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An elementary quark, if supposed to exist and to couple in quark-antiquark pairs to ordinary two-particle
channels, gives rise to a Regge trajectory which would dominate high-energy scattering at large momentum
transfer. A simple model theory embodying these features is presented. Speci6cally, the model assumes a
single scalar-scalar pair to represent the ordinary two-particle channel which is observed, coupled to a
spinor-spinor channel of large mass, and simple pole-type potentials approximated in the effective-range
method. The Regge trajectory and subtraction generated by this coupling are computed, and arguments
are given concerning their contribution to the cross section. Comparison with proton-proton scattering
suggests that if such an elementary particle exists, its mass must be greater than about 10 GeV.

I. INTRODUCTION AND OUTLINE

TTEMPTS to verify the existence of the quark by
~ ~ ~

~

~

its external production in high-energy collisions
have to date not met with success. ' This paper suggests
an idea, exemplified here in a simple model, whereby
the existence of a massive quark, at least as an internal
particle in a collision process, might be made observ-
able. This idea takes its roots in the study of the
asymptotic behavior, as generated by the leading Regge
singularities of the amplitude, of the scattering of
"ordinary" particles (having integral baryonic and
electric charge). It is possible that the concept of the
elementary quark may be confirmed and better defined
should this idea prove useful in explaining ordinary
scattering experiments in this high-energy region.

Let us consider a scattering amplitude whose leading
Regge trajectories fall below angular momentum J=0
for the negative of the squared momentum transfer t,
less than some given (negative) t to& .' The amplitude will
thus fall asymptotically to zero for large values of the
squared energy s. This is apparently an adequate de-
scription of a system of "ordinary" composite par-
ticles. The same is true of such a system into which are
coupled elementary particles of infinite mass, the in-
finity of the mass effectively negating the coupling. If,
however, the mass is finite, coupling to the elementary-
particle channel is effected, and there appears a new
Regge pole which alters this description. Let us assume
these elementary particles to be our ideal of ele-
mentarity: the quarks, conforming to the fundamental
spin representation, J=-'„and to the fundamental
unitary spin representation (3l, thus coupling in quark-
antiquark pairs to ordinary particle channels. Ke con-
tinue to assume, as the production experiments and the
nonrelativistic models suggest, that the quark mass is
quite large.

There is a critical difference of character between
this new type of trajectory, generated by the introduc-
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tion of elementary particles, and that type which is
already familiar in high-energy scattering, and it is
this difference which forms the basis of the idea of this
work. The familiar Regge poles fall below J=O for
—t large enough —perhaps they fall indefinitely'—
whereas this new type of trajectory is bounded from
below by J=s&+s&—1, where s& and s2 are the spins
of the elementary particles; i.e., J=O for the quark
pair. Why this is so will be argued immediately below,
but the consequence is that the new trajectory is the
dominant one and parhaps can be seen as actually
dominating —its strength or residue being here the
point of attention —for energy and momentum transfer
large enough. If the behavior of experimerital cross
sections can be seen to conform with predictions
generated by this new trajectory's presence, properties
of the elementary particles, the quarks, in particular
the mass, can be obtained. If such modification of
present Regge theory is not necessary to obtain con-
formity at the energies and momentum transfers now
attainable, we can at least place a lower bound on that
mass.

The reason for this difference between the two types
of trajectory is, of course, bound to the divergent con-
cepts of the elementary and the composite particle.
The presence of a pair of elementary particles gives rise
to a term in the partial-wave amplitude proportional to
the Kronecker delta 8„+„„,g, where rs is a positive
integer. ' To see this we first note that, for J a given
(half-) integral angular momentum, states having
helicity

~

M
~

~J, called sense states, are physical states
at this J; whereas states having ~cV~) J, nonsense
states, are unphysical there. In continuing from high
J, where all states are physical sense states, we first
encounter such unphysical nonsense states at the
(half-)integer J=sq+s& —1 and subsequently at all
(half-) integers J=s~+se —rt, the nonsense (half-)inte-
gers. At these values of J, the problem of the physical
amplitude merely omits such states from consideration,
via the Kronecker delta, whereas that of the Regge

2S. Mandelstam, in Elementary Particle Physics, edited by
G. Takeda and A. Fujii (W. A. Benjamin, Inc. , New York,
1967), Part II; Phys. Rev. 166, 1539 (1968).

3 S. Mandelstam, Phys. Rev. 137, 949 (1965).
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amplitude, continued to this J value, retains them.
A diR'erence betvreen the two solutions is ensured by the
Regge continuation's having fictitious elementary
particles (the Castillejo-Dalitz-Dyson (CDD) poles)
replacing the nonsense states, which are not at aB
present in the physical partial wave. An immediate
consequence of the existence of these Kronecker-delta
singularities is a "hardening" of the asymptotic be-
havior, the requirement of a subtraction when si+s2—1~0. Out of such a singularity moves a Regge
trajectory —of this new typ" as the coupling to the
channel is turned on, approaching as t —+ ~ the non-
sense (half-)integer from which it emerges, and in the
simplest case bounded below by it.

Particles composite in nature vrill not display such
singularities. When a particle can be treated as com-
posite, the Kronecker singularity vanishes in the same
way that Mandelstam showed the Amati-Fubini-
Stanghellini anomalous cuts to vanish. Thus no sub-
tractions are required if no particles interacting in a
syste~ are elementary, and the asymptotic behavior is
softened. Any Regge poles vrhich exist are not bounded
belovr and we have the familiar nearly linear trajec-
tories well known in high-energy physics. But just hovr

to treat an external particle as a composite one is not
known. Thus in present theoretical schemes, a scalar-
scalar theory has a single subtraction and a pole rising
from J=0.So in the model to be presented here, vre have
chosen to work vrith a scalar-scalar theory, one not well

realized in practice, but one having its leading trajec-
tory falling through J=O, if only to J=—i. Had vre

attempted to vrork vrith a theory of a pair of ordinary
spinors comparable with the experimentally well-

knovrn nucleon-nucleon scattering, already there vrould

be a pole covering the one of particular interest, that
new one derived from the coupling of this channel to
the quark-antiquark spinor pair, which rises from and
remains near to J=O.

In Sec. II we will carry out the procedures of calcula-
tion entailed in a model vrhich exhibits the above
features. This model and those procedures are brieQy
outlined in the following. We take, as our only
"ordinary" particle channel in the scattering, a pair of
scalars (because of the difliculty mentioned above) of
equal mass, retaining only a minimum number of
parameters in this naive model. These are to be coupled
to a quark-antiquark pair, represented by much heavier

spin- —, particles in two helicity channels. Simple poten-
tials are chosen and approximated by an e8ective-
range type method. The 1VjD method, which now

reduces from integral equations to numerical equations,
is used to obtain the partial-wave amplitude, whose

poles in J, u;(t), and reduced residues in the ordinary
particle channels, y;(t), are found. Returning to the

scattering amplitude by a Sommerfeld-Watson trans-

formation, we obtain the large-energy amplitude and

cross section in the crossed (s) channel. In the conclud-

ing part of Sec. II, the subtraction term is discussed.
Finally, in Sec. III, comparison of the behavior of this
imagined scalar pair scattering vrith experimental
nucleon-nucleon scattering, for example, places an
order-of-magnitude lower limit on the mass of the quark.

A. N/D Solution

X. Veiturity, the Right-Hmd Clt

To begin, we write down the t-channel unitarity equa-
tion for the amplitude M, normalized appropriately:

3fb, —3Ib,~

2i c 4m.

dQc
Mb.~

in terms of which the cross section is

(t(rba pb 1'ba

dQb P, E
(2A2)

Most notations are the customary ones. The particle
channels in the problem to be considered are three:

(l) a pair of "ordinary" particles which in the model
are likened to two pions, having no spin, mass p, and
three-momentum q, but which are to be compared in the
6nal analysis with some particles whose scattering is
better known, for instance, the nucleons;

(2) a helicity-zero state; and

(3) a helicity-one state, of a pair of spin-~ anti-
particle conjugates of mass M and three-momentum p
which are treated as nucleon-antinucleon in the model
and which are finally comparable vrith the very heavy
quarks.

Ke are concerned here only with the dynamical aspects
of the model; no isotopic spin (or unitary spin) consid-
erations are put forvrard.

The angular momentum projection of M in helicity
states is

nlrb,
'~=—

2
ds db.bbJ (8)Mb. (t,s). (2A3)

For spinless particles, the factors needed to remove

Il. THE MODEL

In the first part (A) of this section, we will set up the
problem, proceed through the solution of the 1V/D
equations in the t channel, and comment brieQy on the
Sommerfeld-Watson transformation, In the second
(3), we shall Gnd the equations describing the t channel
poles, and their residues and contributions to the
asymptotic s-channel amplitude. In the third (C),
the subtraction term will be discussed.
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threshold kinematic singularities are well known:

maa~= q 2~maa'~

1

2r ~0

s )
ds (qs)-s-s()s(1+ ~('bqss], . (2A4)

2q'

For particles with spin, further kinematic singularities
must be removed. From Frazer and Fulco we find'

and

2t M
P'A.-+ (Pq)L(J+1)B" JB.-

p k 2J+ I
(2A5a)

m3a'~=
2Z I J(J+I)] I

(Pq) (Bg r By+2) . —(2ASb)
p 2J+1

p, „LJ(J+1)1'"
pn, ~' ———(pq)-'pn„" = 2

jV 2J+1

&& I:b~-2—(Pq)'&s+2 (2A6b)

are free of kinematic singularities, and that in terms of
these amplitudes the unitarity equation becomes an
equation of the discontinuity across the right-hand cut:

mb. ~+—mb. '-
2j

—Q pns skp Jpn Jw

C

or Lpn-'j 22
———ps, (2A7a)

where p, ~ is a diagonal matrix with elements

(qz J+1 Mzpz J—1

(P P P )= I 0(t 4tz'), 0(t—4M'), —

Note that certain linear combinations of these ampli-
tudes are those of defined parity and orbital angular
momentum, not these quantities themselves. %riting
as= (pq) As, etc., for the projected invariant ampli-
tudes with threshold kinematics removed, we see that

p p'
pnzr ———(pq)- pnzr' =2 ——ay+

M M 2J+1

X[(1+1)(pq)'bsss Jbs s]) (—2Abs)

J'

l

I

gg /L

Fzo. 1.The potential chosen in the model.

(~»'}~=g'zp'(q') ' 'Q~(z-)

(pn»'}~= g"(Pg) 'zQ~(z)

(2A9a)

(2A9b)

(pn81 }L g (Pq) '(z' —1)Q~'(z), (2A9c)
LJ(J+I))'(2

where

z„=1+
2/2

p'+q'+M'
and

2pq
(2A9d)

Now each part of the potential is approximated by
a pole, a familiar scheme called the eRective-range
approximation. The method we have chosen in to find

the position and residue of the pole for all J by fitting
at the channel-1 threshold (q'-b 0) to the value and

derivative of the original form. For examples, see
Table I. So we have that

TmLE I. Original forms and approximations of the potential.

I B] = (g')'qrb(s M')— (2ASb)

We have assumed a scalar type of coupling for the
imagined pions, with coupling constant gtb (tb inserted
for convenience). In the coupling of the spin--', particles
to the spinless one, we assume that the coupling con-
stant g' defined in analogy with that of nucleons to the
pion remains of order 3P=1 as the mass 3f becomes
large; how to modify this assumption for other behavior
in this mass parameter is obvious. It is also quite easy
to modify the assumption made in the interest of
economy of parameters that the masses of the exchanged
particles are the same as those of the external "pion"
and "nucleon. "

The corresponding integrals over the left-hand cuts,
the potential in the E/D method, are therefore

P's 'Zq(s 4bq')) (2A)b)—

I:M»3 = (gp)'~~(s —p'), (2ASa)

' Q. R. Frqzer aqb(I J.R. Fbrlcob Phys. Rev. 1)7, $603 ($960).

Z. Potential, the Left Hand Cut-
The potential is chosen in the usual simplistic fashion:

double-spectral contributions are ignored, and only the
poles are saved (see Fig. 1):

( ) I"-o

d—( ) I
q'-4

dt

Original form

2)4'(q') 'QZ(Z )

r(J+1)
2

( 2)
—J~l/2

p (++9.)

r(Jy1)
(„2)—m~2(2

r(Jysz) 2242 j

Approximating
form

(4u' —t )'
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is approximated by

22r'"I'(J+ 1) 1

(p2) ~ 1I' (J+ 82 ) J+1 4'{x—1+$2/ (J+1)1}

with the numerical system of equations for the matrices

8 8

3,=v, (1—Q p;,a,1;) or g (8,;+v,p;;a;)38=v, . (2A12)

0 1 01 0 0

where x= t/4p . The other parts of the potential are This js a system of 3X3 matrices in the pole index, the
approximated in a similar fashion. elements of which are 3&3 in the channel number.

In summary, we have approximated the potential by e define here a matrix whose symmetrical elements in
the pole subscript space are

{233~}z,
——V~(t) = G

-0 0 0.0 0 0.

Q2
0 0 0 + 1 0 0

t—t2

G p(t')
p, =— dt'

(t'-t;) (t' —t,)

where

0 0 1
88

+ 0 0 0 =G P, (2A10a)
i=1 t—t;

0 0.

1 (G p (t') G p (t') )
t; t En —s t' t; —n ]3 t' t3I—

p' —pj
(2A13a)

1 2r'~21'(J+1)
~

G —4p2g2
2 &2zl (J+8))

(2A10b) whose diagonal elements in the channel number space
are

2
(2A10c)

J+1 2(J+1)
where

p&

(Prj)as= &48P8j =~as (2A13b)

(-;+ J)X2

IVI2 1
4p,2

g~ 2

g (J+1)(J+2)+(J'—2)~'

(2+J)~'

(J+1)(J+2)+ (J'—2)X2
(2A10d)

G p (t')
(p;) I3=8 ttp, =8

I3
— dt' . (2A13c)

Note that in the numbers p;; or pi, the subscripts de-
note the index of the approximating pole and the super-
scripts, the channel number. Explicitly these quantities
al e

(-,'y J)~2

t8
g8=

4@2 JLJ+1+(3J+5)X2j

(a' ' (J+1 1/2

k g 1[I+1+(37+3)X']k J )
(-;+J)X2

gp'= —4p'— F(1, —J'-'; x')
x sinxJ

(2A10e)
2r sinn J 5J+2 I

(2A14a)

1
X(t) =V(f)+,V (t') V(/)—

dt' p(t')1V(t'), (2A11)
t' —t

we may write the solution

and where X=p/M is the anticipated small ratio of the
masses.

3. XD Sotltiom

AVe have now discussed the quantities which are to
be put into the X/D method for 333~: Eqs. (2A7) and
(2A10), where rr3~=iVD '. The prima, ry purpose in

approximating the potential terms by poles is that the
integral equation for X now reduces to a numerical
equation. Inserting Eq. (2A10a) into this equation
for E,

XF(1, 1—J 8; x,X2) (2A14b)

(Jl
p '= —4y2-

n. sinn J (J+-'2l

XF(1, —J; -', ; x,A2). (2A14c)

F(a,b; c; x) is the hypergeometric function.
The system (2A12), which is 9X9, is immediately

reduced to a 5&(5 system by virtue of the fact that four
rows of vi are zero, and is solved in terms of the 3)&3
determinant d,

1+alpll a2 P12 p22 a8 P13 P88

alp12 1 a2 p22 P22 a8 P23 P33 (2A15)
~1P18 ~2 p28 p22 1 ~8 p88 p88

1VP)=G P
Sinai

(2A11') and its cofactor matrix elements d;; [the determinant
derived from d in this form by setting the ith row and
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jth column to zero, except for the (ij ) element, which is set to one]. Thus it is found that

dll+d21+dsl (+2/lsl)d12 (lss/181)dls
1

P1=— 0 0 0

0 0

(2A16a)

and

+2p22 (d12+d22+d32)

d12+ d22+ d32

0

(ass/182) As

(d d22)/(lssp22 ) d32/(lsspss ) i

lsspss (dls+d23+dss) (l82/ass)d32

(2A16c)

As+As+A —dss/(lsspss') (d—As)/(lsspss')-

The denominator function D(t) is found by merely integrating:

1 p(t')
D(t) =1—— dt' X(t'),

g
which ls

3

D(t)=1—Q ls;pp;v,

(2A17)

(2A17')

lslplp (dll+dsl+dsl)
+l32 p20 p22 (d12+d22+A2)

2 1 3+ass p30 p33 (dls+d23+d83)

d
l82 p20 (d12+d22+d82)

. —&3'pso'(dls+dss+dss)

(p20 /p22 ) (d d22)

(182/188) (pso'/pss') As

(ass/l82) (p20 /p22 )d23

d—(pso'/pss') (d—As)

132(pip d12+p20 d22+p80 A2) lss(pip d18+p20 d23+p30 d38) ~

(2A17")

where we use the subscript 0 to denote t;= t = to. Its determinant is found to be

IDI =D/d,

1+181(P11 Plo ) ass (P12 p20 )(p22 P20 ) ass (Pls P30 ) (P33 p30 )
181(p12 plo ) 1 182 (p22 p20 ) (p22 p20 ) lss (p23 psp ) (p38 p30 )
131(pls Plp ) ass (P23 p20 ) (p22 p20 ) 1 183 (p33 p80 ) (p38 p30 )

(2A18)

In order to eliminate factors of d, we define

X=K/d,

If A. is small, and if J is near zero, the approximation to
be de;, =0, d

and X) ' to be the cofactor matrix of D; i.e.,
D '= X) '/lDl; hence

I+ill(pll pip )D=
&1(P13 Plp )

—183'(Pls' —P3O') (PSS'—P8O')

1—as (p38 psp') (pss' psp )

and
D= (D/d)n

233~= xx) '/D.

(2A17"')

(2A20) (&& ') ll= —188'(pss' —pso')
4P X—X1 X X3

If X is small, or zero, due to large, or infinite, quark
mass, mass, and J is not near zero, a good approxima-
tion is a2 ——a3 ——0. Then

181(P88 Pls ) +1(P11 Pls ))+
l

. (2A21b)
X—Xs j

and

D= 1+181(pll —plo )

G u1
(XX) ')ll=

4@2 x—xg

(2A18')

(2A21a)

This approximation of large quark mass is taken in the
following as an assumption to be verified by the final
results, in comparison with experiment, and will be
s|:en then to be justified,
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4. Sommerfeld W-atson Transform

The procedure to be followed from here on is well
known. One solves the equation D=O for the Regge
poles, J=n;(t), and their reduced residues,

with xz ——xz (zzz) = 1—P/(az+1)g. Since F(1, —n. ; —', , x)
does not take a closed form except for n equal to any
half-integer, for simplicity we shall 6nd the pole
positions in x for Q. z = —1, —~, and 0 and interpolate.

(Xm-')zz
v'(~) =

aD/aJ, ., (,)
' (2A22)

At nz =—1, x approaches —~/(nz+1) . (232)

At nz ————,', Eq. (231) becomes

so that by the Sommerfeld-%atson transform the
amplitude is, for large s,

1'(a'+2) V'(—s) '
M=+ —2gz"

1'(n;+ —',) sinzrn;

A simplifying factorization is made by defining

-1~zi2 r(a;+1)-
Vs Vs)

2 ~2ag P (~.+3)

1 1 ~ 1
t

1+xz~'~
1+ -+—~g=F(1,l; l;x) = »I I (28»

3 g' j 2gz~2 (1—xzlml

Thus, numerically or graphically, one can 6nd x( &~&~,

the pole position in energy for angular momentum
nz= —-,'for any coupling g. At this limits, x( &12)=1
for g=O and x( ~/2~

——0 for g= ~.
At nz =0, the 0/0 form is easily reduced, since

F(1, —;—;;*)=1—;F(1 1-', *)
= 1—2n[1—p, (g)1 (284)

x) zI2

p(x)=~
~

1nL(—x) z + (1—x) ~'j
k —g&

s)' (s)'~=K— ~*i ——
i

=2—gv'I —
i

(««~+1)
singn, 5 zz'i ' k p'j ~1—x)z~'

arcsin(x'I2) . (285)
x I(2A24)

this factor being included in X via the factor in 6, from near 0.=0, and
Eq. (2A10b). With this inserted,

Ke note in passing that for a pole whose position and
residue are small and of the same order of magnitude,
the contribution to 3f is

do- 4x

dt sq, '
(2A25)

B. Regge Poles, Residues, and
Asymjptotic Contributions

l. U c npo/eld Case

We first study the case of in6nite quark mass for
which M = ~, or X= a2 ——u3= 0. The pole to be found in
this case will, of course, be present in the finite mass
case, but perturbed by the small but finite X. Here,
setting Eq. (2A18') to zero, we have the equation of the
trajectory J=nz(x). Explicitly, this is

Vs
M, = ——y;Lln(s/p')+izr j. (2A24')

&i

By crossing, 3f is the Reggeized asymptotic amplitude
for scattering in the crossed (s) channel, for which

Equation (231) at nz =0 is thus

-zr+i 1—-zr—4 ( 2
(a'/~)&

Again a numerical or graphical solution is easily ob-
tained for x(0). The range in x of the pole along J=O
with g varying is from —', at g=0 to 1 at gm/zr=1, and
there is no solution for g smaller than this.

Assembling the information from these three values
of n z [for (g'/g) )~1) and interpolating, we take for the
Regge pole the form

where

Qz
x= xz(J) = +bz+cz(J+1),J 1

(287)

x—bz+$(x —bz)' —4azcz Jz'
J=nz (g) = —1+

2t"z
(288)

br= ~
—x&»+2xz-zi» i

and cz ——2)x&oz —xz zlmz]
—1. (287')

Inversely, we have

g 7i

0= 1+—
zI' sin'zro!z Qz+ 1

(F(1, —nz, —', , x)—F(1, —az,. -,', gz)
X

x xg

~~ ~~-F'(1, —zzz, $; xz) i, (281)

Thus D may be written

x xz(J)—
(289)D

xz(J)—x, (J)'
since D=O on the trajectory x=xz(J), and D= 1 at
x= xz(J). Hence one may compute

OD/BJ )z ~z
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3—

I

-4
I

-2
X

-0.5

except near x=xzpz, where apparently the two poles
will cross each other, for (g'/s. ) &~ 1. Actually, the poles
will not cross each other in this anticipated fashion, but
break and rejoin near x=x~p~, J=O, so as to avoid

crossing awhile passing very close by. ~ Since in what
follows we are concerned only with the region somewhat
below this point, we may take, as the approximate poles
of the coupled problem, zzz(x) andnzzz(x), defined as the
zeros of Di and D/DI.

With the approximations X«1 and
~
J~&&1 inserted

to lowest order into D, we now And O. zzz as the zero of
DD$ ~

»o 2 ~z(x) and Vz(x) for gs/s. =2.

and from Eq. (2A21a) (KX) ')ii, in order to find yr by
Eq. (2A22):

s~(g'/~)
(2310)'Yz

L(*-b)'-4 * ]"

g (Iso—IzzR= &+—
I

—vi'),
e ~xo—xz

(g"
Ds-1+ I

—)-ss6—(xp—xs)

(2812a)

Therefore, for the uncoupled problem, the asymptotic
behavior of the amplitude in the s channel is

M= —Iryz(s/ass) r(cotzrnz+i) =Mr.

For (gs/Ir)(1, we have

Iso Iss—
X —ps'

i ) (2312b)
xo—xs j

( gsq g"~ Xs (po—
Zss fzz

—
Zss)

DzsDsz=
~

—
~

—
~

)-"6-(xo—*s)I

Emj srj J' &xo—* x —*j

with
J=zzz(x) = 1+rzz—/(x br), —

zzz
————', and br=1+xI zn»

(288')

(238") where

(Iso pi ps —pz)
X i

— i, (2812c)
exp —xz xs xzj

-', Ir (gs/n. )

x—bz

(2310')
zzz=zs(xz), etc. , and zsz'= —zs(x) ( - „«c.

dx

In Fig. 2 we have drawn nz(x) and yz(x) $Eqs. (238)
and (2310)] arbitrarily picking the value (g'/m. ) =2.

Z. Colpled Czzse

Now we shall consider the case when M is not infinite,
but is large and Gnite, X(&i. Let us note the following
general point before continuing on to the details. The
elements of D in its second column as written in Eq.
(2A18) containing zss'(psss —psos) are proportional to
) s (X' near J= —1) and those in the third column con-

taining as'(pss —psp') are proportional to X (X /J near
J=O). Thus the pole of the uncoupled case, nz(x),
is only negligibly perturbed, and this is also a pole of
the coupled case, except near J=O, x=x~p~ where the
solution is, as yet, undetermined. A second zero of
D occurs for Jnear enough to zero that terms containing
as'(pss' —psp') become considerable. Terms containing
+s (pss' —p~o) remain always negligibly small and we

write, as in Eq. (2A18'),

xi ———', and xs ——1—(3X'/2 J) .
From this it is apparent that J=uizi(x) will be of

order 'A ~', that is, not only are o.zzz and ) both small,
but as well, ~nzir~&&As, and xs is large and negative.
Inserting this further approximation, we have, to lowest

order in J/Xs,
xs= —3Xs/2 J,
ps= ——,

' 1n(J/6) s),

p, s' ———J/3Xs,

and for [xoi« ixsi,

pp —ps J J
1I1 +2pp

xp—x3 3X' 6X'

Writing J/Xs~s = j, we have as the numerically solvable
equation for jz I I(x)=X I'

n zzz (x), good to order

Dl D13
D=

D3i D3

D»Dsz)

D, j
D/D, =ly~ —

~

(g&s) s

jzzz(x)

XPln( jrrzs(x))+h(x) j=0, (2813a)
The zero of D/Di ——Ds—DIsDsl/Dz nrrr(x) will be
treated below, and it is a pole of the coupled case, Iz

s J. Hartle and C. E.Jones, Phys. Rev. 140, 890 (1965).
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of it. The pole zizz emerges from the Kronecker
singularity as the coupling g"/s or X, is turned on, and
it must exactly cancel it at zero coupling. A pole can
cancel a delta function if its residue and position are
limitingly small of the same order of magnitude and
their ratio is equal (and opposite) to the coefficient of
the delta function:

I I I
I

I I I I
I

I I I

1—

lim
+Izz 'Yzzl s J—czzzz]

(2C3)

III. COMPARISON OF THE MODEL
WITH EXPERIMENT

To make a comparison of the results of this model
with experiment, we allow that, of the terms contained
in M„, Mz represent the contribution of ordinary falling
Regge trajectories as determined by present Regge
fits; we do not attempt to allow that our nz pole as
calculated above has any physical reality. The remain-
ing terms we retain intact as representing in some
fashion the contributions of the quark-induced pole and
subtraction. When and if energies and momentum
transfers are reached at which contributions as these

O
Oi

~eu

us
C9

10

10

10

FIG. 4. Schematic diagram of the trajectories
of proton-proton scattering.

andyzzz/nzzz is finite at zero coupling, of order V. Thus
the real term Am must equal (pzzz/nzzz)+M„where
M„a function of t only, is of finite positive order in the
coupling X. This leaves us with the physical amplitude

M„=M i+M, yz z i[in (s—/y, ')+izr$. (2C4)

Ke can say no more of the subtraction term M„so
let us proceed to see what can be said even in this
ignorance.

I I I I I I I I I I I

-15 -10 -5
t (Gev)

FIG. 5. Comparison of the model with experiment for proton-
proton scattering at 90' in the center-of-mass system. The curve
marked "proton-proton" is a close fit to the data of Akerlof g] g).
the broken-line portion denoting preliminary results. The three
pairs of curves are d~/dt~zmzzz, 90' and d~/dt~aszzz, 90', sr 0 for
g =p 2, p 1, Q QS, with g'/s =2, g"/s. = 1, and p =m~„m .

becomes visible, that would be fitted to a theory similar
to but more nearly correct than the model presented
here, rendering a determination of the quark's mass and
coupling.

The experimental situation with which we have
chosen to compare this model in qualitative fashion is
proton-proton scattering at large angles. Immediately
after these considerations, a crudely quantitative com-
parison will be made with the data at 90' in the center-
of-mass system. Huang and Pinsky have observed that
the effective trajectory, e„may be analyzed into two
parts (see the schematic diagram Fig. 4): the Pomer-
anchon O.p, and the di-Pomeranchon cut npp. The
trajectory o., falls from one to below zero as np, then
rises slightly to the o,» trajectory, and then falls off
again as the Q pp to the experimental limits on —t in the
present data. Thus, below t= —3.7, where all ordinary
Regge poles (or cuts) have dropped below zero, ozzz
is the conventional "domiecet" pol" but not the
domieutieg pole, since 0..shows no signs of rising again
to zero, as we might expect if a pole at or near J=O
were actually to dominate. So with present data there
is no reason to suppose that a quark, as we have de-
scribed it, should exist; our task is not to estimate (to
order of magnitude only) what is the least mass that
wouM be compatible with the present data, supposing
the quark exists.

Since the imaginary part of the scattering amplitude,
~zmy= ~zm i~+I I z~ is eGectively M i~ »
((Mzmz Mime ~ +ut

I M@I"—Mime'. Thus we derive

s K. Huang and S. Pinsiry, M. I.T. Report (unpubhshed).
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the inequality which must be satisfied:

do- 4x d0.
~'Pzr. d'=—

dt sg & dt zmy yy.

(3.1a)

IV. CONCLUSION

It appears that whenever approximations are made on
our model, they are expected to be correct to order of
magnitude in the mass M of the quark, except that the

~ C. %. Akerlof, R. H. Hieber, A. D. Krisch, K. W. Edwards,
L. D. Ratner, and K. Rnddick, Phys. Rev. 159, 1138 (1967).

Similarly,

do- 4m do
$yrrr ln(s/p') —3l,l'=—— . (3.1b)

dt sq, ' «a.zrr

The latter is of little use until we can compute M„but
in the following its right-hand side with M, =O will

be displayed.
In Fig. 5 the data of Akerlof et ul. ~ for proton-proton

scattering at 90' in the center-of-mass system are com-
pared with do'/dk~ Imrrr, 90 and do'/d1~aerrr, so' (for
M, =O). We have arbitrarily chosen g'/m =2, g"/s. =1
and calculated these quantities at X=0.2, 0.1, and 0.05,
i.e., M= 5, 10, and 20 times the mass of the proton. In
order to satisfy the inequality )Eqs. (3.1)j, M would

certainly have to be greater than about 10 GeV, and
one may guess this to be a decent order-of-magnitude
lower bound on this mass as may be gleaned from these
data, under the many suppositions of the model.

unknown behavior of the coupling constant g' as a func-
tion of X, was assumed to be constant. Thus we can
expect our result to be correct only to order of mag-
nitude, and none of the consequences of subtle details,
like the misrepresentation of a spinor by a scalar, to be
portrayed with any Melity. It is in this spirit that the
result M&10 GeV is stated.

It is not intended that the model presesented here be
more than a naive first effort towards an analytic
approach to the confrontation of idea and fact. The
experimental facts, the data, are there; the idea may be
well stated in its theoretical context: it is the mapping
between the two worlds which is lacking, the model
which must be improved. The minor improvements
which could be made on this model are many, other
similar models could be suggested, or more radical
means of relating the idea to the data may be tried.
The idea remains an attractive one: that there is a
crucial diGer ence of character between composite
particles and elementary ones, that if the latter exist,
observable sects must arise, and that these may be
manifestations of the operation of higher symmetries.
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