, and joins continu-
ously with it for g— 0.

We shall not deal with J=0 bound states for singular
interactions. In fact, if they exist (this is possible only
for vector interactions; see Sec. II), they can hardly
be interpreted as composite particles since they lie on
a fixed Regge cut. This is perhaps not mere coincidence,
because otherwise they would presumably have a form
factor asymptotically worse than 1/¢? as indicated
from the higher-partial-wave analysis mentioned above.

Spin-% constituents (e.g., for quark-antiquark bound-
state models of mesons) are examined in Sec. III. Only
the case of the exchange of a vector elementary particle
is treated in detail ; this interaction is singular and leads
to a A-dependent asymptotic behavior of F(g?). The
form factor always vanishes at infinity, but, for /=0
the behavior varies from (g2~ to (¢%)~2 for A — 0.
Therefore F(¢?) can be superconvergent only for higher
partial waves, or for sufficiently regular interactions.
To understand this behavior one must realize that the
elementary-particle behavior with bare coupling to
spin-} particles is presumably bad, being logarithmically
divergent with ¢* for some perturbative graphs (Fig.
3).18

The main conclusion of this paper is that the asymp-
totic behavior of form factors strongly depends on the
model and especially on the spin of the constituent
(elementary) particles. The ¢? behavior of the form
factor determines, depending on the spin of the con-
stituents, the behavior of the (attractive) interaction
at small distances. Whether these results can be
generalized in some way to three-body bound states
remains an open question.

II. SPINLESS CONSTITUENTS

Let us consider a bound state of mass m of two
spinless particles of equal mass M. We shall calculate
the electromagnetic form factors according to a high-
energy model™ which has been previously adopted!®:1¢
and which is consistent with the ladder approximation
for the bound-state wave functions. By looking at Fig.

18 For electrons see, e.g., M. Cassandro and M. Cini, Nuovo
Cimento, 34, 1719 (1964), and references therein. In this case a
class of radiative corrections to the Born approximation shows an
oscillating behavior which may sum up to give a convergent
behavior for ¢2— . We do not know whether similar things
happen in our case.

'S, Mandelstam, Proc. Roy. Soc. (London) A233, 248 (1955);
K. Nishijima, Progr. Theoret. Phys. (Kyoto) 13, 305 (1955).

15 Cf. Refs. 2-5 and Ciafaloni and Menotti (Ref. 16). In Ref. 3
the approximation of Fig. 1 is called “triangle approximation”
but, in the simplest cases, it is the same thing as the ladder
approximation of Ref. 14.

16 M. Ciafaloni and P. Menotti, Nuovo Cimento 46A, 162 (1966).

ASYMPTOTIC BEHAVIOR OF FORM FACTORS

1899

F1c. 1. Ladder approximation to the
composite-particle electromagnetic cur-
rent. The circles are the vertex functions 2q
of the composite particles.

1, one obtains the matrix elements of the electromag-
netic current

@ul1)=2i | d*pda(p+3P2) (p*+M?)

X[G@rtPo)ut pulor(p+3P1). (1)

Here ¢:(p) are the Fourier transforms of the BS wave
functions® of momenta P;," and $;(p) are the conjugate
wave functions.’®? From Eq. (1) the various form
factors are easily obtained. The wave function ¢(p)
of total momentum P is® assumed to satisfy the BS
equation (cf. Fig. 2)

(D) =AG(p) (=) f 0k V(p—R)p(R),

2)
G(p)= (pr+ M) (p*+- M),

where V() is a function of 2 For regular interactions
we shall assume the representation

V(p)= f " dol)
o (p4u2)?

It is easily seen from Eq. (3) that V(p)~<(p*)~*+4 for
large p?, while its Fourier transform V(R)~~R-24+D
for R— 0. So when A varies from —1 to 41 the expon-
ent s of the singularity (cf. Introduction) varies from
0 to 4.

The asymptotic behavior of the form factors is
better understood by using the DGSI?* spectral repre-
sentation of the wave function. For /=0 and 0<A<1,2

pre=3P=%p,

o) 22 G 1AI<1 @)

17 We shall use 4-vectors with imaginary fourth component and
Hermitian +y-matrices. Initial and final states have covariant
normalization.

18 The relation between ¢ and ¢ is given through an analytic
continuation in the p, variable [G. C. Wick, Phys. Rev. 96, 1125
(1954)] and is written & (p,po) =—"L[¢(p,p0*)]* (see Ref. 19) in
the spinless case.

19 M, Ciafaloni and P. Menotti, Phys. Rev. 140, B929 (1965).

2 We stress the point that the value of v [Eqs. (7) and (8)]
which determines the asymptotic form factor cannot be deter-
mined from the P=0 case. Also, the fact that for singular inter-
actions v48 [Eqgs. (22) and (23)] is an indication of the fact that
the P><0 case gives rise to new features, at least for singular
interactions.

2 S, Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev.
115, 731 (1959); M. Ida, Progr. Theoret. Phys. (Kyoto) 23,
1151 (1960) (DGSI).

22 For —1<A<0 the most suitable spectral representation has
a fourth power in the denominator, the p? asymptotic behavior
being better than (p?)73. The final results, Egs. (10) and (11), hold
unchanged, however.
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dzdl g(2,0)

0 41
o(p)= / dt / dz : = / .
o Ja DU+ @M A=) @AM+ T ) (PP put M= imit)

()

By substituting (4) into Eq. (1), it has been shown in Ref. 4 that the leading contribution to F(¢?) for large

¢® [q=3%(P.—Py)] is given by

dzdz'dtdt’da g(2,)g (7' 4") (1—a?)?

constX/ .
(M3 (1a)it3 (1—a)+E(1—a?) (1—2) (1—2)g"F

Now, if there were a bare coupling constant g
(Fig. 3) between our scalar particle and its constituents,
we would have, for regular potentials!®23:24

ImG @) (r)=g(s,=)=g=0.  (©)

and the corresponding behavior of the form factor
would be, apart from the Born term, the known?
“elementary” behavior (¢®)[In(¢%/M?) . Actually,
for composite particles g(z,%0)=0,"2% and one expects
a better behavior than 1/¢%. More precisely, if

g(z1) = AF2a(), g(z)="e 0)

one has that*
F(g)~constX ()~ In(¢/M?), (—1<y<28) (8)

provided that —1<y< 24 is satisfied. But this condition
will be shown to be always true in our cases, so that we
shall not consider other possibilities. The meaning of v
and § is cleared up by the following results*:

G (p)p(p)=2(p*)? for prip’~p* — o
~(P-p)77 for fixed po?, pi~P-p— . (9)

Then we see that, if y>£§, the asymptotic behavior of
the vertex function I'(p22,p2)=G"(p)¢(p) in the ps?,
p2? plane is not uniform. This fact is peculiar to singular
interactions, as we shall see soon.

First let us consider the regular interaction case of
Eq. (3). As is known,® the regular wave function in
coordinate space goes to a constant, independent of the
value of s. The asymptotic behavior in momentum
space is, however, s-dependent, because v and § are.
In fact, one has

y=b=1—A=}(4—s). (10)

A brief derivation of this result is as follows.?5 Since

% For singular interactions the limit (6) gives rise, for go>0,
to a divergent, or cutoff-dependent behavior. However, the cutoff
dependence can be factorized (Ref. 24) for renormalizable inter-
actions and the bound-state condition implies Z~go/g=0 in this
case also.

2 1,. Bertocchi, S. Fubini, and G. Furlan, Nuovo Cimento 32,
745 (1964) ; G. Furlan and G. Mahoux, zb:d. 36, 215 (1965).

26 This argument, which is similar to those of Ref. 3, must be
taken with care because it works in this case, but not for Eq.

©)

V(p—k)~[(p—k)*]+*, from Eq. (2) one has that
G1(p)p(p)=(p*)~'+2 for p?— o, the argument being
self-consistent because [¢(k)d(k)<< o with the above-
stated behavior of ¢(p). Analogously, G~l¢~(P - p)~1*+4
for p>~P-p— . Equation (10) follows from Eq. (9).
By substituting this result in Eq. (8), one finally
obtains?

F(@®)~constX (g2~ ¢ In(g2/M?). (11)

There are some interesting points to be noted. First,
this behavior is s-dependent, although the potential is
regular. This is because the large-p behavior of the
wave function is not determined by the leading term
in R (R® and possibly R?), but instead by the next-to-
leading one, which is s-dependent.?® The form factor is
always superconvergent, its behavior starting from
(¢®)73 for s=0 and approaching (¢*)™* for s— 4, the
latter being essentially the “elementary” behavior dis-
cussed above. Only for s=2 is the (1/¢4%)? behavior
obtained.

Analogous results hold for nonrelativistic potential
scattering. It can be shown in this case that F(g?)
~vg3=@=9) for large ¢,%" the 1/¢* behavior being reached
for a Coulomb-like singularity (s=1). The critical
behavior, approached for s — 2, is ¢~® instead of ¢,
while for singular potentials (varying as —\/7?) one
obtains F(g?)~~(g?) =+ (0<A<]).

For higher partial waves the ansatz for the wave

T PR

LP-p

Fi1c. 2. Ladder approximation to the Bethe-Salpeter equation of
the composite particle with elementary constituents.

(32), even if a regular interaction is assumed. The result (10) can
be proved by means of the same techniques adopted for singular
interactions (Secs. IT and III).

26 The s-dependent term is R4, and for 2<s<4 it dominates
the R? term.

27 The assumption of continuity of the potential is important
to obtain this result. In fact, for a square-well potential, F(¢?
goes as ¢~ not as ¢7% See S. D. Drell, A. C. Finn, and M. H.
Goldhaber, Phys. Rev. 157, 1402 (1967).
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function is
dzdt g(z,t)
60)=11®) [
(p2+P . Pz_l_MZ__. T_ltm2+t) +3
=Vin(p)e:(p), (12)

where YV, are solid harmonics of the 3-vector p. The
analogs of Egs. (9) under assumption (7) are

G (p)u(p)==2(p*) > for p* — =,
(P p) for p~P-p— o0,
plZ/P'P_)O: (13)
where we have specialized P to be parallel to the 3 axis,
and p,%= p:2+ ps%. The determination of ¥ and § can be
carried through as before by using the partial-wave

interaction kernel, and the results are?8
y=d+i=l+}(4—s),

Fl (qZ)gconStx (g2)—1—l—(1/2) (4—s) ln (q2/M2) .

(14)

We come now to singular potentials. Both g¢* and
vector-exchange theories have been treated by various
authors'™? in different contexts. We recall that the
partial-wave behavior in coordinate space is Rf+ for
R — 0, where, for suitable normalization of the coupling
constants, one has®

B72=1+(+1)F[40+1)*+7T", (g9*)
=1—2\4(I4-1)?
F204+2)+ (1—=N)2]2 (vector). (15)
The requirement of the existence of two regular

solutions for R — 0 implies 8-2>0, and therefore, for
A>0,

VALI(+2),
A<I(12) if 1520,
A<1 if I=0, (vector).

(g9
(16)

These conditions give rise to the well-known® fixed
cuts in the / plane. The point /=0 always lies on the cut,
but, while for the g¢* theory the bound-state condition
is meaningless, in this case it can be given a meaning
for vector-exchange theory. There is, however, another
ambiguity®® for /=0 due to the possibility of adding a
Né(x) potential arising from renormalization terms.
Owing to this ambiguity and to the fact that a possible

28 We consider here only the electric-charge form factor, the
behavior of the other form factors being determined by kine-
matical considerations. If / is allowed to take continuous values
through an analytic continuation, we notice the amusing result
that the 1/¢? behavior is reached, for fixed m, only if A — 0, being
in this case /(A\) — —%(4—s) for the leading trajectory [A. Bastai,
L. Bertocchi, and M. Tonin, Nuovo Cimento 29, 247 (1963)].

2 We assume that accidental degeneracy is absent so that a
given angular momentum / contains all four-dimensional angular
momenta a>1.

30 R. F. Sawyer, Phys. Rev. 131, 1384 (1963). See also Ref. 12
and G. Cosenza, L. Sertorio, and M. Toller, Nuovo Cimento 31,
1086 (1964).
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Fic. 3. Diagram belonging to
the class represented in Fig. 1
only when the external particle
has a bare coupling constant with
its constituents.

go

I=0 bound state cannot lie on a Regge trajectory, its
interpretation as a composite particle is rather doubtful
and its treatment is not attempted here.

Let us now look at the 7520 case for g¢* theory. We
make an ansatz of the form (12) but with ((+3)
replaced by (/42), because the wave function is
expected to be less convergent for large p than in the
regular case. The BS equation reads

i d% dYy
o0=360(3) [ o @

where the renormalization terms are not explicitly
shown because they give a vanishing contribution for
i>1. Inserting in Eq. (17) the spectral representation
of the wave function, we get the integral equation

(17

32g(z,)=\ / Ki(zt; 2" 4Ng (2 t)dz'dl’ (18)

where

K1=0<t'——iR>tH /t w dr fz('r,z’)—l—ﬁ(R-;—t’)
{0

filr,2)= / dy y=
XM+ im?(1—2)+y ]2 =~ (I4-1)"17,

1—2 142
R=R(22)=0(z—2") +60(z'—2) .
1—2' 14-2/

We now want to find § and vy by requiring that the
ansatz of Eq. (7) be consistently reproduced in Eq. (18).
For large ¢, or for z— =1, by using the asymptotic

—32

3 Detailed calculations seem to show that the ansatz (4) cannot
be consistently reproduced in this case, the resulting spectral
functions g(z,f) being too singular near z=+1 (y<—1). This is
%1111_ indication that the spectral representation does not exist in

is case.
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properties of f;, we obtain

¢ -1

1(0+1)

tIR 2R iR
X / =t —— dt't'—l-ﬁ:l:xkt‘“[ / d5'g2(2")
0 41/,

) t——l
[ d't'=+84—R!
t/R

g2(2) 12N / dz'gg(z')[ .

x[R(z,z')]l+5—1/32(l+5—1)(2—5)(1~5)]. (20)

By integrating over z from —1 to -1, and using the
relation

1
[ drEn=yEtn, e
-1
one obtains the consistency equation
16(14-8) (1+-86—1) (2—8) (1—8) =\ (22)

which has the solution §=1—3(/—p_), as is expected
in order to obtain the behavior R?- in coordinate space.
More interestingly, Eq. (20) gives at once the value of

Y5

from which it follows that
Fy(g®)~constX (¢*)~"? In(¢*/ M?), (24)

which is the desired result.

As 1—11<8<1 for the values of \ allowed by Eq.
(16), it is clear that the “regular” behavior of Eq. (14)
is approached for A — 0, while for any allowed A, the
function F(g?) vanishes faster than (¢?)~*~'/2. Equation
(24) can be given a meaning also for continuous 7
through an analytic continuation of Eq. (18). It is
then interesting to notice that the “elementary’ 1/¢?
behavior is approached only for /— 0. However, the
point /=0 cannot be reached for >0, as pointed out
previously.

III. SPIN-} CONSTITUENTS

All realistic composite models of mesons are of
fermion-antifermion type, so the analysis of the form
factors in this case is needed in order to have reliable
predictions. The ladder approximation of the electro-
magnetic current (Figs. 1 and 2) can be extended in a
straightforward manner to spin-3 particles, giving rise
to the expression

<2|J,.|1>=—fd4z>

X Tr[¢2(p+5P2)vup1(p+3P1) (ip-v+M)],

where the wave function ¢(p) of total momentum P is

(25)

M. CIAFALONI
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a 4X 4 matrix function obeying the BS equation

(@pry+M)p(p)(—ipe-y+M)
—i\ [ d% T¢()T
=\—) [ ———, (6
A(w)/ (p—k)*+p2’ (26)
Pra=3%p=kp.

In this equation the exchanged particle is scalar,
pseudoscalar, or vector according to I'=1, v, or 7y,.
From now on, we shall concentrate on the vector
interaction, which gives opposite forces for the f—f
and f— f interactions, and also gives rise to a simpler
asymptotic problem. We recall,® however, that, for
any T, Eq. (26) gives rise to a singular problem because
in coordinate space the interaction function has a
singularity R~2 which is, roughly speaking, of the same
type as that of the second-order differential equation on
the left-hand side. The behavior of the wave function
at the origin is, in this case, R-FH+D>=IY2,

Our purpose is to find out the large-¢? behavior of the
form factors according to the composite model of Egs.
(25) and (26). We notice, however, that the correspond-
ing elementary behavior is not as clear as in the spinless
case. The graph of Fig. 3 gives in our case, after renorm-
alization, a logarithmically divergent behavior. But it
is not certain, the potential being singular, that it
dominates the asymptotic behavior or that, by summing
a series of diagrams, a better behavior is not obtained.!
In any case the elementary behavior seems to be worse
than in the spinless case.

To give now the composite-particle behavior we
need the asymptotic properties of ¢(p). To this end we
make the reasonable assumption that M and u can be
neglected in Eq. (25) compared with P and p. The
asymptotic equation then reads

. 2N 'k Yud (k)')’u
P ) 1 (PGP — )= / it
(—ky

42
=—v,Vodv., (27)

where also a vector interaction is explicitly assumed.
It is now easily realized that Eq. (27) admits two
separate JP=0" solutions of the form

¢=7s(eo— @1l p-v,5P-v]) (28)
and of the form
d="5(edip- v+ 01'13P ), (29)

where ¢q, ¢1, etc. are functions of p? and P-p. This
means that only two scalar functions are coupled
together instead of four as in the general case.3 There-

32 This interaction is attractive for, e.g., the symmetric N —N
interaction in the isospin-1 channel.

3 J. S. Goldstein, Phys. Rev. 91, 1516 (1953).

3 See, e.g., M. Ciafaloni, Nuovo Cimento 51A, 1090 (1967),
and references therein.
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fore, the complete Eq. (26) has two types of solutions,
of which one is asymptotically essentially type (28),
and the other type (29). Both of these have the right
quantum numbers® of, e.g., the pion (JZ?=0", C=+1)
and we shall deal with the first one because, for P — 0,
it corresponds to the ground-state solution.®* By sub-
stituting Eq.. (28) into Eq. (27), one obtains two
coupled equations, one of which is simply an algebraic
relation between ¢o and ¢y, because v,0,v,=0 (this is
peculiar to the vector interaction).® The final equations
are

L2 (P p)*JecNp*V oo,
e1=($*)"¢0.

We now insert in Eq. (30) the ansatz

/ dzdt g(z,t)
¢ ==
0 (PZ_‘_P . PZ—I—MZ—;};m?-{-t)z

(30)

31
to get the equation
? \ /1 dx / dzdt g(a,t)
S @r—@pr Jo 5 ) 4Pprbew)

u(x,z,t)= [t+Q(z)]/x—Q(z) ] ' (32)
Q=M (1—), p= M.

We could obtain, as in Sec. II, an integral equation
for the spectral function to determine the values of ¥
and § in this case. This can be done, but we prefer to
try a consistency argument directly on Eq. (32) because
it seems clearer. As usual we make the ansatz of Eq. (7)
and then we let p,2=p>+ p,* — oo, P being parallel to
the 3 axis. By means of the change of variables

t=x(p*+P- patp’)7 (33)

and the analogous one on the right-hand side, we

obtain
( 2)—1[ (P2)2_ (P . P)?:] / __.__d_z_.gz__(_zz__
? (P+P-patey

A dz g2(2)
~. / 0y (34)
1-8J (p*+P-patp?)?
where
I,.E/ dr -8 F7)n, I=481,. (35)
0

We now consider the asymptotic behavior of (34)
in the directions of Eq. (9). If P-p/p,2— 0, then one
can extract 2 in the integrals of both sides and, because
of relation (32), one obtains the consistency condition

S(1—8)=\=> =1+ (E—N)12, (36)

3% We do not consider here internal quantum numbers in
detail; but we refer to a particle-antiparticle case, just to make
sure that the BS wave function is not abnormal, i.e., that it has
the right time parity (Ref. 34) r=—CP=+4-1.

3 W. Kummer, Nuovo Cimento 31, 219 (1963) 34, 1840 (1964).
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This means that, for p?— ®, @o(p)~=(p?)"? as for
the case P=0.2If, on the other hand, we let p?2==4P-p
+p2— o and p;2/P-p— 0, the asymptotic behavior
of both sides of Eq. (34) depends on v. Now we note
that, in this case,

@ @)=
On the other hand,

(P-p)|=~=2p. (37

/' dz g2(2)
(7Pt

1 (lbl2 )lﬂ e (38)
—(P12)1+5 P-p o (14y)H

provided that v <4. The condition y<4& must be satis-
fied because otherwise, if 6<<, the left-hand side of
Eq. (34) would behave essentially as (P- )+ and the
right-hand side as (P-p)~%. Then it also follows that
(14-v)< 6 because (P-p)~? is the most convergent be-
havior one can obtain on the right-hand side [the value
v=(8—1) being ruled out by the presence of a loga-
rithmic term on only one side of (34)]. Therefore, the
integrals being convergent, one obtains, also on the
right-hand side, the behavior

0

dy y7
o (149)

which, because of Egs. (37) and (38), is consistent with
the left-hand side, provided that the coefficients are
equal. This leads to the condition (obtained by relating
the y integrals to each other)

]1 (pl2)—5+ﬁ+l (P . p)—l—y

(39)

r=—1+3, (40)
from which the asymptotic behavior
F(g?)~constX (¢%)~*/ In(¢?/ M?) (41)

follows after substitution of (28) into Eq. (25).¢

The solution (27) can be generalized to higher
partial waves by simply inserting solid harmonics (this
is because 7v,02,7,=0) and the analogous result for
spin J is, for the electric-charge form factor,

FJ (q2)zconstx (q2)— (J+57) 12 1n (q2/M2) R

= =D (89

We note that, according to these equations, the form
factors always vanish asymptotically. This is in fact
what is expected for any bound state for which the
representation (4), or (38), makes sense (y>—1). In
our case the best behavior one obtains for J=0 is
(g®)~12. Therefore one expects that this behavior can
be approached also by regular potentials when s<2.
This is indeed what happens.?” The J dependence of

(42)
where

37 We do not discuss this case here. The essential difference
with the spinless case arises from the behavior of the Green’s
function in Eq. (37).
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Eq. (39) is rather curious and we have been unable to
attach any particular significance to it.38:3

The differences between spinless and spin-} con-
stituents are impressive. In particular, while in the
spinless case binding by a regular potential meant
superconvergence, it is not so for the spin-3 case. An

38 We do not know whether the possible existence of J=0
singularities in the J plane (Ref. 39) for more sophisticated models
can invalidate the composite-particle interpretation of the bound-
state solution studied above.

3 See, e.g., S. Mandelstam and L. L. Wang, Phys. Rev. 160,
1490 (1967), and references therein.
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indication of superconvergence or of (1/¢?)? behavior of
the pion form factor, would imply that either the inter-
action is strongly regularized by some mechanism
(e.g., bootstrap), or that the high-energy model we
used is wrong.
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In this paper we study the reactions 7w — mw(17), w1 — w4,(2%), and =r — 7w;(37) as a bootstrap
system for natural-parity trajectories. We start from the solution of our previous work that gave, among
other results, expressions for the trajectory and residue functions as well as mass formulas, in agreement
with experiment. Here we study in detail the sum rules as a function of momentum transfer . We find a set
of residue functions 8 (¢) that are self-consistent and such that the Regge and resonance sides of the equations
are almost equal in a large region of . We study also a step-by-step approximation that, at each stage,
enlarges the region where the equations are valid. We find, however, that the leading Regge trajectories,
even if infinitely rising, cannot bootstrap themselves. We outline two possible (not incompatible) ways of
implementing the bootstrap. The first way demands an optimized choice of the cutoff parameter and
considers the whole family of reactions =m — 7X s (X7 being a normal-parity state of spin J). Our results
for J <3 show that this is a definite possibility. The second way is to consider a whole family (parent and
daughters) as participating in the bootstrap. We find this possibility also attractive, and as a consequence
we find that daughters must be parallel to the parent, for linear trajectories. The properties of our para-
metrization are also discussed—in particular, the Khuri paradox and the coupling of high-spin resonances
to the system. We also compare our results with experiment whenever possible. Our 4, trajectory, for
instance, follows the Gell-Mann mechanism, and the exponential ¢ dependence of our residue functions is
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perfectly consistent with the one found in recent phenomenological fits to inelastic reactions.

1. INTRODUCTION

IT seems that a very promising attempt in elementary-
particle theory today can be found in blending the
general principles of S-matrix theory, embodied in
analyticity, crossing, and unitarity, with the dynamical
elements contained in Regge-pole theory. The resulting
scheme will, it is hoped, put strong enough restrictions
on the scattering amplitudes that the Regge trajectories
and their residue functions will be uniquely determined.
As a consequence, the spectrum of particles and their

* Work supported in part by the U. S. Office of Naval Research
under Contract No. Nonr-1866(55) and by the U. S. Air Force

under Contract No. 49 (638)-1380. L L
t On leave of absence from Istituto di Fisica dell’Université,
Firenze, Italy. L
1 On leave of absence at New York University, N. V.
On leave of absence at M.LT., Cambridge, Mass. .
?]Present address: University of Wisconsin, Madison, Wis.

couplings will be completely determined and their
bootstrap accomplished.

A large number of papers, dealing with the question of
analyticity at /=0 when the external masses are not
equal, have shown that Regge trajectories must appear
in families.! The Regge functions of the members of the
family must obey relations at this point but are undeter-
mined elsewhere. These results have been reached by
means of powerful group-theoretical techniques by
Toller and collaborators? and by Freedman and Wang.?
A few models have also been solved in some approxima-
tion, as the Van Hove model* and the Bethe-Salpeter

1 D. S. Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967).
h’ M. Toller, Nuovo Cimento 53A, 671 (1968), and references
therein.

3D.Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560 (1967).
¢R. L. Sugar and J. D. Sullivan, Phys. Rev. 166, 1515 (1968).



