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Theories at Infinite Momentum*f

K. BARDAKcIf. AND M. B. HALPERN

Department of Physics and Lawrence Radiation Laboratory, University of California, Berkeley, California 947ZO

(Received 25 July 1968)

We construct Galilean-invariant theories (with Schrodinger equations) at intinite momentum that describe
interacting relativistic systems. Classes of both first- and second-quantized theories are presented. The
formalism provides a general approach to the saturation of current algebra; positivity of the mass spectrum
is guaranteed, and as much inelasticity as necessary may be introduced. More generally, however, such
theories oGer the hope of potential-theoretic intuition for relativistic physics.

I. INTRODUCTION

'HE in6nite-momentum limit 6rst found use in the
derivation of covariant sum rules from current

algebra. ' It was stressed from the beginning that the
applicability of the limit was tantamount to there being
no subtractions in the covariant dispersion relations of
the invariant amplitudes involved. Although the co-
variant and in6nite-momentum approaches to sum rules
are equivalent under this assumption, the in6nite-
momentum technique carried with it certain notational
intrigues —the dependence of matrix elements on longi-
tudinal momenta is washed out in the limit, leaving
structures reminiscent of a two-dimensional nonrela-
tivistic quantum mechanics (in the transverse vari-
ables). Indeed, this intuition played a central role in
the original Dashen —Gell-Mann scheme' for the satura-
tion of current algebra.

Somewhat later, Weinberg' showed that the "old-
fashioned" perturbation expansions of some simple field
theories have an infinite-momentum limit, the topo-
logical structure of which is nonrelativistic (e.g. , non-
relativistic propagators, simplified vacuum structure,
etc.). Frye and Susskind' pushed the analogy further,
using the in6nite-momentum frame to focus attention
on the (two-dimensional) Galilean subgroup of the
Poincare group.

These suggestions led us to inquire just how far the
nonrelativistic analogy can be pushed. In particular, can
one write Schrodinger (Galilean-invariant) theories at
in6nite momentum that completely describe interacting
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relativistic systems' The advantages of such theories
would be numerous: (a) They would be free of certain
subtractions, thus perhaps softening the divergence
problems of ordinary theories. (b) H representations of
current algebra could be constructed, the sum rules
wouM automatically be satis6ed. This is true only in a
few ordinary theories. (c) Because of their Schrodinger
formulation, and, in particular, because of their simpli-
6ed vacuum structure, such theories cou1d offer poten-
tial-theoretic intuition for relativistic physics.

Before sketching our results, we should state what we
mean by a theory (at inlnite momentum). We shall
demand Poincare invariance, unitarity, and positivity
of the mass spectrum, but we shall be more relaxed
about locality (crossing symmetry, spin statistics, etc.).
We sha11 feed-in some locality through the requirement
of local current algebra and/or Lorentz-invariant S
matrix, and in our second-quantized representations
we will work with (Schrodinger) fields local in the trans-
verse plane. As a result, we shall find that antiparticles
and/or spin statistics are not required, although they
may be included if desired. It may be that the universe
is no more local than this, but we have no real objection
to the reader viewing any of these theories as approxi-
mate. Indeed, perhaps our primary objective in writing
such theories is to lay the foundations for some approxi-
mate (potential-theoretic) models.

The plan of the paper is as follows. In Sec. II, we
review the in6nite-momentum limit, and emphasize
that it can always be viewed either as an integration
over the light cone, or a change of variables to a set
natural to the in6nite-momentum frame, or both. The
(free-particle) results of Susskind for the infinite-
momentum limit of the Galilean subgroup of the Poin-
care group are taken, in this sense, as a starting point.
Then we complete the Poincare algebra in terms of the
Galilean variables for n free particles. The Hamiltonians
for such systems have the usual nonrelativistic form.
The details of the change of variable (necessary to ob-
tain these representations from the usual ones) are
given in the Appendix. Another way of stating the
results of Sec. II is that the Poincare group can always
be represented in the space of solutions of a free (two-
dimensional) Schrodinger equation.

In Sec. III, we give a construction for introducing
potentials into the Hamiltonian (interactions between
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the particles), while keeping the nonrelativistic analogy.
Among other constraints, it turns out that the potential
must be Galilean-invariant in just the usual way. In
group-theoretic terms, the construction 6nds large
classes of interacting (two-dimensional) Schrodinger
equations whose solutions provide representation spaces
for the Poincare group. At the end of Sec. III, we discuss
positivity of the mass spectrum. The necessary and
sufhcient condition for this is that the Hamiltonian be
a self-adjoint operator, bounded from below, just the
condition that the potential theory itself be well de6ned.

Section IV is devoted to second-quantized representa-
tions. A free representation in terms of Schrodinger
second-quantized fields is given, along with an action
principle at infinite momentum to determine the inter-
actions. From the action principle, we recover the usual
theories (i.e., the modified Feynman graphs of Wein-
berg) plus some others. These others are nonlocal in the
usual sense, in that they need not have crossing, anti-
particles, or the correct connection between spin and
statistics.

In Sec. V, we consider the construction of currents
and the saturation of current algebra. By Noether's
theorem, it turns out that a form for the "good current"
is always the probability density of the Schrodinger
equation, while the (transverse) spatial currents may
be taken as the (transverse) probability Qux. These
currents automatically satisfy current algebra, but they
are not guaranteed to transform like four-vectors at
in6nite momentum, i.e., to satisfy the "angular condi-
tion. '" In this approach, since the mass spectrum must
be positive and the currents do satisfy the algebra, then
the angular condition is the crux of the problem. By
solving the Galilean part of the Poincare group ex-
plicitly, we give the angular condition as a relatively
simple operator condition. Free solutions and solutions
for the ordinary Qeld theories are given, but no attempt
is made in this paper to see if the angular condition is
satis6ed for the more interesting cases. It may be that
the angular condition is not satisfied for any of these
(Noether) currents, in which case one might want to
begin thinking about nonlocal currents: Solve the
angular condition and take whatever (in general non-

local) currents result.
In Sec. VI we discuss our results and collect some

miscellaneous comments, particularly about the intro-
duction of fermionic representations.

II. INFINITE MOMENTUM AND
FREE PARTICLES

We begin by stating our convention for the Poincare
algebra:

[P„,P„]=0, [M„„,Pp]=i(g„iP„g„lP.), —
[M„„,M p„j

=&[g.pM"+ g"M" g-M. p g.uM- j—~—

p (x,)=—lim e'~x& ds Vs~(x0)e '" &

g -moo
(II.4)

where x& is just the transverse part of x. Bardakci and
Segre' showed that the limit can be taken explicitly, '
yielding

p.(x,)= ds[Us (x„s,s)+ Vs (x„s,s)j

dsdt b(t s)[V;(*)+—U;(x)j. (II.5)

These are the so-called "good currents" at in6nite mo-
mentum, usually taken to satisfy a two-dimensional
algebra of the form

L -(.), (.)3= ~. .(.)~"'( —.') (»6)
A lesson to bear in mind is that the in6nite-momentum
limit can be achieved simply by doing this integral over
the light cone. As constructed, the good currents com-
mute with the "lightlike" subgroup of the Poincare
group

aC jE3 Ji+Es Ei Js Ps+Ps) . (11.7)

These are the generators that leave the direction of the
lightlike vector ql'= (1,0,0,1) invariant, so they are in
this sense singled out at in6nite momentum. Because
the lightlike group commutes with the good currents,
the simplest representation of the current matrix ele-
ments involves boosting the states with Jr+ Es,
E~—J2, and E3.' We shall have use for this kind of boost
in Sec. III, and. will return to the subject of currents in
Sec. V.

What about the in6nite-momentum limit of the gen-
erators of the Poincare group themselves? The limit is
defined as in Eq. (II.4), but this in general leads to in-

~ K. Bardakci and G. Segre, Phys. Rev. j.59, 1263 (1967),
6 V0 goes infinite in the limit, but so does s. A resca1ing of s

(change of variable) removes the whole problem.

where g.,= —g;,=1 (i=i, 2, 3). The rotations and
boosts are, respectively, e;;&J&=—M;;, E;=—M;„ thus

[J;)J;]=—[Kr,Kg=is;;sJs, [J;)E,j=ierisEs. (II.2)

For historical reasons, we introduce infinite momen-
tum with currents. Let V„(x) be a local spin-one cur-
rent (@=0, 1, 2, 3), with internal symmetry index n. Its
commutation relations with the Poincare group are

[M„„V', (x)]= i(x„—B„x„B„—) Up~

+s(g..V. g-V )—, (II 3)
s[P„,V, j=8„Vi

where we take x&=(t,x) Th.e objects of particular in-
terest in current algebra are the time components of the
current Vs (x). To obtain these components at infinite
momentum, we construct
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finities in the limit. For free-particle representations,
and in particular for the generators of the (two-
dimensional) Galilean subgroup of the Poincare group,
namely,

g=(Pp+Ps, Pp —Ps, P,(2=1, 2),
Jl+E2) El J2) Js}~ (11.8)

Susskind4 showed that these infinities can be scaled
and/or subtracted out consistently. For the case of one
free particle of mass m, that is,

where Ps (and Pp) is already known from (II.10)

—V'+m'q ( —i7'+m'q
t Ps=21 ~+ I

(1112)
l ti

For the case of n free particles, we need only add the
single-particle representation n times. Of special interest
in what follows is the representation for two free par-
ticles, and, in particular, its form in "center-of-mass"
variables. We define these variables in accord with our
Schrodinger analogy:

M„,=x„P„—x.P„, [x„,P„)= sg—„„,
8I I"=l

8$p
(II.9)

P=P &'&+P &'l Z =—(piiX&'&+ tisX "&)
M

23=—(tisP&'& —tiiP"'), ps= x"&—x"&,
3I

(II.13)

Susskind's results are in the limit,

Po+Ps= ti,

M= 7/1+ $2) P =
'g] gQ 8 8

E=
7 )

tii+ 'V2

V' m' I' ' m'
H= Po—Ps ———+—= —+—,

P,= —i8; (i= 1, 2),

Ji+E2 rix2p Ei J2 '/xi )

Js= —2(»~2 —»~i), Ks= 212[~,~/~V)+

(II.10)

where 7 =cii +cls P =Pi +Ps and s,ll coordinates
and derivatives refer to x. In Susskind s derivation, q
(called n) has a definite meaning (being essentially
Weinberg's ti), but we shall take this representation as
a starting point, considering it as an evident change of
variables from the usual set to those which are natural
in the infinite-momentum frame. The details of the
change of variable (to obtain this representation from
the usual one) are given in the Appendix. r The repre-
sentation emphasizes the fact that (up to factors of two
which can be fixed if desired) Pp+Ps is (analogous to)
the nonrelativistic mass, II=I'p —I'3 is the Harnil-
tonian, ' Pi (Pi,P2) are the (tr—a—nsverse) translation
operators, Ji+K2 and Ki—J2 are the nonrelativistic
(transverse) boosts, Js generates rotations in the trans-
verse plane, and E3 is the mass scaling operator.

If we are to fully describe the scalar particle, we must
complete the representation of the Poincare group in
terms of these nonrelativistic variables. This is ac-
complished by

8
Ji————c+ls-'2[x, sP)s~,

Bg

8
Js ———pi i—-', [xi,P3)~,

Bg

(II.11)

~ Because the infinite-momentum limit is equivalent to this
change of variable, we can essentially forget the motivation of the
representation in terms of infinite momentum. In this sense, one

where Z, P, 22, and po are two-dimensional (i= 1, 2) vec-
tors with the properties

[Z;,P;)=28;;, [oi,,ir,)=jh;, ,

[Z,po)= [P,pp) = [Z,os) = [P,23)= 0.
(II.14)

The result for the Poincare group is, after some algebra,

Pp+Ps= M,
H =Po Ps= ( ~z—'/i'� ) (—~.'/p)+ (m—'/p),

Ji+E2 MZ2, Ki ——J2 MZ1, — ——
Es 21i[M,ci/——B—M)++ 122[ii,8/'Bled-]~,

J3 Z1P2 Z2P1+ oilir2 &22rl I

Ji———-', [1/iV, E3)~Ps+-',[Z„P;)++-,'2[%,irs)+
——,

'
[ops) (2/M) 23 P+ (ri2 —tii/ri iris) (ir'+ m') )+,

J2= -';[1/M, E3)+Pi——2'[Zi, P3)p—
—2,2[1V,iri)~

+-,'[oii, (2/M) 23 P+ (tis —iii/iiitis) (tr2+m'))+.

(II.15)

The next question is how to put an interaction into the
system. %e set ourselves the task of doing this while
keeping the nonrelativistic analogy, namely Pp+Ps,
Pi, Ji+E2 Ei Js Js Es should keep the above forms,
while II, the Hamiltonian, changes to

(II.16)

might choose to describe our work in this paper simply as finding
Schrodinger-like representations of the Poincare group.

3 The term m'/p is an almost trivial constant potential. See
Susskind, Ref. 4.

The problem then is to find the restrictions on V and the
forms of J~, J2 such that we still have the Poincare
group. Instead of trying to guess these things, we intro-
duce in Sec. III a fairly general method of construction
that does everything automatically.
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Notice that we do not explicitly include the term
2122/ss in the potential, as we expect to find the mass spec-
trum directly by diagonalizing the Hamiltonian. The
four-momentum squared has the form

P'=M((~'/q)+ V)=MR;„„(II.17)

so the eigenvalues of MH;„~ give the mass spectrum,
and it need not resemble the "bare" spectrum. We shall
leave the discussion of positivity of the mass spectrum
(Ps) 0) until the end of Sec. III.

III. CONSTRUCTION OF INTERACTING
SYSTEMS

By commuting H (including V) with the generators
of the Galilean subgroup (and demanding the Poincare
group), one learns immediately thats

P,+E„vj= I E,-J„vg
= $Po+Ps, V)= LJs, v/=0, (III.1)

I E„vj=—iv.
Thus the potential must be Galilean-invariant (just as
in two-dimensional quantum mechanics), and have scale

(—1) with respect to Es. To get the rest of the condi-
tions on V, and the form of J~ and J2, we introduce a
construction due to signer'o which reduces the problem
to internal variables. Although the contruction works
with states, it will yield operator representations in the
eIld.

Consider the states of the system at rest, say Ie),
where

P, IQ)=0 (i=1, 2, 3). (III.2)

We can boost these states to states with finite I',
X (i = 1, 2, 3) in the following way'.

IP'&= U(P') Io&, P'IP') =P''Ip'&,
U(P') = exp Lin, (E,—Js)+ ins(J1+ E2)+insEs j, (III.3)

ni=Pi'/Po'+Ps', ns=P2'/P'o'+Ps',

ns ——ln(Pp'+ Ps'/(P') '")
where the primed quantities denote (c-number) eigen-
values, and P'=(Pp')' —P,'P is the invariant four-
momentum squared. Now consider the action of J on
the boosted state

JIP'&= U(P')JI0), (III.4)
J—= U'(P') JU(P').

One can easily calculate J from the commutation rela-
tions of the Poincare group. For example

Ji= (1/Ps) Ji+niJs —nsEs

+(1/2~.)L( "- "+1)~"—1j
X (Ji+Es)+ninsps(Ei —J2), (III.S)

Ps
——exp(ns) =Po'+Ps'/(P') '".
0These conditions are equivalent to guaranteeing that P' is

Galilean-invariant and commutes with E3."E.Wigner, Ann. Math. 40, 1 (1939).

In Eq. (III.4), J operates directly on
I 0). We denote the

angular momentum operators as they operate on states
at rest by j, i.e.,

JIQ)=j Ie); (III.6)

j is the "internal" angular momentum. Of course, we
shall in general take

g3 &1&2 &2Jt 1 y
(III.7)

while j& and y2 are as yet unknown.
Our task basically is now to guess forms for j and

boost appropriately. Wigner guarantees" us that the
following procedure leads to a J which satisfies the
Poincare algebra: (1) Construct the rest of j such that
it is Galilean-invariant and satisfies the algebra of SU(2)
on states at rest":

L&,,j,jI 0&='...,~. I
e&. (III.S)

(2) Construct P2=MII;„» out of the rotational scalars
of this group"

(III.9)

Physically, this requires that a rotation does not
change the energy of a state at rest. (3) Invert the
above machinery —i.e., from J, now as a function of j,
calculate

J(P') =—U(p') J(j)U'(P') (I»»)
Put all the factors P' in this expression to the right, and
replace them by operator P. The resulting J will satisfy
the Poincare algebra.

Thus our problem is mechanical. We need only con-
struct various sets of j, and run the machinery back-
ward. Not surprisingly, j may be constructed either (a)
out of 22, pp alone or (b) out of 22, oo, E, gs —qi. The first
case realizes garden-variety two-dimensional Schrod-
inger equations, while the second yields two-dimensional
Schrodinger equations with much more general "mass-
dependent" potentials. We begin with case (a).

Two-Dimensional Potentials

Construct a Galilean-invariant j as

21 sI opl)2rl sr2 3++2 I 1p2p 2J+2rl+ moil &

J2= ——:I~281 ~2 3++ 2LM1 Klj+%2+2N2, (III.11)

Doing the inverse machinery, we find

Ji= ——2'I 1/M, Esj+P2+-'2LZ2, Ps'j~

+ps(P1/3II)+j if(P')'"/M], (III.12)

J2= 2I 1/M)E23+Pi —2t Zi, PsJp
+ps(P2/M)+g2I (P2)1/2/M)

I' In general, signer's construction is guaranteed for irreducible
representations. Our representations are, of course, infinitely re-
ducible, and the results of the construction need. be checked.

"In general, our j will satisfy SU(2) as operator conditions.
"Because j is Galilean-invariant, the requirements {III.1) are

automatically satisfied except for the scale (E3). In practice, this
is fixed up trivially with factors of M.



The erst three terms in each of these expressions are of
course independent of our choice of j&, j2. What about
I' =HAH;„&P The only invariant in this two-dimensional
representation of j is j' itself. Thus E' may be an arbi-
trary function of j'. The most general internal Hamil-
tonian is then

jr= 4(~t' —~s'+tet' —~s"-),

js= s (7I tel s+ totals),

jr= s (tdts s (ds7I],) .

(III.14)

This is the SU(2) part of the representation of the
Lorentz group generated by the two-dimensional har-
monic oscillator. That it is not equivalent to (III.11)
is evident in the factor —, in j3."This angular momentum
has half-integral eigenvalues —thus being an illustra-
tion of our contention in Sec. II that the bosonic sub-
stratum of the representation need not be observable.
The only invariant of this representation is the familiar
form

s'+co'= 2j+1, (III.15)

so P'=IV((vr'/p)+ V) must be some function of this—
again an arbitrary discrete spectrum. The special case
that looks most like a two-dimensional harmonic
oscillator

&'= (M/p)(vr'+re') ~ V= te'/p (III.16)

illustrates a general property of all these two-dimen-
sional representations. The potential cannot be turned
off (because s' alone is not a rotational scalar). In the
more general three-dimensional representations, we shall
have a choice in this matter.

(III.13)

Note that the conditions (III.1) are automatically
satisfied, With this form for I', the reader is invited to
check the Poincare algebra. The restricted form of the
Hamiltonian in this representation means that the spec-
trum is always discrete (although arbitrary). It is not
likely" that such representations will be of help in the
saturation of current algebra.

Unitary equivalents of the representation (III.11)
may easily be constructed, but there is at least one
inequivalent representation using only ~ and ~. We take

where C is an arbitrary constant. These have the prop-
erties (i, j range from 1 to 3)

We have written W, %' as three-dimensional vectors,
and indeed they will be if we construct

After a little algebra, we can write j explicitly as

~2 Q1$2 P'Q
jg= C'/'o)2—,~S-

C' ' q, -gg M

+ L'R ' 6),'rs]y,
2C'/'

7l y gy'g2 I '0)

j = C'~'(vt+-
C~/2' g9—

gy M +

j3 &1&2 &2&1 ~

(III.19)
2C&/2

The inverse machinery" yields exactly the form Eq.
(III.12). P'=MFI;, t must be constructed out of the
invariants W', %' W, and N'= (7r'/p)+(C/p), or, more
precisely, to get the scale right, out of M%', W'/M,
and %' W. Thus the most general Hamiltonian is
(V=M 'V)

I'g' x' C
H = + + + V(3f%' W'/M %' W) . (III.20)

M p p M

We learn that C is the analog of ns' in the free-particle
representations, although, even in the limit V= 0, J does
not go over into the free two-particle J of Eq. (II.14).
Notice 6nally that this representation is not restricted
to discrete spectra; indeed the class of potentials is
strikingly large.

It would be nice to have a representation which re-
duces to the two-free-particle case when the potential
is turned o8. Such can be constructed in the following
way. Vile take the Galilean-invariant j as

Three-dimensional Potentials

First consider the Galilean-invariant structures

rl 102 z
W= p'"rn, pt", E+—P. ra

(C)'" r)s —tit M

'9 '9

j] zE x2
4yggg

Q2 Ql $1/2
j,= sN'rrt+ —

I ter, vr'j~
4/1'gl

(III.21)

1/2

(III.17)
C

'4I. T. Grodsky and R. F. Streater, Phys. Rev. Letters 20&

j3=Q)yx'2 —G02w'y
~

695 (1968); H. D. I. Abarbanel and Y. Frishman, Phys. Rev.
171, 1442 (1968).

"The inverse machinery yields (IIL12) again. Also, of course,
J3=ZII'2 —Z2PI+ ps.

'The characteristic form lV+(i/3E)P to in j is taken .for ex-
plicit Galilean invariance. The P u term can actually be omitted,
but then the inverse machinery will put it back in.
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+ zX'zrs—
~ »,—) ~

—
) (

—+v), (ru. 22~
p

etc. We need the invariants of j to construct the Hamil-
tonian. These we find again by exhibiting three-vectors
under j:

where F'=E+(z/M)P ea, as introduced above. These
j's are Hermitian because zrs/zl~qs commutes with the
(curly) bracketed structures in j& and js. The inverse
machinery yields

Jg —— ,'rL1/—M—,Ks]+Ps+ ,')Zs, P-s]++ysPy/M

Before passing on to a discussion of positivity of the
mass spectrum, it is helpful to relate these representa-
tions to the literature. These representations appear to
accomplish for the infinite-momentum frame what
Foldy" accomplished for the center-of-mass frame.
Among the differences between our representations and
Foldy's, one is particularly notable. While Foldy was
not actually able to find representations which reduced
(for zero potential and arbitrary frame) to the repre-
sentation of two free particles (separable representa-
tions), we have had no particular difhculty with this.
Thus the infinite-momentum frame carries with it a
rather more thoroughgoing nonrelativistic analogy.

. ~1
W= (ug z — $(gs —g~)rt~gs, S']~,

m'3f'
(III.23)

Positivity of the Mass Spectrum

For the case of one free particle of mass m, we have
P'= m') 0. For two free particles of mass m, where

P'=M((zrs/zz)+(nz'/p)] (III.28)

, ~2
I (ns —ni) ~~ash"]+,

x'M'

The invariants 8", %' W, and 4'=(zr'/y)(~~p) are
Galilean-invariant, now with zero scale, so we can use
them directly to form P'. The most general Hamiltonian
is then

I'g' x'
+—+—P'(W', %' W,%'). (III.24)

3f p, M

Notice that with I7=0, all the square roots cancel and
the representation reduces to the free two-particle
representation (II.14). To see this explicitly, one needs
to use the identity

——,'fees, (2/M)zs P]~
= js(P&/M) ——',(P aa/M, zrs]~ (III.25)

in Jz, etc. Of course we attain the zrz'= 0 (free) case, but,
if desired, , this can be trivally fixed by writing x' —+
zr'+zrz' in „(III.21). As a final comment on this repre-
sentation, we note that it is unitarily equivalent to
(III.19), being an evident change of variable.

There is another unitarily equivalent representation
of interest because it is simpler than the previous two.
We take

W= (~, —zM1P), %'= (zs, (kg —mls/2M)), (III.26)

j;=e,;1,8';0'&.

The inverse machinery yields (III.12) again, and the
most general Hamiltonian is

~e[
H = + +—V(Ws, W,%' W). (III.27)

M M M

one can easily show by the usual argument that
I"~&4m'. What about our interacting representations,
where zrz'/p, ~ VP

In the 6rst place, positivity of the mass spectrum is
always trivial if one is asking only for a representation
of the Poincare group itself. These operators do not
connect different values of I'", so it is easy to stay in the
space I")0. This is of course not the whole story. In
general, one would like the individual operators in the
representation, say x&'~, 8/Gris, etc., to be observables,
and hence not to link timelike and spacelike states.
There are two reasons why one might like the individual
operators to have this property: (1) If the potential
fell o6 rapidly for large distances, one would like the
individual particles, suKciently separated, to be sepa-
rately observable. Of course, this does not apply to any
of the harmonic-oscillator-like potentials for which there
is no hope of observing the input particles. (2) One has
in mind constructing (observable) currents out of (all)
the operators in the representation. Thus we must in
general have I")0 as an operator condition.

Of course it is easy to guarantee I")0 formally
simply by constructing it as a positive-definite function
of the invariants of j (as does I"oldy), but then the
breakup H; t= M((zrs/zz)+ V) is somewhat formal $i.e. ,
V—= (P'/M) (zr'/zz)], and we would—have trouble with
separability. Since we have a representation which goes
to two free particles when V=0, it is instructive to dis-
cuss the conditions directly on V itself.

Working in the space discussed in the Appendix, with
qq, gs and hence M positive, we see from (II.16) that
Ps)0 is guaranteed if H;„&=(zrs/zz)+V is a positive
(essentially) self-adjoint operator. Strikingly, this is
just the condition that the potential theory itself be
well dedned. Strictly speaking, the potential-theory
Hamiltonian must be bounded from below. For our

'r L. L. Foldy, Phys. Rev. 122, 275 (1961).



1692 HALPERND M. B.K. BA RDAKC I AN

a11dbetween ~I'~ and 0',one free particle e we
ver x and g. Thus

0
— d' d +'(x,rf)g@(x,g),F0+Pa —— d x

0
—

3 II=——d'xdg +'(x,g)Po—P3=H=
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(IV.3)d'xd~ et(x, ~) (~x,)e(x,~),
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free time dependence is

e(x, i/, ()= d g
exp(iq x)a(q, z/)

F2+2/z2)
)&exp i—

)
(IV.6)

Action Principle

Toward finding interacting representations, it will be
helpful to introduce an action principle. Among other

and similarly for 0't.
Of course $ is not the "real" time because H is not

Po. Writing

P pxp —Ppxp= -,'(Pp+P3) (xp —x3)

+,'(P, P,)-(x,+—x,) (IV.7)

with all indices covariant, we learn that $=-'2(t—s).
Later we shall have some use for the variable l= 2(t+s)
conjugate to Pp+P3.

things this will allow us to give a more familiar geo-7

metric interpretation for our generators of the Poincare
group.

We begin with the action for a free system:

d] dz/ d'x +z(x, 2/, $)

/
P' —2/z2~

&&~ ~q(x, „,~), (IV.S)

whe«p2= (p,—P,)(p,+P,)—P,2= 2'(a/8()+ V2 is the
invariant four-momentum squared of the first-quantized
representation. At first, we consider the system as a
classical field theory and derive the Poincare transfor-
mations in the usual way via c-number invanances of
the action. I is invariant under any of the transforma-
tion s.

{q —& q+zo.8,%, q t—+ +z+zn8, 42} (P,)

{4~ 4 —inz/4, 4'"~ 0 Z+Zui/OZ} ('Pp+P3)

{@—+ @—12(—qzpz232/ )@ @t-+It+a(—72+zzz'/2/)ql } (Pp —P3 H)

{q —+ 4 —nz/X2%, 4'~ 4'+nz/X2%'} (Ji+&2)

{4~ 4—az/xi+, 4'~ 4'+0.2/xi+'} (&1—A)

{q + q +zo!(Xi~2 %P/1)q p
4 + 4 +z12(Xi~2 X2 1) } (J3)

80-+0--,'io. q,———0, 0 -+4 ——,in g,——— (IC3)
8'g 2'Q Bg 2g

t9 1 8
ZQ 82 2ZX2 + 2X2Y/+Z) 28

Bz/ 22/ 8$
(Ji)

(8 1 8'I'~ q'"+« —
I

——82——,zx,—+2xzg+z) 28
&ag 2g a(

/8 1 8
4 ~ 4—zn +I 81+2zxi——2xi'9 —zp

&ag 2q a(

a 11 ae'—+ q'+zn ——~81+-2'zxi——2,X12/ —z&&i

ag 2gl a]

( 2) (IV.9)

where a is some constant, different in general of course
for each transformation. In this way, one identifies the
Poincare group. In addition to the introduction of $ de-
pendence, there are two simple differences between this
representation and our previous (IV.3). In the first
place, wherever H appeared, it has now been replaced
by z(8/8$) This is c.loser to the usual field theoretic
way of approaching the Poincare group, and, not sur-
prisingly, allows geometric interpretation (which is par-

ticularly needed for our J1,2). For example in the case
of Ji, going over to Laplace transform space fi((8/82/)—(1/22/)) —+ 1, 2/~ —z(8/Bl)1, the rotation due to Ji
takes a more familiar form, "namely z(x28, t82) where-
t=21($+l) The second. difference is that, wherever z(8/
Bz/) appeared before, we now have z((8/Bz/) (1/22/)). —
This is the natural (Hermitian) derivative in a space

This is not the usual JI, but it is an angular momentum
nonetheless.
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The number-conserving potential (IV.12) is just the
boosted form of the term in btbtbb of the X@4 interaction,
that is, in terms of the positive and negative frequency
components of g, it is XJ'()/'x t)t+t)/d+p d))d . At finite mo-
mentum we do not really know how to formulate a
theory with such a nonlocal interaction. At in6nite mo-
mentum, on the other hand, such an interaction gen-
erates, quite straight forwardly, a covariant unitary
(not crossing symmetric) 5 matrix. It will be interesting
to study this case more fully, especially with reference
to the (-ordering LEq. (IV.18)] and locality.

To reemphasize that our boosting is essentially a
change of variable, we note finally that the (free) field

p can be written directly in terms of 4 and 0't. From
Eqs. (IV.20) and (IV.22),

y(x) = —(2~)'/'

)(I @(x~ ()g iet(t+z)/2+@t(x ~ ])/eiet(t+z)/2] (IV 24)

U= ZPxesd/ S(~—s)S(x) (IV.25)

is the potential in the Schrodinger picture at in6nite mo-
mentum. There is a simple relation between J'd'x S(x)
and the interaction in the "interaction" picture
J'„+"U($)dg. In fact, they are equal: Changing vari-
ables, using translational invariance, and ignoring fac-
tors of 2,

ddx $(x)

A formal comment is in order here. We have noticed
that our limit procedure yields the infinite-momentum
results in the "Schrodinger" picture. This happens of
course because of the factor 8(t—s) =-', B(g) that appears
in the limit. We can get some feeling for the different
pictures via the following argument. We have shown
that if S(x) is the scalar interaction of an ordinary field

theory, then

V. CURRENTS

p.&(x,)—= dsdt b(t-s) U.~(x), (V2)

where U t'(x) is a local four-vector current. The "good"
current Lthat combination which appea, rs in current
algebra, Eq. (V.1)] is p = p

'—p '. From the integral
representation (V.2), one deduces the following light-
like (or Galilean) transformation properties of the
currents

E&p,/'] = L&p,/'] =~(/'+/ '),
)Kpt/']= d/'t PPp+P—» / ]=Ox

LJi+& /']=Pi+I:»/']=
LJi+I~» p ] 0t I Ji++pt p ] ipt

L&i—J» /']= I &i—J» /']= ~/',

L&i—J2t p']= —
i/pt [E, J,t p']=0, —

(v.3)

One of the main motivations for introducing dy-
namics at infinite momentum is the problem of 6nding
relativistic currents that satisfy current algebra

f/) (x,),/)s(xi')]=ic /'"p&(x, )5(,p)(x, x—,'). (V.1)

Our formalism provides a fairly general approach to the
problem: (a) Because we have Schrodinger equations,
simple currents that satisfy (V.1) are always provided.
In general, e.g. , the "good" current is the probability
density 4t4. (b) As discussed in Sec. III, any reason-
able Hamiltonian will guarantee a positive mass spec-
trum. (c) We can allow as much inelasticity as necessary
in the saturation. That solutions to the scheme exist,
given enough inelasticity, is obvious: The p' and P'
theories (with isospin, rewritten at infinite momentum)
solve the problem mathematically. The task is to find
more interesting solutions, preferably in smaller spaces,
so they can be handled nonperturbatively.

In our formalism then, the difficult part of the current
algebra problem is to insure that the current transforms
like a four-vector at infinite momentum. In what fol-

lows, we examine this requirement.
The currents at in6nite momentum are given by

d'xd )dl 5(x„j,l)

r
e'«~~ d'xdt d(x„O t))e '"t (IV.26)

where the internal symmetry label 0. has been sup-
pressed, and p'—= (p',p'). As mentioned in Sec. II, the
good current then commutes with the lightlike group

Pp /]= LPp+Pp, /]
=LJi+Ep /)]=[Xi—J» /)]=0. (V.4)

die'«~~ d'xdedt lt(t e)5(x))e '«—

This is then another way of seeing that this structure
must be a four-scalar.

In the first-quantized notation, " one can verify that
the general solution to this algebra is

pP = (1/2M) LftPp]+ —(1/2M') LP;tg;]i.+ (ti/M'),

P = —(1/2/I-'f )Ef P]++ (1/deaf )a (V5)

/ =/' /'= f, —

"The second-quantized solution is essentially the same (sand-
wiched between 4't and 4', and integrated dg).
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where f, g= (gi,g2) and K are as yet undetermined func-
tions that commute with Ji+E2, Ei J—2, Ps+Ps, and
E3. In the two-particle case, these functions must then
involve only Z, 22, to, and scale-invariant combinations
of N', p&, and q2. By further commuting the currents
with Js, one learns that f and K must transform as
scalars under this rotation, while g is a two-vector.

There is one final condition that must be met to in-

sure correct Lorentz transformation properties for the
current.

[P,,[J,,p '(x,)]]=0 (i summed from 1 to 3). (V.6)

This "scalar angular condition" follows immediately
from the definition of p& and the commutation relations
of V "(x) with J and P. In fact, the scalar angular con-
dition has a very simple physical interpretation: The
fourth component of the current carries no spin, its
angular momentum being entirely orbital. Thus, on po,

we must have J P= 0 (i= 1, 2, 3), which is the content
of (V.6). Equations (V.5) and (V.6) are necessary and

sufFicient for the correct Lorentz transformation proper-
ties of the infinite-momentum current. '4

In general the scalar angular condition is a set of
coupled linear differential equations for f, g, and K. The
easiest way to project out these equations is by com-
muting (V.6) with the generators of the lightlike group.
As an example, we give the results for the case of two
free (first-quantized) particles.

z
[J' P,f/~] (LP—i,g2]—[P2,gi]) = o

M'

iJ»—[P' g'] +,[H.i ([Pi g2]—P'2 gi])]=0
M 2M'

J P)—(p'2)gl] —p'i, g2]) + [PA[Ps,K]]

(V.7)
Z

+ [Pi [Pi K]]+ [H; &,[P,,g;]]=0,

and H;„& rr——2/Ix. These equations commute with the
lightlike group and hence have no hanging derivatives.
In fact, they are relatively simple equations. For any
function, say A, which has scale (—1),

[J P,A]= —-', [H;„,,[j„A]]+Lj' [P',A]]

+ [j„[Pi,P'i, A]]+[P2,P'2, A]]]+. (V.9)
2M

This applies to each of the equations in (V.7). We shall
not attempt to find the general solution to this system,
although a particular solution will be noted below. One
remark is instructive however: If f is known, then (from
these equations) g and K are known up to constants.
This feature is independent of the free case, and, in
fact, perfectly general.

One can also write a "vector" angular condition on
the good current p. Either by combining (V.5) and
(V.6), or directly one can verify that

[J»[J»[J»p-(*.))]]=[~P,LP,P-( .)]] (V 10)

This relation is essentially, but not quite equivalent to
the scalar angular condition: Evidently it does not
determine g and K, although these can always be deter-
mined from equations like (V.7), once p= f is known.
This "vector" angular condition is equivalent to the
"angular condition" popular in the literature, the usual
form being derived for certain matrix elements of the
currents, thereby involving the masses of the states in
a complicated way. We believe that the operator for-
malism, and in particular the scalar angular condition,
is simpler and more transparent.

It is also useful to know the statement of current
conservation at infinite momentum. Again from the in-
tegral representation (V.2), it can be shown that
r)„V,&(x)= 0 implies'

[H,p ]+2[P;,p, ']=0 (i summed over 1, 2). (V.11)

Z

[J P)K/M]+ —P" [Pi g2]—P'2ylgl]]
43f'

z
+ LP'i, g2]—P'2 gi]»'-21= o

2M
where

This is in fact just the statement of probability con-
servation for a two-dimensional Schrodinger equation
(p being the probability density and p' being the two-
dimensional probability flux). In terms of the functions

f, g;, K introduced above, current conservation
becomes

[J P,8]=—[P;,[J;,8]] (i summed from 1 to 3)

[P2,8]—=[P;,[P;,8]] (i summed from 1 to 3)

2
LH;.„f.]+—[P;,g;1=0.

M
(V.12)

'4 Actually the scalar angular condition can be simpli6ed some-
what by using translational invariance. Call the position label of
the current a= (o,,u2), i.e., p&=p&(a). Then we can write

p"(a) =exp(ia Pi)p"(0) exp( ia Pi), —
with which it is easy to show that PE;,PJ;,p (0)g)=0 (i summed
over I and 2) is equivalent to (V.6). In this form, of course,

P'r, f-(0)j=EJ& K (0)j=o,
EJ4ar (0)3=its (o), C~s,is (0)3=—igi (0)

Simple Solutions

Although we shall not attempt to solve the current
algebra problem in this paper, we can at least give solu-
tions for the free cases, and for the Xps and X&4 theories
at infinite momentum (with internal symmetry).

For the case of two free (first-quantized) particles,
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p &(x)=-'C»

dq 4 &t(x, g)~I, (x,q),

—op'(x, g) (—i8,)+,(x,g),

(V.14)

where we have trivally addended internal symmetry
to the basic fields

L+ (,n)P~'( ',8')]=& &"'( —')&(il —n') (V15)

From this, one might guess

p.~(x,) =-',C» %ii'(x, q)P—„+,(x,q), (V.16)
p g

where P„is just the usual first-quantized form in (II.10).
This form is entirely analogous to (V.13) and indeed
solves the angular condition. This form may also be
derived directly by boosting the analogous field theories;
that is, take V„=C»&sB„&&and evaluate the integral
representation for p & (in the fashion of Sec. IV).

Before passing on, we can make a few comments
about the general case. A form for p and p' is always
given (by Noether's theorem) that satisfies the local
current algebra (V.1). Because of the Schrodinger for-
malism, this p always has the characteristic form dis-
played above, while the form of p' will change in the
presence of derivative coupling. One approach then is
to check directly whether p satisfies the triple (vector)
angular condition. Alternately, one can try to use the
(simpler) scalar angular condition to calculate po. For
the free case and the simple field theories discussed, the
angular condition is satisfied, but it is doubtful that this
is true for very many of the first-quantized potentials.
If it turned out that none of the (nontrivial) Noether

a solution is

(a) f (a) g (i)g(2)(x (i) a)
+X &'&8&'&(xi&'& —a) (V.13)

g; =If. =0,
where a= (ai,a2) is the position label of the current, and
X is a representation of SU(2), SU(3), etc. In fact, each
term of p satisfies the angular condition separately
(similarly for p ). It is gratifying to note that, at
least in the free case, the nonrelativistic analogy is
preserved: p is precisely the probability density for two
Schrodinger particles in a two-dimensional world. Simi-
larly, p„' is the (transverse) probability flux. Moreover,
of course, this current satisfies the two-dimensional
continuity equation (V.11). It is not likely that this is
the most general solution to (V.7), but it may be that it
is the only solution that satisfies a local current algebra.

The situation for the second-quantized theories is
quite analogous. For the free case or the Xp' and Xp' in-
teractions discussed in Sec. IV, we have directly from
Xoether's theorem and the action principle

currents transformed correctly, one might be tempted
to solve the angular condition anyway and take what-
ever (in general nonlocal) currents resulted.

VI. DISCUSSION

8 I'g m
J2=—8i—-', Lxi,P3]~+-',o.3—+—o.„

8'g '27 2g

J3= Z($182 X281)+go 3 q

(VI.1)

where o- is the set of Pauli matrices. This is a represen-
tation for a particle of spin -„positive energy, and mass
m. The representation can be constructed via the
method of Sec. III, taking j;=-',0-;, or alternately by
boosting the usual representation. Having this repre-
sentation, the paper could be repeated for it. Here we
only want to make some comments about second-
quantization, and spin statistics: A free second-quan-
tized representation may be constructed, as in Sec. IV,
either with commuting or anticommuting 4's. Thus,
although the correct connection between spin and sta-
tistics can be maintained, it is not required. (Although
it was not explicitly mentioned in Sec. IV, the spin-zero
particles can also be second-quantized with anticom-
muting + s). Similarly, antifermions may be included
but are not required.

Gn the other hand, it may be possible to include
half-integral spin without such direct methods. That
the bosonic substructure of the previous representa-
tions need not be observable was already evident in the
representation (III.14), which contains half-integral
spin. More generally, however, it is well known that the
two-dimensional Schrodinger equation for two free
particles admits half-integral solutions, "in the space of
which all'. operators are self-adjoint and all observables
single-valued. At infinite momentum, we are dealing
with exactly this situation, and there may be both in-
tegral and half-integral solutions to many of the Grst-
quantized theories of Sec. III. Whether this is in fact
true depends on whether the rest of the Poincare gen-
erators are self-adjoint in the space of the half-integral
solutions. This is presently under investigation.

A second comment concerns our second-quantized
theories. Evidently, our unfortunately brief list of

25We thank Professor C. Schwartz for a discussion on this
subject.

There are a number of loose ends that we would like
to discuss in Sec. VI. The first is half-integral spin.

In the first place, it is easy to construct half-integral
'spin representations (at infinite momentum) while
keeping the nonrelativistic analogy. For example, we
take the one-free-particle forms of Po+P3, Po P3, P-,,
J'i+E2, Ei J2, an'd —&3, plus

I'g m
~2+ 2 (+27 3]++4&8 + 01 y

8g g 2g
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theories follows from our strict adherence to the usual
second-quantization schem= = g

~ ~ "- =which uarantees t at
all particles are on an equal foo

'
g.ootin . In Sec. III, we o-

d much larger classes of theories by manipulatingtain e muc ar
the internal variables freely. On e o e

f the second-quantized theories do not
disturb the current algebra, while most o e po e

III obably do not admit (relativistic) current
of thou ht:al ebra. This gives rise to two possible lines o g

(a) Can one write o er 'nth kinds of creation-annihilation
h

'
that are not derivable from an actiontheories, say a

Such a question is of course relevant to or inary
an is probabl too much to ask at the present time.

representations? These are like y to sa is y
condition, e c., ut but are di6icult to find. This is also
under investigation.
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&t f,gg= d'P f*(P)&g(P)=0

where the integration is over all momentum space an
6 is some operator. sui aA uitable dense set of test functions
for obtaining re a sons1 t' between unbounded operators
is, for exampe, e usua1 th ual set of Gaussian-smeared
functions

(A.3)lim exp(+~P~')f(P)=0.

t to make a change of variable from theNow we wan o m
P, P, P,) to (Pi,Pp, g =Pp+ Pp). The metric oof theset ip py

APPENDIX: INFINITE-MOMENTUM LIMIT
AS VARIABLE CHANGE

Our purpose ere is o speh
' t pell out the change of variable

necessary to ac ievet hieve the infinite momentum limit repre-

care group. n is w. I th' way we can also learn the appropri-
d t d suitable dense sets of test func-ate inner product an sui a

se of onetions. vve con ne o. yV 6 e our discussion here to the case o one
free particle of mass m.

We begin with the Poincare group

J=—'PXV', K= '(Po)'"V' (Po)'", (A.1)
—( '+P '+P '+m')' '. The inner productwhere Pp= (Py ~

appropriate for this representation is

and 8 are the same functions and operatorwhere f„,g„an „are
as be ore, now in ermb I, terms of the new variables. To com-
plete the change of variable, we list

Pp= —(g' —P, '—mo)
2n

8 l9 Py 8
+——

OPS BPg Pp l9'Q

(A.S)

8

BP3 Pp gg

Wit tisin an, w
'

ji n' '
h d we can rewrite the generators

themselves. For example, in the case of J~, we fin

P2
Ji———iPp— +iPp — +———

&p 8q BP2 Pp 8g
(A.6)

With a little algebra and the fact that (Pp, J'i) =0, we
can express. this as

P 1/2PPp 'i'p 8 -— 8 -
q P,

ag 'aP, +

In fact, one learns that all the generators can be put in
the form

All„,= (Pp/q) '"3E„.~(Pp/q)'",

where M„,r are (the transverse momentum space
counterpar s o et f& the generators given in the text. If new
test functions

(A.9)

de6ned the generators can thus be taken as M„,~,
1 the t icalwi es'th the simple metric d'pdp. Note final y e ypi

behavior of the test functions for large and smmall
(Pp going to plus and minus infinity respective y)

exp( —(P)')
= expL —P,P—(1/4g')(g' —Pi' —m')'j. (A.10)

This is certainly adequate to drop boundary terms.

new inner product differs by the Jacobian of the
transformation.

(Pp
8(f,gj=8„(f„,g„j= d'P dql —f„*e„

p

(A.4)

Po = (g'+—P,'+m'),
2n


