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We have considered two chiral-invariant Lagrangian models of pion-nucleon scattering: Weinberg s model,
which contains a direct pion-nucleon scattering term; and an extension of Schwinger's model in which this
direct term is replaced by a p-mediated term. These models have been extended by including a mXN*(1.236)
interaction. This has allowed us to calculate the E contributions to the S-wave pion-nucleon scattering
lengths and to compute the P-wave scattering lengths. The theoretically obtained values for these scattering
lengths are found to be in reasonable agreement with experiment, with the possible exception of the a I 1f2

scattering length, for which only the direct model gives agreement with the present experimental data. For
the a&+ scattering length, agreement was obtained only after the introduction of a contact term. The presence
of such a term is made more plausible by the study of the asymptotic behavior of the isospin-even amplitudes.
We have also compared our analysis with similar current-algebra calculations and obtain over-all agreement,
especially with the p-exchange model, although we dier from these calculations in various details.

I. INTRODUCTION

ECENTLY, Weinberg' introduced a chiral La-
grangian method which, for soft-pion processes,

reproduces the results of current algebra. Since then,
much use has been made of chiral Lagrangians in
describing low-energy processes. ' In particular, these
ideas have been incorporated by Schwinger in his
source theory. ' Here these e8ective Lagrangians play
a primary role, since they represent the most convenient
way of describing the phenomenology.

We will be primarily interested in applying the chiral
Lagrangian method to pion-nucleon scattering. The
basic Lagrangian for this problem was constructed by
Weinberg' and subsequently extended by Schwinger'
to include the spin-1 mesons, p and A1, in the scheme.
Both of these Lagrangians give good predictions at
threshold, but are not suitable for describing matters
much above threshold, since resonance effects become
important. We have remedied this situation in part by
adding to the pion-nucleon Lagrangians of steinberg
and Schwinger a term which incorporates the inter-
action of the pion-nucleon system with the first nucleon
resonance 1V*(1236).This Ã*Err interaction term has
been constructed by making explicit use of both chiral
invariance and of a restrictive condition imposed by the
spin character of the S*.

As a first application of this extended Lagrangian
we have computed the I'-wave pion-nucleon scattering
lengths and E* contributions to the 5-wave scattering
lengths. The corresponding current-algebra calculations
for the I'-wave scattering lengths have been done by
Schnitzer and by Raman. ' The latter author also
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' S. Weinberg, Phys. Rev. Letters 18, 188 (1967).' J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967); P.
Chang and F. Giirsey, ibid. 164, 1752 (1967);B.W. Lee and H. T.
¹eh,ibid 166, 1507 (1968)..' J. Schwinger, Phys. Rev. 158, 1391 (1967).

4 J. Schwinger, Phys. Letters 248, 473 (1967).' H. Schnitzer, Phys. Rev. 158, 1471 {1967);K. Raman, ibid.
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considers, from the current-algebra point of view, the
resonance corrections to the 5-wave scattering lengths.
We will compare the results obtained from the phe-
nomenological Lagrangian method with the current-
algebra calculations further on. We remark here only
that we obtain general agreement with the work of
Schnitzer and Raman, although we di8er from them on
various points, and of course in the approach.

The plan of this article is as follows. In Sec. II we

indicate how to construct a chiral-invariant Lagrangian,
and specia1ize the discussion to the pion-nucleon system.
Section III is devoted to the spin-~ formalism, and the
implications of this section are applied in Sec. IV to the
construction of a 1V*Em vertex. In Sec. V we review
some kinematical preliminaries for pion-nucleon scatter-
ing. In Secs. VI and VII we calculate the isospin-odd
and isospin-even scattering lengths, respectively. The
asymptotic behavior of the scattering amplitudes, and
the implications that this behavior has at threshold,
are discussed in Sec. VIII. In Sec. IX we compare our
results with the current-algebra calculations and make
some final observations.

II. CHIRAL INVARIANCE AND THE
PION-NUCLEON SYSTEM

To construct a chiral-invariant Lagrangian for the
pion-nucleon system, we follow the nonlinear method
discussed by Weinberg. ' The underlying assumption is
that the pion field transforms nonlinearly under the
chiral group SU(2) XSU(2).

If I, is the generator of chiral transformations, then
the most general nonlinear transformation of the pion
field under chirality can be shown to be'

LX„sr )=—(i/X)Lr(1 —X'sr')8 +X'sr s $. (1)

The corresponding transformation for any field P is

PX.,ibf= X(tXsr)P, (2)

where t is the appropriate isospin matrix for the Geld f.
6 S. Weinberg, Phys. Rev. 166, 1568 {1968).
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P ION —NUCLEON SCATTERING LENGTHS isi3

Because of the presence of the m. 6eld in Eq. (2), it is
clear that B„fdoes not transform like f under chirality.
Nevertheless, one can construct a covariant derivative

D„$=cj„f+2ih'(1+X'pr') 't (ppXBpp)f (3)

such that D„f transforms like P.
Similarly, one can define a covariant pion derivative

D„pe= (1+X'm-') 'B„pp, (4)

which also obeys the transformation law given by
Eq. (2).

Because of the structure of Eq. (2), any isotopic
spin-invariant Lagrange function constructed out of
D„7r, lt, and D„f will then be automatically chiral-
invariant. In particular, for the pion-nucleon system we
can write the following chiral-invariant Lagrangian' ".

N$y" (D—„/i)+M jN ,'D„rp D—"ep-

+ (f/m. )Nip„q, r ND~~. (5)

Because the pion has a hnite mass we must add to Eq.
(5) a pion-mass term

Z.~' ————,'m 'x'

It is clear that this term breaks chiral invariance;
thus we do not have total symmetry of Z„~ under
chiral transformations, but rather we have a partial
symmetry. 4 '

Since we are primarily interested in pion-nucleon
scattering, we abstract from the above the relevant
effective Lagrangian that will contribute to this
process.

Z,„«=(f/m. )Niq„q, r Na~~

+ (fp/m, )sNy„r. N(8"ppX pe) . (6)

The coupling constant f, which corresponds to the
usual derivative-coupling interaction, has the numerical
value 7

f= 1.01&0.01.

To determine the value of the other coupling constant
fp (which is related to the chiral parameter )t by
fp=m &), let us follow Schwinger' and construct from
the total Lagrangian the current

J„=V„—A„=c)„ppXpp+Ny„(-,'s) [1—(f/fp)imp jN+
If we now assume that this is the current associated
with the P-decay properties of the pions and the
nucleons, it follows that

f/f p
—Gg/Gv ——1.18&——0.02.

It is possible, and we think desirable, to extend the
idea of chiral symmetry to incorporate the unit spin
particles p and A~. This has been done by Schwinger. 4

' J. Hamilton and W. Woolcock, Rev. Mod. Phys. 35, 737
(1963).' J. Schwinger, Phys. Rev. 167, 1432 (1968).

When these gauge fields are included, the direct
pion-nucleon interaction term which came from the
chiral boosting of the nucleon kinetic energy is canceled
by a term coming from the nucleon-axial-vector
interaction. 4 But it is effectively replaced by a p-
mediated term which can be characterized by the
following Lagrangian:

(Sa)

This Lagrangian embodies the universal coupling of
the p to the isotopic current of the pions and nucleons.
We note that since this gauge term gives us the
same prediction in the forward direction as the direct
chiral term, we must have

g/@2m p fp/m——,

which is the Kawarabayashi-Suzuki relation.
These are not all the p-mediated terms that contribute

to pion-nucleon scattering. From the inclusion of the
1+ gauge particle, we have an additional px7t- inter-
action, 4

Z...= —(g/4m, ')9&" (8 ppXB pp).

We can use Eq. (Sb) and the first term of Eq. (Sa) to
calculate the decay width of the p. If we use the value
of g implied by the Kawarabayashi-Suzuki relation, we
obtain good agreement with the recent value deter-
mined for the p width in the e++e -+ w++s- experi-
ment, I',=93~15 MeV."

Finally, there is also an additional p-nucleon inter-
action term which arises from the coupling of the
anomalous magnetic moment of the nucleons to the p
held strengths. '

Z,m~= (gE/4M) 9"" No„, (,'~) N, . -(Sc)

where E=p„—p ~3.70.
The second terms of Eq. (Sa) and Eq. (Sc) encompass

the idea of p dominance of the isovector nucleon form
factors. This can be seen by noting that the electro-
magnetic potential A„ is coupled to the p field as
follows".

Z,g = (e/g)mp'p, l'A„.

This implies in turn that the nucleon isovector electro-

9 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16, 255
(1966); Riazuddin and Fayyazuddin, Phys. Rev. 141, 1071
(1966).

'0 V. L. Auslander et al'. , Phys. Letters 25B, 433 (1967),"I. Schwinger, Brandeis Lectures, 1967 (unpublished),

One starts with two non-Abelian gauge fields pt' and aJ'

representing 1 and 1+ excitations. Because of the
existence of the pion, a& is not purely the A& Geld, but
rather

as= A, ~+as'/m~
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magnetic vertex is given by

zg~~r e——d4x'[N(x)y„( ,'r-a)N(x)mp'6+, (x —x')A&(x')

+ (K/4M)N(x) 0 '„„(~~r3)N (x)m p'6+ p (x x')—F&"(x') j,
which displays explicitly the p-dominance assumption.

We see that the extension of chiral synunetry to
include the spin-1 mesons p and A~, together with the
idea of p dominance of the isovector nucleon form
factors, replaces the direct pion-nucleon interaction
term in Weinberg's Lagrangian by

Z, „=g(N~„(';) N&-+(K/4M)N~„„( ;.)N &-"j

+gL(&, X ) y"-(4 ') '(&, X8, ) y "j. (10)

We then have two basic effective Lagrangians for
low-energy pion-nucleon scattering: the direct La-
grangian which is given by Eq. (6), and the p-exchange
Lagrangian which is given by the first term of Eq. (6)
plus Eq. (10). To both of these Lagrangians we must
now add contributions that come from the interaction
of the nucleons and pions with the nucleon resonances.
In particular, we shall consider the s.NN*(1236) inter-
action. Before we can do this, however, we must review
certain properties associated with a spin--, field.

0 ~%+tv.vie, (12)

then Z(w) -+ Z(w'), where w'= w(1 —X)——,'X. This
transformation does not affect the spin-~ content of
|P, but merely mixes the two classes of spin-2 com-
ponents of |P ."Thus we see that the particular value of
zv does not have any physical significance.

By making use of the above Lagrangian, we can
write down the equation obeyed by the spin-~ propa-
gator G p. In momentum space it reads

L(. p+M)g-+ (p«~+&.p )+K~.~ p~
+M»-~ )G'.(p) =g-' (»)

This can be readily solved and yields for the propagator

III. SPIN —
~~FORMALISM

The free Lagrangian for a spin-~ Geld can be written
as'~

0—"{Lv"g.e+w(~ "&e+4"V-)+K& V"ve3~./&
+M(g'-e+ &v-ve) }0', (11)

where

K= —-'(3w'+2w+ 1), 2"= -', L(1+3w)'+3 (1+w)')

and m is an arbitrary parameter.
If one makes the point transformation

—7 p+M- w p.ve 3w+2 v.pe 2w P-Pe (3w+1)(w+1) V-V Pve
G-e(p)= . g-e+ + +

P'+M' —ie- 3(2w+1)' M 3(2w+1) M 3(2w j1) M' 6(2w+1)' M

w(w+1) p 7.pye (w+1) y y ppe t'1+3w+3w' (w+1)' p'
+I + &-&e (14)

3(2w+1)' M' 3(2w+1) M' ~ 3(2w+1)' 6(2w+1) M'

We note that under the transformation (12) 2;„4
does not in general remain invariant. But if we are to
have a pure coupling to the spin-23 lMld, it is necessary
that 2; t, remain invariant under this transformation,
since this transformation only mixes the spin-~ com-
ponent of f„.This can be achieved only if we impose a
subsidiary condition on the coupling matrix 0„„
namely,

y„O~"=0. (16)

We remark. that only when such subsidiary condi-
tions are imposed is it correct to make a particular
choice of w in the propagator G e(w), because only

The choice m= —i simplifies G p considerably, and in
fact is what is commonly used in the literature. '

Some care must be exercised when using this propa-
gator in the presence of interactions. This can be best
illustrated by an example. In view of future applications,
let us consider the interaction of lp„with a spin--, field f
and an axial-vector Geld 8„. We can write, quite
generally,

then is the theory truly m-invariant. This is similar to
gauge invariance in electromagnetism, where freedom
of gauge transformation

implies that A„must be coupled only to conserved
currents. Once the coupling is gauge-invariant one has
the freedom to pick any desired gauge. In our case,
once we have made the total Lagrangian invariant
under (12), and only then, we are free to choose any
particularly convenient value of m.

IV. N*N~ COUPLING

To construct a chiral-invariant interaction for the
E*Ex system, we have seen that we must couple the
E*E current to the covariant derivative of the pion
Geld, and not to the pion Geld itself. The most general
such coupling is, neglecting isospin indices,

2~~~4 = (k/m )N„*(4g""+p"p")ND„++H.c. (17)'
~~ K. Johnson and E. C. G. Sudarshan, Ann. Phys. (N. Y.) 13,

126 (1961).
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The combination of g"" and y"y" taken is such that the
restriction (16) is identically satis6ed.

It is useful to remark here that the y~y" term, which
is necessary for pure spin-~ coupling, does not con-
tribute to the E'er interaction when the E* is on the
mass shell, because then electively p&E„*=O.But this
term does contribute oB the mass shell, and thus we
can view the subsidiary condition, Eq. (16), as a
prescription of how to go oG the mass shell.

The coupling constant h can be determined from the
known width of the E*."One has

4 ps(X+M)
I'~~=—fP

3~ Mm 2

where p and F. are the momentum and energy, respec-
tively, of the nucleon in the S*rest system. This gives

h2= 0.290&0.006.

It may be remarked that to the Lagrangian given
in Eq. (17) it is also possible to add another term in
which the E*Ecurrent is coupled to the double deriva-
tive of the pion field. In our analysis we have found
this term unnecessary.

V. PION-NUCLEON SCATTERING
PRELIMINARIES

We now have all the elements needed to calculate
pion-nucleon scattering at low energy. The effective
Lagrangian to be used is given by Eqs. (1/) and (6)
(direct model), or, alternatively, by Eqs. (1/), (10),
and the first term of Eq. (6) (p-exchange model).

In what follows, we let p& and q& represent the four-
momenta of the incoming nucleon and pion, respec-
tively; and ps and qs represent the four-momenta
of the outgoing nucleon and pion, respectively. Then
in our metric s = —(P&1q&)s, N = —

(P&
—qs)s, and

1=-(P -P )'.
It is convenient to decompose the T matrix in

invariant amplitudes. '

&-(V)=N(p)LA -(,1)+7 QB -(s1)3N(p) (1S)

where Q=-,'(qg+qs).
We note here for reference that the differential cross

section in the c.m. system for unpolarized nucleons is
given by

where

A+= -', (A &/s+2A s/s), A-= -', (A $/s A 3/s) i (21)

with similar relations holding for Bp .
It is useful to relate the A and 8 amplitudes directly

to partial waves. We write the differential cross section
in the c.m. system as

do'/dQ =
( (2 (

F
( 1)(

s

where F is taken between Pauli, not Dirac, spinors.
Then the scattering amplitude F has the usual partial-
wave expansion'4

F= P Dfi +(i+1)fg+jPi(cos8)

ie—(p,Xpg)Lf, +—fg
—1Pi'(cos8), (22)

where 8 is the c.m. angle.
The relation of P to the invariant amplitudes can be

seen to be

(X+M)
F=

( A+ (M—Qs)Bj
Ss.+s

(E—M)
LA+ (M+Qs)Bj

Ss+s
X (cos8+io PsXPi), (23)

where 8 is the nucleon energy in the c.m. system.
The above equations can be inverted to express the

partial waves fg in terms of A and B. One obtains

f(+- d(cos8)
16s.+s

X{(F+M)$2+ (M—Qs)BjP (cos8)
—(E—M)LA+ (M+gs)BjPi~i(cos8)) . (24)

The S- and E-wave scattering lengths can be ex-
pressed in terms of the partial waves as follows:

~p=Em fo+j '-o /sJ'/ =E'//s fi /q j ' s=
~&s/s =L~~'f&+/q'je'=s r

where g'= E'—M' is the square of the c.m. momentum.
These are all the kinematical relations that we will

need. Therefore, in Sec. VI, we will proceed to calculate
the isospin-odd scattering lengths.

VI. ISOSPIN-ODD SCATTERING LENGTHS
da 3P

dQ 32x2$ 8~i~

The isotopic content of the amplitude is

Ap =bp A++ ,'[rp, r„jA-

(19)

(20) A =0, (26a)

It is straightforward to work out the contributions
to the isospin-odd amplitudes A and 8 coming from
our eBective Lagrangians. We find that the nucleon-
exchange term gives

'e A. H. Rosenfeld ef s1., Rev. Mod. Phys. 40, 77 (1968).
'4 G. P. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,

Phys. Rev. 106, 1337 (1955).

2f 4M'f'( 1 1
+ ( +

m, ' w, ' ks —M' N —M')
(26b)
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The p-exchange term yields

fp'/m. s (u—s)E(A= il—
1 t/—m' 2M E 4m sI

where we have made use of the Kawarabayashi-
Suzuki relation, Eq. (9). If we make use of the direct-
model I.agrangian, the above would be replaced by

27a
A =0, (27a')

8 = -(1+K)i 1—
1 t/m —p' k 4m, s)

& = —2fo'/m '
(27b)

Finally the Ã* contribution to A- and 8 is

(27b')

A = (hs/3m~s) {(8(M*+M)(t—2m s)+ (4M*j6M) (s—M')+ (4/3M*) Lss —s(Ms —4m s) —4m s(Ms —m ')j
+ (2M/3M*')t 3S'—s(7M' —Sm.')+4(M' —m, ')'j)/(s —M*')—L(s -+ uy t ) t)$) (28a)

& = (h'/3m s){(—2(s—M') —8(t—m s)+M(8M*+12M) —(SM/3M*)fs —2Ms+2m sj
—(2/3M*')(s' s(3M—' 4m —')+4(Ms m')—'j)/(s M*'—)+I (s —& u, t + t))) .—(28b)

+s = (A
——m.B-),=p,

4rr (1+m./M)
which gives

(29)

We should note that, in general for the E*amplitudes,
M* in the denominator should be replaced by M*—-,'iF
to account for the E* width. For our purposes this
will not be necessary since we are evaluating our
expressions at threshold.

The scattering lengths are now computed by making
use of Eqs. (24) and (25). In particular, we see that for
the S wave these equations reduce to

which compares very favorably with the experimental
value of Samaranayake and Woolcock, "

s (at as)expt=+0 097+0 006 ~

As one would expect, the E* contributes very little
( 1%) to this combination of scattering lengths. In
fact, as is well known, " the p-exchange term alone (or
the direct term alone) suffices to obtain agreement
within experimental error.

In calculating the I'-wave scattering lengths, we are
interested in terms of order q2 only. We can write,
using Eq. (24),

as = s(at —as)=
47r(1+m /M)

2 4m '
f'+2f,'+ h'

~

. (30)
(4M'/m~' —1 M*'

and

8~(1ym./M)

The second term is the result of either the direct model
or the p-exchange model. This is clear since we have
normalized the p-exchange model, through the Kawara-
bayashi-Suzuki relation, to agree with the direct model
for S waves.

Putting in the appropriate values for the coupling
constants f, fp, and h, we obtain

-', (at —as) =+0.101,

8-(x)dan+0(q') . (32)

A straightforward, albeit lengthy, evaluation of the
above gives the following expression for the P3/2
scattering lengths for the p-exchange model:

a) „,—=-', (ar,—a„)=
36s (1+m /M)

6 )
9 .s 3m,K 16m

f'+I — fo'+—
(1—m~/2M)' ~mp' M M*—(M+m~)

SS7r 8
+ 8M*+4M—12m + ( 3II'+6Mm +3m —')

M*'—(M—m )' 3M*

+ (M'+11M'm —9Mm '—3m ')
~

h (33)
3&*2

If we had used the direct model there would have been no fp contribution.
~5 V. Samaranayake and W. Woolcock, Phys. Rev. Letters 15, 936 (1965)."Y. Tomozawa, Nnovo Cimento 46A, 707 (1966);S. Weinberg, Phys. Rev. Letters 17, 616 (1966).
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Numerically this gives, for the p-exchange model,

-', (a&3—at&3) = —0.054—0.007—0.026= —0.087,

while for the direct model the result is
-', (age —a38) = —0.080.

Both of these results agree reasonably well with the experimental value of Hamilton and Koolcock, ~

-', (a&3—a3g),„,t, ———0.081+0.005,

and thus do not provide a clear test of which chiral Lagrangian model is preferable.
We see from Eq. (32) that for the P&~2 scattering lengths it is only necessary at this stage to compute

1

R&-& =m.' B&-&(x)dx.
—1

We find

z(-)=— 4 —-,'(M~' —M' —m ')
f'—4(1+K)f,'+ 6m +M(SM*+ 12M)'

(4M'/m '—1) L(M*+M)'—m~']L(M* —M)' —m ']
SM 2

(M' —3m~') — (2M' —M'm„'+9m~')
~

3M* 3M*'

(32/3)M'm ' 4M 1
(M&—6m 2) /g2 (34)

t(M*+M)' —m ')L(M*—M)'—m 'lk 3M* 3M*'

using the p-exchange model. For the direct model, the
result is the same except that E is set equal to zero.
Then

a&
~

—3 (an a3&) = 3 (a&3—a33)—(m /12M') (ag —a3)
—(m /16&rM)E& &. (35)

Putting in the appropriate numerical values we obtain
for the p-exchange model

—', (an —as') =0.054+0.033+0.024=+0.003 )

where the first term is the nucleon contribution, the
second is the p contribution, and the last is the E-*
contribution. The direct model replaces the p contri-
bution by a much smaller value and gives instead

-', (an —a3&)= —0.022.

The quoted experimental values for this combination
of scattering lengths differ somewhat (see Table III).
If we average these various experimental determi-
nations of ap», , we obtain

~ (a&,—a3g),„p,———0.017.

It appears that the direct chiral Lagrangian model
gives a value for a~„, which is in better agreement
with experiment than the p-exchange model. This is
somewhat surprising since the p-exchange Lagrangian
provides a natural extension of the direct chiral La-
grangian, and contains some very interesting predictions
in its own right. 4 It is clear that the difference between
these two models, as far as this calculation is concerned,

resides in the inclusion of the magnetic moment
interaction, Eq. (Sc). If E were zero, p exchange would
then give Gp1/& 0 020.

We could assume that the p magnetic interaction
was not a contact interaction, but rather that it was
the result of a vertex modification of the minimal pAX
vertex. If this were the case, then this magnetic inter-
action, being of higher order, would not contribute in
the tree approximation. ' We have not been able, how-
ever, to justify this hypothesis of minimality. There-
fore we must continue to include a contact magnetic
interaction term, Eq. (Sc), so as to preserve p dominance
of the magnetic isovector form factor.

We should note that the p-exchange contributions
are to be compared with the "current-commutator"
terms in the current-algebra calculations. ' In fact, our
p-exchange term is identical to Schnitzer's current-
commutator term except that we have an explicit
model for his nucleon isovector form factors F&(/) and
F2(t), namely, p dominance. Thus it is not very sur-
prising that both Schnitzer's and Raman's values for
c+», should also not agree with the experimental
number given above, being too small and positive,
respectively (see Table II). The direct model replaces
the current-commutator terms in the current-algebra
calculations by a much smaller contribution, and
therefore gives better agreement with experiment.

Since the experimental determination of this combina-
tion of scattering lengths is not that certain, and also
in view of the current-algebra results, we believe that
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before we can make a definitive choice between our
chiral Lagrangian models we will need a more accurate
determination of 8&1/2 At the moment, however, the
present data favor the direct model.

VII. ISOSPIN-EVEN SCATTEMNQ LENGTHS

The contributions of the nucleon-exchange and the
S*-exchange terms to the isospin-even amplitudes A+

and I3+ are

4M 2h'
A+= f' — 8(M*+M) (1—2m~')+ (4M*+6M) (s M')+— Ps' —s(M' —4m~') —4m~'(M' —m~s))

m7r 3S$~- 3M*
2M 1

+ $3s'—s(7M' —Sm~')+4(M' —m„')') +L(s ~ I, t ~ t)j
3M*2 s—M*'

and

(36)

2hs- 8M
B+=

~

— f'+— 2 (s M')+—8 (t m') ——M (SM*+12M)+ (s+ 2m '—2M')
m~'ks —M' I—M' 3m ' 3M*

2 1
Ps' —s(3M' —4m ')+4(M' —m, ')'j —

t (s-+I, t-+t)j . (37)
3%*2 s—M*'

Neither p-exchange nor the direct-interaction term
contributes to these amplitudes, and thus the isospin-
even amplitudes do not provide any further test as to
which chiral model is preferable.

By using the methods of Sec. VI we can calculate
the isospin-even scattering lengths. For the 5 wave
we 6nd

-', (2as+at) =
1 t 4Mm.

f'
4s (1+m /M) k 4M' —m '

8(2M*+M)m
(38)

Numerically, this gives

-', (2as+ at) = —0.011—0.050= —0.061.

s (2as+at)empt;= 0 013+0003,

This value for the isospin-even 5-wave scattering
length does not compare well with the determination
of Samaranayake and Woolcock, "

We remark that there also exists considerable un-

certainty about the value of this combination of
scattering lengths. For instance, the recent analysis of
Hamilton" gives

-', (2as+ at).,ps = —0.001&0.003.

However, the consensus is that @8+ is small.
In his current-algebra calculation, Raman' has also

obtained a value of u8+ which is of the same order, of
magnitude as ours. He argues that the scalar term
which arises from the equal-time comxnutator of the
axial current with the divergence of the axial current
provides a correction to the calculated value of a~+,
which brings it back more in line with the experimental
value. In Sec. VIII we discuss a possible reason for
the rather large value of a8+ obtained in our work, and
indicate a way to correct it within our approach. We
point out here only that this will require looking at the
asymptotic behavior of the E* amplitude.

The P3f2 and P&~2 scattering lengths are computed by
using Eqs. (31) and (32) with A and 8 replaced by
A+ and 8+. In this way we Gnd

1 6 32m 2m (
s (2ass+als) f'+ + I

8M*+4M—12m.
36m (1+m„/M) (1—m~/2M)s .M*—(M+m~) M~s —(M—m~)'5

8
( M'+6M m~/3m—~')+ '(M'+11M'm~ —9Mm~' —3m~')

~

k', (39)3'* 3M*2

which gives
—', (2ass+ats) =0.054+0.072=0.126.

This is to be compared with the value of Hamilton and Woolcock, ~

g (2ass+ ats) ~,g
——0.132&0.005.

'r J. Hamilton, phys. Letters 20, 687 (1966).
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Finally, for the Pits scattering length we 6nd R&+' to be

g(+)—
32M' -

t 44 16MM'
f&+

~

—Ms —2MPs+ +4m s

m (4M' —m ') k3 3

2(Ms —m s)s) (16/3)Mm
(M'—m.')— hs. (40)

3M+ Mes )p(M++M)s —m qp(M+ —M) —m

Lagrangian method really produces an amplitude
which is consistent with the above assumption. Using
Eqs. (26), (27), or (27'), and (28), we find that as
s-+pe, G (s,0) goes like

This gives for the scattering length

—', (2ust+utt) = —0.106+0.040= —0.066)

which again compares favorably with Hamilton and
Woolcock's value,

(s—M' —m ')
G-(s,O)-', (2asi+ uii) ~pt ———0.059~0.005.

Mm '
Other experimental values are given in Table III, and
again the comparison is not unfavorable. 8 (M+M")'+ 10m.'~-

&& fo' f'+h—'
I +o(1/&) (44)

9M*'VIII. ASYMPTOTIC BEHAVIOR OF
AMPLITUDES The only way that we have to guarantee that G

It is convenient to de6ne a new amplitude 6 which behaves properly at infinity is to ask that the square
is a linear combination of A and 8: brackets vanish identically. That is,

G(s, t)=A (s,t)+ (M'+m '—s)B(s,t)/2M. (41)

By assuming that G (s,O) satisfied an unsubtracted
dispersion relation, Goldberger, Miyazawa, and Oehme'8

obtained the following sum rule for the isospin-odd
S-wave scattering length:

1+ ~(ar—as) =
1—m.s/4Ms

1S&2 O' ZO —0+ VO

qdw, (42)
(w' —m.')

where cr+(w) are the total cross sections for sp+p
scattering.

Making use of our expression, Eq. (30), for the
scattering length combination a~—u3 gives us

2m. ' m.s " L~-(w) —~+(w)]
f '= f'— h'+ gdw. (43)

M*' 2s. (w' —m ')

Recalling that f/fp= G~/Gv, it is —clear that the
above is essentially the Adler-Weisberger relation. "We
should note that this particular way of arriving at the
Adler-Weisberger relation was pointed out some time
ago by Weinberg. "

The essential point in the above derivation was the
assumption that 6 satisdes an unsubtracted dispersion
relation. What we must examine is whether the chiral

» M. L. GoMberger, H. Miyazawa, and R. Oehme, Phys. Rev.
99, 986 (1955)."S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); W. L Weis-
berger, i%d. 14, 1047 (1965).

'P S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

8(M+M*)'+10m '
f 2 fs+hs + =0 (45)

9M*'

[do+/dt] p~ jG+(s,O)/sJ' (46)

we must certainly require that as s ~~ there should

be no term in G+(s,O) which goes as ss, But we 6nd

Here the dots stand for contributions of the other
resonances of the pion-nucleon system which pre-
sumably are also present in 6 for large s.

Comparison with Eq. (43) makes it clear that what
we are requiring in the above is just that the Adler-
Weisberger relation hold. Thus the h' contribution in
Eq. (45) is to be identified with the integral over the
resonance in Eq. (43). In fact, this is precisely what
Schnitzer' used to determine the E*S7f- coupling
constant.

If we terminate Eq. (45) with the X" resonance, we
obtain a value of G~/Gv of around 1.45. This is reason-
able since it is well known" that the lV* contribution
alone in the Adler-Weisberger relation overestimates
the value of G~/Gv.

These remarks indicate that the isospin-odd ampli-
tudes generated from the chiral Lagrangians have the
right asymptotic behavior. . That this is so increases
our confidence in the low-energy results obtained.

We now turn to the isospin-even amplitudes. While
6 corresponds to the difference between the amplitude
for s. +p scattering and the amplitude for 7r++p
scattering, 6+ corresponds to the sum of these arnpli-
tudes. Thus we do not expect that G+ vanish in the
forward direction as s —+~. Since
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that our chiral Lagrangian gives us

G+(s,0) ——s'
9m„2M*2M

(47)

G„..+(s,t) =+—h'
9 M*2m.2M

(48)

to cancel the Ã* s2 contribution, then this gives a
threshold modification of as+,

+S eon

1 4 (M+m )4h')
~

=+0.060.
4sr (1+m, /sM ) 9 M*'3lm

In terms of this simple model we would then have

—', (2as+as)s, s
———0.001,

which is in reasonable agreement with the experi-
rnentally quoted values.

For the P3~2 scattering lengths the contact term as
chosen has no effect. Its eGect on the isospin-even P1~2

~'.$.. Weinberg„Phys. . Rgv, . (tg be pub]jibed).

It has recently been suggested by Weinberg21 that we
should require the sum of all the amplitudes generated
by a chiral Lagrangian (in the tree approximation)
not to grow faster at high energy than the actual
scattering amplitude. If we follow this approach, then
we must require that additional terms should be
present in our Lagrangian so as to cancel the bad
asymptotic behavior of the X* amplitude above.
Clearly various possibilities are now open. We could
assume that the higher resonances contribute ap-
propriate terms of order s' to G+(s,0), thus canceling
the E* contribution as s —+~. This is in effect what
happens in the isospin-odd case where the higher
resonances provide the tail of the Adler-Weisberger
relation. We could equally well assume that the Ã*
contribution at high energy is canceled by an ap-
propriate contact term. Or we could invoke a mixture
of these two mechanisms.

Depending on which of the above approaches we
choose, we would naturally also alter the behavior of
the amplitude in the low-energy region. The work of
Raman' shows that the inclusion of resonances higher
than the 1V*(1236) does not materially affect as+.
Hence if the higher resonances alone are enough to
cancel the high-energy S* behavior, we are at a loss
to explain the discrepancy between the theoretically
calculated and the experimentally obtained value of
as+. On the other hand, if we assumed that a contact
term was necessary to correct the higher-s behavior
of the E* amplitude, we would alter the value pre-
viously calculated for as+ considerably.

As an example of this, we note that if we choose the
most obvious contact term, namely,

S2

TABLE I. S-wave scattering lengths.

Length

s (al —as)

$ (2as+al)

Chir al
Lagrangian

0.101

—0.061

p-exchange
alone

0.099
Chiral Lagrangian

plus contact—0.001

Expt. 4

0.097

—0.0135—0.001b

& Reference 15.
b Reference 17.

TABLE Q. P-wave scattering lengths —theory.

Length
p-exchange

model
Direct
model Raman Schnitzer

fr (al 1 ass)—
s (all —asl)

k (2ass+ all)
s (2as1+a 11)

—0.087
+0.003
+0.126
-0.066

—0.080
—0.022
+0.126
—0.066

—0.083
+0.012
+0.133
—0.064

—0.075
—0.005
+0.114
—0.070

TABLE IQ. P-wave scattering lengths —experiment.

Length

3 (~1~—~33)

s (all asl)

3 (2~33+~13)
—,
' (2a31+a»)

—0.081
—0.021
+0.134
—0.059

RWFb

—0.081
—0.016
+0.137
—0.069

—0.081
—0.013
+0.136
—0.055

a Reference 7.
b We take the 0-350 MeV solution of L. D. Roper, R. M. Wright, and

B.T. Feld, Phys. Rev. 138, 8190 (1965), with a33 =0.217.
& V. Samaranayake and W. Woolcock, as quoted by K. Raman (Ref. 5).

scattering length cannot be determined without some
more specific assumptions, but it should be small.

We would like to emphasize that the above example
is merely suggestive, and one should not take very
seriously the perhaps fortuitous agreement with
experiment.

We present in Tables I—III our 6nal results and
compare them with other theoretical analyses and
experiment.

IX. CONCLUSION

The addition of a E*Ex interaction to the chiral
Lagrangian models of pion-nucleon scattering has
allowed us to calculate P-wave scattering lengths, and
E* contributions to the S-wave scattering lengths. As
we can see from Tables I—III, the predicted values
and the experimental values are in reasonable agree-
ment, except for as+. For the aI„, scattering length
we obtained agreement only with the direct model.
As we have emphasized before, we do not fully under-
stand why this should be so, and hope that further

experimental analyses will clarify this matter.
The 5-wave isospin-even scattering length as calcu-

lated directly from the phenomenological Lagrangian
@rgb far from jn agreeroenf, wjfh cxperjroent. A possjblc
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explanation of this discrepancy is that we have failed
to include a contact term for the isospin-even ampli-
tudes. Some supporting evidence for this line of thought
comes from Weinberg's hypothesis of the high-energy
behavior of chiral Lagrangian amplitudes. " Though
we cannot show that a contact term is needed purely
from asymptotic arguments, we cannot rule it out
either. In fact, a simple model constructed for this
contact term was able both to 6x the asymptotic
behavior and to bring the value of as+ within experi-
mental uncertainty. We believe, however, that this
point still remains an open and interesting question.

Another example that correct asymptotic behavior
can be an important constraint in chiral Lagrangian
calculations was provided by the isospin-odd ampli-
tudes. These amplitudes did not have the correct
asymptotic behavior unless the coefficient of the most
singular term as s~~ vanished. The vanishing of
this coefficient was equivalent to requiring that the
Adler-Weisberger sum rule hold.

Our results were found to be in general agreement
with the current-algebra calculations of the scattering
lengths, ' especially if we used the p-exchange model.
There were, however, various diAerences. In particular,
our E* contributions differ somewhat from the ones
obtained by Raman and Schnitzer, since we used a
different E*Em vertex. Our vertex was constructed
such that the pion-nucleon system coupled only to the
spin-2 part of the S*, irrespective of whether the E*
is on or oG the mass shell. To achieve this we had to
impose a subsidiary condition on the coupling which
forced us to take a particular combination of g„„and
y„y„ in the coupling matrix. Raman and Schnitzer
in their work retain only the g„„term.

Clearly, we do not have current-commutator contri-
butions either, since we are using a Lagrangian formal-
ism. These current-commutator terms are replaced in
our approach either by the direct pion-nucleon scatter-

ing term (direct model) or by the p-exchange terms
(p-exchange model). This last model reproduces the
values that Schnitzer obtains from the current-connnu-
tator terms, but does not reproduce Raman's values.

In conclusion, it appears that the inclusion of the
Ã~(1236) in chiral Lagrangian models of pion-nucleon
scattering has proven useful, since it provides an
alternative way of calculating the low-energy pion-
nucleon parameters. We should point out, in this
respect, that by using a Lagrangian approach we do
not have any ambiguities which may arise from the
extrapolation of the amplitudes in a current-algebra
calculation. It is in this sense that we believe that the
phenomenological Lagrangian method provides, within
the limitations of the approach, a more straightforward
calculation of the pion-nucleon scattering lengths.

These ideas can also be applied to photoproduction
and E* production. Work is currently being done in
these areas and will be reported at a later date.

Pote added im revised manscscript We ha. ve recently
become aware of the work of T. Pradhan, K. C. G.
Sudarshan, and R. P. Saxena, Phys. Rev. Letters 20,
79 (1968), in which 8- and E-wave scattering lengths
are calculated using a universal Lagrangian model. The
agreement between their values and our values for the
scattering lengths is good with two exceptions. Their
value for a» is understandably too low since they are
using a static approximation. Their value of a8+=0 is
in much better agreement with experiment than ours,
but it is not clear to us how they treated the S~Em.
vertex.
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