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fhe elastic scattering amplitude of two spinless particles of equal mass —', was expanded elsewhere in a
double series of eigenfunctions which "displayed" its dependence on all the Mandelstam variables s, t, u
(s+t+n = 1).The expansion was then used to investigate the crossing properties of partial-wave amplitudes.
We show in this paper that these eigenfunctions are certain basis vectors of the representations (o,o) of a
suitably defined SU(3). The unequal-mass problem is also discussed.

order that 6 may have the requisite features. The
resultant constraints are fulfilled only when the par-
ticles are degenerate in mass.

In Appendix A, the unequal-mass system is considered
once more, and a few rather remarkable properties of an
associated Gram determinant are mentioned. These
suggest possible generalizations of our equations to such
systems, but also raise many unsolved questions.

In Appendix 3, we try to identify the new variables
we were naturally led to introduce in Sec. II.

The discussion is specialized in much of what follows
to the situation where the eigenvalue problem associ-
ated with e is solved on the Mandelstam triangle. (The
boundaries of this triangle are s=O, t=O, N=O. ) As
indicated elsewhere, ' however, the problem can be
solved equally well in the physical region. There should
be no difhculty in recognizing that the group which
underlies the corresponding eigenfunctions is SU(2, 1)
rather than SU(3). The necessary modifications in the
analysis will also be indicated in the text,

I. INTRODUCTION

II. THE GROUP

We first recall a few pertinent facts from our previous
paper. The particles are supposed to have the same
mass —,'. If s, t, u are the Mandelstam variables, the
Casimir operator of the s-channel little group, when it
acts on a function of s and t, has the form

8
(a) X'= ——(1—s,')—,
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' 'N a previous paper, ' we proposed an eigenfunction
& - expansion for the elastic scattering amplitude F of
two spinless particles of equal mass. These eigenfunc-
tions formed a complete set for a certain class of func-
tions of the Mandelstam variables s, t, I and were
associated with well-defined values of angular momenta.
They were generated by a partial differential operator 8
which cornuted with the angular momentum in the
three channels, and which was invariant under s, t, I
permutations. The expansion coeKcients were shown
to satisfy an infinite sequence of finite diniertsional

crossing relations due to the crossing symmetry of Ii.
Indications for extending the approach to systems with
internal symmetry or spin were also given. In a second

paper, ' the eigenvectors of the crossing matrices were
constructed.

In the present work, we formulate a plausible group-
theoretical basis for this expansion. In Sec. II, the
operator 8 is identified with the quadratic Casimir
operator of a certain SU(3) and the eigenfunctions of
5 with a specific subset of base vectors of its irreducible
representations (o,o).The partial-wave crossing matrices
are just Weyl reQections in these representations.

In Sec. III, the difhculties encountered by this
method when the particles do not have the same mass
are discussed. Some reasonable hypotheses for the
action of SU(3) on the scattering variables are made in
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The eigenfunctions of X' are the Legendre polynomials
Ei(s,). In writing (2.1b), we treat s, t, u as independent
variables. This is permissible since (84 8„—)(s+t+u)
=0. Only spinless systems are considered. The corre-
sponding t- and n-channel operators I"' and Z' are
obtained from (2.1b) by cyclic permutations of s, t, u.
The operator 6 is constructed in terms of I', F', Z' by
the definition

variables, and, moreover, if

(a) X2—I2 V2 —U2 Z2 +2

(b) 2'I s'I'=s+t+u (2.5)

The restriction to functions of s, t, I is understood in
(a). (b) suggests that we set4

6=X'+ V'+Z'. (2.2) z $1/2'& j z ~I/2gi&21 7 2 z —I'/'e'"3 (2.6)

then
(a) Isf=Usf=0,

(b) Csf= (P+U~+ys)f
(2 3)

It is required to identify 6 with the Casimir operator
of some group of transformations g. We first enumerate
the properties which are expected to characterize g:

(i) g must leave the surface s+t+u= 1 invariant. For
if it did not, the kinematical constraints on the system
would not be maintained under the action of g. The
form (2.2) for 8 also suggests the following:

(ii) g must contain three SU(Z) subgroups such that
the corresPonding Casimir oPerators reduce to X', Ys, Z'
when restricted to functions of s and t.

(iii) The quadratic Casimir operator of g must reduce
to 6 under a corresponding restriction.

Next, we show that it is possible to identify g with
the group SU(3).Let us implement the transformations
of this group on the complex three-vector (st,ss,ss) of
unit length (P, I s;I '= 1).Let I, U, V be the generators
of the three distinguished SU(2) subgroups which act
on the pairs (si,s,), (s„ss), (ss,sr).' If I,, Us, Vs are the
diagonal generators in this basis (Is+ Us+ Vs ——0), and
if f is a function of z; such that

Next, we note that owing to (2.4), the generators of
SU(3) can be written in the form

( 8 8'l 8 8'l
J3; =I s;—s;*

I

——s5; Q ss —ss* I, (2.7)
BSI I9S4 l l9Ss Bzi4

where the relationship between 8,& and I, U, 'V is given
in Ref. 3. Variables can be changed from z~, z2, z3 to
$, t7 I, yj7 q 2, p3 and results like

/8 8 /8 8
(2.8)

(8+1 8+2 (8 ties 8 ps

can be used to verify that I3, U3 annihilate s, t, e and
that (2.5a) is satisfied. Thus, the 8 of (2.2) is just the
quadratic Casiinir operator of this SU(3) when re-
stricted to functions of s and t.' (The scattering ampli-
tude, of course, is a function of this sort. ) It is easily
shown from what follows that the second Casimir
operator is not an independent one in the representa-
tions associated with 5.

This completes our identification of b. We note here
an identity which was vital in the preceding construc-
tion. As the cosines of the scattering angles in the three
channels may be defined to be

where Cs is the quadratic Casimir operator of SU(3).
LThe action of an element n+SU(3) on a function h of
z; is taken to be standard:

1+2t
cosOg = 1+2ucos8&=, cosa„=

$—1 t—1

1+2s
(2.9)I—1

(nh)(st, ss,ss) =h(n 'si, n 'ss, n 'ss).] (2 4) we have

The problem is therefore solved if the dependences of
z, on $, t, I are such that I3, U3 are zero on these latter

3The generators I, U, V are formally related to the X; of M.
Gell-Mann [Phys. Rev. 125, 1067 (1962)j through

[I4IQI4]—4 [~4X4)X4]q

[Ui, Us, U g = —,
' [i~4,Xr,—-', (X4—3'~'Xs) g,

[Vl VQ V4$ = -', [1~4,4,—-', (li4+3'~'l~, )g.

The generators 8;7' of Eq. (2.7) are related to I, U, V through

I4 = -'(8,' —844),

I =II+iIQ =BI
I —I1 ZI2 —+2 7

where the equations for U, V are obtained by permuting the
indices 1, 2, 3 of 8;7.

We emphasize that the internal symmetry group SU(3) and
the SU{3) of this paper act on diGerent physical variables and
should not be identified except by an isomorphism. The corre-
spondence introduced above is purely abstract.

(t/u)'~'= tansr84 (u/s)'~'= tan-,'8, , (s/t)'~ = tan-8 .
(2.10)

The eigenfunctions of 8 are contained in the basis
vectors of a certain class of irreducible representations
of SU(3). The harmonic functions of SU(3) have been

4 As we have mentioned in the Introduction, the discussion in
the body of the paper is largely con6ned to the interior of the
Mandelstam triangle, where the relevant group is SU(3). We
shall here give an example of the modifications necessary for the
physical region [s&1, 1 s&t&0], where —the group becomes
SU(2,1).The constraint equation s—(—t) —(—I)= 1 is identified
with the invariant quadratic form

( si ('—
( s4 (' —

( z4 ('= 1 of
SU(2, 1) by the relations s& ——s'/' exp(ipi), s2 ——(—t)'/' exp(ip2),
g3 (—I}'/2 exp (ii|I73). As regards the generators I, U, 7, U refer
to the SU(2) and I and V to the SU(1,1) subgroups [the latter
being locally isomorphic to the 2+1 Lorentz group So(2,1)g.
Some information regarding SU(2, 1) can be found in L. C. Bieden-
harn, J.Nuyts, and N. Straumann, Ann. de l'Inst. Henri Poincare
3, 13 (1965).See also Appendix 8 of Ref. 1.
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constructed by Beg and Ruegg. ' A comparison of their
results with our basis'

8 8I 1~
z 8 8 8

+ —2
2X~"' ~qx ~q2 ~ 3

(2.12)

When acting on F(s,t), these operators are clearly zero.
Hence the basis vectors 5 &' belong only to the center
of the diagram.

It may be observed that the elements of the Weyl
group on the three variables (zr, z2, z2) induce permuta-
tions of s, t, I in the arguments of the amplitude F.
The partial-wave crossing matrices which were evalu-
ated in a previous paper' are thus the matrix elements of
the Weyl operators in the representations (0,0).'

In the discussion of this section, it was necessary to
introduce three arbitrary angles q», q», q» in order to
identify our operators with functions of SU(3) genera-
tors. In Appendix B, we attempt an interpretation of
these variables.

III. UNEQUAL-MASS PROBLEM

The operator 5 was singled out to generate eigen-
functions for the expansion of F in the equal-mass
configuration because of its following features: (i) It
commuted with the total angular momentum in the
s, t, u channels (when restricted to functions of s and
t). (ii) It was invariant under s, t, I permute, tions.

Now, the Casimir operators of any SU(3) have to
commute with the Casimir operators of its SU(2) sub-

groups and the group elements which permute these
subgroups. Therefore, to obtain a generalization of {9

when the particles are not of the same mass, one may
try to 6t the three little groups of the scattering process
together into a suitable SU(3). We discuss the simplest
of these possibilities here and show that it does not
work. (See also Appendix A.) The considerations are
not general enough to rule out SU(3) altogether.

Let (si,s2, s2) be the labels of a vector in the (3,0)
representation of this SU(3). Experience with the equal-
mass system and, in particular, Eq. (2.10), suggests

S, ('(s,t)=(1 s)'I—'~ (("+")(2s—1)P((cosg,) (2.11)

shows that these are the central elements in the weight
diagram of the representations (0.,0). Here, the axes in
the weight space are related to a well-known way to the
operators~

I z2/zz
I

' '= tan-,'0„
I s2/zi I

' '= tan2'eg.

This means that

Izzl')2cot-'e, = lz, l')2 tan-,'e, .

(3.3)

There are two other constraints to be considered. The
partial-wave expansion of P in the s-channel, for ex-
ample, is its expansion in a series of P((cost), ) when the
variable s is held fixed. LThis is not the same as its
expansion in terms of E((coso,), where s(1+cosg,) and
cose„say, are regarded as' independent variables. j
Therefore, Is)I must be a function of s alone, and Is2I
one of t alone:

lzil = lzil (s), Izzl = I»l (t). (3.5)

First set t=0 and then set s=0 in (3.4) to solve for
lsil and lszl. Then, verify that these solutions are in-
consistent with (3.4) for arbitrary s and t in the
unequal-mass problem.
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APPENDIX A: SOME PROPERTIES OF A GRAM
DETERMINANT FOR THE UNEQUAL-

MASS SYSTEM

that we set

I
z2/»I"'= «n-.,'b&. , I»/s, l')2= tan-', 0„

I s,/» I

') = tan-,'e„, (3.1)

where 0„0t,, and 0„are the three scattering angles. But
(3.1) implies the identity

tan~0, tan20& tan20„= 1.
It may be verified that this identity is fully. lied if and
only if all the four particles are of equal mass.

It is also of interest to attempt to realize only two
of the three little groups correctly rather than all three.
(Consider, for instance, pion-nucleon scattering. ) So,
we may try, instead of (3.1),

Consider the scattering amplitude for the process
1+2~3+4 which is characterized by the momenta
P&'& (2= 1, 2, 3, 4). The P&'& satisfy the identities

(P &'&)'= 21 ' (A1)

(A2)p(1)+p(2) p(3)+p(4)

We can associate a Gram matrix g with this system as

5M, A. B. Beg and H. Ruegg, J. Math. Phys. 6, 677 (j.965).
The d functions in their Eq. (3.24) are related to Jacobi poly-
nomials. See, for example, A. R. Edmonds, Angular 3IIomegtum in
Quantum M'echaeics (Princeton University Press, Princeton, New
Jersey, 1957), p. 58.

See, in this connection, the discussion of Weyl reflections in
SU(3} by A. J. Macfarlane, E. C. G. Sudarshan, and C. Dulle-
mond, Nuovo Cimento 30, 845 i1963); N. Mukunda and L. K.
Pandit, J. Math. Phys. 6, 746 (1965); K. J. Lezuo, ibid 8, 1163.
(1967). Further references may also be found there.
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follows: Define 6rst the three four-vectors

(a) S„—p 0)+p (s) —p (&)+p (4)

(b) T —
p O) p (s) —p (4) p (s)

(c) U =P & —P =P s —P

The Mandelstam variables are

(A3)

while

s=S', t= T', u= U',

(a) S T= ', (mP+-m4' —ms' —ms'),

(b) T U= ', (m-)'+ ms m—s m—4 ),
(c) U S=-,'(m(s+ms' —mss —m4s).

(A4)

(A5)

The Gram matrix g is de6ned to be the real symmetric
matrix obtained from the scalar products of S, T, U:

s ST SU
g= 5T l TU

.SU TU N.
(A6)

When the masses are equal, 5 T= T U= U.5=0 and

g is diagonal.
The matrix g has some remarkable properties of which

we now list a few.
With every vector R„of the form uS„+PT„+yU„,

we can identify a row vector r= (n,P,y) in the space of

g such that
R@s=Fgr.

Let E„be the normal to the scattering plane:

S„=e„„),pS"T"UI'.

(A7)

(AS)

detg= 0 (A10)

describes the boundaries of the physical region. '
Further,

Traceg=s+t+N=m(s+mss+mss+m4s. (A11)

I.et 8, t, I be the three eigenvalues of g, and let

(, )t, f' be the corresponding real, orthonormal eigen-
vectors. As explained above, there is a natural mapping
of $, g, t' into the space of the four-vectors. It is given

by the equation

8„=&gS„+bT„+&sU„

and similar ones for T, U. We have

(a) 8 T=T U=U 8=0,
(b) 8'=s, T'=t, O'=N.

(A12)

(A13)

In terms of the variables 8, t, I, the physical regions
are bounded by detg=atN=0, that is, by the three

~ T. W. B.Kibble, Phys. Rev. 117, 1159 (1960).

The square of the norm of E is proportional to the deter-
minant of g:

(A9)
The equation

straight lines
8=0, t=o, N=o. (A14)

If the masses are equal, then 8= s, t= t,u= N.
The sign ambiguity of t, )), f can be resolved where

desired by requiring that 8, Z', U reduce to S, T, U
when the masses are the same.

The change of variables s, t, I~ 8, t, u involves square
and cube roots and is not trivial. But it has the beauty
of formally mapping the unequal-mass scattering
regions into the corresponding equal-mass ones. As such,
it suggests the following solution to the unequal-mass
problem: replace the variables s, 3, I in the equal-mass
results by 8, t, Q. We shall not discuss here the physical
implications of such an expansion and its relation to
the analyticity properties of the scattering amplitude.

APPENDIX B: INTERPRETATION OF
ANGLES pg) q2) y3

If we are to 6nd a physical interpretation of the
group generators and not just of operators like P, Us, Vs,
it is necessary to specify the action of the group on the
four-momenta of the system, In particular, the de-
pendences of the momenta on the angles q;, which were
introduced in the main part of the text, have to be
identi6ed. In the familiar theory of angular momentum
analysis where only one of the three channels is relevant
at a time, p2-p3, for instance, can be thought of as the
azimuthal angle of the spatial momentum in the s-
channel 6nal state in a special sort of orthogonal co-
ordinate system. This system has one of its axes in the
direction of the incident momentum. The polar angle
of the 6nal momentum is de6ned by this exceptional
axis and coincides with the scattering angle 0,. We refer
always to the center-of-mass of the process. Such a
choice of coordinates is not unique. In our problem,
the three channels are simultaneously involved and a
consistent interpretation of the q's along these lines'
has proved to be dificult. We therefore present two
alternative explanations of these variables in what
follows.

(1) We shall continue to work within the Mandel-
stam triangle. The spatial parts of the four-momenta
are pure imaginary here. It is understood until (8) be-
low that an i has been factored out of the space parts
of the momenta and hence that all four-vectors are
Euclidean. The requisite modi6cations for the physical
region and Minkowski metric will be occasionally indi-
cated within parentheses.

We use the notation of Appendix A with the addi-
tional proviso that the masses are equal. The sixteen
variables p„(o are constrained by the eight equations
(A1), (A2). In the absence of spin, the scattering mani-
fold is thus characterized by eight independent variables.
The 6rst suggestion that comes to mind is to imbed
y&, p2, q» in this manifold in a suitable manner. We
shall now characterize the latter in terms of familiar
geometrical entities.
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(a) p"'=l(S+T+U)
(b) p(»=-', (S—T—U),

( ) p (') = -,' (S+U T)—,
(d) p =-:(S+T-U),

(81)
(a) P (r)f P—(~)f

If S, T, U are introduced as in (A3), then (A2) is is a separate Poincare group for each separate particle.
fulfilled without further demands since Let the corresponding Poincare generators be labelled

as P„('), M„„"' (i=1, 2, 3, 4). Let f be a function of
the four-momenta p„(*'. If the particles are spinless,
the action of the generators on f can be taken to be

while (A1) assumes the form
(b) M""'f= & p."'

. p'—*' f (86)
()pv(o ()py(i)

If f is the scattering amplitude F, then(a) s+t+u=4m',
(b) S.T=T U=U S=O. (82)

(a) P„F=O,
(b) M„.F=O,

(a) P =P (()+P (2) P (2) P (4)

(b) M„„=QM„.").
(a) S=S/ (s,2

(b) T= T/t')2

(c) U= U/u'(2.

(83)

In the body of the paper, we set m~= ~.
I.et us next define the normalized vectors S, T, U where

through

(87)

As a consequence, Ii is a function of s and 3 alone.
The operators P„"+P„(), M„.(2'+M„„() generate

an algebra isomorphic to that of the Poincare group.
This algebra has two Casimir invariants. The 6rst is
the operator (P(»+P(") with eigenvalue (p(2)+p(4))',
and the second is the square of the s-channel Pauli-
Lubanski operator'

The vectors S, T, U and the unit vector

P„=s„„),pS.T),Up, P„N„=+1

X„'=—{1/2L (P (2)+P(4) )2$'(2)

Xs ) (P"'+P"')"(M"'+M"))' (89)

which acts only on particles 3 and 4. When restricted to
a scattering amplitude, X„ is invariant under 3 —+1,
4 —+ 2. Let I'„', Z„' be defined analogously in the 3 andI channels. It is immaterial for us here whether they
act on the initial or the 6nal particles in the channels.
Finally) definegS = S, gTo= T, gUo= U, gN'o=N. (85)

normal to the plane of the momenta p(') form an ortho-
normal tetrad in the four-dimensional Euclidean space.
LFor the physical region, S=S/s'", T= T/( t)M2, U-
= U/( u)"',—2V„=s„„)„S"T"Ul'form an orthonormal
tetrad in Minkowski space with N„¹=—1.g Such a
tetrad depends on six parameters. Let Sp, Tp Up

Qp $pSp „Tp)l Up& be a given fixed set of orthonormal
vectors (the reference coordinate system). Then, there
is a unique element g of SO(4) which maps S(), Ts, U(), Ns
onto S, T, U, N:

Conversely, every &SO(4) defines a unique ortho-
normal set S, T, , P through (85). Thus the set

(S,1;g,JII') is in one-to-one correspondence with the
group manifold of SO(4). (Similarly, in the physical
region, the set (8,1',O,N) is in one-to-one correspon-
dence with the group manifold of SO(3,1).)

We have proved that the scattering manifold within the

Mandelstam triangle (in the physical region) can be

identified with the product of the surface s+t+u=4ms
and the group manifold of SO(4) t'SO(3, 1)j.

The remaining problem is to imbed the topological
product of the circles labelled by the angles q; (a torus)
in the SO(4) manifold. There are clearly an infinite
number of distinct ways of realizing such a map. None
of them, however, seems very satisfactory.

(2) We shall finally mention a rather amusing though
far-fetched possibility.

A particle in a relativistic theory is abstractly associ-
ated with a basis of a representation of the Poincarb

group. In a scattering problem with four particles, there

(a) X'2=X„'X", Y»= I „'I l~, Z»=g lg~.

(b) ~ —XI2+ ir»+ g» ( )

It is easily checked that:

(i) When restricted to functions of s and t alone
Lthat is, functions which satisfy (87)j, the primed
operators in (810) reduce to the corresponding un-
primed operators in the text

(ii) Their commutators with P„, M„. vanish identi-
cally and without any such restriction.

It follows from (ii) that the vector

g =p 0)+p (2) p (2) p (4) (811)

)the eigenvalue of the operator P„of Kq. (8.8a)$ can
be regarded as a fixed nonzero vector in the problem

2 See, for example, J. Strathdee, J. F. Boyce, R. Delbourgo,
and Abdus Salam, ICTP, Trieste, Report No. IC/67/9, 1967
(unpublished) .
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(fixed, that is, under the little group operations) which
is allowed to vanish at the end of the calculations. The
Mandelstam invariants in such a case are six in number
and are given by

s= (po&+.pit&)s s'= (pie&+.pi4&)s (812)

and similar equations for t, t', e, u'. They are subject to
the one constraint

s+s'+t+t'+I+I'= ts+Snt'. (813)

The angles q; can now be imbedded in this system if
we set

2-1/s(sl/2+isrl/2) 2-1/2(s+sr)i/seine& (814)

and. likewise for ss, ss. The group SU(3) is allowed to
act on (zi, zs, ss) in the standard way [cf. Eq. (2.4) and
Ref. 5j.When („goes to zero, j' goes to zero, s', t', tt' go,
respectively, to s, t, tt, and (813) reduces to the familiar
constraint (8.2a).

The situation can be expressed in a picturesque form
by saying that our group SU(3) is the remaining ghost
group of the five-particle problem when one of the
particles collpases to the vacuum.

We conclude with a minor explanation. The three
differential operators in (8.10a) are a priori defined in
their corresponding physical regions and the latter are

mutually disjoint. In writing (8.10b) (and in many
other remarks in this paper), the analytic continuation
of these operators to suitable domains is understood.
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Scalar Density Terms, K~ and ZX Scattering Lengths,
and a Symmetry-Breaking Parameter*
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An estimation of s-wave Zx and ICE scattering lengths is made, and a discussion is given of the relation of
these quantities to scalar density matrix elements and the relevant symmetry-breaking parameter.

INTRODUCTION
' ' 'rSING low-energy theorems from the SU(2)

XSU(2) current algebra and Adler's partial
conservation of axial-vector current (PCAC) self-
consistency conditions, Weinberg' has estimated the
m--m scattering 1engths, assuming that a 1inear expansion
of the amplitude into Mandelstam invariants is approx-
imately valid up to threshold. In order to determine
some of the coefficients in the above expansion, the
isospin properties had to be specified of the scalar
density matrix element, or "a term" (zr

~
[A',c)eA„tjizr),

which involves the commutator of an axial-vector
charge and divergence of the axial-vector current (i,j
are isospin indices or, more generally, unitary spin
indices). It turns out that, within the parametrization
of Ref. 1, specification alone of the pion vector-charge
matrix element and the requirement of no I= 2 contri-
butions in [A', 0"A„'] completely determine' the value
of this matrix element:

i( (sr[
t'A" c&Aj[zr')= (nz.')Bzhg, t.

*%'ork supported in part by the U. S. Atomic Energy Co-
mission. Prepared under Contract No. AT(11-1)-68 for the San
Francisco Operations Ofhce, U. S. Atomic Energy Commission.' S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

'Reference 1; Eqs. (16) and (20) determine the coeKcient
of it b/t~. In the text, we use the state normalization (p~p)= (2zr)'2pe/t (0).

On the other hand, Khuri' arrived at the same value by
applying a low-energy limit directly to the scalar
density vertex defined by (1) upon using [the SU(2)
XSU(2) version ofj the algebra of scalar and pseudo-
scalar densities' which transform as (3,3*)+(3*,3)
under SU(3)XSU(3).

In this paper, an estimation of s-wave Em and EE
scattering lengths will be made using simi1ar current-
algebra techniques, and the relation of these quantities
to scalar density terms will be noted. In particular, the
scalar density matrix elements appearing in the EE
case are estimated by established SU(3)XSU(3)
commutators and PCAC principles, just as in Wein-
berg's mz estimation described above. For the ICx case,
additional assumptions are needed and the scalar
density matrix elements a,re determined by: (a) apply-
ing a low-energy limit to the scalar density vertex, and

(b) using an (approximate) determining relation for the
relevant symmetry-breaking parameter a. The scat-
tering-length determination for the EE case is con-
sistent with this last procedure. Finally, the consist-
ency of our use of the relation for /z itself, Eq. (15), is
discussed.

3 N. Khuri, Phys. Rev. 153, 1477 (1967).
'M. Gell-Mann, Phys. Rev. 125, 1062 (1962); Physics 1, 63

(1964).


