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(fixed, that is, under the little group operations) which
is allowed to vanish at the end of the calculations. The
Mandelstam invariants in such a case are six in number
and are given by

s= (po&+.pit&)s s'= (pie&+.pi4&)s (812)

and similar equations for t, t', e, u'. They are subject to
the one constraint

s+s'+t+t'+I+I'= ts+Snt'. (813)

The angles q; can now be imbedded in this system if
we set

2-1/s(sl/2+isrl/2) 2-1/2(s+sr)i/seine& (814)

and. likewise for ss, ss. The group SU(3) is allowed to
act on (zi, zs, ss) in the standard way [cf. Eq. (2.4) and
Ref. 5j.When („goes to zero, j' goes to zero, s', t', tt' go,
respectively, to s, t, tt, and (813) reduces to the familiar
constraint (8.2a).

The situation can be expressed in a picturesque form
by saying that our group SU(3) is the remaining ghost
group of the five-particle problem when one of the
particles collpases to the vacuum.

We conclude with a minor explanation. The three
differential operators in (8.10a) are a priori defined in
their corresponding physical regions and the latter are

mutually disjoint. In writing (8.10b) (and in many
other remarks in this paper), the analytic continuation
of these operators to suitable domains is understood.
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An estimation of s-wave Zx and ICE scattering lengths is made, and a discussion is given of the relation of
these quantities to scalar density matrix elements and the relevant symmetry-breaking parameter.

INTRODUCTION
' ' 'rSING low-energy theorems from the SU(2)

XSU(2) current algebra and Adler's partial
conservation of axial-vector current (PCAC) self-
consistency conditions, Weinberg' has estimated the
m--m scattering 1engths, assuming that a 1inear expansion
of the amplitude into Mandelstam invariants is approx-
imately valid up to threshold. In order to determine
some of the coefficients in the above expansion, the
isospin properties had to be specified of the scalar
density matrix element, or "a term" (zr

~
[A',c)eA„tjizr),

which involves the commutator of an axial-vector
charge and divergence of the axial-vector current (i,j
are isospin indices or, more generally, unitary spin
indices). It turns out that, within the parametrization
of Ref. 1, specification alone of the pion vector-charge
matrix element and the requirement of no I= 2 contri-
butions in [A', 0"A„'] completely determine' the value
of this matrix element:

i( (sr[
t'A" c&Aj[zr')= (nz.')Bzhg, t.

*%'ork supported in part by the U. S. Atomic Energy Co-
mission. Prepared under Contract No. AT(11-1)-68 for the San
Francisco Operations Ofhce, U. S. Atomic Energy Commission.' S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

'Reference 1; Eqs. (16) and (20) determine the coeKcient
of it b/t~. In the text, we use the state normalization (p~p)= (2zr)'2pe/t (0).

On the other hand, Khuri' arrived at the same value by
applying a low-energy limit directly to the scalar
density vertex defined by (1) upon using [the SU(2)
XSU(2) version ofj the algebra of scalar and pseudo-
scalar densities' which transform as (3,3*)+(3*,3)
under SU(3)XSU(3).

In this paper, an estimation of s-wave Em and EE
scattering lengths will be made using simi1ar current-
algebra techniques, and the relation of these quantities
to scalar density terms will be noted. In particular, the
scalar density matrix elements appearing in the EE
case are estimated by established SU(3)XSU(3)
commutators and PCAC principles, just as in Wein-
berg's mz estimation described above. For the ICx case,
additional assumptions are needed and the scalar
density matrix elements a,re determined by: (a) apply-
ing a low-energy limit to the scalar density vertex, and

(b) using an (approximate) determining relation for the
relevant symmetry-breaking parameter a. The scat-
tering-length determination for the EE case is con-
sistent with this last procedure. Finally, the consist-
ency of our use of the relation for /z itself, Eq. (15), is
discussed.

3 N. Khuri, Phys. Rev. 153, 1477 (1967).
'M. Gell-Mann, Phys. Rev. 125, 1062 (1962); Physics 1, 63

(1964).
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K{p') 'i /'n. (q')

S

s = (p+q)

t =(p -p)

u = (p -q')

masses = q,q', p, p'

Fn. l. 08-mass-shell pseudoscalar
scattering ampHtude.

are Fourier transforms of axial-vector current and
divergence time-ordered products. Observing the
normalization condition (&r'I (/&A„'

I 0)= 224,2f /v2 (f=v2MG~/g~))//&I ), the following connection will be
assumed between the off-mass-shell boson-boson ampli-
tude A'& and the amplitude F'& for low-energy appli-
cations:

(q' —2)2;2) (q' —2I&2)
A'&(s, t, ) = F'&(s t ~ ~ ) (7)

(2)2 f;/%2)(m f,/V2)

~~ SYSTEM

Here there are the two independent s-wave scattering
lengths in the I=—,

' and 22 states: a'/ and a'/ (the Epr
system is related to the Ex system by a charge-conju-
gation operation or t-channel crossing symmetry). A
linear expansion of the amplitude Ar(s, t,s; q2, q'2, pp, p")
in terms of invariants s, t, u, q2, q'2, p2, and p'2 is extrap-
olated to threshold, assuming that there are no
J =0+ bound states and that unitarity effects do not
lead to rapid variations of the amplitude at low energies.
(See Fig. 1 for kinematical definitions. )

VVe write the definite isospin s-channel amplitudes in
terms of amplitudes with definite t-channel charge-
conjugation properties 6=& satisfying crossing re-
lations.

We now take various low-energy limits in (5) for, say,
A (2/2) —A (g+&r+ ~ It+pr+)

(a) q & 0 (or q'~ 0) with the other three particles
on their mass shells (Adler's PCAC consistency
condition) .

A (2/2) —+ A (2") (222&' 2)2 ' 2)2)r2 0 2)2 ' m)r2 mr(2) = 0

A+ 22'/r(2 (B+D)+2N, 2C =0.

(b) q', q
—+ 0 with the kaons on mass shell.

A (' ') -+ A ""(2N/r'+ 2P q 0 mr(' 2P q 0 0—2)2)r' mzP)
= [A+2mr(2(B+D)g 4(p q)A'+—0(q q

'
q q')

= (2i/f- )28'(p) II A, ~"A. "ll&'(p))
+2(p q)/f-'+o(q q')

A (31~) A (+) A (—)

A (1/2) —A (+)+2A (-) (2)
and

A'= 1/2f '—,
where

A+22/21(2(B+D) = (2/3f ') (v2+K)
g (IC (p) Iv2up+uplK (p)) ~ (10)

A~(()s,t, uq', q",p', p")=+A'+ ( )ts, ; q",q', p', p")
=+A"'(s,te q'q" P" P')

In the last expression, the quantity
Using t-channel crossing symmetry (3) and the kine-
matical condition s+t+u=q2+q"+p2+p" we write
the linear expansions with constant coefficients,

(z+ILA--, a A„-'jim+)

has been re-expressed using the (quark) algebra of
A(+)(s,t, ~ )=A+B(s+s)+Ct+D(p2+p"), scalar and pseudoscalar densities4 together with a
A( )(s,t, )=A'(s —u).

'
(4) particular energy density given by

8pp= epp"+up+Kup
&In order to evaluate the coeKcients A, 8, C, D, and

A', we consider low-energy limits in current-comrnu-
where gpP is defined to be the SU(3)&&SU(3) invariant
piece and ~ is the symmetry-breaking parameter. Using

F'&(s&t ) =q'&"q"T '&—q'" d x e" '

X (p'I S(x )LA„'(x),A, '(0)1 I p)+i d'x e'"'
we have

LA&&v&j=pd, 2u/&

LA &S&j= —
Zd&&2V2 &

where
&&(p'ls(*)LA, '(*),a A„(o)jl p) (5)

d'* '" *(p IT(~"A '(*) ~"A'(0))
I p)

d x(8pp+sp+Kup)&A

=—A'
)

z
d'x(up+Ku2) = d'x (t"A '

T„„'&= i de e'"'~{p'I T(A„*'(x'),A„&(—0)) I p), so that
8"A„'=—(d, ,p+Kd, ,p)v, , i/0, S. (12)
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So, for example,

[A~ cia v+g — kv3(v2+x)[A1 —@ s&+&sj

'si—(VZ+x) (V2us+us),

to give (10). Suppose we now use a low-energy limit to
evaluate the right-hand side of (10),

(I&.+(p')
l v2us+us

l
K+(p) )

(mx' —p")
= iV2 d'x e'&'

&((Ol T( &i A„(x)(V2u&&+ us)) l
K+(p) ) (u'~o)

g SS+3

—sV2frc-'(Ol [Ax, %2us+usjlZ+(P)) =
(V2——',«)

(d) p, p' —&0:

A&sl &~A&'I '(m '+2P q 0 m 2P—q m ' m '00)
=A+2m 'B 4(—p q)A',
= (2/3frr ) (~& sx) (s'+(q) l~&uo —sus

+sr~»s I ~+(q) )+2(p q)/fxs
and

A'= 1/—2fJr' (17)

A+2m sB=mrrs/f frr. (»)
Again, in Eq. (18), a low-energy limit has been used to
evaluate the scalar density term together with the
determining relation for ~.

From (9) and (17), simultaneous pion and kaon low-

energy limits would, require the (approximately valid)
equality, f =IJr= f. U—sing the independent equations
(8), (9), (10'), (16), and. (18) to determine' the five
constants A') 3, 8, C, and D, we Qnd

The right-hand side becomes

( v2+«)mxs

&~2--,")f.s (13)

A'= —1/2fs A = (mxs+m s)/fs

B=—1/2f' C= —1/f, D=0.
The s-wave scattering lengths are given by

(19)

However, this last expression can be greatly simplified

by use of a determining relation for the parameter ~,

m-') (f- t'v2+» ) (oIs"l~ )

mx'& Vx
(14)

(15)

We note the relation betw'een the proximity of the value
of « to —K2 and the smallness of the ratio m r/m&rs.

Inserting (13) and (15) into (10),

A+2mrrs(B+D) = m s/f, fx. (10')

Similarly, keeping the pions on mass shell and using
low-energy limits for the kaons,

(c) p~0 (or p' —&0):

A &s~ & ~ A &'& & (m~' m&r', m~'
&

m ',m, m~', 0)=0

and
A+2m sB+mxs(C+D) =0. (16)

' For discussion relating to the validity of this statement, see
M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. (to be
published). See also Eq. (30) in the text.

If now one assumes the pseudoscalar states to be nearly
SU(3) symmetric, ' as motivated, for example, by
success of the Gell-Mann —Okubo mass formula, the
algebraic operators u connect the vacuum to states with
unit norm, so that

g1/2 lL 2I. 0 22m
m&r+m. i

( lL=L —0.11m, ',
kmx+ m.l

(20)

where L= m /4&rP —0.11m„'.
These results for a)' ~ I are identical to the ones

obtained from Weinberg's "heavy-target" formula in
which At&, &+& is omitted. In fact, if only (a) and (b) are
used. , Ash&+&/Ag, & &=O(m /m&r). The use of all the
equations (f = fz), however, gives Ath&+&=0.

XX SYSTEM

There is only one s-wave scattering length a&1=') since
a&'& vanishes by Bose statistics. Applying to the I=0, 1
s-channel amplitudes (i) Bose statistics in the s channel
and (ii) I'T invariance, which says invariance under

6It should perhaps be pointed out that if one were to take
limits p', q' -+ 0 while leaving the initial pion and kaon on mass
shell (without taking the necessary additional energy-conserving
limit p' ~ es ' or, alternatively, q' ~mz'), two additional equa-
tions would be obtained whose right-hand sides are zero owing to
the supposed absence of I=) components LSU(3) 27 transforma-
tion contributionsg in the relevant commutators. These equations
turn out to be consistent with solutions (19) by substitution. Tak-
ing three particles off the mass shell for energy conservation, one
again has to evaluate scalar density terms. The variation from
p~=ygQ to m involves the momentum transfer to one of these
scalar terms, which, if it is slowly varying, explains the former
naive limit where energy conservation was ignored.

8'(m—x+m )a =A ((mx+m )',0, (mr& m)'—;
2 2 2 2KfÃ~ )m~ )mQ ~fPS+ / ~

At threshold, A„h&+& =A+2(mxs+m ')B+2mrrs D= 0
and At&, & ' ——4m&rm~A'= 2mxm /—f', so that, using (2),
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(a) q
—+ 0 (consistency condition):

A ("—+ A ("(mar', mrr'3m'' 0 mx' mrr', mrr') = 0

a+2mrr b +mrr c=0.

(b) q', q r 0 (or p', p ~0):

(22)

A (1& ~A ( &(mK2+ 2p. q 0 mrcs 2p. q. 0 0 mrc2 mrr2)

=a+mrrs(b+c)+2(P q)(c b), —
= (2s/fx')(&'(p) I LA ~"A. 'jI&'(p))

+B(p q)/fan'j,
or

c b= 2/fr—r', (23)

a+mrr'(b+c) = (2/3 frrs) (V2 ——,'«) (E'+(p)
I
v2up

—-', us+ l~3usI &+(p) ). (24)
Also,

A('& ~ mrpa' —2(p q)a'

=(2,/fx)(2(Z, II A —,a A„'gIZ, )
—(K+I [Ax, 8 A„"')II(.+))+0(p q)

Ol
a'= 0, (25)

a'= (2/3fz')(v2 —sr(c)(K+(P) Iv2uP
——,'u, —$%3u,

I
K+(p) ). (26)

(c) p', q'-+ 0 (or p, q-+ 0):

(s,t,u; q', q",p', p")&-+(s,t,u; q",q', p",p'), or (ii') t-channel
crossing symmetry, one finds

A ('& =a+b(u+t)+cs, A ('&= a'(u —t) . (21)

Using low-energy limits in commutator identities to
determine the coefficients, one 6nds

So A"'(s, t,u, )=(2/f r&s)I 2m r'c—(u+t)] I
while

A(P&(s, t, )=0+quadratic terms in invariantsj and,
uslllg

—327rm~u"'= 3th '
=A (r& (4mxs 0 0 mrcs m&rs mxs mxs)

a('& = ms—r/gsr frr'= 'm—- (29)

A linear expansion (21) for the EE amplitudes A ('& ('&

is plausible because for this I'=2 system there are no
unphysical threshold effects. However, such an expan-
sion for the Y=O 3&tE. system (which can be related by
crossing to EE) would not be expected to be valid,
since there are a considerable number of unphysical
thresholds for both I=O and 1=1 lying below the
elastic one at s&h

——4m~' ——0.98 BeU' Small J~~=O~
0+ eGects may permit a calculation of s wave KK
scattering lengths. But the experimental situation
reveals significant I=O, 1 EK effects although there
exist a variety of interpretations in the fits'. non-
resonance (with positive real scattering length), bound
system (with complex scattering length), or resonance
just above threshold.

Finally, we note that the ratio of the scalar density
terms coming from (1), s (&2+ «) (3r I

&2up+ us
I
7r )= m„'-,

and from (24), s(v2 —s&c)(K+Iv2up —sup+ —',au«I&+)
=mrrs, together with SU'(3) symmetry for pseudoscalar
states, can be evaluated without the necessity of a low-

energy limit as

(%2+K) (sr
I
V2up+us

I sr)

(v2 —-', &() (&+
I
v2up —sup+ srv3us IE+)

K2+« n+-,s&3P

K2 —-,'——', (—-', V3&t3+-',V3(-', &3)
A('&-+A('&(0 mar'+2p q', mrr' 2p q'm—rr', O,mrr', 0)

= a+2msrsb
= (2i/f&r')(OILA —,i7 A„jlz+(p)z+( -p))=0. —

&2+«) m, '

V2 —-', «l m&'
(30)

Therefore, if there is no F= 2 component in the commu-

tator I A', r7oAss j,''
a+2mxsb =0. (27)

We note that Eqs. (23), the kaon vector-charge matrix
element, and (27), the requirement of no Y=2 scalar

density, determine the scalar density matrix element
in (24): The right-hand side of (24) equals 2m'/frr'.
On the other hand, using the low-energy limit to evalu-

ate the matrix element in (24) by taking one kaon four-

momentum to zero yields this same answer as well as
conlrming the equivalence of (25) and (26). Of course,
this observation is entirely similar to one made previ-
ously for the xx system.

Equations (22), (23), (25), and (27) give

g'= 0 a= 4mrrs/frr' b= —2/free, c=0. (28)

Equation (30) agrees (f = f&) with our previously
derived (15). This observation, together with the fact
that (15) involves merely a vacuum to single-particle
state transition matrix element, serves to sharpen the
derivation of a similar equation, independently derived,
in Ref. 5 (where « is denoted by c).
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