176

Cook for reading the manuscript. Part of this work was
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APPENDIX

In Eq. (3) the function Qy was defined in terms of
[, the coefficient of s, and Ay, the determinant of the
potential-theory ladder graph. This Ay is obtained
from the corresponding function for relativistic ladder
diagrams, Eq. (A1) of I, by setting the Feynman
parameters for one side of the ladder equal to zero. The
potential theory fy is obtained from its relativistic
counterpart, Eq. (A9) of I, by setting the parameters
for the two sides of the ladder equal. Thus, nonrela-
tivistically fy is a quadratic function of y,. If the x; of
both ends of a potential ladder are set equal to zero
(ends contracted), we find that

N
fv= (2 y)Ax.

=1

(A1)
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The functions appearing in (6) are defined as follows:

© g N L,
J(a,s)=z<——) / dyids
N=1\27 0

N-1 (x,~°‘+2+ (a+1)— (a—l—Z)x) &

; (@t D@t2) Joxs
X(exp(—u2 2 xits 2 yz’))' (A2)
ANa+3I2

Ji(a,s) differs from (A2) in that the sum starts with
N=2, and there is an additional derivative with re-
spect to y; acting on the square bracket in the inte-
grand. Jiy(a,s) starts with N=3 and has derivatives
with respect to y; and Yy acting on the square bracket.
These extra derivatives can be integrated out immedi-
ately and the appropriate y; set to equal zero. We
have used (A1) in deriving (A2). One important prop-
erty of these functions is that JJyy=J:%

Just as Jy and Jyy differed from J by the presence of
extra derivatives, J,»™ and J;»™ in (17) differ from
Jnm given in (18) by the presence of derivatives with
respect to s=y-43 and é=y—=z.
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Off-shell analytic properties are obtained for amplitudes which satisfy approximate three-body equations
of the Faddeev-Lovelace type. These properties are used to construct an explicit representation for the
off-shell three-particle amplitude in terms of the solution of a new integral equation. The advantages of
this new equation for both analytical and computational purposes are discussed, and the representation is
used to determine on-shell analyticity for the amplitude. The form of the representation is such that the
important three-body singularities are exhibited in a particularly transparent fashion.

I. INTRODUCTION

ECENTLY a great deal of attention has been de-
voted to the study of nonrelativistic three-body
systems. This interest has been stimulated by the deriv-
ation of exact integral equations for the three-particle
scattering amplitude by Faddeev.! However, the direct
application of these equations to physically interesting
three-body problems is somewhat impractical. Instead,

* Based on parts of the Ph.D. thesis submitted to Rockefeller
University, 1968.

1 Present address: Department of Physics, Columbia Univer-
sity, New York, New York.

1L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
[English transl.: Soviet Phys.—JETP 12, 1014 (1961)7; Dokl.
Akad. Nauk SSSR 138, 565 (1961) [English transl.: Soviet
Phys.—Doklady 6, 384 (1961)].

the great majority of applications to date have been
based on approximate equations of the type suggested
by Lovelace.? The latter result from the Faddeev equa-
tions when the off-shell two-body amplitudes are ap-
proximated by functions separable in the initial and
final momenta. They are written in terms of quasi-two-
particle amplitudes which describe processes involving
the scattering of single particles off two-particle bound
or resonant states. This paper is concerned with deter-
mining the on- and off-shell analytic properties of such
amplitudes, and with the derivation of new integral
equations possessing several important advantages over
the original (Faddeev-Lovelace) equations.

2 C. Lovelace, Phys. Rev. 135, B1225 (1964).
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The integral equations of interest are formally similar
to the usual two-body partial-wave equations, and are
written in terms of variables corresponding to the initial
and final off-shell momenta. In this case, however, the
“potentials” as well as the ‘“propagators” depend
parametrically on the total energy. For fixed energy the
solutions of these equations may be shown to have cer-
tain analyticity properties as functions of the off-shell
momenta. This off-shell analyticity is of importance in
the very practical problem of solving these equations by
numerical techniques. This is because it is usually im-
practical to perform such calculations without some
type of contour deformation procedure. When the mo-
mentum dependence of a solution is fixed at the on-shell
value, the resulting amplitude is known to possess cer-
tain analytic properties as a function of the total energy
which are of direct physical interest. In the familiar two-
body problem, for example, the on-shell partial-wave
amplitude is analytic in the total energy except for the
right-hand elastic cut, left-hand cuts associated with the
potentials, and (possibly) poles corresponding to bound
or resonant states.

The usual method for determining the on- or off-
shell analyticity discussed above is to study contour
“pinches” in the multidimensional integrals which occur
in the perturbation expansion of the integral equation.
This method has been applied to the exact Faddeev
equations? in order to determine on-shell analyticity for
the case where the interparticle potential is a super-
position of Yukawas. The discussion to be given in this
paper is based on a quite different technique previously
developed by the author, and described in a recent
paper,* hereafter referred to as A. In this approach the
integral equation is used directly to determine the off-
shell analyticity, and this information is then employed
to write an explicit representation for the amplitude.
The on-shell analytic properties can be obtained trivi-
ally from this representation.

The relevant equations and notation are given in Sec.
II, as well as a brief review of their derivation in the
Faddeev-Lovelace approach. After obtaining the general
form of these equations, the discussion is specialized to
the case of three identical particles. The resulting equa-
tions are representative of the general class of equations
under consideration, and are chosen to simplify the
rather detailed analysis to be given in the subsequent
sections. Partial-wave equations are obtained for this
special case.

The discussion in Sec. III is devoted to determining
the off-shell analyticity of the partial-wave amplitudes
defined in Sec. II. Using the off-shell approach developed
in A, these amplitudes are shown to be analytic in the
off-shell variable except for certain specific singularities.
These singularities take the form of cuts in the complex

¥ M. Rubin, R. Sugar, and G. Tiktopoulos, Phys. Rev. 146,
1130 (1966).
¢ D. D. Brayshaw, Phys. Rev. 167, 1505 (1968).
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plane, and can be divided for convenience into two
groups. Those which are purely kinematical in nature
are examined in detail in this section; those which are
dynamical in origin are treated in the Appendix.

The off-shell analytic properties so obtained provide
sufficient information to write an explicit representa-
tion for the off-shell amplitude. Such a representation is
derived in Sec. IV in terms of the solution of a new in-
tegral equation. This new equation is shown to possess
several important advantages over the original Faddeev-
Lovelace equation. These advantages are due principally
to the manner in which the various three-body singu-
larities appear in the kernel and in the inhomogeneous
terms, i.e., the singularities appear explicitly in func-
tional form in contrast to the implicit fashion in which
they are contained in the original equation, arising in
the latter case through pinches of the integration con-
tour. This fact makes the representation especially
suitable for investigating the on-shell analytic properties
of the amplitudes considered. One consequence of this
has already been explored in a joint paper® by the au-
thor and Peierls. In that paper, referred to hereafter as
B, representations of the above type were used to in-
vestigate the connection between rescattering singu-
larities and three-body bound or resonant states.

Finally, a modification of the above approach is in-
troduced in Sec. V in order to provide a practical alter-
native method for solving equations of the Faddeev-
Lovelace type numerically. It is shown how the well-
known difficulties which arise in solving such equations
in the domain of positive total energy can be eliminated.
The method thus illustrated is of sufficient generality
to be of practical utility in performing many similar
computations,

II. THREE-BODY EQUATIONS AND
KINEMATICS

In this section we will briefly review the derivation of
the equations which will concern us in the remainder of
this paper. These equations, which are essentially those
obtained by Lovelace,? result from employing a sepa-
rable approximation to the off-shell two-body scattering
amplitude in the Faddeev! equations. Such equations
are by now familiar in the literature?®7 and our main
objective will be to establish some notation. After hav-
ing obtained the general form of these equations, we will
specialize to the case of three identical particles whose
interaction is characterized by a single bound state be-
tween pairs. Although the resulting equation is perhaps
the simplest of the Lovelace type, the important fea-
tures of the general problem are nonetheless present.
For clarity, the detailed discussion to be given in sub-

i }51 ]31) D. Brayshaw and R. F. Peierls, Phys. Rev. (to be pub-
1shed).
( 6J5.>H. Hetherington and L. H. Schick, Phys. Rev. 137, B935
1965).

"R. Aaron and R. D. Amado, Phys. Rev. 150, 857 (1966).
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sequent sections of this paper will be confined to this
special case.

We denote the momentum of particle e by k. and its
mass by m,, where « takes on the values 1, 2, 3. In the
three-body center-of-mass (c.m.) system, we have
>« ke=0, and we can describe the system by giving the
value of the total c.m. energy W and any two inde-
pendent linear combinations of the k,. It is convenient
to introduce the following variables:

ks Kk,
Pu=ﬂa<—__‘) )

ms m
oy (1)
ket+k, k.
Qo= Ma( ——_) s
matmy, e
where oy are cyclic permutations of 1, 2, 3 and
Mt =mg -y ’ (2)

M= mg - (mg+m, )L,

Thus, in the c.m. system, — g, is the momentum of par-
ticle @, while p, is the momentum of particle 8 in the
By c.m. system. Of the six vectors pe, 4, any two suffice,
with W, to completely specify the three-body state,
which we denote by |p.g.). For a physical state, they
must satisfy the on-shell condition

3
W=3 (ke®/2ma)=wps+vs,

a=1

for any B, where w, is the energy associated with q, and
vq is the energy associated with p,, namely,

a™ n:z 2 «
v P / M ’ (3)
Wa=qa%/2M ,.
We denote the three-particle scattering operator by
T (W), and define operators To(IW) such that

(P4 | Ta(W) | Patte)
= 5(‘10;"“ qa><pal l la(W'_wa) I pa) s (4)

where (pa’|ta(v)|pa) is the usual off-shell two-body
amplitude for scattering of particles 8 and . The
operator T'o(W) evidently represents the amplitude for
the scattering of particles 8 and v, with particle @ being
undeflected. For the case where the particles interact
through pair forces only, it can be shown that 7'(W) can
be written in the form

TN)=3 T+ 3 T Xaa(NTs(1), (5)

a=1 a,f=1
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where X .s(W) satisfies the equation

Xop(17) =3usGo 1)+ X FurGul VYT 0) X507,

and
8(pa’— Pa)8(qa’—qa)
(P4’ | Go(W) | Palla) = , (6)
’ ° Watve—W—1ie
Saﬂz (6uﬁ_ 1) .

The problem of determining 7'(WW) thus reduces to
that of solving Eq. (6) for the quantities X .(IV). How-
ever, when inserted between the states |q.p.), this
equation becomes an integral equation in six variables.
It is thus much too difficult to solve. The problem be-
comes greatly simplified if one approximates the two-
body scattering amplitude by the separable form?

Na 2(p)r*(p)*
axe = _
(0’ |ta(v) | P) El D)

(7)
where D)*(v) is some denominator function which
vanishes when »=w»)?, corresponding to a bound or reso-
nant state of particles 8 and v of energy »*. The func-
tion gx*(p’) is a vertex form factor for the formation of
the two-body bound or resonant state.? In the summa-
tion above we have assumed N, such states.
We define the three-particle states,

|oAge)= / dpa £2%(Pa) [ Peller) (8)

and the function

Zap(qa'N| asu; W)=8ap(aNaa’ | Go(W) | Bugs),

9" 495 98
1

2us  my

= 8a522*(D’) *2,(Ds) / ( w— ie) .
©
Here, p.’, ps are given in terms of q., qs by the relations
P’ = FLas+ (a/my)0a"],

Ps=£[qu"+ (us/my)as],

the upper (lower) sign being taken when o8 is cyclic
(anticyclic). In terms of the states (8), Eq. (6) can be

T
e

(10)

8 The equations which result from making this approximation
are formally identical to three-body equations derived under the
assumption of separable potentials [see, e.g., A. N. Mitra, Nucl.
Phys. 32, 529 (1962)7], i.e., one can perform either exact calcula-
tions for separable potentials or approximate calculations for local
potentials. The results to be described pertain to both of these
possibilities.

®In the following development we will assume the form factors
to have the properties which follow when the two-body amplitude
is taken to satisfy the Lippmann-Schwinger equation with local
potentials of the Yukawa or exponential type, or with separable
potentials of the Yamaguchi type.
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written in the form

(N’ | X ap(W) | Buas) = Zap(qa'\ | qpu; W)

3 Ny Z (@ N0y a; W)
+Y ¥ [ dgy———
y=1 o=1 DY (W—w,")

X{yoay" | X,s(W)|Buge). (11)

By expanding the various independent amplitudes
(oM@’ | Xop(W)|Bugs) in terms of states of definite
total angular momentum J, we can reduce (11) to a set
of coupled one-dimensional integral equations.

In order to study the off- and on-shell analytic prop-
erties of such amplitudes we shall consider a special case
in some detail; namely, the case where the three par-
ticles are identical and have unit mass, and where there
is only one two-body bound state of angular momentum
1. For this simplified problem, the two-body scattering
amplitude takes the form

@ 10) D)= 3 —g—%)-(g—)@

(12)

=

where D(vg)=0, »¢<0, and we have had to consider the
various magnetic quantum numbers separately because
a third particle is involved. That is, we will have to
couple the “spin” I of the two-body bound state with
the orbital angular momentum of the third particle to
form states of definite total angular momentum J. In-
stead of the amplitudes X,s we may work with the
symmetrized sums, defining

3
Xou(d',q; W)= 52—1 (e | X op(W) | Bua),
(13)
3
Z(d,q; W)= B};l Zug(q'\ qu; W).

Thus
—2a\(p")*gu(p)

(o a+g—W—ie

Z(dq; W)= (14)

Equation (11) now takes the simple form

Xou(d,q; W)=22u(d',9; W)

! (050" W) Xou(d",05 W)

+ d (15
=T D !

o=—1

We note that in this case wa=$g.%

Physically, the function Xx.(q',q; W) is the quasi-
two-particle amplitude for the scattering of the third
particle off the two-body bound state. The on-shell
condition for this amplitude is then that

W= W—ig=n,
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or
¢=9=VE,
EE% W—Vo).

The right-hand elastic cut for this amplitude will appear
in an explicit dependence on 4/E. There is an additional
right-hand inelastic cut, for W20, corresponding to
possible breakup of the two-body bound state.

If we choose the z axis of our coordinate system to be
along the direction of q, the X, become helicity ampli-
tudes. To project out partial waves, we set

(16)

w 2741
Xou(d,q; W)= 2 X (q,9; W)dni? (2),

J=0 v

(17)

1

X?(q',q; W)=2r / dz dr’ (2) X', 05 W),

-1

where z=¢’-¢, and the d),’(3) are the rotation func-
tions.!® [In (17) it is understood that we take d»,’(z)=0
if [\[>J, orif |u|>J).] We write a similar equation
for Zx,7(¢’,q; W), from which it follows that

Zn(g,q; W)
_—4‘”/" dz dn? B)Y (P )Y uu(B- Dg*(#)g(p)
—1 ¢ Hqq'z+-q*—W—ie

(18)

where we have invoked the known properties of the
form factors to write g\(p) in the form

D) =g(p)Vn(6)e™, (19)

Y1n(6) being the normalized associated Legendre func-
tion. In evaluating (18) we note that the following rela-
tions follow from (10):

p'=[g*+qq'=+1q' ¥'2,
p=L[1*+qq's+q"*]72,
4=~ (2a+3¢)/?,
p-4=Gq+29")/p.
Substituting (17) into (15) we obtain
X (¢50; W)=2x7(q',9; W)
1o r*dq” 727" W)X (q" s W
+ ¥ f s W)
=1/ D(W—%¢"%

(20)

(21)

In the sections to follow we will consider (21) in some
detail. To aid in that discussion we first introduce some
notational changes. We define a function %4(p?) by the
relation

g(p)=p'"h(p?), (22)
where /(0) is finite. This form for g(p) can be justified

M. E. Rose, in Elementary Theory of Angular Momentum
(John Wiley & Sons, Inc., New York, 1957).
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on fairly general grounds. We also define the function
(35 ¢/ ,9)= —4x(pp)do? @D Y (- 4V Y 1u(B- @) . (23)

It is easily verified that f,,’ is a polynomial in all its
variables. The above relations allow us to rewrite (18)

in the form
2 (g3 W) Udz fadd (25 ¢,0)R* (0" DR (p?)
(g W)=
o o @t W—ie

which will be especially useful in discussing the analytic
properties of Z»,”’ as a function of ¢’.

Instead of working directly with (21), which is
written in terms of the amplitudes X,/ (¢'q; W), it will
prove more convenient to deal with functions of definite
parity. We therefore define

XI5 g W)=X0,7(¢,q; W)
£(—IPXI( g W), (25)

with similar definitions for Z,/*(¢,¢; W) and fa,/*
X (23 ¢',q). It follows from (21) and (25) that the X,,/*
satisfy the equation

X)\M"i(ql’q; W)=quJi(Q';Q§ W)
©dg"” ¢"*Zh"*(¢\q" s W)X ou?:(q",q; W)
Y / .
v Jo D(W—%q"%)

(29)

(26)
Furthermore, the relations

Pl (=25 —¢, = (—=1)"> 27 (35 ¢,
=(—1)"*H7 G559, (27)

which follow from the definition (23) of fi,’ and the
properties of the da,” and ¥y, functions, imply that

ZnE(—qy ¢ W)=£(—=1)7Z\%(¢',¢; W) . (28)

Finally, (26) and (28) together imply that X,,’*
X (¢'q; W) may be extended to negative real values of
¢’ by the relation

XaE(— ¢, g3 W)=£(=1)X07%5(¢,q; W) (29)

III. OFF-SHELL ANALYTICITY

In this section we employ a technique developed by
the author in A in order to determine the analytic
properties of the amplitude X»\,/%(¢',g; W), for fixed
¢ and W, as a function of the off-shell variable ¢’. Later
we shall use this information on off-shell analyticity to
derive a new integral equation for X»,/*(¢’,q; W) which
possesses several important advantages over the original
equation, Eq. (26). However, this information is also
useful in its own right. For example, the off-shell
analyticity we shall derive provides the necessary proof
for the contour-rotation method devised by Hether-
ington and Schick,® and extended by Aaron and Amado,”
for solving equations of type (21) numerically.

THREE-PARTICLE SCATTERING AMPLITUDES

1859

To simplify the notation in what follows, we will
temporarily drop the superscripts in (26), rewriting it
in the form

Xoulq',q; W)=2xu(d',q; W)

® dk kZZ)\a(qI;k; W)Xv (k:q; W)
wz [ :
= ) DV —2?)

, (30)

with
v dz faulz; ¢ QR*(p")h(p?)

a1 QMg z—W—ie

Equation (30) defines a function of ¢/, X».(¢',q; W),
whose domain is the real axis. However, this equation
can also be used to define the analytic continuation of
Xu(g’,g; W) into the complex ¢’ plane. To do so we
shall proceed in analogy with the approach developed
in A; the method is also described in B for three-body
equations in a one-dimensional model. For definiteness,
we shall fix W and ¢ such that

Re(v/W)>0,

0<Im(vW)<v/(=w0),
¢>0.

Zy(g'g; W)=

31

Later we will extend our result to arbitrary values of .
We must first establish the analytic properties of the
function Zx.(¢’,g; W) in the complex ¢’ plane. From
(30) we note that singularities of Zx.(¢’,q; W) can arise
from three sources: (1) the vanishing of the denominator
¢'*+q*+qq'z—W, (2) singularities of #*(p%), and (3)
singularities of 4(?). The first produces a cut along the
curve
¢'=—3%2q+[W—(1—12%g*]"/2, (32)

where z varies from —1 to +-1. This cut is plotted in
Fig. 1 for the case g2<Rel¥. There is also an analogous
cut in the lower half-plane, but it will be sufficient for
our purposes to consider only singularities in the upper
half-plane. Once we know the properties of X».(¢,q; W)
for Img2>0, we can trivially obtain its properties for
Img< 0 by using (29).

From the relation (22) of the function %(p?) to the
form factor g(p), and from the known properties of the
form factors, we deduce that %(p?) has the general form

* da o(a)
h(p?)= )
w P

(33)

Req'

Fic. 1. Cut of Zy,(¢,g; W) for ¢<ReW.
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C(W,-5)
CWr3) |1mq ¢
C(W,0) C(W,-1)
CIW,-1) ¥

Jw

Re q'

Fi16. 2. The curves C(W,2) for z=0, —%, and —1.

i.e., g(p) is known to be analytic except for cuts along
the imaginary p axis. The weight function ¢(c) in (33)
must be such that #4(p?) satisfies the asymptotic
condition

|H;m h(p?) < Kp2-2, (34)
pl—

for some constant K, since it is known® that g(p) falls
off like p~+=2 for large p. It is clear from (20), (30), and
(33) that Zx.(¢’,q; W) will have cuts in the ¢’ plane due
to its dependence on #*(p'?) and A(p?). If ¢’ lies on such
a cut and ¢ is real, it is easy to show that |Imq’| 2> u.
These cuts, therefore, all lie outside the strip |Img’| <u
when g is real.

In performing actual calculations, it is necessary to
choose some approximate form for g(p), and such calcu-
lations will only be meaningful if the results obtained do
not depend strongly on the particular form factor
chosen. This will clearly not be the case if the form fac-
tors produce singularities in Zx,(¢’,¢; W) which lie close
to the real ¢’ axis, i.e., if u is small. For Z,,, and hence
X, to be relatively insensitive to the choice of g(p),
it is necessary for the singularities induced by g(p) to
be far away from the real axis when compared to the
other singularities which occur in the problem. As we
shall see later, the natural “scale” for the latter is the
quantity |vo|!/2 The condition for stability under the
variation of g(p) is then that u>>|vo|'/2 In practice we
would expect this to be satisfied, since u is on the order
of a mass, while W and v, are nonrelativistic energies.

Therefore, in determining the off-shell analyticity of
Xu(q'yq; W), itis meaningful to distinguish between the
singularities which arise from the cuts of %(p?) and those
which would be present even if 4(p?) were entire. The

D. D. BRAYSHAW
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latter depend only weakly on the specific choice of the
form factors, and the above argument suggests that the
values of X»u(¢’,q; W) for real ¢’ are largely determined
by its behavior at these singularities. Thus, for the re-
mainder of this section, we will restrict our analysis to
the case where /(p?) is entire. The singularities neglected
in this way will be considered as a kind of “perturba-
tion,” and are discussed in some detail in the Appendix.

Aside from the cuts of Zy.(¢’,q; W), the function
X u(¢',q; W) will have additional singularities arising
from the integral term in (30). We observe that this
term can be written in the form

0

iy dz

s Ja

X / 2 dk kB2 fre(z; ¢ RO (DR (p"D) X ou(lrg; W)
o DW—2R)(¢ R hgs—W—i)

(35)

Due to the denominator (¢'2+k2+kq'z— W), it is clear
that this term becomes discontinuous when ¢’ lies along
the curves C(W,z), defined by
C(W,2)=—%2a+[W—(1—12)a2 ]2, —1<2<0 (36)
as « takes on all real values. Examples of the curves
C(W,z) are plotted in Fig. 2. These curves have the
property that C(W,z;) lies above C(W,2) if 21> 25. Thus
all the curves C(IW,z) lie above C(W, —1). From (32)
and (36) it is clear that the cut of Zyu(¢/,qg; W) lies
entirely on or above C(W, —1). It is also clear from the
form of (35) that the integral term of (30) is analytic for
¢’ below C(W, —1). Thus (30) implies that Xx.(¢',q; W)
may be analytically continued above the real axis and
throughout the region below C(W, —1).

To aid in the subsequent discussion we introduce
some geometrical notation. We define the region R(W,z)
to be the region in the ¢’ plane bounded from above by
C(W,z), and from below by the real axis. We define
R(W ) to be the region above C(W,z), so that R(W,z)
and R(W,z) together make up the upper half-plane. We
have thus established that X».(¢’,q; W) is analytic for
q’ER(W, - 1)

In order to analytically continue X».(¢,q; W) above
the line C(W, — 1), we define the functions

Trolzs ¢TI (" )h (P ") X aullsg; W)

1 > dkk?
Ixoui(q’,q;2)=5 /

Since fie(z; ¢,%) is an entire function of its variables, it
follows that In,(¢,q;2) is analytic for ¢&ER(W,z).
Again neglecting singularities of the functions 2*(p’2)
and %(p"’?), it follows that In..t(¢’,g; z) is analytic for
¢ ER(W,z). The function I5,,~ has been chosen so that,

. @3N
o DOV —38%) {q'+ ek IV — (1= 2413 g+ ek — [ — (1= 1)k o)
when ¢’ is real, (30) can be written as
Xoulg'g; W)=2Z0u(g, 05 W)
0
+X | dz D (9,955 (3%)

—1
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It is clear that (38) defines the analytic continuation
of X»u(¢,q; W) throughout R(W,z). For ¢ ER(W,z), we
define

—7ig” fre(2; ¢',4")

(2¢'+2¢")D(W—4¢""%)
Xu*(p' k(") Xou(q" 35 W),

A)\ﬂl(q,’q} z)=

(39)
where

¢"=¢(¢'5)=—3%3¢'— [W—(1—122)g' 2] /2.

As we shall show, the function Ay..(¢’,¢; 2) is analytic
for ¢ ER(W,z) except for singularities corresponding to
the vanishing of D(W —2¢’’?) and the square-root cut of
¢(¢’,2). Assuming this for the moment, we define a new
function

Pron(q'sq; 2)=Dow(¢'4;2), if ¢ER(W,3)

=Da*(q,95 %) ~
+Mou(q'sg;2), if ¢ERW,;2). (40)

By construction, the function Fy,.(¢’,q; ) is continuous
across C(W,z). By the above statements on analyticity,
it is also analytic everywhere in the upper half-plane,
except for the singular points of Axsu(¢’,¢; ) which have
yet to be determined. It follows that the analytic con-
tinuation of Xx.(¢,¢; W) from R(W, —1) into the
remainder of the upper half-plane is given by

Xoulg'sq; W)=20u(q',q; W)

+> dz Faou(q'yq;2).  (41)

—1

Aside from the cut of Zx.(¢’,q; W), singularities of
Xu(q'sg; W) can only arise from the functions Axs,
X (q’,q; z) which appear on the right-hand side of (41)
when Img’ is sufficiently large. To determine these
singularities it is convenient to adopt the following
procedure. We first observe that the regions R(W,2)
have the property

21> 29 = E(W,Zl) CR(W,Z2) . (42)

This is a simple algebraic consequence of the definition
(36) of C(W,z), and is illustrated by Fig. 2. It isclear
that as z varies from —1 to 0, R(W,z) shrinks down to
the curve C(W,0). It follows that we may define a func-
tion 8(¢’), for ¢ ER(W, —1), such that 2(¢) is the
largest value of z for which ¢ ER(W 2), i.e.,

JERMW2(¢)), 43)
I ERWE(Q)+e).
In fact, it is easy to show that
|[Re¢’—ImW /2 Imq’|
8¢)=-2 (44)

|l¢'|*4ReW (Req/Img’) ImW |12

The function 2(¢’) has the property that the point
g’ =¢(¢’,2(¢")) lies on the real axis.

THREE-PARTICLE SCATTERING AMPLITUDES

1861

We make use of 2(¢’) to rewrite (41) in the form

Xou(qg; W)=20,(¢",q; W)+Ryu(q'sq; W)
- +5(g'9; W) (45)
for ¢ ER(W, —1), where

0

Rou(g'yg; W)=22

o Jg)

+2

dz oy (¢, 2)

2(a") :
dz It (q',q5 2), (46)

-1
2(a")

Saldyg; W)=22 dz Axou(q'sq5 2) -

o Ja

The functions appearing in (45) have been chosen
in such a way that Ryu(¢,g; W) is analytic for
¢ER(W, —1). Therefore, all singularities of (Xyy—2Zu)
arise from the function Sxu(¢’,g; W). To determine these
it is convenient to change the variable of integration in
the definition of Sx, from 2 to ¢’ =¢(¢’,2), so that

s=(W—q*—q"%/q¢q",

, (47
dz/(2¢'+2¢")=—dq"/q'q". )
We denote the endpoints of the ¢”” integration by
ao(g)=¢(q',2(¢")
and
ag) =8¢, —)=d/— (=3¢ (48)
We then obtain
)
Suuld'sa3 W) =—I*(W—3¢%)
q
ao(q’)
X2 dq"” pra(q',q"s W) Xou(g",q; W), (49)
7 Ja-(g)
where

one(q59" ;s W)

717

q/;h(W__i_qng) (W__ q/z_qnz o ) ;
— . q s ’
79

- Ao N
D(W—49")

Here the contour of integration is along the curve C(g")
defined by ¢”’= —32¢'—[W— (1—12%)¢'?]!/2 as z varies
from —1 to #(¢’). As noted above, the endpoint ao(g’)
is always on the real axis.

We now observe a property of the mapping ¢”
=¢(¢’,2), which will be very important for our consid-
erations: B

JERW 2) = ¢"€ER(W ). (50)

This has the consequence that the lower limit of the
integral in (49), ie., the point a_(¢’), always lies in
R(W, —1).

The function Sxu(¢,q; W) will have singularities
when ¢’ is such that the integration contour runs into
singularities of the integrand. The only such singularity
is when D(W—4¢"’?) vanishes, i.e., when ¢"’=+/E. This
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produces-a logarithmic branch point at the value of ¢’
such that vVE=a_(¢’), or ¢ =3+ E++/vo. We take the
associated cut to be along the line

¢'=3VE+~/votix,

as « takes on all positive real values. For ¢’ along this
cut, the discontinuity

(e W)
=lim [Salg’—e g; W)—S\lg'+e, ¢ W)] (52)

(51)

is simply the difference between integrating along the
two contours C, shown in Fig. 3. It follows that

o3 = 5 (L )
»q5 = Ao ')
pAUET) 3D Go)g IVE

XI*W =24 Xeu(VE,q; W), (53)

where
D' (v))=[dD¥)/dv Jms-

The appearance of the half-on-shell amplitude X,,
X (VE,q; W) on the right side of (53) is to be expected
from analogy to our work in A.

We note that singularities of Sx.(¢,¢; W) do not arise
from singularities of the functions D(W—%¢"’?) and
X..(q",q; W), which occur in the integrand. This is due
to the fact, noted above, that the integration points ¢’’
all liein R(W, —1). As we observed earlier, the function
X,.(q",q; W) is analytic for ¢"ER(W, —1). We take
D(y) to have the usual right-hand cut of the “D func-
tions,” i.e., »20. It is easily verified that the points ¢”
such that W—2¢"72>0 all lie in R(W, —1). Thus singu-
larities of the integrand contribute only the cut (51) to
Swulg'sq; W).

However, S)u(¢’,q; W) has an additional cut due to
the square root which appears in the endpoint function
a_(q’). We take all square-root cuts to run along the
positive real axis of the argument; thus this cut runs
along the curve K(W):

K(W)={¢'|Im(W—%¢'*)=0; Re(W—%¢'?)20}. (54)

The curve K(W) is plotted in Fig. 4. As ¢’ varies along
K(W) the (W—2¢'?)!/? takes on all positive real values.

C(W,-1)
\J Imq"
!
o (Q"G)-»xix‘u‘ (qg+e)
c.~) JoVE
«-C+
Re q"

F1c. 3. The contours C+ for computing the
discontinuity defined in (52).
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The discontinuity of Sxu(¢’,q; W) across K(W) is
simply the integrand of (49) integrated along the con-
tour C(W), plotted in Fig. 5. Thus, for ¢ CK (W),

lim [S\(g' =€ g; W)—=Salg'+e ¢; W)]
o o'+ (W—g')1/2

—— (W —3¢)% aq”
q o Jig—(w-igH/?

Xore(q,q"; W)X oulg”1q; W).

Because of the dependence of the right side of (55) on
Xau(g”,9; W), we do not know this discontinuity ex-
plicitly; it will be necessary to introduce a new integral
equation to compute it.

Since Sx, has no other singularities, we conclude from
(45) that X»xu(¢’,g; W), in the approximation where we
neglect the singularities caused by the functions %(p?),
is analytic for Img’ > 0, except for the cut of Zy, and the
two cuts of Sy, discussed above. If we now restore the
superscripts (J*) which we dropped before, we may de-
duce the analyticity of X»,7*(¢’,¢; W) for Imq¢’ <0 from
(29). All the functions which appear in (45) can be
shown to vanish as |¢’| —, so we have sufficient in-

(55)

Im ql

F16. 4. The curve K(W), where
W—4¢*20.

formation to write a representation for Xy,(¢,q; W)
based on its analytic properties.

IV. DERIVATION OF THE NEW EQUATION

In Sec. ITI we made use of the integral equation (26)
to determine the analytic properties of the amplitude
Xu'%(¢',g; W) in the off-shell variable ¢’ Neglecting
the higher-lying cuts arising from the function 4(p?),
we found X»,'*(¢,q; W) to be analytic except for cer-
tain cuts, the discontinuities across which we were able
to obtain in terms of values of X»,7*(¢,q; W) itself. In
the Appendix it is shown how this approximation can
be improved by successively including the neglected
cuts. In this section we make use of this information in
order to derive a representation of X),/%(¢,¢; W) in
terms of the solution of a new integral equation. This
new equation is then studied, and it is shown to possess
several important advantages over (26). This is due to
the explicit manner in which the various three-body
singularities appear in it. Although our representation
has been derived for I and ¢ fixed as in (31), we extend
it to all real ¢ and all complex values of W. We also
study its behavior when v, is allowed to vary from a two-
body bound state energy to a two-body resonant energy.
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In both cases we discuss the analytic properties of
Xu'%(¢’,q; W) as a function of W.

We first define M to be the largest integer such that
M<%|J—1]. From (26) and the definition of Z),/*
X(g',q; W), we can show that X»,’*(¢,q; W)/(¢'®) is
finite at ¢'=0; from the definitions of the functions
appearing in (45) it is simple to show that this ratio
vanishes as |¢'| — . We define a new function

TE(q,q") 1 v’
B q’q/ =—xk .
¢—q q+gq

(56)

Applying Cauchy’s theorem to the function X;,/*

Imgq"
Q' x 9 /W
s/ W-5 2 2 w
2 449 Ne 3
Q. / 30
\i X q72 i_2+ W’ZQ2
A Req'
c(w)

F1c. 5. Path of integration C(W) for computation of
the discontinuity across K(W).

X(q',q; W)/q'*™, we obtain
Xku"i(‘llyq; W) = quJi(q',q; W)

(qlz)M 70 dq”
= / BT g W)
2mi Jyuvmswn (¢7%)

70
iy
2v(W/3)

v+(g"’, W)

ag’ =3¢

prevrra A
g

dQ pr7%(¢",0; W)
XX’ (0,q; W),

bx(q", W) =3¢"£(W—1¢"?)".

XX
4 b (q' W)
(57)

where
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Im q"
k(W)
£E;-+‘V Yo
2/ W/3
0 Re q"

F1c. 6. Integration contours for Eq. (57).

The contours of  the ¢/ integrations are plotted in
Fig. 6.

In order to simplify (57), it is helpful to introduce
some notational changes. We define

Vv )‘v.f:!: (Q', W)

—2mih(vo)(¢'H M /"""’
3D ,(VO) v E+yro

dg *(W—4q*)

2 M+1
q +

W—q¢*—E

XB7%(¢,@) fre? *(———

n ;q,\/E). (58)

Thus

(qlz)M /iw dql/ BJ:{:( ) N)a Ji( . W)
q,9 " )ox 5
2mi Jiymeao (@Y s

=2 M7H ¢, W)X’ =(VE,q; W). (59)

We also define the function 4),7%(¢,¢"’; ¢), e==1,
such that

Are"(g,q"; =1(g)M{(W—3¢"%)12— 3¢’}

X

(W —$0%87(¢',0)

g QML

Xora"H(Q,(W—4q"%)"2+3¢g""; W). (60)

In terms of A),/* we can do one integration in the last
term of (57) by parts, rewriting that equation as

Xau?*(q',93 W)=2Zo"5(¢,0; W)+ Z Vae"(¢' W) X 0w *(V/ Eyq; W)

dqll

= / oy (g DO DX =2 g, )
7 Joy 3 B

FArTHe g5 = DX H(W— 1972 *~3¢", ¢; W)}. (61)

We now make the change of variables:

=" G)= 2RV =y,

- —3,2)1/12. < © (62)
y=(W—4¢"5)"2, 0<y<e.

We define

AT gy, W)=Ar"%5(7,¢" ), 1),
so that

AMJ*(Q',Q"()'); - 1)= :!:(~ I)Jﬁkvli(q’r -Y; W) .

(63)

From (60) we find that

A= (g 93 W) =12 M{y—[3(W—2) 112

700 dQ
X/ ¥ (W —302)87%(o’
203 W=yt 112 Q2 HH1 ( 20987%(¢',0)

Xord=Qy+LE(W—y) 1% W), (64)
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It is easy to verify that by .substituting the values
¢ =y=[3(W—y?)7]2 into (61), it becomes an integral
equation in the real variable y for the function X,,/*
XO+EW—y) ]2, q, W), — 0 <y< ». We find that
(61) may be written in the form

XT3 (q',q; W)=20"%(q,q; W)+Nau75(¢',q; W)
+Z [VkaJi(q,’W)+MMJi(q’;W)]

XX *(VE,q; W), (65)

D7TE(y, W)= VT y+ (W — ) JV/2, W)
dy’

2 0
e
V3% W=y

KaIE(y,q; W)= 202+ (W —y9) 112, ¢; W)
2 0 ay’

e Ol [
V87 S (W—yia

The half-on-shell amplitudes X,./*(\/E,q; W) are
determined by setting ¢’=+/E in (65) and solving the
simultaneous linear (algebraic) equations

Z [6)\0— VAdJi(\/E: W) —MXGJ:E(\/E)W)]
XX (VE,q; W)
=2t (VEg; W)+N\w*(VEg; W).

We have thus derived a method of obtaining X,,’*
X (¢’,q; W) alternative to the direct solution of (26), i.e.,
one instead solves (67) and computes X»,7%(¢’,q; W)
from (65), (66), and (68). Before discussing the advan-
tages of this procedure, we want first to remove the re-
strictions (31) on the values of ¢ and W for which our
result is valid.

The dependence of our formulas on ¢ is such that
they are clearly valid for arbitrary real ¢, but in order to
extend them to all complex W it is necessary to investi-
gate the properties of our new integral equations (67).

(68)

ImW %

F1G. 7. The region Im(3v/E—1/) <O for », real
and negative (shaded area).
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where

M Jj:(/W) *22 ” dy
Ap g, —\/g . (W_y2)1/2

XAreTE(g'y; W)L *(y; W),
qu““(q’,q;W)E———ZZ TP
V3 7 ) =y
XAn?E(g,y; W)Kou*(y,q; W), (66)

and I,,7%(y; W), K,."*(y,q; W) are defined to be solu-
tions of the integral equations

A=+ =91, s WL (y's W),

AXin(y+[%(W_y2)]1/2; ¥ WK £(y',q; W). (67)

Tt is clear from the explicit dependence of the kernel and
inhomogeneous terms of these equations on (W —y?2)1/2
that the solutions I,'*(y,W) and Ky./*(y,q; W) will
have a right-hand cut for ImW =0, ReW > 0. In addi-
tion, the function Ix,7%(y,W) has a right-hand cut for
W 2 v, due to the explicit dependence of V,7*(¢’,¥)
on +/E=[4$(W—v,)]'%. More precisely, it may be
shown that for real ¢ and ¢/, these solutions, the function
Ar%(¢,y; W), and hence My :(¢,W) and Ny, =
X(¢'yg; W), are meromorphic functions of W in the
parabolic region Im(3v/E—+/v0)<0, except for the
right-hand cuts. This assertion follows simply from the
analyticity and square-integrability of the kernel of
(67), and the analyticity of the inhomogeneous terms.
The region Im(3+/E—r,) <0 is plotted in Fig. 7.

The reason for the restriction to this region is due to
the fact that the function 45,7%(¢’,y; W) is not defined
for all real y when W lies on the boundary curve,
Im(3vE—+/v0)=0. This may be seen from (64),
which defines A),7*(¢,y; W), and from (49), which
defines pr,(¢',¢”"; W). The latter function has a pole
when ¢”=+/E, which may be realized for ¢’=y
+[3(W—9271"/2, for some real y, when W lies on the
above-mentioned boundary curve.

By making use of the explicit expressions (30) and
(58) for Zr,7%(q’,q; W) and Va,7%(¢',W), respectively,
it is easily shown that these functions are also analytic
in W within the domain shown in Fig. 7, except for the
VE cut of V."%(¢/,W) and right-hand cuts for W > 0.
It follows from the above that (65) and (68) are valid
for W in this domain, and that within this domain
Xaw'*(¢',q; W) is analytic in W except for the right-
hand cuts, and except for possible poles in the range
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$v0<W <w, corresponding to three-body bound states.
The latter can only occur if the function D7+(I¥), de-
fined as the determinant of the system of linear equa-
tions (68), has a zero for W in this range. That is,

DIEW)=det|1— VI4(VEW)— MI*(VEW)|. (69)

It is straightforward to verify that the analytic con-
tinuation of X»,7*(¢’,q; W), for fixed ¢’ and ¢, to values
of W outside the above-mentioned parabolic region, is
given by the equations

X" (g, W)=22."%(¢',q; W)

2 g ay AT e T
“%g/;wm x5y W)

XKq*(y,q; W), (70)
where K),’* is the solution of
KaT*(9,q; W)= 20" (y+ (W — 5 1 %g; W)
2 ® dy’'
_\73 . /;w (W—y'2)12
XA+ =) ]2y W)
XK *5(y,q; W), (71)

Im(ZvVE—+/v0)>0. In this region poles of X),/*
X (¢',q; W) are associated with eigenvalues of the kernel
of (71).

Itfollows that a unified expression for X»,7+(¢’,q; W),
which is valid for all complex W, can be obtained by
making the replacement

VMJ:!:(QI: W) - @(W,Vo) V)\aJi(q/;W) )
where
O(W,p0)=1, for ImEvVE—/r0)<0

=0, for Im(3v/ E—~/v¢)>0 (72)

everywhere in Egs. (65)—(67). The resulting expression,
for fixed real ¢’ and ¢, can be used to show that X,,/*
X (q',g; W) is analytic in W except for the right-hand
cuts, and except for possible poles for W <, correspond-
ing to three-particle bound states.

The practical advantages of the expressions for
X?%(¢,q; W) developed in this section are due to the
explicit manner in which the three-body singularities
appear in them. For example, the complicated singulari-
ties above the breakup threshold (W 2>0) are quite
difficult to analyze by the usual technique, which in-
volves studying contour pinches in the multidimensional
integrals arising in the perturbation expansion of (26).
In the formulation above, the right-hand singularities
arise through the explicit dependence on such terms as
V/E and (W—y?)!/2 instead of by contour pinches. This
greatly simplifies not only the analytic study of (26),
but also its numerical solution for W>0. With respect
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ImW

three-particle

/ elastic cut

X
Vo

F16. 8. Continuation path for »o from the bound-state
region to the resonance region.

to numerical solution, however, we recall that the above
result is not exact, but was obtained by neglecting cer-
tain off-shell singularities. In the Appendix it is shown
how to modify the above to take the neglected terms
into account order by order, while, in the next section,
we employ a modified version of the above analysis to
obtain a practical method for performing exact numeri-
cal calculations.

The expressions above have proven especially useful
in investigating the possible relationship between three-
body rescattering singularities and three-body reso-
nances, as discussed in B. For this purpose we take our
two-body system to have a resonance of energy »o,
where Rev/7o>0, Im+/»9<0. Since our expressions for
X'%(¢’,q; W) were obtained for » real and negative,
we must analytically continue those expressions in the
variable »o. This is done by letting »o vary along the
path shown in Fig. 8. Thus v, is taken to pass above the
three-particle elastic threshold at W=0 and down
through the right-hand cut, passing onto the second
sheet of W where Im(+/W)<0.

The resulting expressions for X),7*(¢’,q; W) are
exactly as before, formally. However, in this case
O(W,v0)=0 everywhere on the first sheet of W. Thus
(70) and (71) are valid when v, is a resonance energy for
all W on the physical sheet, Im(+/W)>0. What has
happened, of course, is that the parabolic boundary
shown in Fig. 7 has followed »o down onto the second
sheet. The singularities of X,’* in this case are plotted
in Fig. 9.

It is therefore clear that if we analytically continue
Xn?*(q',q; W), for fixed ¢’ and ¢, as a function of W
along the path shown in Fig. 9, down through the

ImW

/Three- particle elastic cut

o]

v
>\
~

Boundary curve — ]

m %J_E‘ﬁo )=0.

S
~
-~
-
<

-
S, ————
———

F16. 9. Singularities of X»,/(¢’,g; W) when »o is a resonance energy.
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right-hand cuts, we will cross the boundary curve
Im(EvVE—+/v0)=0. When we do so we will again pick
up the terms containing V,7%(¢/,lW) and Egs. (65)-(68)
will again be valid. It follows that if D7£(W), defined
in (69), has a zero in this region it will correspond to a
three-particle resonant state. As shown in B, this is
significant because the function V¢o/=(+/E,W), which
occurs in the expression (69) for D/£(I¥), has a logarith-
mic singularity at the rescattering point, W =4v,. A pos-
sible connection is then made between this singularity
and a nearby zero of DV£(W).

The expressions above are also useful for studying the
on-shell amplitude X»,/*(+/E,»/E; W). Returning to
the case where »¢ is a bound-state energy, we recall that
this quantity is the quasi-two-body elastic amplitude
for scattering of the third particle off the two-body
bound state. For example, X»,/*(/E,A/E; W) may be
the amplitude for nucleon-deuteron scattering. As is the
case with ordinary two-body partial-wave amplitudes,
the on-shell amplitude has left-hand cuts as well as the
right-hand cuts discussed above. These left-hand cuts,
with one exception, are associated with the potentials
in the usual fashion. It is easy to verify that these
“potential cuts” arise in the on-shell amplitude from
the off-shell cuts associated with the function A(p?).
Since the latter were neglected in this section, the on-
shell amplitude given by the above expressions does not
have the “potential cuts.” These appear, one by one,
as the off-shell corrections discussed in the Appendix
are added to the formulas of this section.

However, a left-hand cut of a uniquely three-body
type does appear in X»,/¥(v/E,A/E; W) as calculated
from the above expressions. This appears solely in the
term Zy,/*(/E,/E; W), ie., the “Born approxima-
tion” to the on-shell amplitude. The cut is of a logarith-
mic type, with endpoints at W =4y and W= 4%p,. This
singularity is associated with the “exchange diagram,”
shown diagramatically in Fig. 10. We observe that
when the condition p>>|ve|!/? [discussed prior to Eq.
(35)] is satisfied, this singularity is much more impor-
tant than the true “potential cuts” in determining the
value of X»,”*(v/E,~/E; W) for physical values of W,
i.e., W 2vo. Thus the expressions derived in this section
define a kind of “N/D” approximation to the on-shell
amplitude. Itis clear that, for W > $v,, the “D function”
for this amplitude is the determinant D/+(W) of the
system of linear equations (68).

Finally, we note that for W>y,, the on-shell ampli-
tude as calculated from (68) satisfies the unitarity

Fic. 10. The exchange diagram. The cross-hatched line is the
full propagator for the bound-state pair, and the circle is the vertex
for disassociation into two free particles. The single lines represent
free-particle propagation.
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relation
X H(E+i9)'% (B+i9)1% )
— Xn (B €)% (E—i€) V2% W)

ZWi\/EZX TE(E4ie)\2,(E+ie) /2 W)
3D/(V0) p Ao 16) ) ZE) )

XX o5 ((E -ie)t1% (E—ie)'/2, W), (73)

For W>0, (73) is to be interpreted as just the v/E
portion of the right-hand cut, ie., the terms X),/*
X((E—1e)l/2, (E—1ie)t/2; W) are to be evaluated below
the +/E cut, but above the inelastic cut beginning at
W=0. To prove (73), it is convenient to put in the /E
dependence of the functions Vy,7%(¢/,W) and M,,'*
(¢, W); explicitly,
Vae?*(¢,W; VE)=Va7* (¢, W),
Mro"*(q',W; VE)=Mx"*(¢',W).
From (30) and (58) it is easily verified that
Vae?=((E-+1€)'/2, W; (E+i€)!/?)
— Va (B, W; (E—ie)i#)
=—[2mi~/E/3D (vo) 1Zrs"*(VE~/E; W).
From (66), (67), and (75), one then finds that
My JH(E+ie)2, W5 (E+ie)2)
— M I E((E—ie)2, W; (E—ie€)!/?)
=—[2xi/E/3D'(vo) JN\e"*(VE/E; W). (76)
Equation (73) then follows trivially from (75) and (76).

(74)

(75)

V. NUMERICAL CALCULATIONS ABOVE
THE BREAKUP THRESHOLD

Equations of the Faddeev-Lovelace type have been
applied by many authors to a variety of physical prob-
lems. Comparison of the numerically obtained solutions
with experimental scattering data has generally con-
firmed the ability of this approach to account for the
major features of the three-body processes studied. In
the absence of experiments involving three incoming
particles, one is typically interested in the quasi-two-
particle amplitudes X»,/(¢’,q; W) with one or both of
¢’ and ¢ on-shell, ie., ¢’ or (and) ¢g=+/E. Thus the
amplitude X»,/(v/E,q; W) describes the reaction in
which the scattering single particle breaks up the two-
particle bound state; the amplitude X,/ (\/E,vE; W)
describes elastic scattering of the single particle from
the bound state. In the case where(¢’,q) are not on-shell,
they are restricted to the range 0< (¢’,q) <2+/(3W); this
follows from W= p?42¢2 with W>0. ‘

Examples of processes amenable to such treatment
include K-d or N-d elastic scattering, and the breakup
reaction #--d— n+n-+p. The necessary numerical
calculations, however, are complicated by some tech-
nical difficulties which arise when W>0, i.e., when W is
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above the breakup threshold. This is apparent in our
particular equation of this type, (21), in which ¢'-
dependent singularities of the integrand pinch the con-
tour of integration, obviating straightforward numerical
inversion. One can attempt to circumvent this difficulty
by giving W a finite imaginary part, calculating the
amplitude for this complex W and extrapolating back
to real W. However, the uncertainty introduced by this
procedure will be quite large unless ImI¥ is small, and
this requires a large number of mesh points for accuracy.
This is turn requires large matrix inversions and much
computer time.

A considerably better method is the previously men-
tioned contour rotation procedure of Hetherington and
Schick. The integral equation is then written in terms
of the function X, evaluated on the rotated contour,
and this equation has a much less singular kernel. How-
ever, the maximum angle of rotation must be less than
0=arg(3v/E-++/vo), and thus 6 decreases as W in-
creases, requiring more mesh points to obtain the same
accuracy. This is an especially serious defect when v is
a resonance energy. Another disadvantage of this
method is that different procedures must be used to
determine the physical on-shell and half-on-shell ampli-
tudes from the values of X,,’ on the rotated contour.
Finally, it is not suitable for calculating the fully off-
shell amplitude, which is a physical amplitude for elastic
three-body scattering.

In this section we employ a modified version of the
analysis of Secs. III and IV in order to obtain a new
integral equation exactly equivalent to (26). This new
equation possesses all of the virtues and none of the
above defects of the contour rotation method. To
simplify the discussion we will consider the two-body
bound state to be in an s wave (/=0), and we will make
the specific choice A(p?) = (p*+p>)~'. However, the
formulas we will obtain are also valid for any %(p?) of
the form (33), and generalization to arbitrary / is not
difficult.

For this case (21) reduces to

XI(¢q; W)=27(¢',q; W)
N /w dk B*Z7 (g k; W)XV (kyg; W)
o D(W — 3k?)

, (17)
with

Y dz Py(2)h(p')h(p?)
Z7(q' g W)=—/ - -
-1 ¢*+q"*+qq'z—W—ie
Here
h(p'?)= (¢*+9q'z+1¢*+u?) 7,
h(p?)= (tg*+qq'z+q"*+u)7.
The principal difficulty in solving (77) numerically for
positive W arises from the denominator (g4’
~+qq’'z—W) in the integral defining Z7(¢’,q; W). There
is a range of positive values of ¢’ and ¢ for which this
denominator can vanish for z in the interval (—1, 1).

(78)
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However, the off-shell approach discussed in the previ-
ous sections suggests that one can avoid this diffi-
culty by adopting the following procedure. We split
Z7(¢’,q; W) into distinct parts, defining new functions

BI(q'yq; W)
[ dz Py {h(")h(p?)—h(W — 3¢ )h(W —q)}
T f_l g gqi— W —ie ’
CI(qq; W)=—h(W—1¢%)

(19)

! dz P;(z)
x / ,
1 ¢ Hq¢' z—W—ie
so that
Z7(q',q; W)= B (¢',q; W)+(—=1)'BI(¢, —q; W)
+h(W—%¢'9C7(¢',q; W).

The troublesome singularity now appears only in the
function C7(¢’,q; W). Our purpose is to substitute this
sum of functions for the Z7(¢/,k; W) appearing in the
integral on the right side of (77), and then to treat the
part containing C7(¢’q; W) analytically by the method
of Sec. ITI. In doing so it is convenient to work with the
function

X, g; W)=X(¢'q; W)—27(¢',q; W).

Interating (77) once, we obtain

(80)

X(gq; W)=97(¢,q; W)

0 2
+/ ———Z7(q ;s W)X (kyq; W),
vy )X (kyq; W)
with
® dk k227 (g k; W)Z7 (kyq; W)
(¢g; W)= / - (81)
0 D(W —$k?)

By making use of the symmetry property
XI(—¢, ¢ W)=(=1)"X(¢",qg; W) (82)

and the functions BY and C” defined in (79), we can
rewrite (81) in the form

XI(g\q; W)=927(¢,q; W)
fw dk k2B (¢ k; W)X (kyq; W)
o D(W—2k?)

+h(W—4¢)F(¢',q; W), (83)
where
1 = dk B2CY (¢ ks W)X (kyg; W)
FI(q'\q; W)=- f - (84)
2) D(W—3k?)

We now wish to obtain a representation for FY
X (¢’,g; W) by analytically continuing it into the ¢’
plane and determining the singularities of the con-
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tinued function. Following the method of Sec. III, it is
clear that the continuation of (84) is analytic in the
upper half-plane except for the singularities of

Ziw A=Y dO QW —$0%)
S’(q’,q;W)E——f —
" Ja DW—40%

q

W_q’Z_QZ _
— ) X7(Q,q; W 5
- Jresm 69

at points ¢’ R(W, —1). Corresponding singularities in
the lower half-plane are deduced from (82), which is also
satisfied by FI(¢',q; W).

Equation (85) is to be compared with (49), the singu-
larities of which we have already discussed. However,
the analysis of (49) neglected singularities of the func-
tion 4(p%). The function 2(W—4Q?), which in this case
has poles at Q= £2[3(W+u?)]'/% contributes an addi-
tional singularity to.S7(¢’,q; W) in the form of a cut be-
ginning at ¢'=[3(W+u?)]/?4iu. We take this cut to
be along the line

¢ =W+ +iptix, 0<a<eo.

We note that the amplitude X7 does not have the cut
(86); this is because of a cancellation which occurs when
one continues the integral containing B” in (83) analyti-
cally. We observe this without proof, but the statement
is easily verified by considering (49) and the correspond-
ing formulas in the Appendix.

It is straightforward to proceed as in Sec. IV, obtain-
ing the following representation for FJ(¢’,q; W):

o(a’)

XPJ<

(86)

FI(¢'q; W)=VI(¢, W)X’ (VE,q; W)
+U (¢ WX QBW )] %q; W)

100 dQ
+ f .
sqwye (W—50%)12
X[A47(q,0; DXI((W—309'24-30, ¢; W)

+47(¢, Q; —DXI(W—50)12—30, ¢; W)], (87)
where
Srih(ﬂo)q"’
VI =
3DI(V0)
o dg 1 W—g—E
A )
WwE+wn ¢ P—¢? V'Eq
wlq 760 q
UJ(Q”W)=———2 -—J
3D(-M) [%(W__“z)]llz q

1 W 4u2+3¢2
),
¢?*—q'*  \—6q[(W+nu?)/3]"/2
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and

(q—2eQ)gh(W—iq*)
47(¢,0; e)=~q”[ el :

D(W—4¢%

odh 1 W—Fk2—g?
“f, w0
o kk—q" kq o= (=101 24} eq-

The contour for the Q integration in (87) is the
curve K(W), along which W—20?>0. However, (87)
can be greatly simplified if we deform this contour
such that it lies along the curve where W—2(Q? is pure
imaginary; this means rotating onto the second sheet of
the square-root function. The new Q contour and the
corresponding contours for the curves 4 (W—3Q?%)/2
+3Q are plotted in Fig. 11. Itis clear that as we perform
this deformation we must cross two poles of the func-
tion 47(¢,0; 1), ie, the functions A(W—%¢? and
D~ (W—%¢?) each have a pole on the real ¢ axis. It is
easy to verify that the additional terms we pick up from
crossing these poles exactly cancel the first two terms on
the right side of (87). It is convenient to make the
change of variable

(=301 2= (1~i)y,

. (89)
QW)= 2[5(W+2iy*) ]2
for y20 and to introduce the function
- dQ(y) 4’[¢,0(); 1]
A7(gyy; W)= - . (90)
. dy (1—d)y
Defining
w(y)=1—y+[5(W+2iy*) ]2,
—nly<o (91)

¥ (g W)=X"Te(),g; W1,
we can combine (83) and (87) to read
X(gq; W)

=Q7(¢,q; W)+ “ dk k*B7 (' k; W)X (kyq; W)
- ib &)

— D(W—%k?)

00

dy A7(q'yy; W (3,9; W).  (92)

UL

—0

(0]

ReQ

\\
TN @

F16, 11. Curve (1) is the contour for which W—$Q? is purely
ir_naginary. Curves (2) and (3) represent the values of the func-
tions 304 (W —32Q%? and 3Q— (W —2Q?)172, respectively, as Q
runs along curve (1). Curves (2) and (3) together make up the
contour w(y).
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As we observed in Sec. 111, we are normally interested
in values of W<<u? This is because u is on the order of
a mass, while I¥ is a nonrelativistic energy. From the
definition (79) of B7(¢’,q; W), it can easily be shown that
the k-integration in (92) can be taken along the contour
k=w(y), providing that W<u? and ¢'=w(y’), ¢ =VE,
or ¢’ is real and <2(3W)/2 Thus (92) may be written
as an integral equation for the function ¢7(y,q; W):

VI ,q; W)= [w(y),q; W]
+ / dy KI(y' sy W (3,0, W),

RI(y,y; W)=K’[w(y),y; W], (93)
KI(q ;s W)=h(W—3¢%A7(¢,3; W)
(dw(y)\wz(y)BJ[q’,w(y); W]
dy | DLW—3*()]

From the definitions and discussion given above it is
not difficult to check that the kernel and inhomogeneous
term of (93) are smooth functions of y and 4" when W is
positive. Thus (93) is much more tractable than (77) to
numerical methods of solution. After the solution
Y7 (y',q; W) to (93) is obtained, the physical amplitude
is calculated by the relation

X7(q',q; W)=27(¢,q; W)+Q7(¢',q; W)

0

+ | dy K¢y W (y,q; W).

—0

(94)

Equations (93) and (94) enable one to obtain any of the
physically interesting amplitudes from a single compu-
tational procedure. Therefore, in our opinion, this ap-
proach has significant advantages over the calculational
methods discussed earlier. Also, there is no difficulty in
extending this method to the situation where v is a two-
body resonance energy, and in fact the resulting equa-
tions are identical to the above.

We therefore conclude that the off-shell approach in-
troduced in A, and developed further in this paper, may
be of some very practical use in the numerical solution
of scattering equations, as well as providing a versatile
theoretical tool in their analysis.
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APPENDIX: CORRECTIONS DUE TO

FORM-FACTOR SINGULARITIES

In determining the off-shell analyticity of the ampli-
tudes X».7%(¢’,q; W) in Sec. I1I, we neglected singulari-
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ties which arise due to the form factors and hence are
dependent on the dynamics. In our notation this meant
treating the function 4(p?) as if it were entire, although
we know it to have the general form (33). As a result,
terms were omitted in the representation for X»,/*
X (¢’,q; W) and the new integral equations obtained in
Sec. IV. In this Appendix it is shown how the previously
neglected singularities can be determined and the corre-
sponding corrections obtained to the equations of Sec.
IV.
To avoid complicating the discussion we will assume
that
R*(p'%) = (3¢ *+ 2k +k*+a?) 7,
h(p?)= (¢"*+zkq' +1k*+B%) 7,

where , 82 p. It will be clear that our procedure can
easily be generalized to handle any %(p?) of type (33).
The presence of the two denominators of (A1) in (35)
necessitates two additional continuation procedures
analogous to the procedure described in (37)-(41) for
the denominator (g'2+zkq’+k2—W). Application of
these procedures leads to a generalized version of (45),
which we write in the form '

Xou(g'sq3 W)=20(a' 505 W)+ Roula'sg5 W)

' +5u(gg; W) (A2)
for ¢ERW, —1). Here the function Ru(q,q; W) is
analytic for ¢ ER(W, —1) and Sy,.(¢,g; W) is given by
S\ulq'g; W)= Snulg'sg5 W)+6(Img’ — 2a)Sx1(¢'g5 W)

+0(Img'—B)Sx.2(q,q; W), (A3)

(A1)

where

—_

1
SMI(‘Z',‘]; W)= —l—(W—- %q'2+az)—1
q

/) df B =) — o)
<z [ :
7 Jig—ia D(W — k%)

%q12+k2+(¥2
e

;q',k)xuoe,q; Wy, (A4)

i a(d".0) df k(W —2k2+B2)1
Sneg W)=—X% /
4 2

/ DOV—#)

q/Z_.l_ lk?_’_ﬁz
Xh*(fi‘(kz"qlz)*ﬁz)fh<—-_f—,‘; Q',k)

q

a’'—i28

XX oulksi; W),

and Sxu(¢’,g; W) is given by (49). The endpoints
a'(¢’,e) and a2(¢’,B) lie on the real axis.

From (49) and (A4) we may deduce all singularities of
Saa(q’,q; W) in R(W, —1). It is clear that the two cuts
we found for Sx.(¢’,q; W) in Sec. III are included among
these singularities. However, the singularity structure in
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the ¢’ variable which we find from (A4) is far more com-
plicated than that simple two-cut structure. Analyzing
(A4) by the method of Sec. III, it is straightforward to
show that X».(¢’,q; W) has cuts in the upper-half ¢’
plane with branch points at [1]-£3¢+(W—2¢%)1/2,
[2] 2GwW)2, [3] $VE++/ve, [4] =£3q+ip, [5]
+2g+142u, [6] 3V E+iu, [7] 2/ E+142u, [8] 2iu, and
[9] an infinite sequence of points generated from the
previous 11 by successive applications of the two
transformations .
Qy=3q+iu,
Qug=2(g+1p).

That is, (1 is the operator which takes the point g into
the point 3¢ 4u. Thus, if ¢ is one of the 11 branch points
enumerated above, there are branch points at the points
Q related to ¢ by

0=01"0:Q 1" - - Qukyq. (A6)
Here (1" means 7 successive applications of the operator
Q1, etc. It is clear that the arguments of the branch
points generated by successive applications of the opera-
tions Q1, Q2 move closer and closer to 37. We can thus
conclude that, with the exception of the inhomogeneous
term cuts [1], [4] and [5], and the cuts [2] and [3]
discussed in Sec. III, the function X».(¢’,q; W) is
analytic in the upper half-plane except for cuts which lie
in the region R, where R consists of the points ¢’ which
satisfy

(A5)

Imq’ Z M,
arg(vE+iu) S arg(¢) < arg(— v E+iy),

when ¢S VE.

The discontinuities associated with the above cuts can
be calculated from (A4). For example, the discontinuity
across the cut with branch point at ¢'=3+vE+iB is
given by
lim [S3(q' ¢ ¢; W)=Sn(¢"+e ¢; W) ]

— 4 Q(E—q)—F)
3D'(vo)g' (vet+B%)

/2+lE+ﬁ2
. (HE
4 —q \/E

(A7)

; q’,\/E)

XXvu(\/E;QS W) .

By successively adding terms to the expressions of Sec.
IV corresponding to the above singularities, one can suc-
cessively improve the approximate formulas developed
in that section. As indicated in the text, such a “pertur-

(A8)
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bation” procedure is meaningful because these singu-
larities are relatively far away from the real axis as
compared to the singularities treated in Sec. ITI. This
argument is borne out by some numerical calculations
performed by the author for the three-nucleon problem
in which the terms corresponding to cuts [1], [2], and
[37] accounted for all but about 39, of the exact value
of X»,’. The lowest-order corrections to the formulas of
Sec. IV are obtained by replacing the function V),/=
(¢, W), defined by (58), by the sum Vi,7%(¢’,lW)
+ Ule:h(ql’ W)+ W)W'H:(qlr W): where

U)\GJ:E(q’yW)”_‘-/- ag a(ﬂ)UM‘H:(q/;W; ﬂ) )

W' *(g', W)= / i da o(@Wr':(¢,W; a),
’ 2mig'?M
3D’ (vo) (vo+p7)
o /f«v dk B*G(E—k2)—BDB (')
IE+B

k2M+1

Ur7%(¢\W; B)= (A9)

lE+k2+ 2
% MJi(f____._ﬁ; k,\/E) ,

—kVE
and

Wan*(q',W; OL) =

2rig'M
3D’(Vo)
# dk hG(k*—E)—oNB*(¢ k)
% /2«E+i2a RAME(W — ko)

E+1k*+a?
Xf)\o",i<~‘—°_; k,\/E) .

Here we have assumed the general form (33) for A(p?).
The functions U),7* and W),/* are associated with the
cuts [3] and [4], respectively.

By adding the corrections (A9) to the expressions of
Sec. IV, and by making a ‘“Born approximation” to the
integral equations (66), one can obtain an approximate
solution to (26). The degree of accuracy of this solution
is equivalent to that generated by a second-order
determinantal approximation. The main point, however,
is not that one can employ this procedure to calculate
numbers in some model, but that the expressions of Sec.
IV are valid for investigating the major qualitative
features of the amplitudes, such as their behavior at the
breakup threshold.



