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For a two-to-two particle interaction, one of the particles being massless, we discuss and give the
kinematic-singularity-free combinations of helicity amplitudes, the constraint equations, and an expression
for invariant amplitudes in terms of helicity amplitudes. The constraint equations are obtained from an
invariant-amplitude expansion rather than from the crossing matrix.

1. INTRODUCTION

S EVERAL accounts have been given' ' of the kine-
matic singularity structure of helicity amplitudes

for four-particle processes (i.e., two-body scattering),
and of the construction of regularized helicity ampli-
tudes which do not have kinematic singularities, these
regularized amplitudes being simple combinations of
helicity amplitudes multiplied by kinematic factors.
More recently, further investigations' ' have shown
that at certain values of the c.m. energy, there are
linear relations, known as constraint equations, between
diferent regularized helicity amplitudes and between
their derivatives. We give here an extension, to the case
of a four-particle process with one of the particles
massless, of the results on kinematic-singularity-free
amplitudes. The constraint equations are obtained
without considering the crossing matrix. We also give
some formulas concerning the use of invariant ampli-
tudes for such a process. ~ Although the results on regu-
larized helicity amplitudes would appear to be of interest
principally in the discussion of the application of the
Regge-pole model to photoproduction, there is no
essential difhculty introduced by considering the mass-
less particle to have arbitrary spin, and for the most part
we shall do so.

The delnition of a kinematic singularity used here is
that of Stapp. ' The helicity amplitudes can be expressed
in terms of M-functions (amplitudes with spinor trans-
formation properties). ' These M-functions are assumed
to be analytic functions of the components of the mo-
menta of the particles on the complex mass shell, apart
from singularities ("dynamical singularities" ) required
by unitarity. In a c.m. system, the helicity amplitudes
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are certain functions of scalar invariants s and t. Kine-
matic singularities are then de6ned to be the singulari-
ties (in s and t) that the helicity amplitudes would have
if there were no dynamical singularities in the
M-functions.

The expression of the scattering amplitudes in
terms of kinematic-singularity-free invariant amplitudes
(functions of s and t) has been given by Hepp' and by
Williams, " and extended to the case of massless par-
ticles by Zwanziger. ~ In Sec. 2, after de6ning some nota-
tion and conventions, we recall these results, and also
show how to invert the expansion of Ref. 7 (for one
particle massless), that is, express the invariant ampli-
tudes explicitly in terms of 3f-functions and thus in
terms of helicity amplitudes.

In Sec. 3, we consider the construction of regularized
helicity amplitudes, which are in practice much easier
to deal with than the invariant amplitudes, except for
low-spin processes. We use the method of Cohen-
Tannoudji, Morel, and Navelet, '" who obtain the
kinematic singularities from the expression of helicity
amplitudes in terms of invariant amplitudes. The results
differ from those for the case of four massive particles
only by a singularity factor at s=m2'. 12 Section 3 D
mentions one obvious dynamical singularity, arising in
lowest-order perturbation theory, which can coincide
with one of the kinematic singularities; a formula is
given for identifying the regularized amplitudes con-
taining this singularity.

In Sec. 4, the constraint equations on the regularized
amplitudes are obtained. Although constraint equations
can be written down directly by inspection of the expres-
sion of helicity amplitudes in terms of invariant ampli-
tudes, some algebra is unfortunately necessary to
simplify them, and to put them in a form comparable
with those obtained. in Ref. 3 (where the constraint

s K. Hepp, Helv. Phys. Acta 36, 355 (1963).
D. N. Williams, Lawrence Radiation Laboratory Report

No. UCRL-11113, 1963 (unpublished)."J.P. Ader, M. Capdeville, and H. Navelet t Nuovo Cimento
56A, 315 (1968)$ give a treatment of the analyticity properties of
two-body helicity amplitudes for reactions involving massless
particles. Their results for the case of one massless particle
correspond with ours, except that they obtain a slightly diferent
set of kinematic-singularity-free combinations of helicity ampli-
tudes in the case of one fermion in the initial and the final states.
Their method is compared with ours, brieQy, in Sec. 5 below,"We take s= (pr+ps)', mq ——0,
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(k,0,0k); (w2, 0, 0, —k);
(ws, p sin8, 0,p cos8); (w4, —p sin8, 0, —p cos8) .

We have, when ns~=o,

k=-,'s—'"(s—m2'),
w, =-,ss'(/s2+m)2,2-

w, = ,'s '"(s+-m,' m/2), —Li, j=3,4]
P = —,'S—'"S34,

S34—434/34 —Q34Z34 —Q43843 )

(2 1)

equations were obtained by consideration of singularities
in the crossing matrix). Again, the constraint equations
differ from those for four massive particles only at
s=m2'. Finally, in Sec. 4 D, we show that we have in
fact obtained all the constraint equations on the helicity
amplitudes, by proving that if the helicity amplitudes
have only the kinematic singularities given in Sec. 3,
and satisfy the given constraint equations, then the
invariant amplitudes are necessarily analytic in s and t.

2. M-FUNCTIONS AND INVARIANT
AMPLITUDES

A. Notation

For reactions involving massless particles, Zwan-
ziger" "has shown how one may construct M-functions
with spinor transformation properties. Zwanziger has
also given singularity-free decompositions of such
M-functions into invariant amplitudes, in the cases of
four-particle reactions involving one or two massless
particles. We shall erst recall these results, and de6ne
for this purpose some notation. '4

Let the four particles, labelled by i (i= 1, 2, 3, 4), have
four-mornenta fp;}, p;=p;„(tt=0, 1, 2, 3), in some
standard frame. We have p'= p p' —p'=m' and

p1+ps =ps+ p4. As usual, s = (p1+p2) ' and t= (p1—ps) .
Let fp }be the momenta in an s-channel c.m. frame:
LP&1 +P» =0 (k= 1 2~ 3) i P2' = 0 (i= 1, 2, 3, 4)j.

We shall take particle 1 to be massless. Unless stated
otherwise, "c.m. frame" will mean the s-channel c.m.
frame in which the momenta of particles 1 to 4 are,
respectively,

Here B,(p~)QSL(2, C) represents the Lorentz trans-
formation taking a state of particle i (m;) 0) at rest and
with definite spin projection in the 3 direction, into a
state with momentum p; and definite helicity. The
matrices e; are given by

61 62

t 0
63= 64= ZO'

l —1 oi'

D'(2~')-t = (—1)

The matrix D'(A) ~, AQL(2, C) is given by

D (». = r. D+ ).( - ) (+W'( -W j'"

(2 3)

(2 4)

A11 A12 A21 A22
X . (2.5)

(s ~ P) Pt(s ~ —/I)l/f'—
In the case of a boost to velocity v= n tanhl,
AQSL(2, C) is given by

A =cosh~~I —I p slnh~~g; (2.6)

tr=(o', os, trs) are the usual Pauli matrices. In the case
of a rotation clockwise through angle 0 about direction
n, A&SU(2) is given by

where

tt/(s, t) = st(ms'+ms'+ m4' s—t)—+sms'm2'( m—4')

+tms'(ms' —m4') —ms'ms'(ms'+ms' —m4')

and P(s,t)=0 includes the boundary of the physical
region.

In the case of a four-particle reaction involving only
massive particles, M-functions may be deined in terms
of helicity amplitudes" by

+23)L4; 4X2((P4})

=&""'""(&P'})8D"t:&'(P')e'3-;"' (2 2)

where A = cos2 8—zn ' 0' slny8 (2.7)

qh34
——Ls—(ms+ m4)' J/2, f 4Ls3—(ms —m4) 2$'/2,

Q34
—f(QS+m ) m4 j 2

4
—

t (QS m )2 m 2jl/2

Also
2st+ s'—s(m22+ ms'+m4') —m22(m32 —m42)

(s—m, ')S,4

Sl /2(y($ t) $1/
sin8=

7

(S ms )S34
"D.Zwanziger, Phys. Rev. 133, B1036 (1964).

Most of this introductory material is given by P. Moussa
and R. Stora, in Lectures at Herce ovi International School of
Elementary Particle Physics, 1966 Gordon and Breach, Science
Publishers, Inc. , New York, to be published); H. Joos, Portschr.
Physik 10, 65 (1962); and in Ref. 3. The notation of the latter
most closely resembles ours.

and when n= (0,1,0), we write the corresponding trans-
formation matrix D'(A) as d'(8). '

Under a Lorentz transformation I., the M-functions
transform according to'~

Mt *«(fp,})=M( "l((Lp,})Qx D"(L)... ' (2.8)

~5 The helicity amplitudes are normalized such that for given
helicities the s-channel c.m. differential cross section is given by
da/dQ=(64s's) '(p/h) ~II(s,t) ~2, h and p being the initial and
Gnal 3-momenta in the c.m. frame."These are related to the rotation matrices given, for example,
by A. R. Edmonds pANgsdar Mome/ttNm 4/3 Qttarttttm Mesharttss
(Princeton University Press, Princeton, ¹ J., 1957)g by
d'(t/) /here) =d'( —t/) LEdmondsg.

"We write L, R, etc., as shorthand for the 2)&2 matrices
representing the corresponding Lorentz transformations, rotations,
etc.
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(the indices {n,) being of the type referred to in the
literature as upper undotted spinor indices). In par-
ticular, for s-channel c.m. helicity amplitudes

JVxlx4; xgx2 (ski)

sponding rotation matrices, of the massive particles).
X& has the possible values &s& only, and is not summed.
The Wigner rotation (R is given by

(i'd=Bi(IPi) 'IBi(pi).

B,(p ) can be expressed as

B(P )=&(t))Z-(P ), Zp(k) being the boost in the 3 direction taking some
standard lightlike vector (~,0,0,~) into (k,O,O,k). We take
I{: as unity without loss of generality. Then

(2.10)

Z (P ) being the boost in the 3 direction taking (m, 0,0,0)
(m)0) to (pp', 0,0, ~p'~) and E(0) a rotation through
angle 0 about the 2 axis, where (2.16)D'(Zp(k)), ~= k

—~b e.

=iaaf i *i({pi'))Qx D'*(B'(P~')&i)~; ' (2 9) This differs from the massive-particle case only in that

Bi(Pi') =R(ei)Zp(k), (2.15)

P = (Pp ~

p'~ sing, 0, (
p'~ cose) .

P,'+m —[p'[~' "
D'(Z-(P'))-'=

2m(pp'+ m)

Since (R is of the form

)e-'«' 0 ~

4+iy e'&&')

8 p. 2.11
(P, x, y being some real functions of I), we have

&.i D'(@)i x= ~.~ (2.17)

where

Ei =—Z0'qadi

and the corresponding transformation law is

Mi"i({p,})=M("')({Ip, )) Qx D"(I,)*; '. (2.13)

Note that in (2.9) and (2.12) the 3E-functions are
uncha, nged if we replace {p ) by, say, {P,"), momenta
measured in another s-channel c.m. frame related to the
first by a rotation about the 2 axis.

The above equations are all familiar in the case mi) 0.
Now let us consider the case when particle 1 is mass-
less."Let Pi' be (k,k singi, O, k cos8i). Under a Lorentz
transformation I, the helicity amplitude transforms
according to

&~ ({P'))=&~ ({IP'})D"()~,i, (2.14)

(where we have suppressed the helicity labels, and corre-

"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
'9 When p; is complex, f(p;)* means a function of p; related to

f(P') by f(P-)*=Lf(P")3*
"The relevant transformation properties are given by S. Wein-

berg, Phys. Rev. 134, B882 |,'1964).

Our notation differs from that of Jacob and Wick" in
that we do not introduce their conventional factor
(—1)" "' for i = 2, 4; this factor is dropped also in Ref. 3.

3f-functions transforming according to the complex
conjugate representations of the Lorentz group (i.e.,
with upper dotted spinor indices, {a,)) are similarly
given by"

IIx3x4; xlxg (spy)

=~""({P''))Qx D"LB'(P'')* ''j-;"', (2 12)

Equation (2.2) or (2.9) may therefore be used to define
M-functions for particle 1 massless and with helicity
) i ——+si. Note that now Bi(pi') is defined by (2.15)
instead of (2.10), and that Xi is not summed but has the
value s& only. These 3f-functions must satisfy the
condition

M+( ') ({P;})D"(Bi(Pi)),"'=0 if XiNsi. (2.18)

(The subscript + refers to the helicity of particle 1.)
Equation (2.12) may similarly be used to delne

BING-functions in the case X~= —s~. The corresponding
condition on these M-functions is

M i ')({P;))D"(Bi(pi)*)~"'=0 if XiWsi. (2.19)

An undotted spinor index may be changed into a
dotted one by operating with the matrix D'$(p; o)
m; 'io'] ~, which is nonsingular. Here P; is some
momentum such that P,'=mp)0, and (p o) means
ppl —p a.. Hence we could also have defined (different)
M-functions with upper undotted indices for A.~= —s~

by, for example,

H), ai4;~imp& '(s, &)

=M i~')({P ))D"((Pp'.o)mp 'Bi(pi') 't)

&&Qx D"(B;(p )p;).,i, , (2.20)

where we have used (i )Bo(i )o'= B-'r
We shall also require the quantities

& (P i 9)'=&+"""'({P))
sp s4) u j' sp)

X i i, (2.21)
Ap G4I j p +if
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~+(p' j~)"=~+' "({p'})
(V So S4 tb Sx So) V I 3 )

XI ! . I, (2.22)
Ej" n, n j' n n, l j p,

'
t ")

where the M-functions with subscript —are to be taken
as having dotted indices. g represents the set of inter-
mediate angular momenta appearing in the Clebsch-
Gordan expansion.

is the usual 3-j symbol, whose {p;} indices may be
raised by operating from the left with the matrix
Q,.v'v = ( 1)i+vo„,

where q~ and qo are the semibivectors given by (2.24)
with a= i. q& is given by

q~=p~. pb, q~'= lq~l'. (2.26)

The notation {j&,lo}js means that j& and l& are summed
over the set

gi=si

ji=j—to+1,

I j sl! & 4& j+si (any j )
0~&lo&~j—s&—1 (j&si)
1&~4&~j—» (j&s&) ~

~ (p; jrt)hatt has an analogous decomposition, differ-

ing in that we take the complex conjugate spherical
harmonics, i.e., I'&v(q) is replaced by (—1)vF'& v(q'),
where

B. Expansion in Terms of Invariant Amplitudes
q'(i, j)=P'oP,—P;oP~+i(P'X P ) (2.27)

The well-known' '4 singularity-free decomposition
of M(p; jg)o into invariant amplitudes is still valid
when particle 1 is massless; it is

(t I, I.
~(P j ~)"=2

I . I'i "'(qi)I'i."'(qo)
lll2 kj Py po

XA(s, t; l&, lo, j,g), (2.23)

where the sum is over values of /q, lo such that lq+lo= j
or l&+lo ——j+1, and

I
lz —l&! &&j~&!lz+lo! . 7&"(q) is the

usual solid spherical harmonic; the semibivectors q& and
q~ are given by

qt= q(~P) =PaoPb PboPa —o(PaX P—b) )
( )qo= q(b, l ) =p.opb poop,—i(p, X—pb),

where a, b, an(I c are three different numbers out of
(1,2,3,4) and Pb'&0.

"Singularity-free" means here that if the M(p; jg)v
are analytic functions of the momenta {p,} in some
domain, invariant under complex Lorentz transfor-
mations, on the complex mass shell {P,: P,o=m;o,

p,+p, =p,+p4}, then the A( st;l&l jog) are analytic
functions in the image of this domain in the space of the
scalar products of the momenta, i.e., in s and t.

Because of the conditions (2.18) or (2.19), the invari-
ant amplitudes A(s, t; l~lojg) are not all independent.
Zwanziger' has shown how they may be reduced to an
independent set in a singularity-free way, and gives the
resulting decomposition as"

Jl+81 Q j y Io)
le+(p;i, ~)'=

f Jl, i2I j&1 1 jl &1 j v pot

sq I) v p I)
X !!(2l+1)1/oqjr+ a—E

sy sy 0) Jy sy IJI

X I'i"(qi) I'&,"'(qo)A+(s, t; jjgloq), (2.25)
"Our notation differs from that of Ref. 7 in a number of details,

principally in that we have used upper rather than lower spinor
indices, and in our choice of sign for the second terms in (2.6}and
(2.7}.Consequently, for example, the sign of the real parts of the
sernibivectors has been reversed.

qq' ——k(wo+k) =-,'(s—moo) .

Since, for i= (1,2,3,4), Z(p, ) is Hermitian and

(2.30)

D"(Z(p )) s=D*'(Z(p ))
=D"(Z(p )-~)-;s (2»)

and all the matrices are real, we have

D"(B'(p'') "'')- "'=LI"(B'(p'') o')- "'(—1)"+"' (2 32)

Hence, taking Xq=s~, and substituting (2.9) and (2.12)
in (2.28), we have M Ib'~({p })=gM+t"'~({p }).Since
(qn'~iq~o') and (qoq'&iqoo') (the second index on the
q's labels the 3-vector components) are real, we have,
dropping angular momentum labels,

A+(s, t) =gA (s,t) =—A(s, t), (2.33)

so that it is trivial to make the invariant amplitudes
satisfy parity invariance. This is in contrast to the case
for reactions involving four massive particles, where no
explicit formula has yet been found in the general-spin
case to obtain an independent set of invariant ampli-
tudes, satisfying parity invariance, from those in Eq.
(2.23).

The corresponding invariant amplitudes are written
A (s,t; jjqlog). [Note that in Ref. 7 the invariant ampli-
tudes A (s,t) correspond to an expansion of the M-func-
tions de6ned by an equation similar to (2.20), instead
of by (2.12) as here. )

I et us consider the effect of imposing parity invari-
ance on the helicity amplitudes; this will, of course,
reduce by half the number of independent invariant
amplitudes. The parity invariance condition reads'

H „, „,, „, ,(,t) =(—1) """*' H. . . ,(,t), (2.28)

where g=g; rt;, g; being the intrinsic parity of particle
i. Taking, for example, b= 2, c=3 in (2.24), we have in
the c.m. frame (2.1)

q, '= q'(1, 2) = (0, 0, —k(w, +k)),
qo'= q'(3, 2)

= —(wop sing, ipk sine, wop cos8+wok), (2.29)
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C. Inversion of Invariant Amylitude Exyansions

LThe later derivation of the kinematic-singularity-
free helicity amplitudes and of the constraint equations
will not require the results of this subsection, apart from
Eq. (2.34).7

%e now consider how to express the invariant ampli-
tudes A (s,t) in terms of the helicity amplitudes
H14),4 1,1,(s)(S,t). SinCe the inVerSiOn Of (2.9) and (2.21)
is trivial, we shall consider in detail only the inversion
of expansion (2.25), i.e., we shall express A(s, t; jj(l2)))
in terms of M s=M~—((P,'),j It) s

Let us use the c.m. frame (2.1) with qI' and q2' given

by (2.29). Since qI' is in the 3 direction,

I' "(e')=(4 ) '"(2l+1)'"(—q ')'~.

and (2.25) reduces to

((X j1 12
(qI')'""I'I "'(q2')

(h!S&i est) —SI t(q

x (41r) '"A (—s, t; ggIl2))) . (2.34)

Ke rewrite this in terms of new invariant amplitudes
B(„&1(s,t) t with en= (1,2,3); indices j, )& suppressed7 as
follows, for j&s&.

where

/+ 1 (j—cx)!(l+tc) l

Z . C(I)"(e )q1 '"B(I)I(s t)
(j+~)!(l—t )!

—-1 f(j+~)!U—~)! '"
C(1)"(q2 )q1 + B(2&1(s,t)

=0 k (l+tc)!(l—tc)!

— )(j+ )'(j- ).&'"
+& I I tc (n"(q2')qI'"+' "' (8)1(, ), ( )'-' 5 (1+tc)!(l—t )1)

C(1))"=(2l+1—) '"(4n)-'"7'Ia, cx —=tc—s1.

For j~& s1, the lower limit on the 6rst sum becomes s1—j and the other two sums are omitted. The B( )1(s,t) are
given in terms of the A(s, t; j,jI,l2, ))) by

B(1)1(s,t) = ctIA (s,t; j,sI, l, )))

B(1)1(s,t) = a2A (s, ts g,sr, l, )))+ a4qIA (ss t; g, s1+1, l, 1))

B(»1(s,t) = ct&A (s, t; jj—,l, l, I))+(14qIA (s, t; j, j l+1, l, )&)—
B(»I(s,t) = u A (s, t; j,j l+1, l, )—))

for j—sI+1~& l~& j+s1,
for l= j—sy ~

for 0~& l~& j—sy —1)
for 1&l&j—s&,

(2.36)

where the coeKcients aI, (42, a4, u4 (functions of j, l, s1)
may be obtained by comparison of (2.35) with explicit
expressions for the 3-j symbols in (2.34). Note that
q1' ———,'(s—m22), and that a4(l=0) is the only zero co-
ef5cient, so that the transformation to amplitudes
B( &1(s,t) is nonsingular. LIf j&~s1, the values of l in the
6rst equation of (2.36) are s1—j~&l~&sI+ j, and the
other equations are dropped. )

Now Iet us de6ne22

Then, using results given in the Appendix, we obtain

((j+cx)! 1(2

(S t) g 3f ass~—1X(sr+a)q —2slq

&(j—)'

t X.,+-'( ) X.,+-"'( ) i
( (l+sI+cx)! (l+sI+oc+ 1)!J

X (M) = 2(—Slncd)
d(cot(o) '

)& Dcotcd+ cscots) "+(cot&a csc~)a7 —(2.3/).
Some properties of this function are given in the
Appendix. If we write q2= q2(sinco cos&c, sin~ sinX, cosce),
then

Fc('(q2)=(lc xp' (~Ia)q
1

B(2)1(s t) =Q ~aslg sX(sl+a)q ( sl s+1)

xq'-'t (j+ )'(j—)'7-'"x.+«'( ),

B(»1(S t) P ~ass(s—Cx(sl+a)qcs( —sl—Pl I—1)

CLO S/

' 't ( + ) (j- ) 7 '"( + ) 'X. + '( )

(2.38)

G c Fox phys Rc v ]57 $493 ($967) The IIOI~IIOII (I ffa s For s1 & j, only the 6rst of these equations applies. The
in detail. range of values of I for each of these equations is given
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in (2.36).From (2.29), we have the values of ot, X, so that

(~+.~) I ils

8 (1) 4 (s,l) =Q M~ "qi
(i+ )

F-+.1(412',1) l"-+.1(tI2', l+ 1)

(l+s,+42)! (1+st+41+I)!

&tstt(V)=Z M"'qi" " ~"L(J+tr)!(i—tr).] '" (2 39)

X I'-.~.P'.+„(412',I),

&tstt(»l)= Z M "qi" " ' ' "l:(i+42)l(i—tr)l) '"

where

Xt-+. l +sij 'F-+. (41

[s(lut+&)]
F (412 l)= p—b q

&
—'—'"qs'"

r=o
(2.41)

where b„ is the coefficient of

(cos441) l isl t 2s in —(s—tn441) I ls Ig t
ls I

(441)

b =2'-'ll
I (l p I+I—1)!(r+I—1)!

xL(2r+2/ —1)!r!(lttl
—2r—l)!j '; (2.42)

qi', q2', and q»' are given by (2.29) and (2.30).
Note that apparent singularities of the 8& &t(s,l) in

(2.39) arise from singularities of the transformation from

{p;}to (s,t) in the particular c.m. frame we are using.
Let us consider' the singularity (p sin8) l st+~i appearing
in these equations in the coefficients 6. Now if M({p,})
is an analytic function of {p;}in some domain on the
complex mass shell, it is an analytic function of (s,t,qt, tI2)
in the corresponding domain

l tli, q2 being given by
(2.24) with 43=1, b=2, c=3j. Suppose the domain
includes q2~=q22=0. Then M has a series expansion
near this section in powers of q» and q», or equivalently
in powers of (q»+iq»), (q» —iq»). But under an in-
finitesimal rotation through brts about the 3 axis,
(q21&sq22) ~ (qsl+iq22) (1+irt8@) and M 1 + M
(1+i(n+si)8&); and in any s-channel c.m. frame with
the incident 3 momenta parallel to the 3 direction, the
3f-functions must be invariant under such rotations at
qsi=q22=0 (where all the particles have parallel mo-
menta in a c.m. frame). Hence, writing P for the sign of
st+42, M " goes to zero like (qst+i/q22) l "+ l at
qsi=q22=0. From (2.29) we see that this cancels the
(p sin8) l"+ l singularity mentioned above, i.e., this
example verifies the known singularity-free nature of
the invariant amplitudes.

"!xg means the nearest integer less than or equal to x.

e„—= (S'"2N t)s

X {(s rt32—')(p(s, &)j '"rt32 '}l&l( sgn—tt)& (2.40)

and

gslis) Si4 —P

xl
(j
n

/ j Qs 424)
d"(8).-"'d"(8)."'l

l Jl tl Jsl lit ~ Ss S41

42 ji gl)
~

~

~

~
~

lqi"'+ "Vt"(4I ')
S2 I —Si ttf

X (42r) 1 '23+(s, l; jj lit) . (3.2)

Commuting some d-matrices and 3-j symbols, we may
rewrite this as

Qsli2isis —Q Q dss( 8)
—&sdsl( —8) sl

~,i' (A, ~}~'Si

t' j —X3 X4 j tt ot2 (41 p 1)xl, Jl+ 1

hatt' S, S4 42 ) S, l) )' tt)

X F'p(tI2") (—1)s'1-'1(4~)-'~'A+(s, &; yg, lq), (3.3)

where q2" is the vector obtained. from q2' by a rotation
through angle —8 about the 2 axis.

qs'= —(o12P sin8, iPk sin8, ol2P cos8+olsk), (2.29')

'4 Summation over repeated spin component indices is implied.

3. KINEMATIC SINGULARITIES OF
HELICITY AMPLITUDES

A. General Remarks

In dealing with amplitudes for general spin processes,
it is generally assumed's that the M-functions are
analytic functions of the momenta on the complex mass
shell, except for singularities required by unitarity;
these singularities are on Lorentz-invariant surfaces
and so the invariant amplitudes given in Sec. 2 3 are
also analytic (in s and t) apart from such dynamical
singularities. If we express the helicity amplitudes in
terms of these invariant amplitudes, the coeKcient
functions (functions of s and I) contain singularities,
defined to be the kinematic singularities.

l
ln particular,

if we artificially substitute for the invariant amplitudes
functions analytic in the regions of (s,l) under consider-
ation, the singularities of the helicity amplitudes are the
kinematic singularities. )

By means of the methods of Cohen-Tannoudji, Morel,
and Navelet, these singularities are readily identified,
and linear combinations of helicity amplitudes are
found which do not have these singularities.

Let us consicler the case where particle 1 (massless)
has helicity Xi——+si. The singularity structure is evi-
dently the same in the case X&= —s&, and it is immaterial
whether parity is conserved in the reactions or not
(Sec. 2 8).

From (2.9), (2.21), and (2.34) we have in the c.m.
frame (2.1)

&
(s)(S l) —( 1)42 tl2+ss+ts-Dsl(Z(p l)) sl

XD"(Z(ps))t "D's(Z(p, ')) g-"
XD44(Z(p41)) ~

tl4csltlsisx4 (3 1)

where Z(pt) is given by (2.16) (i=1) or (2.11) (i/1),
and where"
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qs"——(o)sk sing, —ipk sin8, —o)sp —o)sk cosg), (3.4)

gi'—-k(ro2+ k) = -', (s—m22) . (2.30')

B. General-Mass Case

By this we mean m3/m4, and only m& is zero.
(a) The singularity at lt)(s, t) =0 is dealt with exactly

as in Ref. 3. At this surface, sin8, sin-', 8, and cosine are
singular, but not cosg. From (3.1), (3.2), (3.5), and (3.6),

H!13X4;Xli)($) t)

(sinlzg) ~(cos128)~R1(s,t) 2 ..!„),„(3.7)
A3 GL4

where Ri(s, t) is nonsingular and nonzero at rt)(s, t) =0.
2 and 8 are given by

~(ns«) = lns+}sl+ I«—}2I+ lt I,
If(nsn4) = lns —}2l+ ln4+~4I+ lt I,

where f2=Xi—}12+ns+n4. Hence the well-known result
that

HX2X4; X)X2($)t)—= (sin —', 8) i" )'!(cos-,'8) !"+)'!H!,2q, .!„!12(s)t) (3.8)

is nonsingular and, in general, nonzero, at rt)(s, t) =0. As
usual,

p= A, s
—X4.

(b) The singularities at s=(ms+m4)2 are also dealt
v ith as in Ref. 3, except that treatment of the case of

L'Momenta are related to (s,t) by formulas at the begin-
ning of Sec. 2 A.j

We also require the expression

t (j+})(j—})
d)(8)is=

I
(cos—g) i))+)!

l(j+ )!(j ti)!

X($2sinslg)!" )'!P; s&'~ )'i i~+)'!&(cosg)) (3.5)
where

A=max(l} l, lt I), h=sgn(l }
I

—
lt I) h=sgn(} —t ),

and I' & @(x) is a polynomial (the Jacobi polynomial)
in x of order e. In particular,

(2t+ 1)(t+t )!(t—t )
I'i"(q) =

L -se—(gi+«g )3'"i
4'

Xgi—i))IPi !„!(I))lI))l)(gs/g) (3 6)

where e=sgnti. (In this equation, the sufFixes on the
q's are 3-vector component labels; q appears only as
powers of g'=q'. )

The coefficient functions evidently have possible
SingularitieS at rt)(s, t)=0, S=ms', $=(ms+m4)', S=O.
In the following, we shall use the descriptions "non-
singular" or "dnite, "applied to combinations of helicity
amplitudes, to mean kinematically nonsingular or
kinematically finite; that is, nonsingular or finite if the
invariant amplitudes are replaced by functions analytic
at the points under consideration.

where R2(s, t) is nonsingular and nonzero at s= (ms+ m4) '.
If the amplitude is continued through 2x around the

point $=(ms&m4)2 in the complex s plane, we have
S34 + S34 Hence 8 ) 8—1 2r (f is the sign of Im tang
near the singular point), and

I( *
—p)/ 'J "' I( '—p)/ '3"'h~)"' (=3 4)

where y; is the sign of u;=Km; at the singular point.
For positive Qs, y, is negative only when s= (ms —m4)'
and m, (m; (i, j=3, 4). For negative gs, y, has the
opposite sign. Then

H!l,i,;y, i,(s,t)II = r/24('Ys)'"('Y4)'"H —X —X;!1i ($ t), (3.10)

where )!24——(—1)" '4+". (The sufFix II indicates that
the function is evaluated on another sheet, speci6ed
above. )

Consequently" the following expression has no
branch point at 534=0:

(H!„)„,!„!„(s,t) ~2!24H g, !„,.g,!„(s,t)}X.(+) .
x is the number of fermions in the final state. The factors
X,(%) are given in Eq. (3.16). These combinations of
helicity amplitudes can have poles (or zeros) in (S24)'
at the singular point, and from (3.9) these poles" are
of order I 2($2+$4—A)j,"where

A=max(l~l, lt I).
(c) The singularity at s=m22 is the only one whose

form may not be deduced by taking m& ~ 0 in the results
of Refs. 1, 2, or 3. At s m22= 2gi'—=0, Z(Pi') is singular,
and the d-matrices are singular because of poles in sin8
and cosg, but Z(P2') and q2" are not.

From (3.1), (3.3), (2.11), (2.16), and (3.8),

H)„q, , i„&„(s,t) =(sinsrg) !" '()c s o)228!"+s!(s m2') "—
d)2( —g) i2d)l( —g)F21($—m 2))1+21

XR,(s,t,jl)!,2!„2$, (3.11)

where Rs(s, t) is nonsingular at s= ms'. It is not difficult
to show that the coeKcient of at least one invariant
amplitude in R2(s, t) is nonzero at s=m22. The singu-
larity is evidently just a pole in (s—m22)')2 of order

22 A "pole of order )2" ()2 integer} is a zero of order —)2 if )2 ls
negative and is to be ignored if n is zero.

an initial (and final) boson-fermion state is modi6ed.
This modification is independent of the masslessness of
particle 1, and the results are essentially those of Hara. '

Z(P2) and Z(P4) are singular here, as are the d-matrices
because of the singularities in sin0 and cos8, but not
qs'. From (3.1), (3.2), (3.8), and (2.11),

($ t) ( 1))2—&2+t)a+~2(sinl 8)
—i"—)) l(cosrg) t&+))!

XL(,-p)/m]-'L( -p)/m j-"'

X p d'2(8) 2d'&(8).,"'Rs(s, t).. ., )„)„, (3.9)
cx3cx4
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2(s,—A), i.e., (s™2) H/l /l 1 1 (s t)

H/3141, 13 (—1) "+'""K, ). 11
/34 ~ $34~34 ~34 s3' $34/34 ~

(3.14)

(e) The kinematic-singularity-free combinations of
helicity amplitudes ("regularized" helicity ampli-

is regular at s=m~'.
(d) Singularities at s=0 are found as in Ref. 3, with

appropriate modifications for boson-fermion scattering.
Consider the singularities in (3.1) and (3.2). At s=O,
sin8 (and either cos-', 8 or sin28), all the Z(p, ), and
(q21'&iq22') are singular; cos8 and q23' are Gnite and
nonsingular. We have

(q21'&iq 2'2) = —(s/m2)+'/'m2'/'P sing. (3.12)

The phase of S34 at s=0 will be taken as 2r [e.g. , by hav-
ing the cut associated with the branch points i|34——0
and $34——0 running along the real s axis from (m3 —m4)'
to (m3+m4)'). The singularity structure is independent
of this choice of sign. Then, with p34

——sgn(m3 —m4), the
behavior of various functions in (3.1) and (3.2) near
s=0 is

COSH~ —&34,

(sin 1
g) I a—/3 I (cos 18) I ~//I ~s I ss/- 34//I /2

D'(Z(p'))-1 "'=[(~'—p)im )-"'-(s "")-"'
(i=3, 4)

D'(Z(p2'))1 1'= [(24/2 —0)/m 2)"'= (m2s ' ")~'

D (Z(pi )) xl —t3 xl sxl/2

Hence,

13/l4; 11/l2( lt) Q s R4(sst)a3a4; $1/2 l
A3%4

where R4(s, t) is nonsingular and nonzero at s=0, and

~1 ll2+ &34(ll3 4)+
~
433 334X3

~ + ~
424+ 334X4

~ p,
/4 =423+424 —f2+

Xi�

.
Because {C(npn4)) is a set of even integers with mini-
mum value zero, H131,, 1,1,(s,t) is nonsingular at s=O,
and

[H1314 1,1,(s,t) &3/34H 13 14,1,1,(s,t))
XX,(~)s(l& I+1/ll)/2 (3 13)

is nonsingular at s=0.
However, if x=1 (i.e., initial and final states consist

of a boson and a ferrnion), then (3.13) has a square-root
branch point at s=0. This singularity arises, firstly
because ~P+/4~ and ~l~

—
/4~ differ by an odd integer,

so that the square-root branch point is cancelled in only
one of H1,1,, 1,&„(s,t) or 8 13 1,, 1,1,(s,t); and secondly
because of s'/' singularities in X&1&(&). In this case,
therefore, (3.13) is analytic in Qs rather than in s.
Note that when the amplitudes are continued through
2'- about s=0,

xp(+) =1, xp( —)S34 ',
Xi(+) ~FB l Xl( ) ss/sB

x (+)=e. -', x (-)=~.-'.
(3.16)

(FB is 34 or 43, depending on which of the two final
particles is the fermion. ) Evidently,

F+ ),, )„,)„)„(s,t) = +r/34F+1, )„,.1,1,(s,t).
The form of (3.15) is the same, whether 'Ai ——si or
P g= —sg.

For x = 1, we have analyticity in gs rather than in s.
However, from (3.14), we obtain the so-called general-
ized MacDowell reciprocity relation for the amplitudes
(3.15),

F'x,x, ; x,x,(—V's) = (—I)'"[sgnhl ))F+44;11.(V's)

(There is no analogous relation for the kinematic-
singularity-free amplitudes of Ref. 3.) Hence, in the
case of boson-fermion scattering, the amplitudes

{P„.. . ,&(—1)'"[sgn(X/4))F . ., . ,)(Qs)'i+i (3.17)

have no kinematic singularities at all, where

a(+)=0, a(—) = —1.
Unlike (3.17), the amplitudes (3.15) correspond at
large coso to definite parity for each J in the partial-
wave expansion.

C. Equal-Mass Case

By this, we mean that m3=m4=m and only m& is
zero. In such cases, s3 ——s4——sf.

This differs from the previous case only in tha, t $34 0——
coincides with s =0; the kinen1atic singularities at
sts(S, t) = 0, at lt 34——0 and at S=m22 are aS befOre. At S=0,
there are singularities in cose, sin~~8, cos~g, in all the
Z(P,), and in (q21'&iq22'), but not in sing or q23'.

From (3.1), (3.2)l and (3.12),

H1,&„,.1,&„(s,t) = (—1)" 12+'34 "3(sin'2 8)

&&(cos—'g) '1+/'tp "l(s'"/m ) "2

sl /2 (s 4m2) 1/2l —xs—x4

(x
2m

dsS(g) -XSJss(g) X4

cl3 cx4

&&s 1 "~ "R(s,t), , 1,1„(3.18)

where R(s, t) is nonsingular and nonzero at s=O, and
where v=n3+n4 —X2+Xi.

tudes) are

F+, . . .(s,t)=(Qs)~"~+~ ~(s —m, ')' —(S )" X,(ay)
X[IT/l /l, i x (s,t)~1/34H /l /l 1 1 (s t)), (3.15)

with

A=max(~X~, ~/ ~),

m34 ——S,+S,—A, r/34
——(—1)'3—"+', y= (—1) ",

x is the number of fermions in the final state, and
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If the amplitude is continued through 2x around the
point s= 0 in the complex s plane, we have 8-+ —e—&4r

(t is the sign of sing at s= 0) and

fs'~ (s——4m, )»s~ —»-i'4

According to Ref. 26,

Ifxsx4;+a&»(s~i: Pls ~ 0)

-2 AC'LP' e+*(Pi)j"(P*"Pi) '&»»» (3.21)

2m

slls (s 44442)1/2) xs+1L4

—1)&'4+"4

2m )
This gives

Ping„;»»(s, t)ir= ( 1)"~"'& i,-i,;i,i,(s,&) (3 19)

(the suffiix II again denoting that the function is evalu-
ated on another sheet), so that

%~4»;i,~,(s,1)+ns4(—1)"~"'+"&-~4-i4;ir~.(s,i)js'"'"
has no branch point at s= 0; with 44(+) = 0, a(—) =—1.
The Z(p, ) (i=3, 4) and the d-matrices are finite at
s=O, so that we are left with a pole in. Qs of order
max( —si+Xs+ v) = 2s~. (The d-matrix elements are
nonzero for us n4 sf——)—— .

Hence the kinematic-singularity-free combinations of
helicity amplitudes in the case m3 524 —5$ $3—$4—$f
are

P+»», i,i„(S,t) = ( )'r"~&~&"( —4444')"

X(s—44444)i 44+ &+&i&s{Hi », )„i„(s&)

&gs40 —»—»;xi»(s~1)) ' (3'20)

Here X, p, h. , q34, and nz34 are the same as given under
(3.15).n(&) and P(+) are given by

D. EBects of Charged. External Particles

When the massless particle has spin 1 or 2, it can
couple at zero energy to a "charge. '"s For si= 1 (which
would appear to be the only physically interesting case,
namely, photoproduction) this charge is the electric
charge; for si ——2 (the massless particle being a graviton)
the charge has the same value (84rG)'" for all particles,
6 being the gravitational constant.

This results in the appearance of readily identified
poles in the helicity amplitudes in lowest-order pertur-
bation theory, from diagrams in which the massless
particle couples at zero energy to the charge carried by
one of the external particles. In the c.m. frame (2.1),
zero energy of the massless particle corresponds to
(s—4444') ~ 0, so that these poles may coincide with the
kinematic-singularity factor (s—4444')'4 obtained in
Sec. 3 B. These extra singularities have been referred
to at times as "kinematic singularities, " so that we
shall brieQy consider them here.

"S.Weinberg, Phys. Rev. 135, 31049 (1964).

where si is 1 or 2; i = (2,3,4); ri; is +1 for outgoing and
—1 for incoming particles; g;=e; (electric charge) for
particle 1 a photon and g, =(84rG)'" for particle 1 a
graviton. The residue Bq,q, ),4 corresponds to the vertex
(2~ 3+4), and it also contains the kinematic singu-
larity factors discussed previously.

e~(pi) is the polarization of particle 1, and in c.m.
frame (2.1) it is

s~(Pi') =2-'"(0, 1, ai, 0)+44~Pi',

where a+ is an arbitrary scalar function of the momenta.
Equa. tion (3.21) is given in Ref. 26 for yi ~ 0, which is
not in fact useful for considering the singularity struc-
ture in $ and t; however, the arguments given there may
be applied to the case y~' —+ 0 as well.

For si ——1 (photoproduction), (3.21) introduces first-
order poles at (depending on the charge configuration)
S=tÃs

&
1=ms

&
and 44= m4', i.e., S+i=ms'+4444 . (Of

course, lowest-order perturbation-theory diagrams in-
troduce a dynamical pole for every particle or reso-
nance that can be exchanged in the direct channel or in
a crossed channel. ) Let us consider under what circum-
stances a pole at $=m22 can appear, since this will

modify the factor (s—444ss)" s used above to obtain
kinematic-singularity-free amplitudes.

The requirements are that

(i) particle 2 must be charged; (ii) the helicities must
be such that a final state (of particles 3 and 4) exists
with the same total angular momentum and parity as
the spin and parity of particle 2; and (iii) the final state
must have the same total isospin (and G parity if ap-
plicable) as particle 2.

Condition (ii) means that of the regularized helicity
amplitudes $(3.15), (3.20)jF~is», i,is(s, i) (2 stands for
+ or —), an extra pole factor appears in those with'r

'gsrisri4( —1)" ' ss~~
~ p ~

(3.22)

where, as usual, p; is the intrinsic parity of particle i,
and h. =max(~ X),

~
p~). We have used the fact of parity

conservation in the reaction, and that cose —+~ as
(S—nss') —4 0

If particles 3 and 4 belong either to the same isospin
multiplet or to charge-conjugate multiplets, the general-
ized Pauli principle, together with conditions (ii) and
(iii), provides conditions which the regularized helicity
amplitudes satisfying (3.22) must additionally satisfy
in order to have the extra pole factor (s—444ss) '. Df the
particles are actually identical or charge-conjugate,
condition (iii) is not needed here. jLet the above isospin
multiplets have isospin Tf. Then these further conditions

27 M. Gell-Mann, M. L. Goldberger, F. K. Low, E. Marx, an&
F. Zaehariasen, Phys. Rev. 133, 3143 (1964),
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are

P 3&X4 if (—1) s= —x, (3.23)
XsW —X4 if qsrtsg4( —1)~= —x,

where M=min(! X!,!p!). x=(—1)'r~ r' for ffnal par-
ticles in the same isospin multiplet, and x=Gs(—1)r'
for 6nal particles in charge-conjugate multiplets, where
T2 and G2 are, respectively, the isospin and G parity
of particle 2.

Condition (iii) also affects the particular isospin-
invariant amplitudes in which the extra factor appears.
Let us express the helicity amplitudes as (dropping the
helicity labels)

(Ti Ts T')
t Ts T4 T')

Fi,«(s, t) = Z I

rid &0 ts t'Jets t4 t')
XF(s,t; TiT'), (3.24)

where particle i has isospin T; with third component t;,
and Tj is 0 or 1. Then the extra pole factor occurs only
in the isospin-invariant amplitude F(s,t; TiTs), and in
particular if particle 2 has definite G parity, T&= 1 only.

For example, in the case of pion photoproduction from
nucleons' (Ts ——1, Ts T4 ——s), the ——isospin coefficient
of F(s,t; ITs) is proportional to the usual &-', [oe,osj&,
where X and & are are the nucleon and antinucleon
isospinors, respectively, and P=ts. This is the isospin
coeKcient of the amplitudes conventionally labelled
A& &. From (3.22) and (3.23), only FII, is &

—
&(s,t) (and

the parity conjugate amplitude) has this extra factor
(s—mss) '. [The second (—) superscript refers to the
isospin coupling. j Now the kinematic-singularity-free
helicity amplitudes of Sec. 3 C are in this case related
to the conventional invariant amplitudes" by

F+;;,.is ——V2 (2M ivA 4
—A i),

F H. is——%2(Ai+Ass),
F+I ), is=&2(sA4 2M~Ai), —
F—

I I, is——v2As,

and these amplitudes A;(s, t) are free of kinematic
singularities"; however, the above considerations show
that 22& & does in fact have a pole at s = m2', as is well
known. Note in particular that for the charge configu-
rations gars —+ XX, there is no pole at s=mss in the
invariant amplitudes in the lowest-order nonvanishing
perturbation-theory diagramss' (to ffrst order in e and.
third order in the pion-nucleon coupling constant). In
view of its dependence on the isospin coniguration, such
a pole would not appear to qualify for description as a
kinematic singularity. "

"Our s channel is the reaction ym -+ ES.
~~ G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,

Phys. Rev. 106, 1345 (1957).
'0 J. P. Ader, M. Capdeville, and P. Salin, Nucl. Phys. 83, 407

(1967)."S.Minami, Progr. Theoret. Phys. (Kyoto} 7, 69 (1952}.
'2 This matter is also considered by F. S. Henyey, Phys. Rev.

170, 1619 (1968).

There has been some confusion on this point, since
the treatment of Ball" proceeds in a di6erent way: The
amplitude is ffrst expressed as e(pi)„NrT„N, (I; and ut
being the nucleon spinors), and T„ is then decomposed
into eight invariant amplitudes 8;(s,t) whose coefficients
are constructed from particle momenta and y matrices.
Gauge invariance, namely, pi„T„=O, where pi is the
photon momentum, tells us that six of the 8,(s,t) are
related to the four A,(s,t) by"

Ai Bi———MNB„As ——28s(s —m ') ',
$8 Ag — g86 p

(2t+s 2M'—v' m')—Bs= 2(s m—')Bs
Bs—4(2t+s —2MN' —m ')Bs+-', (s—m ')Bs=0.

(84 and 87 have vanishing coefficients for physical
photons. ) These equations indicate kinematic zeros in
Bs and 28s—(t—Mivs)Bs at s=m s, and in Bs and
28s+(s—m ')Bs at 1=u, but not a kinematic pole in
A~ at s= nz ' as has sometimes been stated.

Finally, we note that in the case si ——2 (particle 1 a
graviton) exactly the same conditions apply [except,
of course, that condition (i) above is dropped) to the
appearance of an extra factor (s—ms )

4. CONSTRAINT EQUATIONS ON
HELICITY AMPLITUDES

A. Constraint Equation at s= m2'

In Sec. 3, we obtained combinations of helicity ampli-
tudes, multiplied by kinematic factors, which have no
kinematic singularities. However, the inverse expansion,
expressing the invariant amplitudes in terms of the
helicity amplitudes, will in general have kinematic
singularities that are not removed by the above process.
The inverse expansion will contain apparent kinematic
poles whose residues are combinations of helicity ampli-
tudes; these "residues" must vanish so as to remove
these poles since the invariant amplitudes are free of
kinematic singularities. Hence at certain values of s
we shall have relations between different helicity ampli-
tudes, and between derivatives (of a particular order) of
helicity amplitudes. These constraint equations will
be derived directly from the formulas of Sec. 3 A.

First, let us consider the behavior of the helicity
amplitudes at s= mss. From (3.1) and (3.3), we see that

Hg, i,, i,i„(s,t)(—1)'~"'D"(Z(ps)—')~,"'d"(0) i, ' (4.1)

has no singularity at s =mss, for all ns (!ns! ~&ss). We are
excluding values of t such that p(mss, t) =0. From (3.11),
we know that

Pz,—=Hi, &4, x,z, (s,t)(s—ms')"

is nonzero and nonsingular at s=m2'. The equations
that follow are independent of Xj, Xa, and X4, so that we
drop these labels. Also, d"(0) q, '(s —mss)" is nonzero

13 J. S. Ball, Phys. Rev. 124, 2014 (1961).
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and nonsingular at s= m~'. Then

dn

Z ~-.(-1)
ds" p,

is

X
~

(s m—z') 3D232(8) m

m, )
=0

where F„!"&means (d"/ds")/'!/„(S, t)], and U(p) is some
polynomial of order (p—r) in p, whose coefFicients are
functions of s and t. Now suppose we have, for all r in
0&r&p —1,

(($2—p)!)»2
(4.2) 2 &-.'"'(]z) "I =0

k($2+P)!J (sz—P—m)!

for 0~&rz~&2sz —1 (zz integer), ~n~ ~&sz.

The presence of boosts and rotation matrices makes
this constraint equation unsuitable for practical appli-
cation, so we proceed to simplify it. First multiply (4.2)
for each value of n by L($2+n)!(s—n)!]'/'(tan28) .
This factor is nonsingular at s = m2', so that we can move
it to the right of.„'the differential operator to obtain an
equivalent set of equations. Then, taking successive
differences between equations with consecutive values
of n, we can replace the set of equations (4.2) by

d" Qs)—
Z ~-.(-1)"

ds" ~
"

m, &

X ($ m2 ) L($2+p) l($2 p) I]l/2

XP (32+!4 32+)l+sss&(COS8)

From this we may obtain

(0& m & 2s—1—r) . (4.7)

E(s—m2') "»~;...(s,&)] I

(»—p)!&
'" U(p)

Z ~.!"&(r)" =0
(s,+p)!/' (sz—p —m)!

(0& m& 2s—1—p) (4.8)

where U(p) is any polynomial in p of order p r)0—
Substituting (4.8) into (4.6), we see that (4.7) is true
for r= p if it is true for 0~& r~& p —1, and from (4.5) it is
true for r=0.

Hence the constraint equation on the helicity ampli-
tudes at s=m2' is

s my,
2

where 0~&m~&2sz (m integer), and P„~m s&(cos8) is a
Jacobi polynomial. Equation (4.3) can be rewritten as

($2+/2)! '" 1
X(~')-"

(s,—!,)!) !s,+X,—m)!
= 0 (4.9)

L(s—mz') sin8]"
ds" /4 'E mz /'

Xr (s—mz')+(s —mz') cos8]" /' ~

for 0~& r~& 2s2—1, 0~& m~& 2s~—1—r.
By multiplying by suitable functions of m, and adding

these equations for values of m from 0 to (sz —n), we
get the equivalent constraint equations

(s—mz )~ )/(sz —p)!) '/'

($2—p —m)! k(s,+p)!l
—0 (4 4) Q t (S—mz )»3X4; )si(&s2s)si

ds"

First consider m= e. coso and sine have erst-order poles
at s=mz', with residues related by sin8 if cos8. i is

the sign depending on the determination of
+$3&))($3Z)] which has phase &-', zr at s=mzz. The non-
vanishing terms in (4.4) are then

(s p)!) i/2

Z ~-.0-')" -= 0 (4.5)
($2+p) I/ ($2—p —m)!

for 0&m& 2s2—1.
Now consider (4.4) for m= zz —p, where p is an integer

0(P &~2sz —1. Since 0 ~& zz &~2sz —1, we have 0 &~m ~& 2sz
—1—p. LIf p is negative, (4.4) obviously contains no
terms nonvanishing at s= m22. ]Equation (4.4) becomes

g Z „i"&(i.z)~
0

X (il ) "'d"(-,'zr))„m] = 0 (4.10)

for 0~& r~& 2sz —1, —sz+1+r~& n~& sz.

One may then express the helicity amplitudes in (4.10)
in terms of the regularized helicity amplitudes (3.15)
or (3.20), to obtain the required constraint equations on
these regularized amplitudes. The factor (cos228)'"+)'!
(sin-', 8)' )' (s—mz') will then remove the apparent
O)"' sign ambiguity. Since the regularized helicity
amplitudes are nonsingular at P(s, Z) =0 and at s= mz',
the resulting constraint equations are valid for all t at
s= m2'

B. Other Constraint Equations

Constraint equations at s = (mz+m4) 2 are found
similarly. From (3.1) and (3.2),

XD"(Z(p ) ')- "'d"(—8)- "d"(—8) " (411)

((s,—p)! / V(p)
— Z»3~4:»~2(s, z)(—1)' "'D"(~(pz) ')-.3

"'
=0, (4.6) ) 3"4

k($2+p)! (S—p —ZZ+ p)!- 3-m22
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b= 0 for ss+s4+ e34(ns —n4) even,
b= 1 for s3+s4+es4(ns —n4) odd.

(4.17)

As one might have expected, the constraint equations
(4.14) and (4.16) are the same as those obtained in
Ref. 3, in the case of all nonzero masses, by consider-
ation of poles in the crossing matrix for transversity
amplitudes (amplitudes in which the spins are quan-
tized along the normal to the reaction plane).

There is no constraint equation for the helicity ampli-
tudes at s= 0 if ns3 / m4, as will be shown in Sec. 4 D.
However, there is a constraint of a Inore trivial nature
affecting the regularized helicity amplitudes at s=0,
resulting from singularities in the sin~ 0 and cos—,'0 factors
introduced. '4 From (3.8) and (3.15), we see that

G$3$4—cfP34 cc X3X4!X]X24$)kJ p GX3$4 ~X3X4 ~

d(4 s4)"

Then, as at s = m2',

LG..'"'(it.)"+"d"(s7r).-d"(s7r) p je o= o=(4 12)
for

0 &e & 2(ss+s4) —1

—ss—s4+ 1+m&~n+P &~ss+s4.
and

But from (3.10), continuation of G„„along a circuit
of 2~ about Ps4=0 gives F+l,l, , &,&,(s,I)= L+l 4, l,l,(s,~) (Qs) I&I+Is I

—I&+a4s I

&gs4P l, &„., i„l,(s,t)(gs)I "I+I "I I" 's4~I/E+(s&f),

(4.18)
(G..)»= (—1) " "G-..—

so that, at Ps4= 0,

has no singularity at s= (ms&m4)', for all ns, n4. From and
(3.9), we know that Hl, i„i„q,(s,t)(s—(ms+m4)'ji's+'4&
is finite at s = (ms&m4)', where its kinematic singularity
is a square-root branch point. First consider the case
s—(ms+ m4)'== Ps4'= 0. Put

dr
r!G„,i"i= (2~)! LG,.+(—1) " "G-&,—.3

ds"
(4.13)

dr
r!G „I'~'i = (2r+ 1) ! {LG„,—(—1) " "G $4 s4 '}.

ds

x( f.)" "d (l ) ...d"(-; )....j =0 (4.14)

for 0 ~& r &&ps (ss+s4+ns+n4) 1),s' wit—h

@=0 for (ss+s4+ns+n4) even,
4. 15

g= 1 for (ss+s4+ns+n4) odd.

The behavior at s—(ms —m4)'=Ps4' ——0 (for ms/m4)
is almost the same as that at Ps4 ——0. However, the term

(oi,—p~)/m, appearing in D"(Z(p,)) has the value —1
rather than +1 at IIs4——0 if m;(m; (i, j=3, 4). This
introduces an extra factor (—1)"' into the equation
corresponding to (4.12), and we obtain

dr

L P A4'~'4 —'Hi„l4, l, i„(s,t)
ds" )3)4

X (if')"~"'d'8(-,'7r)&,-..d"(-',~) ...$ =0

(ms W m4) (4.16)

for s 0~& r&~Le(ss+s4+ es4(ns —n4)) —1), with

es4= sgll(ms —m4)

From the symmetry properties of the d-matrices, we

obtain the constraint equation
dr

L Q 4'34 +lsl4;lylm(s)I)
ds" )3)4

where E+(s,t) is regular at s=O, as are the helicity
amplitudes. Then near s =0,

F+„,„,;„,„,(,1)l X.( )3 '—
L g ( ~ )3F ...; *(,I)
X LX,(—y)1 ' saba', (4.19)

where M= min(~ X (, ~ ii)), other symbols being defined
in (3.16) and following (3.15). Appropriate derivative
conditions are readily formulated; note that when M
is half an odd integer (boson-fermion scattering), (4.19)
should first be divided by s'"so that both sides of the
relation become regular in s at s= 0. In particular, pro-
vided that X and p are both nonzero, the nonderivative
conditions at s= 0 for various numbers of fermions in
the final state are

(x= 0): P+(O, t) = —$sgnp p)g(mss —m4s) &F-(0,t),
(x= 1): F+(O,I)= (—1)"'Lsgn(X1i))F (O,I),
(x= 2): F (O,t)= LsgnPiy)$((ms+m4)/(ms —m4)}&

XF-(O,I),
where the helicity labels (XsX4, Xik&) have been dropped,
and where y= (—1)'~'4 ~

C. Equal-Mass Case

The constraint equation at iPs4=0 for ms= m4=m
needs separate consideration, because $34 0 now coin-
cides with s= 0. Let ss ——s4——sr. From (3.1), (3.2), and
(3.18), we have

((g—p) i'8+X 4

Z &z;x;l,x (s,I)(—I)'3+"'~
~

d'&(—8)
lal4 !, m )

Xd I(—0)& 4s( I+ 4)ls (4 20)

has no singularity at s=O, and Hl, l,;l,l, (s, t)s'~ is finite

34 Such constraints were erst noticed by S. Frautschi and L.
Jones, Phys. Rev. 167, 1335 (1968).



S. R. . COSSLE TT

and nonsingular in Qs at s=O. Then Next consider possible singularities at s=0 in the
case mz/m4. From (2.39), (2.21), (2.9), and the result
that the helicity amplitudes are analytic at s=0, one
Ands that

-8 0

=0 (4.21)
Bg(s,t) = g s*"R(s,t, l)

aaea4

where R(st, l) is nonsingular at s=0 and

for 0&m& 2sg —na —n4.

When s-+0, sino~ f= +1, and (~—p)(m-+ +i Lthe
sign in the latter case depending on the arrangement of
the cuts associated with the (s—4mz)'t' branch point/.
By the same method as used to obtain (4.9) from (4.4),
we have, substituting 0(s =0)= (2zr) f',

d"
L»"., ""(s,t)s"&

I

Ed(v's)" J s-o

)&(zf)" "'d' (—'zr)g d' (—'zr)i, =0 (4.22)

for 0~&rz~&2sr+f(nz n4)+1. Fr—om (3.19), equations
analogous to (4.13) are obtained, and the constraint
equations Gnally obtained are

y d«(-,'zr) „, ,cz«(—,'zr) g, ,l =0, (mz m4) ——(4.23)
@~0

for 0~& r ~& $zz f(nz n4)+st—11,2z w—ith

&=n+sl Xl+X2 684(Xz X4)+ (nz —6z4)l z(+ (nz+ Gz4l%4) )

n= nz+n4 —Xz.

)The behavior of the kinematic factors in (2.9) near
s=0 is given in Sec. 3 B (d).] Evidently x is an even
integer with lowest value zero, so that no constraints
on the helicity amplitudes are required by analyticity
of the invariant amplitudes at s=0.

It is somewhat less trivial to show that, at s=m2',
analyticity of the invariant amplitudes follows from the
analyticity of expression (4.1). We require invariant-
amplitude expansions of the types (2.23) and (2.25),
UslIlg

Li.e. , a= 1, b=3, c=4, in (2.24)$, in the s-channel c.m.
frame with the spatial momentum of particle 3 parallel
to the 3 axis. As before, qi

——zz(s —mz'). In Ref. / it is
shown that, at q&=0, the analyticity of the invariant
amplitudes of (2.23) implies the analyticity of those of
(2.25). Now the expansion (2.23) can be inverted, "
&t »(»t) =2 M"E(j+n)l(j—n)l] '"

c=0 for nz+n4 even,

c= -', for nz+n4 odd.
(4.24) y pl mP. (» t)~ j+l na — (—4 25—)

As expected, this result is the same as that implied

by the results of Ref. 3.

D. Comyleteness of Constraint Equations

It remains to be shown that we have obtained all

possible constraint equations on the helicity amplitudes
that are imposed by the original assumptions on the
analyticity properties of the M-functions. This is

achieved by showing that the constraint equations ob-
tained above, together with the analyticity properties
of the helicity amplitudes derived in Ref. 3 and Sec. 3,
are sufhcient for the analyticity of the invariant
amplitudes.

Evidently, the constraint equations are exactly equi-
valent to the absence of singularities in (4.1), (4.11),
and (4.20) at, respectively, s=mz', s=(mz&m4)', and
s = 0. We shall consider explicitly only the case Xi——+si.

Analyticity of (4.11) at s= (mz+m4) implies analyti-

city, at this value of s, of M "Lexpressed as a function
of s and t in the c.m. frame (2.1)$ in (2.39), from which

it is immediately apparent that the invariant ampli-
tudes are not singular there either. The same applies
to s= (mz —m4)' if mz&m4.

where m= (0,1) and the 8 t &t(s, t) differ only by nuineri-
cal constants from the A(s, t; l&lzj, rt) of (2.23) with l&

+lz=j+m. For the notation, see (2.41). 8„' is given by

6„'=f(a z+ ep)k singj-~~~, e= sgn(tz) .
None of the coefficients of M& in (4.25) is singular at
s= mz'. Since D"(Bi(pi) ')„'& is not singular at s= mz',
the analyticity, at s=mz, of (4.1) implies analyticity
of the M& in (4.25). This gives the required result.

If m&
——m4, absence of a singularity in (4.20) at s=0

implies that

~ae1~~(—x1+x2—a3—n4)/2 near ~—0

M "being the M-function appearing in (2.39), and in
(2.39) n=nz+n4 —Xz. It is again apparent that this is
sufficient for analyticity of the invariant amplitudes at
s=0.
W Ke note that the well-known existence of singularity-
free inversion formulas" of the form (4.25), together
with the results of Ref. 7' and Sec. 3, is in fact sufhcient
to obtain all the results of this section; the explicit in-
version formulas of Sec. 2 C are not necessary for our
present purpose.
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S. SUMMARY OF FORMULAS OBTAINED

Kinematic-singularity-free combinations of helicity
amplitudes for a four-particle process, one particle being
massless, are given in (3.15) and (3.17) (masses of final
two particles unequal), and in (3.20) (masses of final
particles equal). Linear relationships between helicity
amplitudes (and between some of their derivatives) at
certain values of s are given in (4.10), (4.14), (4.16),
and (4.23). A further relation involving the kinematic-
singularity-free amplitudes, which does not correspond
to a constraint on the helicity amplitudes, is given in
(4.19). In addition, an explicit formula (2.39) is given
for the inversion of a certain expansion of the 3f-
function in terms of invariant amplitudes.

These results agree with those obtained by Ader,
Capdeville, and Navelet. " These authors obtain the
kinematic-singularity-free combinations of helicity am-
plitudes for one or more massless particles in a two-
particle to two-particle reaction by using the same
invariant-amplitude expansion as in Refs. 3 and 10; a
gauge-invariance condition on the M-functions then
produces additional kinematic factors corresponding to
the presence of the massless particles. For one massless
particle, as here, their treatment of the case of odd-
fermion-number initial and 6nal states differs from ours.
In such a case, their regularized helicity amplitudes
have kinematic branch points not only at s=0 [as do
our amplitudes (3.15) with x= 1$ but also at thresholds
and pseudothresholds on the sheet with negative Qs.
Of course, in the study of kinematic singularities of
scattering amplitudes, such extraneous singularities on
unphysical sheets are usually not important, but they
do have the effect that the MacDowell symmetry of the
helicity amplitudes is not expressible in a simple form
for the regularized helicity amplitudes of Refs. 3 and
11.Consequently, one cannot readily obtain from them
amplitudes without any kinematic singularities (even at
s= 0), corresponding to our amplitudes (3.17). (Davies"
has also shown how the method of Wang' may similarly
be modified. ) The authors of Ref. 11 also obtain the
constraint equations, using a method involving con-
sideration of the crossing matrix for transversity ampli-
tudes, as was done in Ref. 3. (Their method is slightly
indirect compared with that used here, in that it has
not previously been shown that all the kinematic con-

"W. E. A. Davies, Nuovo Cimeuto SBA, 828 (1968).

straints implied by analyticity of the 3ll-functions are
in fact also implied by singularities in the crossing matrix
between regularized helicity amplitudes. )

X „'(or)= (—1)&X '(or)

X„'(or)=0 when ~ra((l.
Evidently,

I'p(~)X„'(~)=0 if'& I (A2)

If we substitute s= (cotor'Mesc(0') into the formula

Z C "( ) "L(I+ ) (I—)'3 '"("
= [cosor—is(s—s ') sin(0)', (A3)

where

C()"( )= (2~+1) '"(4 )'"I' "( ),
we see that

Z (-« "(~)X '(~)[(I+«)l(I—«)lj '"=8 " (A4)

The function X„'(o)) may also be shown to satisfy the
relations

2 &(l)"(~)X."(~)[(I+«)9"[(I—«)!r'"
)&[(I+«()!g—'=()ip if l~&1.&~l', (AS)

P C„, ()X„'()-[(Iy ).g [(I—).]-
p&0

&& [(2+«()!]-)=0 if /~& 1.& I'. (A6)

Further, it is obvious from the symmetry of the terms
under p —+ —p that

(A7)

APPENDIX

This is a description of some properties of the func-
tion X„'(or), defined by (2.37), which is useful in certain
cases for the inversion of invariant amplitude expan-
sions. Let

d'
X„'(or)=-,'(—sino)) '—

d(coto))'

[X[(cotor+cscor)"+(cote) —csc(0)"j (2.37')

for which p, l, are integers and l& 0. We have


