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Photon Scattering from Bound Atomic Systems at Very High Energy*
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The elastic scattering of photons from bound atomic systems is studied in the limit of infinitely high energy.
It is found that the amplitude difkrs significantly from the free-particle value when the binding is strong.
Explicit formulas for a spin-0 particle bound in a 1/r potential (both world-scalar and Coulomb) are obtained
as well as power series in the coupling strength for a spin-$ target. The general result in the latter case is
reduced to quadratures.

I. INTRODUCTION

HE elastic scattering of photons by bound atomic
systems has been the subject of considerable in-

terest from the earliest days of quantum mechanics.
Recently, an exact nonrelativistic treatment (dipole
approximation) for the scattering from hydrogen has
been given by Gavrila. ' No corresponding result has
been obtained for high-energy photons, taking into
account retardation and treating the bound electron
relativistically.

We have found, in fact, that it is also quite simple to
treat the relativistic case in the limit of in6nite energy.
Our interest in this problem stems from early work on
the Kramers-Kronig dispersion relation' in which there
was a conjecture that the limiting value of the forward
amplitude was simply that of a free electron —namely,
—(e'/m)er e,, with e the electron charge, rrt its mass,
and ey and a.; the final and initial photon polarization
vectors. This conjecture is wrong, and we have obtained
the exact result in the form of a quadrature involving
the ground-state wave function.

It is necessary to be quite explicit about what one
means by photon scattering from a bound electron in
the relativistic regime. ' The point here is that the
nucleus itself, treated as a fixed force center, can scatter
photons because of virtual pair production, and this is
of the same order in the coupling constant n=e /hc sas

the normal scattering from the electron. (We must dif-
ferentiate between n and Zn here; the latter is not re-
garded as small. ) Strictly speaking, we should also
consider the scattering by the Coulomb field of the
electron, but this is smaller than the normal scattering
by a factor of ot (for a one-electron atom) and will be
neglected.

We call the bound-electron scattering the scattering
by the atom minus the scattering by the nuclear Cou-
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lomb field in the absence of the electron. Thus (for
a=0, for example), the imaginary part of our bound-
electron scattering amplitude f is related to total cross
sections as follows:

(4rr/k) Imf= o v(k) —o,(k),

where k is the photon frequency (c= 1), o„ is the total
photoelectric cross section, and 0, is the total cross
section for the process of pair production where the
electron is produced in the initial bound state. The con-
tribution from pair production by the atom with the
electron going to any state other than the initial bound
state is precisely cancelled by the pair production in
the absence of the initial electron, as long as electron-
electron interactions are neglected. Technically, the
desired bound-electron scattering amplitude is obtained

by using the usual Feynman computational rules but
taking the electron propagator as given by the exact
solutions of the electron in the Coulomb Geld.

It is known' that o„(k) 1/k for large k and that
o'v(k)=o, (k) for large k and thus Imf —& 0. If this were
not the case, there would be no possibility of f(k) ap-
proaching a limit for large k, as may be seen from the
Kramers-Kronig dispersion relation

k' " o „(k')—o,(k')
f(k) = — dk'

Our calculations show that 0-~—0, goes to zero at least
as fast as 1/k, to within a factor of ink, and that f(co)
is a constant.

In Sec. II we discuss the scattering amplitude for a
system consisting of a spin- —, particle bound to an in-

6nitely massive force center by either a world-scalar
or fourth-component four-vector potential. The general
structure of the amplitude in the forward direction is

f=

fief�'

si+fs&rr' e/X eii

and we obtain formulas for both fr and fs. In addition,
we consider the scattering from a bound spin-0 particle.
These general results are illustrated in Sec. III for the
special case of a 1/r potential. For the spin-0 target they
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are given exactly for any potential strength, and for the
spin-&~target we treat the potential as weak. Finally,
in Sec. IV vie indicate how the exact result for spin--,'
targets may be reduced to quadratures and evaluated
explicitly for a particular (large) value of the coupling
strength for a scalar potential.

H = e (y+ k)+Pm+ V (2.2)

with y= —iV' and V representing a fourth-component
vector potential. Any world-scalar potential wouM be
included in m. The second term in (2.1) is the usual
crossed term. We are interested in the limit of high k
at fixed momentum transfer hk. In this limit (since
(Ak)'= 2k'(1 —cos8) and (k;—kr) k;= —(k;—kf) 't/f
=k(1—cos8)], k;—k/ may be taken to be essentially
transverse to either k; or k/, which may be taken in the
same direction.

In order to evaluate (2.1), we study the differential
equation satisfied by the function

g= LH(y+k) —k —Eg 'X

in the limit k -+~:
La(y+k) —k —Z]g= X.

We write g=gi+g2, where

gi= 2(1+n'k)g,

gg ———',(1—n k)g,

(2.3)

(2 4)

and. we note for later reference that k—=k/k does not
change sign for k~ —k, k~ —k. Multiplying Eq.
(2.3) successively by —,'(1&n k), with the Hamiltonian
given by (2.2), we obtain

(E—V—k p)gi
—(e.p+Pm+k y)g'= ——,'(1+e k)X,

(2.5)
(E+2k—V+k. p)g2

—(n. y+Pm —k p)gi ———-', (1—e k)X.

Clearly, as k ~io, gi stays finite, whereas gn~ 1/k. The
operator E—U—k y has zero eigenvalues, however,
and we must be a little more accurate in evaluating g~.
We remember that m' has an in6nitesimal negative
imaginary part according to the Feynman rules,
m'~ m' —iq. To a sufhcient accuracy, we may write

II. DERIVATION

A. Spin —~~ Target

Ke start from the well-known expression for the
scattering amplitude

f (&/2) =g2{y, g&(&i &/i'& e ~ efL~(p+k )—k —g|
Xe eyP, }+{k;-+—kr, k-+ —k, sr-+ s,}, (2.1)

where en=1/137, P, is the bound-electron wave func-
tion of spin s, af and e; are the 6nal and initial photon
polarization vectors, and H is the Dirac Hamiltonian

This is our main result and is exact to zeroth order in
1/k. It is possible to evaluate the first-order terms quite
easily, but we shall not do so here. In Sec. III we shall
use Eq. (2.7) for numerical calculations. Note that the
dispersive part of f(i/'& goes like er e; and is thus
spin-independent in the forward direction, whereas the
absorptive part goes like e ef)(a; and is pure spin-Qip
in the forward direction.

In the forward direction it is customary2 to write the
amplitude as

f ef Rifi+zn' efXefXeif2y

and we see from Eq. (2.7) the following results:

Refi -+ const, Imf; 1/k;

Reft ~ 1/k, Imf2 ~ const.

(2.8)

(2.9)

The dispersion relation satisfied. by fi may be written

2 " k'dk'
fi(k)= fi(~)+— Imfi(k'). (2.10)

k"—k' —ig

Since fi(0) =0, we also have the sum rule

2 "dk
fr(~ ) =—— —Im fi(k)

p

(2.11)
00

dk Lo„(k)—0,(k)j,
2x p

where cr„ is the total photoelectric cross section and a,
is the cross section for pair production with the electron
produced into the initial bound state. As discussed in
the Introduction, the total atom-scattering amplitude
is obtained by adding the Delbruck scattering of light
by the potential in the absence of an atomic electron.
Finally, we note that since Ref2(k) -+ 0 as k -+~, the
dispersion relation for f2 may be written

2k " dk'
f2(k) =— Imf2(k'); (2.12)

the equation for g~ as

(E—V—k p—m'/2k)gi= —g(1+e k)X. (2.6)

(This is not quite correct if part of m contains a world-
scalar potential, because Lp, m)NO; however, we are
concerned here with avoiding the zeros of E V—k—y
and hence only with the imaginary part of m'. )

In terms of this g~, we have for the scattering ampli-
tude f(&/2)

—f('/2& f -', (1+n k)
, ,e'~~' e. a

(,' 5 E V—k p—+ii/

—,'(1+e.k)
+n e.— . n &r O'.

I (27)
E—V kp —ir/—
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using the well-known low-energy theorem, we obtain
in the limit k —+ 0 the Drell-Hearn sum rule. 4

f&'&= 2e—'ez sr d'rl v(r)

where p is the target wave function. The terms in the
full scattering amplitude involving energy denominators
as in Eq. (2.1) go in this case like 1/k and may be
neglected; only the so-called "sea-gull" term survives,
leading to Eq. (2.13).

The normalization of p depends on the interaction.
In the case of a world-scalar potential it is

~ =4/(2E)'", (2.14)

where J'd'rltpl'=1 and E is the energy of the bound
state. Thus, for 6k=0,

f "=—sr ee'/E (2.15)

In the case of a fourth-component vector potential (as,
for example, the Coulomb potential), it is

~= lP/C2(E —(V))3'"

where again fd'rlPl'=1 and

(2.16)

B. Spin-0 Target

Here the formula equivalent to Eq. (2.7) is exceed-
ingly simple:

III. NUMERICAL EVALUATION

In this section we shall carry out explicit calculations
for the four cases under consideration for the special
case of a 1/r potential and for forward scattering.

EP.= Ls p+P(m —~/r) j4"; (3.1)

the value of E is m/(1+X4)'1s. We shall give in Sec. IV
the exact result for a special value of X, but content
ourselves here with the erst few terms in a power series.
Strictly speaking, we cannot evaluate Eq. (2.7) in a
series about X=0, since there is a logarithmic singularity
in the term of order (e'/m) V. The first few terms, how-

ever, can be readily calculated and we give only the
result

fe(l (21

g2

1) 5=., a.—
I

t+-'Z'+ —Z'+ .
)m~ 24

35i
is er&& s, ——(X'+ ) . (3.2)

38m

B. Spin~ Fourth-Component Vector Potential

Here the states f, are the gound-state solutions of

A. Spin —~~ World-Scalar Potential

We proceed from Eq. (2.7) by setting V=O. The
states f, are the ground-state solutions of the Dirac
equation

(V)= d'rP~ Vf. (2.17) EP,= (n p+Pm Ze'/r)f, — (3.3)

where

fN.R. ———(e'/m)sr s;p(hk), (2.19)

Thus, for 6k=0,
fv"'= L

—e'/(E —(V&)7si s'.

It is obvious from Eqs. (2.7), (2.15), and (2.18) that
the nonrelativistic (i.e., small binding) limit is the same
for all four cases (spin- —,

' or spin-0, scalar or vector
potential), namely, the Thomson formula

and E=m(1 —Z'e')'". The power-series expansion cor-
responding to (3.2) is

1~ 5
= er s,—

l
1—srZ'e4+ —Z'e'+

m4

11i
is er&(e; (Z'e' +— ) . (3.4)

48m

C. Spin-0 World-Scalar Potential

p(hk) = d'r
l P(r) l

'e'~"'. (2.20) We define the potential as an addition to the mass
as in (3.1):

E'= p'+ (m —X/r)'.

4X'

e2( 4/2 q
—1/2

f "'=—l1— (3.7)
m k [1+(1+4K') '!'O'I' S. Drell and A. Hearn, Phys. Rev. Letters 16, 908 (1966).

Note, however, that for (V)/m and/or (p')/m' not (3.5)

small, the high-k limit will be far from the Thomson The round-state ener is
value even for nonsingular potentials. Ke also see
from Eqs. (2.15) and (2.18) that the first-order binding q

1/2

corrections for a spin-0 particle in a Coulomb held are E=ml 1— (3.6)
equal and opposite for the vector and scalar potentials, 21+(1+4lt') '"j'&

since E=m+rs(V) and E—(V)—m —sr(U). We shall see
and thus the scattering amplitude from Eq. (2.15) is

in Sec. III that to first order in (Vj('m the non-spin-
Qip amplitude for a spin-2 particle is equal to that of a
spin-0 particle, but in the next order they are different.
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The first three terms in an expansion about X'=0 are in momentum space, and we find for the scattering

f,"'= (—e'/rrz) (1+—,'X'—2X'+ .) e e;. (3.8)

Comparison of (3.2) and (3.8) shows how the coefficients
of aj e; agree to order X' but deviate in order X4.

f (1/2)

g2

dzp (
~

C. (p+Ak),
(2zr)' E

D. Spin-0 Fourth-Component Vector Potential

Here we choose V = —Ze'/r and

(E+Ze'/r)'= p'+ zzz'.

The ground-state energy is

E=m(1+4Z'e'/L1+(1 —4Z'e')'t'$') '" (3.10)
and

4Z2g4
where

@'.(p) =&La(p) K~~ —VJ (p)3&. , (4.3)

zr erzr eg zr egzr er
+ l(1- &)~,(p) I, (4 2)z—p,+i& z—p,—i&

where C,(p) is the Fourier transform of P,(r).
The special case of X=VS and forward scattering

may be obtained in closed form. We use Eq. (4.2) with

L1+(1 4Z2e4) 1i2$2

so that from Eq. (2.18) we have

g2 4Z2e4 l
—I /z

fv"'= ——1+ er ~ e;. (3.12)
es Li+ (1—4Z'e') '"]'I

1 2p, z

a(p) =—8~I
k(p2+p2)2 (p2+p2)z

h(p) =8~A/(p'+z ')',

@=2m)=3
(4.4)

The first three terms in an expansion about Z'e4=0 are

fr&'&= —(e'/rm)(1 —z~Z'e —xsZ e'+ )er e (3 13)

which again shows the agreement to order Z'e4 with
the coefficient of er e, in Eq. (3.4).

IV. REDUCTION TO QUADRATURES

It is quite simple to express our general result for a
spin--', target, Eq. (2.2), in terms of quadratures that
could be quite easily carried out numerically. To this
end we note the following relation:

1 1
P(r) =— ds' $c(z'—s)a 1$

E—p,—V&ig 2i

exp i ds"(E—V)
~

P(s', x,y).
zl

(4.1)

For the case of a world-scalar potential, we set V=O.
In the latter case it is evidently simpler to work directly

1V' =9zzz'v3/128zr,

and X, is a Pauli spinor.
The result (as a matrix in spin space) is

—fe&'"& 1 13 9&3i
=——er e;+ zzr erXe; ~. (4.5)

rzz 32 240 )g2
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It is clear by comparison of Eqs. (3.2) and (4.5) that
the power series in X gives no indication of the large-X
behavior.

We have not attempted to evaluate fv&'z'& for special
values of Ze', although we have noted that at least the
spin-Qip term can be done for Ze'= 1.


