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Factorization of residues of poles of the 8 matrix is derived from the requirements of unitarity for partial-
wave helicity amplitudes. Careful attention is given to questions of spin and the kinematic singularities of
the relevant amplitudes, especially at t=0. Residues P of a pole in the full partial-wave amplitude satisfy
factorization in the simple form pq, '=p„pf,q. In general, p can be written as p=Ey, where IC contains the
standard kinematic singularities of the Hara-Wang type. plus threshold behavior, and p is a reduced residue.
The E's for various mass classes are exhibited in a compact and consistent form, and the corresponding
factorization statements for the reduced residues are derived. These factorization relations are of the form
py~, ~——p,y&&, where x is an integer. The reduced residues are analytic in the neighborhood of thresholds and
pseudothresholds, but may, in the case of conspiracies, contain poles at t =0.Various examples are presented
to illustrate the use of factorization. These include LeBellac s argument on the behavior of the pion residue
at & =0 and its circumvention with a type-II conspiracy. Mandelstam's treatment of Adler's self-consistency
condition and the hypothesis of partially conserved axial-vector current using an 3f= 1 pion is discussed
from the viewpoint of factorization. It is shown that factorization for an 3E= 1 pion seems to imply smallness
of both soft-pion and hard-pion amplitudes. The smallness of the latter casts some doubt on the 3f=1
assignment for the pion. The nature of the relations between amplitudes and the behavior of the reduced
residues at I=0 for conspiracies with unequal masses is also considered.

I. INTRODUCTION

'HE concept of factorization of the residues of
Regge poles was discussed soon after the intro-

duction of Regge pole ideas into high-energy physics by
dwell-Mann ' Gribov and Pomeranchuk, ' and Charap
and Squires. 3 I'actorization of pole residues follows from
unitarity and is well known in nuclear physics (e.g.,
Sreit-%igner resonance amplitudes involving partial
widths for the initial and final states). Early applica-
tions in high-energy physics included relations among
the total cross sections for E2V, xE, and xm- interactions
at very high energies. "Recently factorization has en-
tered the general discussion of Regge pole exchange in
inelastic processes, 4 and in conspiracy and evasion, ' as
well as for specific reactions, such as the pion trajectory
in hadronic processes, ' pion production, ' ' and photo-
production' of vector mesons.

The presence of spin and unequal-mass kinematics
complicates the discussion of factorization considerably.
Rules of thumb deduced from simple examples (e.g. ,
always attach a t't' factor to the sr¹Vvertex) fail to
hold in general. Questions arise as to exactly what part
of the amplitude satisfies factorization, etc. The purpose
of this paper is to present an elementary, but thorough,
derivation of factorization and discussion of a number
of examples. The separation of the kinematic singu-
larities at thresholds and at 1=0 and the definition of

i M. Geli-Mann, Phys. Rev. Letters 8, 263 (1962).
~ V. N. Gribov and I. Va. Pomeranchuk, Phys. Rev. Letters 8,

343 (1962).' J. M. Charap and E. J. Squires, Phys. Rev. 127, 1387 (1962).
4 L. L. Wang, Phys. Rev. 153, 1664 (196/).
& E. Leader, Phys. Rev. 166, 1599 (1968).
6 M. LeBellac, Phys. Letters 258, 524 (1967).
~ S. Frautschi and L. Jones, California Institute of Technology

Report No. CALT-68-142, 1967 (unpublished).' H. K. Shepard, Phys. Rev. 168, 1572 (1968).
9 P. DiVecchia, F. Drago, and M. L. Paciello, Nuovo Cimento

SSA, 724 (1968).

meromorphic reduced residues receive careful attention.
Our approach here is not the only one possible. How-
ever, it is one logically correct and consistent, way to
handle the complications of spin. The examples illus-
trate the interplay of factorization and conspiracy, and
the complexities that arise with daughter trajectories.
No great originality is claimed; our purpose is mainly
pedagogical.

A. 8 Matrix and the Feynman Amylitude

The 5 matrix is related to the invariant Feynrnan
amplitude by

Ss.——8 s, i(27r) '8 &+(P—s P.)N sN.OR—s, (1)

where a,b are labels containing all necessary information
for specification of the initial and final states, and
N = L II, (2E)j '" is the reciprocal square root of the
product of factors of 2E, one for each particle in state a,
and similarly for state b. The word "state" is used to
denote a certain number of various types of particles
with definite momenta and spin projections, while the
word "channel" is used to denote the particle composi-
tion and their spin projections.

B. Unitarity and the Optical Theorem in Terms of Pf
Unitarity of 5 imphes that

t(ORs, —OR, s")= (2sr)' Q N, 'OR, s~OR„8'4i(p, p,), —(2)

II. DEFINITIONS AND UNITARITY FOR
PARTIAL-WAVE AMPLITUDES

Ke begin by giving definitions, a statement of
unitarity, and the optical theorem. Then we specialize
to two-body channels, introduce helicity amplitudes
and their partial-wave expansions, and finally obtain a
statement of unitarity for partial waves.
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where the states u and b now satisfy the energy-
momentum conservation requirement pb= p„and p,
means integration over dsp/(2s)' for each particle in
the channel c and sum over all channels c.

If the state a consists of two particles of masses my

and ms and 4-momenta pi and ps, and the state b is
chosen equal to 4b (i.e. , forward elastic scattering), then
Eq. (2) becomes the optical theorem,

—Im5K„= 2L(pi ps)' —mt'ries')' 'a4o4 i, (3)

where a&,~, i is the total cross section in channel a. Kith

5K..= 8rr Wf—, . (0'),

Eq. (3) takes the more familiar form

helicity amplitudes can be expanded in partial waves
as"

where X =X~—X~, X~=XB—X4, and the rotation E~,
transforms a unit vector in the direction of p1 in the c.m.
into a unit vector in the direction of p3. Customarily,
the Euler angles of Rb, are chosen to be (p, 9, —q),"or
(&p,0,0),"or (0,0,0). But we keep it as Rb, here in order
to exploit the group property of rotations in integrating
over angles.

On the left-hand side of Eq. (7) we also need an
expansion of 5R b*.'

~mf4 - (o. '). «=oiei, (4)

where p, , W', and f, .(0') are the center-of-mass
initial momentum, total energy, and forward non-spin-
Qip scattering amplitude, respectively.

C. Two-Body Channels

Since R is unitary, Dbe'(R ') = De&,
'—*(R). Therefore the

left-hand side of Eq. (7) can be written

LHS=4si Q(j+-', )

XL(bIF'Ia)-( IF'I»*&D...'*(R,.). (10)

Jf we restrict consideration to two-body processes, u i~ i~ of Partial-wave series like Eqs. (8) and (9)
the sum over states c in Fq. (2) can be written '" h 'ght-hand side of Eq. (7) gives

(d'pd'p').
P E,'=P

4 4 (24r) s4(EP),
(5)

RHS= E —& (j+s)U'+s)
c,), lV g, g'

X(clF"lb)*(cl»la)XI, (11)
where the sum over c on the right is over distinct two-
body channels (including, for the present, sums over
spin projections). Then the right-hand side of Eq. (2)
becomes

where / is the angular integral

1
I= dQ, Db»„'(R, b)

—Db,b,'*(R, ) .4' (12)

c
d0~5lY~ g BR~~ (6)

p, 1
4si(5Kb, —DR, b"")=Q ——dQ,SZ, b*5R„,

4m
(7)

where the sum on the right is over all open channels.

D. Unitarity for Helicity-Amplitude Partial Waves

Conservation of angular momentum allows trans-
formation of Eq. (7) into a separate equation for each
partial wave of angular momentum j. We will choose
the helicity representation and identify the channel
label a as standing for a definite pair of particles (1, 2)
with masses (mi, ribs), spins (si,ss), and helicities (Xi,)~s).
Similarly, b represents particles (3, 4) with masses,
spins, and helicities (rws, m4), (ss,s4), and (Xs,) 4). Where
necessary, more specific labeling will be used. The

where p, is the c.m. momentum of the particles in state c
with total energy 8'. The statement of unitarity for
two-body channels then reads

Now E,& can be written as the product of two rotations,
namely, E.&=R&, 'R«."The group property of rota-
tions thus allows us to write

1I=P Dibs" (Rb. ') X—dQ.Db)„"(R,.)Db.„,i*(R„).
X 4m

The integral is just the orthogonality integral for the

"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1989)
For the essentials of the Jacob-Wick formalism, see %.R.. Frazer,
E'/emeritary Particles (Prentice-Hall, Inc. , Englewood Chifs, N. J
1966), Chap. 2.

' M. Jacob and G. F. Chew, in Strong-Interaction I'hysics
(W. A. Benjamin, Inc. , New York, 1964).

"This particular group property may seem peculiar. It follows
from the basic structure of Eq. (8). If one examines the derivation
of Eq. (8), one finds that the Wigner D function in it is the complex
conjugate of the matrix element (j,ho~Roe 'Rbo~ j,Xbl, where the
rotation operator R,e transforms a state ~P4,X~X„), with particles
x and y having momenta of equal magnitude along the standard
direction ibe and —pe, respectively, into the state ~p, X X„), in
which the momenta are parallel and antiparallel to p, . In the
present case, the replacements polyp, p ~pg, and pq —+p,
yield the stated result.
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D functions, and I becomes

»~x.'(&s. ') =
hatt ».) ~'*(~s.)

2j+1 2j+1

( b—lF la&, rather than in terms of (bIF'lu) and
(b I

F&
I
—a), where a minus sign denotes opposite

helicities, Thus it is clear that an equally acceptable
form is

When this value of I is inserted into Eq. (11),the result
1s

RHs= p g(j+-,')
c~c2$' g

&&(cl Ftl b)*(clFtl a)».)„'*(Es.). (13)

Equating the LHS from Eq. (10) to the RHS from
Eq. (13), term by term in the summation over j, gives
the partial-wave statement of unitarity:

g~if(b IF'I ~&—
&~ IF'I b)*]

=2 —2 (c IF'lb&*(clF'I ~) (14)
cg&c

Time-reversal invariance implies that (b I
F 'I a&

= (cIF'Ib) Then E.q. (14) becomes

8 ig(blF Ia&—(blF la)*]

=2 —2 (b IF'I c)*(cIF'I ~).
~ 8'&o

E. Parity-Conserving Amplitudes

A further step can be taken so that parity, as well as
angular momentum and helicities, is well defined for
the amplitudes entering the statement of unitarity. We
define linear combinations of the partial-wave ampli-
tudes as follows:

(XsX4IF'+I) r4)=(XsX4IF'IXrhs&

+grgs( —1)'r+'~"(zsX4I F&l —l%.r—xs&,

where g; is the intrinsic parity of particle i, s; is its spin,
and v=0 (~~) for j integer (odd half-integer). These
amplitudes have parity F=&(—1)' " and so are
appropriate for Regge theory since a Regge pole ampli-
tude is equivalent to a linear combination of partial
waves of one or the other of the parity sequences. "

Inspection of Eq. (15) shows that unitarity can be
expressed for the parity-conserving amplitudes as

8~inb IF'+
I
~)-(b IF'+ lrr&*]

=P —g (blF&'lc)*(clF'+la&. (16)
e g

The parity-conserving amplitudes can equally well be
written as linear combinations of (b I

F'I a) and

"M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys Rev. .133, B145 (1964).

16~'Db IF"I ~&—(b IF"
I ~&*]

=~—Z (blF" lc)*(clF"l~) (»)
c lV),

The left-hand side of (18) is proportional to the imagi-
nary part of the partial-wave amplitude, while the
right-hand side itemizes the contributions from the
various open channels c.

III. EXTENDED UNITARITY AND FACTORIZA-
TION OF RESIDUES

A. Extended Unitarity

In the theory of the analytic S matrix and Regge
poles we wish to generalize to complex angular momen-
turn and complex energies. For this purpose it is
necessary to extract certain kinematic factors, e.g. ,
(pp')&', irom the partial-wave amplitudes before con-
tinuation in angular momentum and/or energy. We
thus write

(blF'+l~&=Its. +(j,t)Fs.+(j, t+i.), (19)

where we have exhibited the dependence on t= 8", the
square of the c.m. energy, explicitly, and have indicated
the physical value (just above the unitarity cut) by
+is The factor E. ~,+ is an explicit kinematic function
of j and t, containing threshold factors like (pp')& and
other kinematic singularities specified in detail in
Sec. IV below. The tilde amplitudes F are assumed to
be Hermitian analytic and suitable for continuation
in j and t. We first consider physical t values, but
complex j. Then we have

(b I
F&l a)*=Es.*[Fb.(j*,t+is)]*

= &s.*Fs.(j, t ie), (20)—
where the last step follows from Hermitian analyticity.
In Eq. (20) and subsequently, we omit the parity
superscript for simplicity of notation. The meaning of
(t—ie) in (20) is that a path is taken from the position
(t+ie) above the unitarity cut to the left to beyond the
lowest physical threshold branch point, around the
branch point counterclockwise, and back to the right

pc
(»)

e g

In fact, Eqs. (16) and (17) can be combined to give a
statement of unitarity entirely in terms of parity-
conserving partial-wave amplitudes:
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below the unitarity cut to a position just below t+ie.
Thus t~i~ are points on the physical sheet, above and
below the real axis.

We now consider complex energies. If 3 moves away
from the real axis in an upward direction, (t+ie) moves
to an arbitrary position t on the physical sheet, called
sheet I. But (t—ie) inoves through the unitarity branch
cut onto another sheet which we will call sheet II.
For complex t we denote a quantity $ on sheets I and II
by ($)x and ($)xx, respectively. With these definitions
the statement of unitarity, Eq. (18), has as its
generalization

EbJ7i, '(j,t) —Ei„*Pg,xx(j,t)

(21)

Because of our definition of sheets I and II the right-
hand side of Eq. (21) contains contributions from all
open channels. But it can be shown that the discon-
tinuity obtained by a counterclockwise circuit around
one arbitrary threshold branch point is given by the
appropriate term from the sum'

B. Factorization of Residues of a Pole

In perturbation theory factorization is an automatic
consequence of the concepts of vertices and propagators,
with a definite coupling constant attached to each
vertex. Thus, for the processes a ~ a, b —+ b, and u ~ b,
the contributions from a single-particle intermediate
state (pole terms) will be proportional, respectively,
to g, ', gb', and g gb. Furthermore, the spin structure of
the vertices at each end of the intermediate-particle line
determines the helicity dependence for the initial and
final states separately. This means that a factorization
property will also hold for the pole contributions to the
amplitudes of an elastic reaction with different helicities.

A corresponding statement of factorization follows
in 5-matrix theory from unitarity. Our discussion
parallels the original one of Gribov and Pomeranchuk, '
but with generalization to include spin. We begin with
the unitarity equation (21), but with sheet II defined

by a circuit around the branch point of a definite
channel t;. Then the sum over channels in (21) reduces
to a single term and only the sum over the helicities of
channel c remains. A slight distinction needs to be made
between the unitarity equation when one of the channels

(a,b) is equal to c and when it is not. We first consider a
process c—+ d, where d is arbitrary. Then Eq. (21) can
be written as

EgcFgc =P Egc' @dc' (bc'c &pcEc'Zc'c ) y

where we have used the subscripts c and c' to indicate
different helicities in channel c, and we have introduced
the phase space factor p,=p,/1&n. W. The amplitudes
on sheet II can be written in terms of those on sheet I as

*P„xx p E„,P„,x(S-x) (22)

where S ' is the inverse of the 6nite-dimensional sym-
metric matrix (the S matrix),

E& efe
xx Ex,g& x

+ip, g g Ei,-gi...'(S-x),„„E,,g„,x. (24)
c' c"

We 6rst assume that channel c is spinless. Then
Eqs. (22) and (24) do not involve any sums over
helicities. Noir suppose there is a Regge pole of de6nite
quantum numbers on sheet II for j=n(t). This pole
will occur in S ' on the right-hand side of (24) and the
residue pi, cxx of Ei„*Pi„xxwill be of the factorized form

tlat. xx=ip.(Ee.Pi,.x)o,(E,.P,. )x,

where a, is the residue of 8 '. The label c merely denotes
what threshold branch point has been encircled and
therefore de6nes sheet II. By analytic continuation the
residues can be obtained on the physical sheet. They
satisfy the typical factorization equation' '

We have thus established factorization of Regge pole
residues proxy ded that there exists at least one spinless
two-body channel which communicates to the others.

If the particles in channel c possess spin, the threshold
is degenerate, with the subchannels of different helicity
all having the same mass. The sums over helicities in
(22) and (24) now remain a,nd the pole in S ' at j=n(t)
comes from detS=0. In order to prove factorization of
pole residues it is necessary to assume that the zero of
detS at j=n(t) is simple. This assumption, sometimes
described as the absence of "accidental degeneracy, " is
eminently plausibk --it holds in potential theory, and,
corresponds to the pole occurring in only one eigen-
amplitude of the Smatrix. "By imagining S in diagonal
form, it is easy to see that a simple zero of detS implies
that only one element of the diagonal S ' has the pole.
Consequently the singular part of the nondiagonal 5-'

SC'C ~C'C ~PC&& C'C&' C'C ~S, x, „v"

For a process u ~ b, not directly involving channel c,
the unitarity equation (21), plus Eq. (22), can be used
to express the amplitudes on sheet II in terms of those
on sheet I:

"G. F. Chew, The ArcÃytic S Matrix (W. A. Benjamin, I-ne. ,
New York, 1966),|hap. 3.

» See, for example, R. Omnes and M. Froissart, Muedelstues
Theory aced Regge toter (W. A. Benjamin, inc , New Vortex, 1963.),
pp. 108, HS.
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(~- ) = +regular part.

can be written in factorized form: relation for reduced residues. To accomplish these ends
care must be taken to include all kinematically necessary
singularities and zeros in the E's. This is spelled out in
detail in Sec. IV.

From Eqs. (22) and (24) the residues of the pole are
found to be

p&
II—C&P

(26)
Ps,"——ip,CsC„

where
C,=Q E;E„'$;.

These residues satisfy the general factorimtion statemen&

P.sP.p=P"Pss,

where now channel c is not necessarily the channel
whose branch point was encircled to get on to sheet lI.

Qte that the p's are the residues of the pole in the
ull partial-wave amplitudes, i.e., the coefficients of the

Wigner D functions in Eq. (8). In order to be explicit
and careful about their kinematic singularities we write

pba=lt saVss y

where the kinematic factor Es, is defined in Eq. (19)
and specified in detail in Sec. IV, and yb, is a reduced
residue of the Regge pole. The y's are residues in the
iMe amplitudes and so are supposed to have good

ana]ytic properties. We will see that they are normally
analytic, but may contain poles at t=0.

Specialization to the two common types of factoriza-
tion can be made easily. For clarity we now exhibit
helicities explicitly, using (rr,n') for the helicities in
channel u, etc. With c=a, d=b, (n,n')=(V,V'), and

($,$') = (P,P'), we obtain the familiar result relating the
residues for the processes a ~b, a ~ a, and b ~b:

ba, , ba)2
(Kpp', aa' Vpp', aa' )

= Eun', au' 'V aa', aa' +pp', pp' Vpp'; pp' ~ ( )

W;th o= b= o = rl, but helicities (n,n') = (V,V') = (err, rrs)

and (p p') = (8,8') = (rr s,n4), we get the relation for elastic
scattering amplitudes of different helicities:

CQ) 2
+a~a4', agag Vaga4; a1al

+agag, 'asap Paya2', alag ~~ asa4', a3a4 g aea4, aaa4 ~

t should be emphasized that the factorization state-
(28) and (29) hold for the products of the

kinematic singularity factors E and the reduced
residues y. For consistency, the threshold kinematic
sjngular&ty structure on both sides of the equation must

e the same, and, after cancellation of these factors, the
reduced residues must satisfy "analytic factoriza&ion. "
In practice &his means that all powers of the momenta
Land helicity-independent factors intrinsic to the pole
itself, e.g. , I'(ts+ss)J will cancel, leaving only integral

powers of t, or possibly 8' for fermion poles, in the

IV. KINEMATIC SINGULARITY FACTORS
AND FACTOMZATION FOR

REDUCED RESIDUES

The kinematic singularity structure of helicity am-
plitudes has been investigated thoroughly from a num-
ber of points of view" " since the original work of
Hara~' and Wang. " We will follow the notation of
Ref. i8 for the specification of the singularity structure;
it corresponds closely to the conventions of Gell-Mann
et al."

A. Restricted Range of Helicity Values

We consider normal helicity amplitudes with definite
helicities in the initial and final states. This means that
the amplitudes are linear combinations of so-called
parity-conserving amplitudes

fq, ~,,q,&„(t,e&) = tv' cos-', t)~)i"+&'t i' sin-,'e&)~"—&i

X saks'k4;kris (tpt)++xsx4;Ares (t)sg)j q (30)

where &+ and & are given by Eq. (15) of Ref. 1g or
Eq. (2.2) of Ref. 13, and are functions of the energy
and s~ ——cos8~,'X= ~i—A.2 and p= ),3—&4. The amplitudes
F+ are dominated for large s~ by contributions from
natural and unnatural parity sequences, respectively
(ri= &1).If either X or tr is equal to zero, the correlation
of ~ with parity sequence is exact, and not only an
asymptotic property.

The pole whose residues enter the factorization equa-
tions has a definite parity, and so occurs in either F+
or F, but not in both (to leading order in s~). This
means that it is sufhcient to choose both A, and p, non-
negative. Amplitudes or residues with negative values
of X and/or p can be obtained from those with X,p~ 0
by symmetry considerations, as is discussed in Appendix
D of Ref. i8. This restriction on the ranges of X and p
makes the discussion of the kinematic singularities
simpler and less confusing.

B. Different Kinematic Classes

The discussion of the kinematic factors Epp', is
conveniently divided into classes, according to the

16 G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N. V.}46, 289 {1968).

» H. P. Stapp, Phys. Rev. 160, 1251 (196/); 174, 2091 (1968).» J, D. Jackson and G. E. Hite, Phys. Rev. 169, 1248 (1968)."See, also, J. Franklin, Phys. Rev. 170, 1606 (1968); F. S.
Henyey, ibid, 171, 1509 (1968); A. Kotanski, Xuovo Cimento
56A, 737 (1968};J. K. Mandula, Phys. Rev. 174, 1948 (1968);A. McKerrell, J. Math. Phys. (to be published); and T. L.
TrueInan, Phys. Rev. 173, j684 (1968).

'~ Y. Hara, Phys. Rev. 136, 3507 (1964)."L.L. Chau Wang, Phys. Rev. M, 1187 (1966).
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locations of the various thresholds. For the t-channel
process a-+b with masses m +m, ' —bmb+mb', kine-
matic singularities occur in general at the two normal
thresholds t= (m +m ), (mb+mb )', at the two
pseudothresholds f=(m —m, ')' and (mb —mb')', and
at t=0. If there are equahties among the masses, some
of the five singular points can coincide. Ke will not
consider "chance" equalities, such as (m —m, ')'
= (mb+ mb')'. Furthermore, we assume that two
particles of the same mass have the same spin, although
the parities may be different (e.g. , NN and NÃ). We
distinguish the following four classes (P. and U stand for
equal and unequal masses, respectively):

(1) U +U' (—m,Wm, ', mbWmb'): The point t=O is
distinct from the thresholds. It is possible, however,
that the initial and final thresholds might coincide.

(2) E~ U (m, =m. ', mbWmb'): The initial pseudo-
threshold is at 3=0.

(3) E~E' (m. = m. ', mb= mb'): Both pseudothresh-
olds are at t=0, but the mass, spin, and parities of the
equal-mass particles in the initial state may be diferent
from those in the 6nal state.

(4) E—+ E:This class is the same as (3), but with the
same masses, spins, and parities initially and finally.

These four classes include all the common situations.
For a general discussion of the kinematic singularities,
including "chance" equalities of thresholds, see the
paper by Kotanski. "

For the process a —+0 we introduce the fo11owing
notation:

(a) Einematics t, P„Pb a. re the square of the total
energy, the magnitude of the initial momentum, and
the magnitude of the final momentum, respectively, in
the center-of-mass frame.

(b) Parities. rf, =r)tris, fb=rrisr14 are the products of
the intrinsic parities of the particles in the initial and
6nal states, respectively. q=&i denotes the parity
sequence fP=(—1)r "r)j of the pole. r)=+1 (—1) is
called natural (unnatural) parity.

(c) SPins. (s„s,) and (sb,sb ) are the intrinsic spins
of the particles in the channels a and b, respectively.

(d) Helicities (n,n') an. d (p,p') are the helicities in the
initial and 6nal states, respectively. 'A =n—0,

' and
Xb= P P' m=—ma.xP,„Xbj and n= nun/. „Xb). (Re-
member that 'A„)tb) 0, by choice. )

C. Kinematic Factors and Factorization of
Reduced Residues for U—& U'

The factors E~ contain the standard kinematic
singularities" " and also the threshold behavior
(P.Pb) ",where n(t) is the trajectory of the Regge pole.
For U —+ U', we have

(fp-p )"(p.p ) =Eo Eo'
(11""

fj

where ICO E&~ is the kinematic singularity factoi for
X = X&=0, and is clearly factorizable. Explicitly, "
E,.= [&—(m.+m. ')']-~»'Lf —(m.—m. ')']- »'

Ebb= pt (—mb+mb')'j nNI'pt (—mb —mb) j p" (32)

where
Arr=s~+s, ' ', (1—-rfrI—(—1)"' " ")
2 p ——s.+s,' —-', (1—ter). (—1)"' " "),
Bbr —sb+sb ———',(1—r)gb( —1)"+'b ")

Bp——sb+sb' ——',(1—r)rib( —1)"" "). (33)

In writing these expressions we have assumed that
m~(m~', mb(mb'. In Eq. (31) the Qf singularity is
different from that generally quoted "" namely,
(1/Qf) "+".The reason for the di6erence is discussed in
Ref. 18, above their Eq. (24). For U~ U' the normal
helicity amplitude, Eq. (30), in general is regular and
finite at t=O The Q. f singularity in E is present
merely to compensate for the gf behavior corning from
(sin-', ll&) '" &~ as a consequence of cose~ —+ 1 as f~ 0. This
is spelled out in detail in Sec. V D.

Inspection of Eq. (31) shows that Eb itself is
factorizable:

Epp', - "=D«)".p.-Eo-EDV'f)" p -E. j. (34)

This means the kinematic factors in Eq. (28) and in (29)
cancel out and leave the reduced residues for U —+ U'
satisfying the factorization relation

(Vpp', aa' ) Van';aa' ypp', pp' (35)

Equation (35) holds& of course, in the absence of spin,
regardless of the masses. It was erst exphcitly derived
for U-+ U' processes with spin by Frautschi and Jones. r

It is worthwhile to note here that the treatment of
this section can be applied almost without change to
unequal-mass processes involving photons, e.g. ,
&&—+ y~, P3~~ yE~, or in Sec. V to the unequal-mass
side of processes like NN~yV, ps. The kinematic
singularities for photon amplitudes are discussed by
Ader, Capdeville, and Navelet. " One finds that if
channel b consists of a photon and a iiiassive particle of
spin sb, the structures of Eqs. (31) and (36) are the
same, with Ebb given by Eq. (32) with Bbr Bp= sb and-—
mb' ——0. That is, Ebb(photon+particle)=p(+t)pbbs- b.

This singularity can be understood simply in terms pf
the multipolarity of photon transitions. ~'

~ I. P. Ader, M. Capdeville, and H. Navelet, Nuovo Cimento
56A, 315 ((9').

I or a transition from a matter state of spin sb to a state of
angular momentum J the dominant multipolarity of the transition
is either EI- or 3EI-, depending on relative parities, withI =maxD J sb ~, 1j. The low-e—nergy behavior of the transition
amplitude is as (cv')+, where co' is the photon energy in the rest
frame of the "matter" system (cu'= (gt)pb/rab j.The "mismatch"
between J and L (see Ref. 18) is J—I- = sb, and thus the kinematic
singularity is (co') '&.



i802 F. ARBAB AN D J. D. JACKSON 176

D. Kinematic Factors and Factorization of
Reduced Residues for E—+ U

For E—+ U we must consider separately E", E ',
and E", With m, = m ', the kinematic factors are '

1 ~AN
I:pp'- '= (V'f)""(P.Pb)

p.)
,aa (p 2) a AN—

we obtain the reduced-residue relation for E—& Ii'.

KVp8', aa' J faa', aa' happ' pp' (39)

V. EXAMPLES OF FACTORIZATION AND
ITS CONSEQUENCES

Note that the limit 2N, =222b (all four masses equal) is
allowable here, and the case of the same particles
initially and finally is included in (38) with ri 2)b= 1.

and

where

bb fkb(p 2) (gab)2

2
L1 ~~ ( 1)ba—bb+m] 2S

(36)
In this section we present some examples of factoriza-

tion that hopefully clarify the interrelationships of
factorization, kinematic singularities, different con-
spiracy schemes, and daughter trajectories.

and AIN is given by Eq. (33) with s =s,', Epb is given
by Eq. (32). It should be remarked that E"does not
follow from the singularity structure given by Cohen-
Tannoudji, Morel, and Navelet" in their Table X.They
give the maximum singularity, independent of parity.
For a definite g, their regularized amplitudes may have
zeros at p =0. The correct kinematic behavior at a
eormal threshold is always given by the first factors on
the right in Eq. (32), regardless of the masses. Another
point worthy of note is that, for E~E, E has the
same form whether or not the helicities are the same
initially and 6nally. For U —+ U, E ' can be generalized
to the situation of diferent helicities initially and finally
by inspection of Eq. (34) with a= b.

When the kinematic factors LEq. (36)j are inserted
into Eq. (28), the result for Z~ U is

where

I qppp', aa' J —Vaa', ~~' I pp', pp'

x= 2m —X —2S.+-', L1—2121.(—1)"j. (37)

We see that the powers of momenta all cancel, but that
there remains an integral power of t on the left-hand
side. '4

E. Kinematic Factors and Factorization of
Reduced Residues for E—+ E' and E ~ E

For thesituationwithm =m ', my=my', butm, Wm~,
the kinematic factor E' is given by"

"=(V'&) "(P ) "(Pb)

A. LeBellac's Example

LeBellac' demonstrated the use of factorization for
statements about the behavior of residues of the pion
trajectory in various processes at 3=0. The basic idea is
that anomalous behavior, e.g. , conspiracy instead of
evasion, in one process vill, because of factorization,
propagate and give anomalous behavior (of an inverse
type) in some other process. The reactions considered
by LeaellaC are JV'cV —& rrp, N1V —b NCV, 2rp —+ 2rp,
gA —b 2rp, and Nh +N/t . The—6rst three processes are
related by factorization of the Z~ U class (Sec. IV D),
while the last three are of the U -+ U' class (Sec. IV C).
We consider helicities Xg=XN=X~= —, and X =Xp=0.
Furthermore, we consider in this section that the pion
trajectory is a leading trajectory, i.e., a parent. This was
LeBellac's assumption, and seems likely in nature. In
Sec. V B we show how LeBellac's conclusions are altered
if the pion is assumed to be the daughter of an A~-like
parent with which it conspires.

With X =Aq=m=m=0 and q= —i we 6nd from
Eqs. (37) that the pion's reduced residues for EE~2rp,
JtTE ~ JtT1V, and 2rp -+ 2rp are related by

(happ

ap~ NN ) 2 r NN NN
/

ap ~&p (40)
t

Under our assumptions the reduced residues are
analytic in the neighborhood of t=0. This means that
goo., ++"& ~~ must be proportional to some positive
power of t. We thus write

where

„„( 1)a+ a'+ fb+S'j (38)
~p~NN ~+ ~p~NN

and A N, BN are giVen by Eq. (33) With S,=Sa Sb= Sb'.

The faCtOrS Xaa and Kbb are E"=(p,') A" Ebb
= (p bs) -NN. Combining these expressions with Eq. (28),

'4 fn comparing Eqs. (37) with the results of other workers, the
remarks below Eq. (33) concerning the powers of g& should be
kept in mind. DiGerences bebveen the present expression and the
results in Ref. 9 on yV~ SX, for example, can be traced to their
use of (1/gt) +" instead of (1/gt) "in Eq. (31).

Note that factorization has converted a 1/gt kinematic
singularity Lsee Eqs. (36)j into a Qf kinematic singu-
larity. The kinematic structure of the residues of
Wang, ' shown in her Eqs. (18a) and (18b), has this
factorization requirement built in. Equation (40) now
becomes

t(happ, ++ p ")'=y++,.++"" "happ., pp" ". (41)
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There is evidence from n p charge-exchange scattering"
that the residue y++., ++~~ ~~ does not vanish at t= 0,
as expected from perturbation theory or normal
(evasive) Regge poles. Within the framework of Regge
poles alone, it is necessary to invoke some type of
"conspiracy, "e.g. , to postulate the existence of another
trajectory a.(t) with all the same quantum numbers as
the pion, except parity, and to demand that a,(0)= a (0).
This is called type-III conspiracy in the notation of
Freedman and Wang26 and 3f= 1 conspiracy in the
nota. tion of Toiler. ' If y++., ++~ " does not vanish
at t= 0, factorization

I Eq. (41)] forces happ;pp e & to be
proportional to t.

Now consider factorization for gd, -+ rcp, gA ~gh,
and srp-+ s p. From Eq. (35) we have

(7pp; ~+" "')s=v++;++~' ~'Vpp;»" " (42)

With the conclusion that happ;pp
t' t'0- t, and the require-

ment of analyticity of the reduced residues near t=0,
we see that both the other residues in (42) must also be
proportional to t. We have thus reached the conclusion
of LeBellac: The non-spin-Qip residue for the reaction
gA-+

harp

must vanish at t= 0. Since the pion trajectory
is believed to be important for this reaction and X,=O
is known from the decay density matrix elements to be
dominant, we are led to expect a dip in the cross section
in the forward direction.

This powerful conclusion stemming from factorization
(the lack of a dip at t= 0 in rtp charge-exchange forces
a dip in the inelastic reaction sr% +pA) is esp—ecially
curious because the data on xS—+ pA do not support it.
There are difhculties and ambiguities associated with
the finite widths of the p and the 6 and the inaccessi-
bility of the point t=O. But a recent analysis'8 at
8 GeV/c shows, not a dip in the cross section at small
momentum transfers, but rather a rise for 6'&2m '.

B.H the Pion Were a Daughter; the A~ and its Daughter

Because of the basic nature of factorization of pole
residues, it is important to 6nd loopholes in LeBellac's
argument if the data do not support its conclusions.
There are, of course, many ways out. The pion may not
dominate processes like mS -+pS and m S~pA at high
energies and very small momentum transfers; the
contributions of Regge cuts may mask the behavior of
the pole residues, etc. But we discuss here circumstances

"F.Arbab and J. W. Dash, Phys. Rev. 163, 1603 (1967);
R. J. N. Phillips, Nucl. Phys. B2, 394 (1967)."D. Z. Freedman and J. M. Wang, Phys. Rev. 153, I596
(1967); 160, 1560 (1967)."M.Toiler, Istituto di Fisica dell'University, di Roma, Reports
Nos. 76 and 84, 1965 (unpublished); A. Sciarrino and M. Toiler,
J. Math. Phys. 8, 1252 (1967).A concise summary of the various
types of conspiracy is given by L. Bertocchi, in Proceedhngs of the
Heidetberg International Conference on Elementary Particles, edited
by H. Filthuth (North-Holland Publishing Co., Amsterdam,
1968}.

'8 Aachen-Berlin-CERN Collaboratlollp Phys. Letters 278, IN
(1968).

P2 ~ —P~,

yg ' (t)
(tr)3 ~ a~(t) I a~(t)+-

I

I'(ag(t)+ 1) E zt)

(1.—e—'«~&'&~ (s ~a"&"

E sin7ra~(t) f 'Esp)

and

(ag(t) 1/z,)—
p4~

EaA(t)+ 1/zo
(43)

The superscripts (1) on the residues identify them as
residues for Jt7X-+ gott. The factors of a~(t) in tos cor-
respond to choosing sense at the "nonsense-nonsense"
point, J=O. In Eq. (43) we have kept the 6rst-order
corrections to the leading terms for the A pole because
they have the same s dependence at t=O as the D-pole
contributions. At t= 0 the amplitudes satisfy a GGM%
relation "

tet —top= tt's —to4 [t=0].
Unless all the amplitudes vanish at t= 0 (evasion), the
residues must be related (type-II conspiracy) according
to

Vn ' (0)= (2rntv'/sp)v~ ' (0) . (44)

In the process srp ~srp Ldenoted by superscript (2)]
both parent and daughter poles contribute to the am-
plitude fpp;pp. From Eqs. (31)—(33) we see that the
kinematic singularity of this amplitude (with st= —1)
is 1/4tp„' times the threshold behavior (p„s)». The

'O„M. L. Goldberger, M. T. Grisaru, S. W. MacDovrell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960).

by which the above conclusions are modified, still
within the framework of Regge poles alone.

Ke consider the residues of a Regge pole with the
quantum numbers of the pion, denoted by D, and also
its parent, denoted by A. The parent trajectoryaz(t)
and the daughter trajectory a&(t) are related at t= 0 by
a~(0) —=a, a~(0) =a—1. Both trajectories contribute to
various amplitudes in the processes involved in
LeBellac's argument. Consequently, we must look in
more detail at the diferent reactions in order to deter-
mine the interconnections among the parent and
daughter residues at t=0.

Consider first gE-+gK The D pole contributes to
the two amplitudes tot= (++ I

T
I ++) and

=(++I&I——), while the A pole contributes to
v'p=(+ I&I+—) and to4=(+ —ITI —+). Thekine-
matic structure of the amplitudes is given by E" in
Eq. (36) with Asr=0. The asymptotic forms of the
amplitudes are therefore

y &'&(t) 1+e 'r"~&'&) (s )an&'&

I'(ag)(t)+ 1) sinprag)(t) 3 E spf
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asymptotic form of the contribution from the A pole D pole to fpp. toy+ be
can thus be written

v~"'(t)
f00; 00 r' r(n, (t)+1)

ekra~{t)
~ 2p 0&

~
az{o

xl I

' I, (45)
5 sining(t) ) sp i'

with corrections of order s& '. Here

r'= 4tp~ '=—$t' 2—(m '+ m, ') t+ (m '—m ')'$

foo;++ ~ pn {0)(t)

r+t r(n (t)+1)

(1+e '~~n{'&&& g

xl I

— . (49)
k sin~n»(t) 3 sp

Pg~P p sin9( 2n~(t)y~{0)(t)
00'+ —~

rso I'(ng(t)+ 1)

Similarly, the A -pole contribution to f00, + is

and
(1—e &&~8{0 ( s )nA{o—1

xI . I

—
I

(50)
k sining(t) iso)

2p~p s(=s+r /2t.

Keeping only the 0{1/s) corrections to the leading
power, Eq. (45) reads At t=0 the two amplitudes satisfy a conspiracy

relation (actually a pseudothreshold relation) of the
form"{s)(t) t1—e {~~&«)~

t
g~~&{&&

foo oo{ ) ~—
r' r(ng(t)+1) E sin)my(t) I'Espl

foo;+ . foo;+ =0(v't)—
sin8&ron~(t)

XI 1+ +" I. (46)
2st ) This constraint requires the residues in (49) and (50)

to be related at t= 0:
For the daughter pole we keep only the leading power
of s. Its contribution is

1 y»{')(t) (1+e '~~n{') ) t' s )
—~n{')

foo;oo
r I'( n)&(t)+1) 5 sinmnn(t) ) Esp)

X(1+" ). (47)

For unequal masses, r') (m, '—m ')' as t~0 and
the contribution of the A pole diverges as 1/t with s
dependence s " '. In order that the complete amplitude

fpp, pp not be singular at t= 0 it is necessary that the
leading contribution of the daughter pole cancel the
offending part of (46). This is the daughter mechanism
of Freedman and Wang" for ensuring Regge behavior
at 1=0 for the U —+ U' class of masses. The daughter
residue y)&{0)(t) is therefore related to the parent
residue yz "&(t) in the following way:

1 (m '—m ')'
y)&

' (t) =—
2

yg {'&(0)+regular part. (48)
Sot

Here we see the erst obvious difference from the dis-
cussion of Sec. VA. The residue of the pionlike D in

mp ~ zp is now not analytic at t= 0, but instead has a
pole. Evidently the argument leading from Eq. (40)
to (41) no longer holds.

To complete the discussion we must now consider
the reaction E.V~~p. The D pole and 3 pole con-
tribute to the amplitudes fpp++ and fpp+ respec-
tively, as well as to others with A.,/0 that are of no
interest to us here. With the kinematic singularity (36)
we 6nd the asymptotic form of the contribution of the

m~
7)&'"(0)= (m, '—m s)yg{0)(0).

$0
(52)

The factorization equations for the reduced residues
of both the 2 pole and the pionic D pole can now be
written down and compared, From Eq. (37), remem-
bering that for the A pole the X1V system has helicities
(+,—), we obtain

Equation (54) is just a rewriting of Eq. (40). As has
already been mentioned, the pole at 3=0 in yD('), given
by Eq. (48), removes the necessity for y)&") to be
proportional to t, and Eq. (41) does not hold. In the
second part of LeBellac's argument, the three U —+ U'

processes XA —+ xp, E4~E~, and xp ~ zp have
reduced residues of the D pole related according to
Eq. {42).Now each residue has a Freedman-Wang pole
at 1=0 and nothing crucial can be said about the
"pionic" residues because of the presence of its parent. "

'0 B.Diu and M. LeBellac, Nuovo Cimento SBA, 158 (1968).
3'This circumvention of LeBellac's conclusion was, of course,

known to him (see Ref. 30) and to others. But the reasonable view
was taken that the pion is a leading trajectory.

(53)

where the superscripts {1,2,3) refer, respectively, to the
processes EE~E1V, 7rp ~ 7rp, and 1&T1&1~0rp. Similarly,
for the residues of the D pole, we have

1
(~D {0))0 =pn {t)pD {0)

t
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It can be verified easily that the connections (44),
(48), and (52) between parent and daughter residues
at t= 0 m.ake Eqs. (53) and (54) equivalent at that point.
We thus have the circumstance that conspiracy relations
in 8—+ E and E—+ U processes, plus factorization, deter-
mine the residues of the daughter trajectory in a U —& U
process. Given the existence of daughters, we can thus
"prove" Regge asymptotic behavior at t=0 for unequal
masses. Alternatively, if an A& trajectory exists, then
analyticity arguments for the amplitudes of ~p —&xp

demand the existence of its daughter (not the pion),
with a residue satisfying Eq. (48). Then a natural
solution of Eqs. (53) and (54) is for both yD&'& and yD "&

to be finite at 3=0. This results from a parent-daughter
conspiracy, and is no less reasonable than the "no
conspiracy" solution in which pD "& ~ t', p& &" ~ t. In fact,
the following possibility cannot be ruled out. " Suppose
that the pion has M=1 (i.e. , has a parity doublet
partner at (=0). Then I.eBellac's arguments of Sec. V A
still hold for the piom's residues. Assume that the pion,
the A~, and its daughter all contribute to the reactions
SN ~7rp and Ed~ n.p, and that the Ai and its
daughter conspire as indicated above. Then the very
forward cross section for mE —+ pS will be controlled by
the A~ contribution and the pion-daughter interference
(the pion's contribution vanishes at t = 0), giving a finite
cross section at t=0 but peaking somewhat away from
t=0, as is apparently observed. For 7fiV~pd, the 3&-
pion interference term will dominate the forward cross
section. Since the pion residue vanishes at t=0 from
factorization, the interference term can give the forward
peaking. "A relatively detailed model like this can only
be tested by accurate data up to the highest momenta
(in order to check the s dependences in detail, as well

as the t dependences).

C. M=1 Pion

Mandelstam" has discussed the connection between
conspiracy theory and the hypothesis of a partially
conserved axial-vector current (PCAC) and the commu-
tation relations for axial-vector charges. He showed that
for zero-mass pions the assumption of a type-III
conspiracy for the pion (M= 1 pion in Toiler's notation)
is sufhcient to establish the Adler self-consistency condi-
tion, '4 from which one can go on to treat the Adler-
Weisberger relation and the commutation relations for
axial-vector charges. We consider here what factoriza-
tion says about these matters. The result. turns out to
be unpleasant for the hypothesis of M=—1 for the pion.
As was erst noted by Mandelstam himself, "factoriza-
tion for an &=1 pion seems to force "hard" pion
amplitudes as well as "soft" pion amplitudes to be
small. The latter is Adler's self-consistency, but the
former is not wanted.

3' F. Arbab and R. C. Brewer, Phys. Rev. 175, 1991 (1968)."S. Mandelstam, Phys. Rev. 168, 1884 (1968).
34 S. L. Adler, Phys. Rev. 137, B1022 (1965);139, B1638 (1965)."S. Mandelstam (private communication).

TABLE I. Behavior of reduced residues near t =0
when mf, ——mf,

' and pion has 3f= 1.

Channel b (BB')

lVS

VV
XS„

VA

n~( —1)"'
+1
+1
+1

—1
—1
—1

))1 ++BB ÃÃ ~)) ))BB

First we establish a generalization of I eBellac's
result of Sec. V A. Consider the process X)V —+BE',
where 8, 8' are any pair of particles of unequal mass
coupled to the pion. I'or the pion residue the net helicity
in theEiV state is X =0 of necessity. We will also choose
A. t,= 0 so that we deal with "sense-sense" amplitudes for
the pion. For these amplitudes, with m=-m=0, the
various reduced residues are all analytic at t= 0,
provided the pion is a leading trajectory. For these
choices of helicities, Eq. (37) becomes

(~&&
&B'~ivN)s —+ ~FK~17Ã+„„„BB'~BB' (55)

t

For an evasive (3f=O) pion and a conspiring (~=1)
pion we obtain the following results for the behaviors
of the residues near 1=0:

7++;++ 'Yu. ;++ Vu. ;v,

By means of the U~ V factorization equation (35)
we establish that, for a general process, AB —+ CD, in
which the masses are unequal,

(56)

provided the pion has &=1. Note that (56) applies
only to residues with m=-m=0. For other helicities,
conspiracies can cause the residues for U —+ U to have
poles at t= 0. This is discussed in Sec. V E.

Before commenting on the significance of (56) in a
discussion of Adler self-consistency, we examine the
corresponding results when 8 and 8' have equal masses
(and spins, but not the same parities). The process is
glV~BB', with mi, ——ass'. The relevant equations are
(38) and (39). Again consider only the sense-sense
amplitudes with P=P'=X. We assume an xV= 1 pion
(y++, ++~~ ~~~ 1 near 1=0). The results for various
channels a,re found in Table I. The notation is Ã(s+),
A', (-',

—
), (0

—
), (0+), V(1-), A(1+), A(-,'+), A„(-,'-).

It should be noted that if y
' ~~ is taken as propor-

tional to ]~, then p
' '

will be proportional to the
tabulated value times t'". We have assumed that there
are no extra zeros.
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Np

FzG. 1. Diagrams showing the pion contribution to the E—+ E
process, X~~iV+7, ~7r~os; and A V~A V. The "particles"
E„,~, and A can be thought of as composites of a zero-mass pion at
threshold and S, m, and V, respectively. The residues of the pion
pole are proportional to the square of the mE, m7i-, and ~V elastic
scattering amplitudes.

The tabulated behaviors illustrate the general result
that for rt s(—1)"'=+1 (—1) the pion residue'" ~'~ 1 (t) near t=0 provided ms=mt, ' and
M=1. For 3E=O (no conspiracy in NtU &NN), —the
behavior is just the opposite. The significance for the
Adler self-consistency condition can be seen from Fig. 1,
which shows schematically the pion-pole contribution
for processes like Nl"Lt„~NE„. The particle E~ for
example, can be thought of as a nucleon plus a zero-
mass pion. Then the residue y~~& N~& is proportional
to the square of the pion-nucleon scattering amplitude
(with one zero-mass pion at threshold). Since the residue
is proportional to t for small t, the pion-nucleon scat-
tering amplitude must be proportional to +tv, i,=m,
and so vanish in the limit of zero-mass pions. Similar
conclusions about the pion-pion and other pion scat-
tering amplitudes can be drawn from consideration of
xa —+ xo, etc. This is the Adler self-consistency condition
for pion scattering processes.

Mandelstarn's derivation is based on detailed argu-
ments of four-dimensional symmetry and 3f= 1 for
zero-mass pions coupled to equal-mass particles. We see
here that invocation of a t=0 conspiracy between the
pion and a scalar particle in N1V ~NN, plus factoriza-
tion, is all that is actually necessary to obtain Mandel-
stam's version of the PCAC results. Furthermore, we
learn that the equal-mass requirement is not necessary.
Indeed, Eq. (56) gives us more than we want. It implies
that all pion amplitudes are in some sense small (zero
in the liinit of m —+0). It is difficult, of course, to give
quantitative meaning to the word "small" since sorne-

thing proportional to t for t —+0 can still be very
large at t=m . 'Until this sort of question is clarified,
Eq. (56) does not destroy the significance of
Mandelstam's original arguments, but it does cast a
cloud over them.

D. Zeros in Residues away from P=O

A related question is the so-called "moving zero" in
the pion residue at small negative t. It has been argued
by Arbab and Dash" that the zero in the pion residue
at t= 0 for sense-sense coupling in NÃ ~NE, required
of a sero-mass &= 1 pion, moves slightly away from
1=0 when the symmetry is broken by the small Qnite

mass of the actual pion. Empirically such a zero is found
necessary at t= —(1.5—2.0)m ' in the phenomenological
fitting of e-P charge exchange" and pion photoproduc-
tion" at high energies. It has also been deduced from
finite-energy sum rules for photoproduction. "

We wish to make a relatively trivial observation con-
cerning this and other possible zeros in residues away
from t= 0. The various factorization relations, Eqs. (35),
(37), and (39) involve only the reduced residues and
perhaps powers of t. This means that a linear zero in
the residues for ¹V~NN, i.e., y++,.++~~ ~N ~ (t—ts),
will propagate into all reactions, whether elastic or in-
elastic, whether equal or unequal mass. But if the zero
in NN —+ NiU is quadratic, then it can appear as a linear
zero in a process like NE —+ m-y, and be absent in U ~ U
reactions. The latter possibility is perhaps more reason-
able and is apparently supported by data on inelastic
reactions believed to be dominated by pion exchange,
although one can question whether other contributions
might not mask the eGect. 32 The possible relation be-
tween "moving zeros" that might result from a breaking
of the four-dimensional symmetry (by either the finite
mass of the pion or the inequality of the masses of the
external particles) and the fixed zeros at t= 0 that result
from factorization is a topic beyond the scope of this
paper. It is perhaps of significance that for an M= 1
pion a/~t residues seem to vanish at or near t=0,

Another example of zeros in residues at physical t
values is afforded by the ~ trajectory. The crossover
phenomenon in the differential cross sections for pP
and pp elastic scattering is interpreted" in terms of a
linear zero in the non-helicity-Qip residues of the ~
trajectory at t= —0.15 (GeV/c)s. A linear zero in pp
elastic scattering implies, via factorization, a linear zero
in all ~ residues, as 6rst noted by Phillips and Rarita. "
The difhculties with such consequences can be traced
in the literature. '

E. Consyiracies at t=O for U —& U' Processes
For equal-mass processes (E +E or E &U) con--—

spiracies at t=0 can involve either trajectories of the
same parity sequence (type II, e.g. , parent and
daughter, as in Sec. VB) or trajectories of opposite
parity sequences (type III, e.g. , np ~ pn " and
yN-+7rA'). " For unequal masses, the most obvious
conspiracy is the parent-daughter conspiracy of
Freedman and Wang, " with the daughter residues
having poles at t=0 Pe.g. , Eq. (48)j. But there is still

es J. S. Ball, W. R. Frazer, and M. Jacob, Phys. Rev. Letters
20, 518 (1968).

3 A. Bietti, P. DiVecchia, F. Drago, and M. L. Paciello, Phys.
Letters 26$, 457 (1968).

38 W. Rarita and V. L. Teplitz, Phys. Rev. Letters 12, 206
(1964)."R.J.N. Phillips and W. Rarita, Phys. Rev. 139,B1336(1965).'0 V. Barger and L. Durand, Phys. Rev. Letters 19, 1295 (1967};
P. DiVecchia, F. Drago, and M. L. Paciello, Phys. Letters 268,
530 (1968); G. V. Dass and C. Michael, Phys. Rev. Letters 20,
1066 (1968); P. DiVecchia, F. Drago, and M. L. Paciello, Nuovo
Cirnento 55A, 809 (1968).
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fi,i,.
&,, i,= Piq(&2 cos-', 8i) "(v2 sins8&) +"

X(p+—F-) (57)

where $ is an inessential phase factor that can be read
off from Eq. (15) of Ref. 18, and m and n are defined at
the end of Sec. IVB. For U —+ U', cos8i~ &1+0(t)
as t~ 0, the sign depending on the sign of (q&si' —q»s')

X(&qss' —»s4') For definiteness we assume that the
masses are such as to give the positive sign; the argu-
ment can be changed trivially for the other choice. The
half-angle factors in Eq. (5/) give the following small-t
behavior;

f~. . . , (+1) "(F++F
fi,i;,-i,-i,"(gi)"+"(F"—I' ) .

Without conspiracy, the various Regge poles con-
tributing to F+ and Ii have different s dependences
at (=0. Hence, the necessary t behavior must occur for
each pole separately. In order that fi,i, i,z, be regular
near (=0 we must then have no higher singularity than

1 )m n

F"o:
~ ) f),a%i;xg) q~ 1 ) f4x4; —ig—xq~" ~ (59)

1)

The &
= 0 singularity in Fq is just that given by Eq. (31).

The consequence is that one helicity amplitude is 6nite
at t= 0 while the other vanishes as 3". This is called the
normal behavior. Note that uniformly less singular
behavior for dynamical reasons is always possible. Hut
we do not consider that possibility here.

If, on the other hand, we admit conspiracies between
Regge trajectories of opposite parity sequences, the
normal result, (59), need not occur. Suppose that we
wish to have the small-t behavior,

s&4') ps ~ " ~ J Xs) 4' —) I,
—) s cc ~ (60)

where p and q are non-negative integers. Then, from
(58) we conclude that

[p++F j~ (g])s—p-m+n

[P+ I&
—

g o- (Qi)qq-m —n

4' A discussion similar in many respects to this section has been
given by S. Frautschi and L. Jones, Phys. Rev. 167, 1335 (1968),
Appendix A.

another type of conspiracy for L'~ U' processes, also
resulting in residues singular at )=0, but involving tra-
jectories of opposite parities. '

Our starting point is the fact that for U —+ U' the full
helicity amplitudes are regular in the neighborhood of
k=0. The connection between the full amplitudes and
the so-called parity-conserving amplitudes is given by
Eq. (30). With the conventions of Sec. IVA on the
ranges oi' helicities, the two helicity amplitudes fi,i, i,i,
and fi,i, , &„ i, can be written

fi,i,.&„i,= is(V2 cosi8,) +"(K2 sin-', 8,)m "
X(p +I ), -

This can be arranged by having

F+oI. (1/Q])m+n —sq

but demanding that

(p++p—
) CC (1/Q]) m+n —sq{in+p-q)

(61)

(62)

d&~(+) (1) d&rt (—& (1)

f,=o t~
f,=o

dj
—.[1" 'v'+&(1)j
dt~

dj
=—,[1" '7' &(1)3

t=o t=o

(64)

for j=0,1,2, ,(&i+p—
q
—1). These conditions on the

conspiring trajectories and their residues will guarantee
the small-t behavior assumed in (60). In contrast to the
F—& F. or F~ U conspiracies, the amplitudes fj„i,,i,i,
and fj,,i,, &,, i, are not related at 1=0 simply through a
common residue value. The value of the amplitude
fi,x,; z, i, is given by the residues of the conspiring
poles, while fi,i, , &„&„depends on the (&s+p—q)th de-
rivatives of the trajectories, n&+' and a& &, and of the
residues, y'+) and y& &. This makes the U~ U' con-
spiracy qualitatively diferent from the equal-mass
situations and is probably responsible for the confusion
on whether or not conspiracies at 3=0 occur for unequal
masses. "

With this type of conspiracy the residues entering the
factorization Eq. (35) need not be analytic near t=0,
but may possess poles as shown in (63).

Various versions of the Lorentz pole model give
partial specification of the exponents p and q in Eq.
(60).The model of Cosenza, Sciarrino, and Toller4' gives
g=5I—nz, 0, and e—3f for M~nz, m&3f~e, and
e&3f, respectively, where M is the Lorentz pole
quantum number. It is not clear, however, what their
model predicts for p. Results in agreement with Ref. 43
have been obtained by LeBellac44and also by DiVecchia,
Drago, and Paciello, 4' using factorization arguments

4' Conspiracies can certainly occur, as we have just shown. But
for U-+ U' processes the conspiracies do not imply constraints
among the helicity amplitudes in the same sense as for 8—+ E'
and B~U.

4'G. Cosenza, A. Sciarrino, and M. Toiler, Nuovo Cimento
57A, 253 (&968).

'4 M. LeBellac, Nuovo Cimento 55A, 318 (1968).
4'P. DiVecchia, F. Drago, and M. L. Paciello, Laboratori

Nazionali di Frascati del CNEN Nota Interna No. 390, LNF-
68/5, 1968 (unpublished); and Nuovo Cimento 56A, 1185 (1968).
These authors tabulate factorization equations for reduced
residues akin to our Eqs. (35), (37), and (39).But see our Ref. 24.

the curly brackets giving the small-t dependence of
(7++F ). Comparison of (61) with (31) shows that (61)
is equivalent to having the reduced residue functions of
the conspiring poles singular at /=0:

&{6)cc (1/1) nq (63)

Condition (62) requires that F+= —F to order tn& & ™.
Because of the 1 dependence in s i'&, as well as in y(i),
this means that
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and the specification of a "minimal" solution of the
analyticity and factorization requirements. The model
of Sitar and Tindle" has a correlation between the
small-t dependence and the asymptotic s dependence of
the t-channel amplitudes. For the terms in the amplitude
with the normal s behavior (in E+), one finds

"K.M. Bitar and G. L. Tindle, Phys. Rev. 175, 1835 (1968).

p= M—m and p = 0 for M~ m and m) M, respectively,
while q=M —m, 0, and e—3I for M&m, m)3f ~m,
and e&3f, respectively. This corresponds to the
equality of trajectories and residues in (64) for j=0,
(rt —1) or (M—1), whichever is smaller. In Bitar and
Tindle's model there are, however, terms with p= q=0
and less than the leading power of s.
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Decays of OM-Parity Baryon Resonances*
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Baryon members of the three-quark SU(6) 70 and 56 are coupled with a vector spurion assigned to the
1' of an SU(6) 35 to form odd-parity baryon resonances. Branching ratios for decays are calculated using
the relativistic techniques of SU(6)sr and are compared with experiment. The Xi*(1518) and Y&*(1660)
are assigned to an 84( 1'138' of 35870. Observed branching ratios indicate that the decays proceed through
the 70 channel as Capps has predicted. The Yi*(1765), Yee(1830), and "te(1935) are assigned to an
8't 1'84 of 35(370. Missing members of these multiplets are discussed and branching ratios given. Decay
amplitudes for other possible multiplets are stated.

INTRODUCTION

HERE are two possible ways of looking at the
observed negative-parity baryon resonances if

one assumes a quark model. ' They can be thought of
either as four-quark-one-antiquark systems with zero
orbital angular momentum or as three-quark systems
with one unit of orbital angular momentum. A detailed
study of the consequences of both models is required in

order to determine which model, if either, is correct.
The erst model places a negative-parity baryon

resonance in a multiplet of extremely high dimen-

sionality. Coyne, Meshkov, and Yodh have assumed
such a model for Ft*(1'/65), which they put in the
1134-dimensional representation of SU(6).' Using the
(relativistic) techniques of SU(6)tr, s they have calcu-
lated ratios of decay widths which are in reasonable
agreement with experiment.

* Supported in part by the National Science Foundation under
Grant No. GP-5590.

t Submitted in partial fulfillment of requirements for the degree,
Doctor of Philosophy.

s S. Meshkov, in Proceedings of the Third Coral Gables Conference
on Symmetry Princi ples at High Energy (W. H. Freeman and Co.,
San Francisco, 1966), p. 150; C. D. Nwachuku, Nuovo Cimento
51, 1158 (1967).' J. J. Coyne, S. Meshkov, and G. B.Yodh, Phys. Rev. Letters
17, 666 (1966).' H. Harari, D. Horn, M. Kugler, H. J.Lipkin, and S. Meshkov,
Phys. Rev. 146, 1052 (1966); 140, B1003 (1965}.

The second model places a negative-parity baryon
resonance in a smaller representation of SU(6) and,
since the highest possible total intrinsic spin of a three-
quark system is —,', adds a unit of orbital angular mo-
mentum. Mitra and Ross have calculated decay widths
for the 70Qx3 representation of SU(6)QxO(3) assuming
a static SU(6) invariant model and have obtained good
results for some states, notably the Yt*(1765).4 Their
calculation, which assumes a quark-quark interaction,
produces the same ratio of decay widths for the
I'i*(1765) as Coyne, Meshkov, and Yodh. Capps, who
assumes an attractive interaction which transforms like
a member of the 70 of SU(6), has noticed that a W-spin
calculation produces a result which looks like the
inclusion of some I' state in the interaction in a quark
model. ' He also gets a ratio of decay widths in agree-
ment with the calculation of Ref. 2.

4A. N. Mitra and M. Ross, Phys. Rev. 158, 1630 (1967);
Q. W. Greenberg, ibid. 163, 1844 (1967); K. T. Mahantappa and
E. C. G. Sudarshan, Phys. Rev. Letters 14, 163 (1965); D. L.
Katyal, V. S. Bhasin, and A. N. Mitra, Phys. Rev. 161, 1546
(1967); H. J. Lipkin, ibid. 159, 1303 (1967);P. N. Dobson, Jr.,
ibid. 160, 1501 (1967);A. Kernan and W. M. Smart, Phys. Rev.
Letters 17, 832 (1966); S. Fenster et al. , ibid 17, 841 (1966}.;
D. L. Katyal and A. N. Mitra, Phys. Rev. 169, 1322 (1968);
G. C. Joshi, V. S. Bhasin, and A. N. Mitra, ibid. 156, 1572 (1967);
Sutapa Das Gupta and A. N. Mitra, ibid. 156, 1581 (1967);
P. G. O. Freund, A. N. Maheshwari, and K. Schonberg, ibid.
159, 1232 (1967).' R. H. Capps, Phys. Rev. 158, 1433 (1967); 153, 1503 (1967).


