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Rotational excitation of polar molecules is calculated in the approximation that the electron
transit time is short compared with rotational periods with the result of an E behavior of
the cross section. Diffusion cross sections are calculated for ~l =0, 1, 2. Significant correct-
ions to the Born approximation are obtained for large dipole moments. The range (in energy)
of applicability of the result is discussed in terms of the energy dependence of the correc-
tions, and a novel energy dependence of these corrections is encountered and explained.

I. INTRODUCTION

The full problem of electron scattering by a
general atomic or molecular target is much too
complex a problem for an exact solution to be
even attempted. However, for some values of
the incident energy there are solvable approxima-
tion schemes which are valid. For example, for
low-enough energies it is known that electron-atom
scattering is usefully parametrized in terms of
the long-range parts of the potential. ' Similarly
for scattering by polar molecules, we can find an
energy range of the incident electron in which a
solvable approximation scheme is valid.

If the electron moves fast compared with the
rotational motion of the molecule, then we may
describe the process in terms of electron scat-
tering from a molecule of fixed orientation' and
subsequently average over the orientation. If,

further, the electron has low-enough energy so
that its wave function does not probe the inner
structure of the molecule, i. e. , the scattering is
dominated by the long-range potential, then we
may further approximate the molecule by a point
dipole. Thus the scattering in this energy range,
which is bounded from above and below, may es-
sentially be described as the scattering of an elec-
tron by a fixed point dipole. The numerical so-
lution of this problem has been previously given. 3

It is used in the next section to obtain rotational
excitation diffusion cross sections. In the third
section the approximations described above are
treated in more detail. It is found that the domain
of applicability is most seriously restricted from
below and that the restriction is more severe the
greater the dipole moment. If the dipole moment
is greater than the critical value the method
breaks down. This is discussed briefly in the
fourth section.

II. DERIVATION AND NUMERICAL RESULTS

The scattering problem of an electron on a molecule is most conveniently described by the integral
equation
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4'=y+(8 —H, ) 'V4',

where g is the total energy. 00 the non-interacting Hamiltonian, and V the electron molecule interaction.
The propagator in (1) may be written as

(P,2 —T+ WfP —H t+ S.—H') ',

where kz' is the incident energy of the electron, ' T the kinetic-energy operator of the electron W~» and
Hrot the initial rotational eigenvalue and Hamiltonian, respectively, and 8 is the remaining part of the
molecular Hamiltonian (vibrational plus electronic), and gi its initial eigenvalue. Our first approximation
is to neglect the term (Wf —Hrot) in the propagator. This is the approximation that the incident electron
motion is fast compared with the rotational motion of the molecule. This is exactly the Born-
Oppenheimer approximation applied to a scattering problem. With this approximation Eq. (1) describes
the scattering of an electron from a molecule of fixed orientation. The amplitude for a rotational transi-
tion from l' to l is then given by

~if =- '4' '&'fV~f (2)

where 4p is the outgoing wave solution to (1) with initial rotational state f' and yf the final state with
the scattered electron in a plane-wave state and the molecule in rotationa state /. The approximation of
neglecting the rotational kinetic energy in (1) allows a factor zation of @&i +) in terms of the solution to
the scattering problem with fmed molecular orientation 4k

+I
'Z

(+) (+)fl
=&u. (3)

where &f& is the rotational eigenfunction. The final state is similarly factorable so that (2) becomes

fffg ——fdnflf [- (4m) ~(X~ V$~ )]&fg, (4)

where now n represents the rotational coordinates of the molecule. The inner bracket of (4) is just the
elastic scattering amplitude for fixed molecular orientation f (k~, ki; n) so that (4) may be written

f, (k k.) = fd&fluff(k k.; o. )&fp. (5

The scattering amplitude for fixed molecular orientation may now be obtained from a solution of (1) which
still contains the vibrational and electronic part of the molecular Hamiltonian. These may be eliminated
in effect by re-expressing (1) in the usual equivalent potential formalism which suppresses the vibrational
and electronic degrees of freedom by introducing a complicated potential operator into the equation for the
elastic scattering. Evaluation of this operator is prohibitively difficult except in the limit in which the
incident electron is well separated from the molecule. In that case the dominant interaction is the dipole
one with corrections from quadrupole, octupole, and shorter-range terms. At low-enough energies we
expect the longest-range part of the potential, the dipole part, to dominate, so we replace the entire in-
teraction of the electron with the molecule (including the equivalent potential) by the interaction of an
electron with a point dipole. The corrections generated by the shorter-range terms will be small at
sufficiently low energies. provided that the dipole moment is not too large. These corrections are dis-
cussed in the next section.

We have thus reduced the problem to the evaluation of (5) where f on the right-hand side is obtained as
the scattering amplitude for the wave function determined by the equation

(f 2+ V2+3. r/~3)q(r) = O.

This equation has been solved previously with the result'

where the eigenvalue I,„m and the angular eigenfunction H„m(g) are described in detail in Ref. 3. This
may also be written as

i' ~ Pqm &q q+ ImI m f' p+ Iml m i 'fk, k.;n)= Z p F (k, n F* k. , d,

where the F's are normalized spherical harmonics and the p matrix is given by



Ppq =„~0 + „p ) ~

™
(

('fl —exp[- f(L —p)vD.

np and ~g»e eigenvectors and eigenvatues of a tridiagonal matrix whose solution is described
s t"e auanti&ation direction «r the incident and final momenta of the

electron, but the direction of the vector n is integrated over in {5). This is accomplished b
's in erms of F's quantized with respect to an arbitrary fixed direction by using the rotation matrices

D~m'-'
In order to integrate over 6 one must have a representation of the rotational ei.genfunctions of the mol-

ecule. For a Z electronic state of the molecule these are just the usual spherical harmonics. We shall
now use this case for explicit evaluation of (5) and show below that the result applies to more general
Cases.

e will not get the angular distribution or concern ourselves with specific initial and final magnetic
sublevels. Instead we obtain only a diffusion cross section averaged over initial and summed over final
sublevels. '

o„,= {Z'+I) &,ldn, I 1'da I'& (n)f(k, k,.; ~)I'&,

The diffusion cross sectionis evaluated here since itis theusual quantity obtained from swarm experiments

and because the total cross section diverges when calculated by the method described here. The reason

for the divergence is the neglect of the energy transfer in the excitation which leads to a larger effective

interaction at large distances and a consequent divergence of the cross section in the forward direction.

The divergence of the total cross section is however a weak one (logarithmic) so that the diffusion cross
section is finite.

Extensive algebra involving Sj and 6j symbols results in the final expression

2l+1
0'll y2 v + (2X+ 1)!0 00' Z(X)

x. =O

(lla)

Z( ) g [Z ), R Z* ~(X+8+i+2)(X+8+i+3)(8+i-X+l)(s+f-X+2)i'~'
Xsf &st X, s+1, i+I ( (2s+I)(2s p3)(2t+1)(2f+3) )

-ReZ Z* ~4+1- s —I)(X+I- s)(X+s- t+I)(X+s —i+2) & "&'

est X, s+1, t- I( (2s+ I)(2s+3)(2]-1)(2f+I)
(lib)

(1lc)

.The X sum in (lla) is restricted by the 3j symbol to Il —I'I ~X ~f+/'. The s and f sums in (lib) run over

all non-negative values allowed by the 3j symbol in (llc), and the m sum in (llc) is also restricted to the

values allowed by this Sj symbol. The p matrix is essentially the output of the code described in Ref. 3.
It is then used to evaluate Z~zf which in turn is used to evaluate Z(y) from which we get the cross section.

The actual evaluation was carried out by using a modified p matrix from which the first Born approxima-

tion was explicitly removed. The result was to improve. the convergence of the sums. The correct result

could then be obtained by simply adding back the first Born approximation for the diffusion cxoss section.

The cross section behaves as E ' in this approximation, as has been noted previously. '
%e have calculated cross sections for 4l = 0, 1, 2 for various values of 0. but have not extended our cal-

culations to higher values of hl since the model neglects quadrupole, octupole, and higher interactions.

The Ll =2 transitions require at least 2 dipole interactions or one quadrupole interaction. The hl =3

transitions require at least 3 dipole interactions or one octvpole interaction. Thus it i.s not very meaning-

ful to calculate higher 41 transitions due to the dipole interaction while neglecting higher multipole inter-

actions. Indeed the 4$ = 2 results presented here should be compared with experiment only after very

careful consideration of the quadrupole interaction for that molecule. The reader is referred to Sec. HIb

for a further discussion of this point.
The AE = 0 transition can come about through 2 or more dipole interactions, or at least 2 quadrupole inter-

actions, so that it is more meaningful to discuss the pure dipole %=0 transition than the ld ~ 2 transitions.
In Table I we show various 4l'=0 diffusion cross sections as a function of z and1. Each is a rapidly rising
function of z but an almost flat function of E with @ small peW at f', = 1 in each case. In Table II the EE =1
diffusion cross sections are given. In each case the l-$+1 transition is shown. The 1+1-l' transition
may be obtained from the reciprocity relation (2l+l)ofif = (2E'+l)ofii. It is clear from a comparison of the
two tables that the 4E = 0 transitions contribute signUicantly for e ~ 0.6. The 41 =-1 cross section does not
rise as rapidly as the 4l =0 cross section as a function of 0. but does grow somewhat more rapidly as a
function of /. In Fig. 1 we show the ratio of our calculated 6/=1 cross section to the first Born-approxima-
tion cross section given by
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TABLE I. The quantity [e&
&

(n)/mao ]E (iu Ry) as a function of n and I, with n given in units of e eao.

0,2
0,4
0,6
0.8
1.0
1.2
1.25

4.63e(-c)
v.5v5(-3)
3.983(-2)
1.3C2(-1)
3.65e(-1)
9.6s3 (-1)
1.321

5.ooc(-4)
s, 15o(-3)
4.266(-2)
1.427(-1)
3.854(-1)
1.005
1.360

c.eoo(-c)
v.es6(-3)
4.185(-2)
1.4O3(-1)
3.ves(-1)
e.e44{-1)
1.349

c.ss2 (-4)
v. e58(-3)
c.1v2(-2)
1.3ee(-1)
3.vs e(-1)
e.e2v(-1)
1.347

c.sv6(-c)
v. e4s(-3)
4.16v(-2)
1.3ev(-1)
3.vs6(-1)
9,920(-1)
1.346

c.sv3(-c)
v, e43(-3)
C.164(-2)
1.3ev(-1)
3.784 (-1)
9.91v(-1)
1.346

4.871(-4)
v. e41(-3)
4.163(-2)
1.3e6(-1)
3.vs3(-1)
e.916{-1)
1.346

4.870(~)
v. 939(-3}
4,162(-2)
1.396 (-1)
3.VS3(-1)
9.915(-1)
1,346

4.86e(-c) 4,868{-4}
v. e3v(-3) v.e36(-3)
4.161(-2) 4.161(-2}
1.396(-1) 1.3e5(-1)
3.VS2(-1) 3.782(-1}
9.913(-l) 9.913(-1}
1,346 1.346

The notation (-e) means a factor of 10

of 1 I
=&(w/u )o. (1+I)/(2l+I)+ (12)

as a function of ~. The curves for different l are indistinguishable on the scale of the figure for l in the
range 0 to 14 indicating that thp z' and higher contributions to the cxoss section are very nearly propor-
tional to the o. term, the first Born approximation. The correction to the Born result js only significant
for a &0.8. In Table III the results for LQ=2 transitions are given. They rise rapidly with ~ and slowly
with l but are always small compared with the 4l =0 and hl =1 transitions. %e expect that our results for
bl =3 and higher would be even smaller so that in effect the ~l' = 0 and 1 transitions are all that is needed
to compare with experimental results.

The quantity usually measured" in a mobility experiment is an effective cross section weighted by the
probability of finding the molecule in the initial state l'.

q„,=X o«, (-2I'+1) exp(- W, ,/)' r),

where N=Z(2I'+1) exp(- W, /kT).lP ~

A gross experiment, measuring only the total momentum transfer will measure only Q =Effigy~. By using
Eq. (10) for

offal

and the completeness of the XII, the I sum can be performed with the result that Q = o'
where o' is the cross section calculated by Mittleman and von Holdt. 3 It is the total cross section for scat-
tering in a given state l', and it is independent of l' and is related to the results of this, paper by

(12b)

(13c)l0' = 0'll q,
l

Thus Q is temperature-independent in our approximation and we may attribute any temperature dependence
in a measurement of it to the breakdown of the fixed orientatiog approximation.

For other than Z electronic states the rotational states of the molecule are more complicated than the
spherical harmonics used in (10). For example, for other than Z diatomic states the functions must also
specify the projection of the electronic orbital angular momentum along the internuclear axis. " (The m in
I"Im specifies the projection of the nuclear angular momentum on a space fixed axis. ) The energy of the
rotational state depends upon this quantum number so that the sum over initial and the average over final
sub-states should be weighted by a factor depending upon the energy of these sub-states. However, the
energy splittings are of the same order as the molecular rotational energies which we have neglected.
Thus it is consistent to treat them as degenerate states and perform the sums and averages without any
weighting factor. In that case completeness relations bring the results back to the form of Eq. (11).

TABLE D. The quantity [c
&

(o)/mao )E (in Ry) as a function of n aud I, with o. given in units of 2 eao.+

0.2

0.6
0.8
1.0
1.2
1.25

2.66V(-2)
1.o6e(-1)
2.429(-1)
4.446(-1)
7.440 (-I)
1.263
1.494

1.vv 9(-2)
7.130(-2)
1.62O(-1)
2.e66(-1}
c.e64(-1)
8.433 (-1)
e, eso(-1)

1.600 (-2)
6.415(-2)
1.45v(-1)
2.267(-1)
4.466 (-1)
v.585(-1)
s.ev5(-1)

1.524(-2)
6.111(-2)
1.38e(-1)
2.5C1(-1)
4.254(-1)
V.225(-1)
s.54e(-1)

1.481(-2)
5.e39(-2)
1.3c9(-1}
2.4vo(-1)
4.134(-1)
7.020 (-1)
s.3os(-1)

1.455(-2)
5.832(-2)
1.325(-1)
2.425(-1)
4.060(-1)
6.896(-1)
8.161(-1)

1.437 (-2)
5.757 (-2)
1.309(-1)
2.395(-1)
4.008 (-1)
6.so6(-1)
8.O55(-1)

1,422(-2)
5.voo(-2)
1.295(-1)
2.3vo(-1)
3.969(-1)
6.v39(-1)
v. ev5(-1)

10

1.3ev(-2) 1.393(-2)
5.5ee(-2) 5.56o(-2)
1.2V2(-1) 1.264(-1)
2.328(-1) 2.311(-1)
3.898 (-1) 3.871(-1)
6.619(-1) 6.573(-1)
v.s34(-1) v.vvs(-1)

a -n
The notation (-n) means a factor of 10
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and define an average energy by

0' = 2(k 2+ k.') =k.' —2AW=k '+ 26W,

where hR'= 8' —W (15b)

Now expanding about this energy in the initial and
final plane waves and expanding the propagator in
Eq. (14)

(Z —a+fq)-' =a -'

X+t,S

g BOfA

4+t, A'

+a '[2(W +W ) —H ]a '+ ~ ~ ~

rot

w~ere a=&2- T+ S.-II'+iq;
yt+)

and then using the factorization of -- into a pro-
duct of the rotational function and tI' ~ we obtain a(+)

correction to the amplitude

6f=, (0 [pfk ~ rVkf )+((f pk, 1$) ]0 ).
(18)

.2 4 .6 .8 LO L2 I.4

FIG. 1 The ratio of the calculated &E=1 cross section
to the Born-approximation result as a function of n for
all initial states (n is in units of 2 eao).

The evaluation of the inner integrals in (18) is dif-
ficult but the energy dependence may be obtained
by noting that gf'+' and gf

' ', solutions of the
equation for scattering from a point dipole (Eq. 6),
are functions of the energy k' only through the vari-
able kx, i.e. ,

q = q(k, k~).

A simple scaling of the integration variable in (18)
results in

6f = (b W/k') (1/k).

HI. CORRECTIONS

(a) High-Energy Correction

Then the relative error in the diffusion cross sec-
tion due to our first approximation is of order
~W/a2. »

Our first approximation was to neglect the terms
WI& —Hrot in the propagator in Eq. (1). We shall
now retain them to first order to determine the
corrections to our result. We write the total am-
plitude as

(+)- 4~f =()( I'~ )=(X I')(
&

i()( v(z —a+if)) vx.&

(b) Low-Energy Correction

There is a correction due to our second approxi-
mation, that of the replacement of, the complicated
electron-molecule interaction by the dipole poten-
tial in (6). In addition to the dipole interaction
there are other potential terms which will contri-
bute additional terms in the amplitude with differ-
ent energy behaviors. These terms may be para-

TABLE III. The quantity (af +2 I(a)/&ao I E (in Ry) as a function of a and I, with a given in units of 2eao.

10

O.2 9.13O(-5) 5.4V9(-5)
0.4 1.438 (-3) 8.629(-4)
0.6 7.080 (-3) 4.247 (-3)
0.8 2.142 (-2) 1.285 (-2)
1.0 4.889(-2) 2.933 (-2)

8, e55(-2) 5.3v6(-2)
1.25 9.900(-2) 5.943(-2)

4.696(-5)
V.396(-4)
3.641{-3)
1.1O2 (-2)
2.515(-2)
4.608 (-2)
5.094(-2)

4.348(-5)
6.848(-4)
3,371(-3)
1.o2o(-2)
2.329(-2)
4.266(-2)
4.V16 (-2)

4.151(-5)
6.53V(-4)
3.21S(-3)
e.v3v(-3)
2.223 (-2)
4.072 (-2)
4.5O1(-2)

4.O24(-5)
6.337(-4)
3.119(-3)
9.43V(-3)
2.154(-2)
3.946(-2)
4.362{-2)

3.934 (-5)
6.196(-4)
3.050 (-3)
9.22V(-3)
2.1ov (-2)
3.859(-2)
4.266(-2)

3.86 9{-5)
6.O92(-4)
2.ees (-3)
e.ov2(-3)
2.071(-2)
3.V94(-2)
4.1e4(-2)

3.V44(-5)
5.895 (-4)
2.9O2 {-3)
s.vs1(-3)
2.005 (-2)
3.673 (-2)
4.o6o(-2)

3.693(-5)
5.S16(-4)
2.863{-3)
8.664(-3)
1.978 (-2)
3.623 (-2)
4,oo5(-2)

a n
The notation (-n) means a factor of 10
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metrized in the spirit of a modified effective range
expansion' provided that the form of the energy
dependence is known.

Meaningful solutions of (6) exist for

o. (n .t =1.279 ~.crit (2o)

For greater dipole moments the potential is to~
strongly attractive in some directions. This is
reflected by the fact that the eigenvalue L,' appear-
ing in (7) becomes complex. At a = @crit we obtain
Lo 2 Our discussion here applies only for dipole
moments restricted by (20).

We obtain additional terms in the amplitude by a
method suggested by O' Malley. " He gave an argu-
ment indicating that the correct energy dependence
in a modified effective range formula could be ob-
tained by a method of successive iterations which
in lowest order is equivalent to the first distorted-
wave Born approximation. " We shall therefore
add potential terms 6V to (6) and obtain the lowest-
order corrections by

6f= - (4m) fC rg (r)6' +(r).. (21)

IV. DIPOLE MOMENTS GREATER THAN THE
CRITICAL VALUE

(24a)

& =6.'(p))(e.'(p'), 9=1-J', (24b)

and for example

If the dipole moment is greater than the critical
value [Eq. (20)], then the method of Ref. 3 breaks
down due to the singularity at the origin. The
method may be salvaged by removing the singular-
ity with a cut-off function. We illustrate this for
the simplest case where a is greater than @crit so
that Lp is complex but all the other L&~ are real
and greater than ——,. Equation (6) may then be re-
placed by

rr.2 Z r- ~[&"-.—"—qlr2 Ck Ck ~h

+I'I, + ', If(r)J']q(r) =0,
(I,

where L' is the angular momentum operator and
where

A quadrupole term of the form

qI', (n r)[1 —e +j/r

f(r) =1, r ~r,
=( /, )', (24c)

will contribute a correction with an energy depen-
dence

k2L, '
uad (23)

as will short-range terms. We therefore have a
sort of effective range formula whose leading
term, obtained from the dipole potential, behaves
as k ' while the corrections which must be para-
metrized are of order k to the, power 2L,'. This is
different from the usual effective range theory in
that the leading term must be parametrized there,
while here it is the second term. For dipole mo-
ments,

1
Q 0 .

tP L0 —P

so that the energy dependence of the correction
becomes essentially that of the leading term and
the expansion loses its utility.

The non-analytic behavior in Eq. (23) is unusual
and is indeed an artifact of the calculation. If we
take account of the dynamics of the molecule this
behavior near k = 0 disappears. For example, we
could investigate the very low-energy scattering of
an electron by a molecule in its ground rotational
state. The elastic channel may be isolated in the
usual way, 'and it is found that the longest range
potential is proportional to x ' so that the usual
modified effective range theory' applies. (The
same result is obtained for elastic scattering
from any rotational state. ) Similarly the exci-
tation cross section exhibits no unusual behavior
at threshold when the energy difference of the ro-
tational levels is not neglected. It is precisely
this neglect which gave the peculiar result of Eq.
(23) which we emphasize has no validity when the
inequality (n W/k') (&1 does not hold.

(26)

where Aoo is the eigenvalue of the radial equation
[Eq. (3) of Ref. 3]. By hypothesis

ADO=A =& + e (26)

where a is real. Equation (25) is readily solvable.
The resultant modification of the scattering ampli-
tude [Eq. (7)] is to delete the n =I = 0 term from
the sum and replace it with the term

(f/&)6, '(p, )[8,'(n) —e &,'(- q)],

where 6 is the phase shift obtained from (26). In
the limit kx, ((1 the expression for 5 simplifies
to give

tan6 = sin(P+ $)/sin(Q —$),

where a(o.) is defined by (26) and

P=aln(2kr, )+argi'(I —ia) —tan 'I& ~, (26b)IS+, '

s Ag() cotAvo 1~

g =tan '[tanh(2')].

(26c)

(26d)

This modification of (7) results in a slightly dif-
ferent energy behavior for the cross section of the
form

where x, is of the order of the molecular size.
With this prescription the separation of variables

described in Ref. 3 is still possible, and the angu-
lar equations and all the radial equations except
that for n=m =0 are unchanged.

For n =m =0 one obtains
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oil' k' +ll'+B/l'sin25+ Cll' (29)

where A, 8, C are energy-independent numbers
obtained as sums in a form similar to Eq. (11).
This result has an energy dependence beyond the
simple k-' behavior of Eq. (11) through the slowly
varying phase shift 5. We could evaluate the terms
A, 8, and C as a function of z and the additional
parameter x, but considerations analogous to those
of Sec. IIIb make this modified method unreliable
for comparison with experiment. This conclusion

is reached by asking for the contribution of the
neglected quadrupole terms in the potential. We
find, by the method of Eq. (21), that the energy
behavior of this contribution is similar to that of
Eq. (29). That is, this new term has an over-all
factor of k ' with additional slow energy depen-
dence through the phase shift. This method will
only be useful in cases where the quadrupole
moment is small compared with the dipole moment
(in natural units). By contrast, the utility of the
method for e &merit can be based on the smallness
of 0 in addition to the smallness of the quadrupole
moment.
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The Percival-Seaton theory for the polarization of atomic impact radiation is extended to
the case of diatomic molecules. Similar to the atomic case, it is shown that for excitation by
electron impact involving a change of electronic angular momentum along the molecular
internuclear axis, the threshold polarization can be determined from the symmetry of the
total molecular wave function without a detailed knowledge of the inelastic cross sections.
General expressions are developed for the cases of fine and hyperfine splitting, and explicit
relations are given for the first two rotational levels of a II„state undergoing a radiative
transition to a Z state in the limit of fine and hyperfine separations being much larger than
the natural linewidth. This theory is valid when the radiative state is populated by a direct
interaction, and the radiative transition between rotational states is resolved.


