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We construct Galilean-invariant theories (with Schrédinger equations) at infinite momentum that describe
interacting relativistic systems. Classes of both first- and second-quantized theories are presented. The
formalism provides a general approach to the saturation of current algebra; positivity of the mass spectrum
is guaranteed, and as much inelasticity as necessary may be introduced. More generally, however, such
theories offer the hope of potential-theoretic intuition for relativistic physics.

1. INTRODUCTION

HE infinite-momentum limit first found use in the
derivation of covariant sum rules from current
algebra.! It was stressed from the beginning that the
applicability of the limit was tantamount to there being
no subtractions in the covariant dispersion relations of
the invariant amplitudes involved. Although the co-
variant and infinite-momentum approaches to sum rules
are equivalent under this assumption, the infinite-
momentum technique carried with it certain notational
intrigues—the dependence of matrix elements on longi-
tudinal momenta is washed out in the limit, leaving
structures reminiscent of a two-dimensional nonrela-
tivistic quantum mechanics (in the transverse vari-
ables). Indeed, this intuition played a central role in
the original Dashen—-Gell-Mann scheme? for the satura-
tion of current algebra.

Somewhat later, Weinberg® showed that the ‘“old-
fashioned” perturbation expansions of some simple field
theories have an infinite-momentum limit, the topo-
logical structure of which is nonrelativistic (e.g., non-
relativistic propagators, simplified vacuum structure,
etc.). Frye and Susskind? pushed the analogy further,
using the infinite-momentum frame to focus attention
on the (two-dimensional) Galilean subgroup of the
Poincaré group.

These suggestions led us to inquire just how far the
nonrelativistic analogy can be pushed. In particular, can
one write Schrodinger (Galilean-invariant) theories at
infinite momentum that completely describe interacting
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relativistic systems? The advantages of such theories
would be numerous: (a) They would be free of certain
subtractions, thus perhaps softening the divergence
problems of ordinary theories. (b) If representations of
current algebra could be constructed, the sum rules
would automatically be satisfied. This is true only in a
few ordinary theories. (c) Because of their Schrodinger
formulation, and, in particular, because of their simpli-
fied vacuum structure, such theories could offer poten-
tial-theoretic intuition for relativistic physics.

Before sketching our results, we should state what we
mean by a theory (at infinite momentum). We shall
demand Poincaré invariance, unitarity, and positivity
of the mass spectrum, but we shall be more relaxed
about locality (crossing symmetry, spin statistics, etc.).
We shall feed-in some locality through the requirement
of local current algebra and/or Lorentz-invariant .S
matrix, and in our second-quantized representations
we will work with (Schrédinger) fields local in the trans-
verse plane. As a result, we shall find that antiparticles
and/or spin statistics are not required, although they
may be included if desired. It may be that the universe
is no more local than this, but we have no real objection
to the reader viewing any of these theories as approxi-
mate. Indeed, perhaps our primary objective in writing
such theories is to lay the foundations for some approxi-
mate (potential-theoretic) models.

The plan of the paper is as follows. In Sec. II, we
review the infinite-momentum limit, and emphasize
that it can always be viewed either as an integration
over the light cone, or a change of variables to a set
natural to the infinite-momentum frame, or both. The
(free-particle) results of Susskind for the infinite-
momentum limit of the Galilean subgroup of the Poin-
caré group are taken, in this sense, as a starting point.
Then we complete the Poincaré algebra in terms of the
Galilean variables for # free particles. The Hamiltonians
for such systems have the usual nonrelativistic form.
The details of the change of variable (necessary to ob-
tain these representations from the usual ones) are
given in the Appendix. Another way of stating the
results of Sec. IT is that the Poincaré group can always
be represented in the space of solutions of a free (two-
dimensional) Schrédinger equation.

In Sec. III, we give a construction for introducing
potentials into the Hamiltonian (interactions between
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the particles), while keeping the nonrelativistic analogy.
Among other constraints, it turns out that the potential
must be Galilean-invariant in just the usual way. In
group-theoretic terms, the construction finds large
classes of interacting (two-dimensional) Schrédinger
equations whose solutions provide representation spaces
for the Poincaré group. At the end of Sec. III, we discuss
positivity of the mass spectrum. The necessary and
sufficient condition for this is that the Hamiltonian be
a self-adjoint operator, bounded from below, just the
condition that the potential theory itself be well defined.

Section IV is devoted to second-quantized representa-
tions. A free representation in terms of Schrodinger
second-quantized fields is given, along with an action
principle at infinite momentum to determine the inter-
actions. From the action principle, we recover the usual
theories (i.e., the modified Feynman graphs of Wein-
berg) plus some others. These others are nonlocal in the
usual sense, in that they need not have crossing, anti-
particles, or the correct connection between spin and
statistics.

In Sec. V, we consider the construction of currents
and the saturation of current algebra. By Noether’s
theorem, it turns out that a form for the “good current”
is always the probability density of the Schrodinger
equation, while the (transverse) spatial currents may
be taken as the (transverse) probability flux. These
currents automatically satisfy current algebra, but they
are not guaranteed to transform like four-vectors at
infinite momentum, i.e., to satisfy the “angular condi-
tion.”? In this approach, since the mass spectrum must
be positive and the currents do satisfy the algebra, then
the angular condition is the crux of the problem. By
solving the Galilean part of the Poincaré group ex-
plicitly, we give the angular condition as a relatively
simple operator condition. Free solutions and solutions
for the ordinary field theories are given, but no attempt
is made in this paper to see if the angular condition is
satisfied for the more interesting cases. It may be that
the angular condition is not satisfied for any of these
(Noether) currents, in which case one might want to
begin thinking about nonlocal currents: Solve the
angular condition and take whatever (in general non-
local) currents result.

In Sec. VI we discuss our results and collect some
miscellaneous comments, particularly about the intro-
duction of fermionic representations.

II. INFINITE MOMENTUM AND
FREE PARTICLES

We begin by stating our convention for the Poincaré
algebra:

[P#:PV:I=O; [:Muv,-Pp]:i(ngn_guva) s

(M, M,]
= i[ngMux+ganVP-‘ gﬂKMup_gupr] )

(IL.1)

THEORIES AT INFINITE MOMENTUM

1687

where goo=—gi=1 (¢=1, 2, 3). The rotations.and
boosts are, respectively, e;jxJr=M;;, Ki=M,,; thus

[JiJil=—[K,Ki]=teiT v, [Ji,Ki]=te:5Ks. (11.2)

For historical reasons, we introduce infinite momen-
tum with currents. Let V,%(x) be a local spin-one cur-
rent (u=0, 1, 2, 3), with internal symmetry index a. Its
commutation relations with the Poincaré group are

[Mlﬂ” V',,“(x)] = 'i(xnav_' xvan) V=
+i(gV u*—8us V%) (IL3)

":[P#;an: 3,V,%,

where we take x#= ({,x). The objects of particular in-
terest in current algebra are the time components of the
current Vo%(x). To obtain these components at infinite
momentum, we construct

pa(Xl)E;‘i_{g ei"Kafdz Vox(x,0)e-*Es  (I1.4)

where x, is just the transverse part of x. Bardakci and
Segre® showed that the limit can be taken explicitly,$
yielding

pa(X1)= f dz[Vo(x1,2,2)+ V3*(x1,2,2) ]

=/dzdi 8(t—2)[Vox(x)+ Vs2(x)]. (IL5)

These are the so-called “good currents” at infinite mo-
mentum, usually taken to satisfy a two-dimensional
algebra of the form

[pa(%1),08(X,") J=9C apypy (x)6 P (x,—X.') .

A lesson to bear in mind is that the infinite-momentum
limit can be achieved simply by doing this integral over
the light cone. As constructed, the good currents com-
mute with the “lightlike” subgroup of the Poincaré

group

(IL.6)

L={K;, J1+Kz K1—Js, Pot+P3}.  (AL7)

These are the generators that leave the direction of the
lightlike vector n*=(1,0,0,1) invariant, so they are in
this sense singled out at infinite momentum. Because
the lightlike group commutes with the good currents,
the simplest representation of the current matrix ele-
ments involves boosting the states with J+Ko,
K1—J,, and K;.5 We shall have use for this kind of boost
in Sec. II1, and will return to the subject of currents in
Sec. V.

What about the infinite-momentum limit of the gen-
erators of the Poincaré group themselves? The limit is
defined as in Eq. (I1.4), but this in general leads to in-

§ X. Bardakci and G. Segre, Phys. Rev. 159, 1263 (1967).
6 Vo goes infinite in the limit, but so does z. A rescaling of z
(change of variable) removes the whole problem.
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finities in the limit. For free-particle representations,
and in particular for the generators of the (two-
dimensional) Galilean subgroup of the Poincaré group,
namely,

G={Pot+Ps, Po—Ps, Pi(i=1, 2),

Ji+Ky, Ki—Js, Js}, (IL8)

Susskind* showed that these infinities can be scaled
and/or subtracted out consistently. For the case of one
free particle of mass , that is,

Mp=2,Py— 5Py, [%,P]=—1gw,

i}
Pr=i—o , P?=m?, (I1.9)
xy
Susskind’s results are in the limit,
Pyt Py=n,
V2 om? P* m?
H=Py—Py=——+—=—F— ,
n 7 n n
(I1.10)

J1+K2=77x2,
J3= —i(x162~x261),

K,—J,= n¥1,
K3=3i[7,8/9n],

where V2= 9,2+ 9,2, P,2= P2+ P,%, and all coordinates
and derivatives refer to x. In Susskind’s derivation, 7
(called @) has a definite meaning (being essentially
Weinberg’s 7), but we shall take this representation as
a starting point, considering it as an evident change of
variables from the usual set to those which are natural
in the infinite-momentum frame. The details of the
change of variable (to obtain this representation from
the usual one) are given in the Appendix.” The repre-
sentation emphasizes the fact that (up to factors of two
which can be fixed if desired) Py+ P3is (analogous to)
the nonrelativistic mass, H=P,—P; is the Hamil-
tonian,® Py=(P1,P,) are the (transverse) translation
operators, J1+ K, and K;—J, are the nonrelativistic
(transverse) boosts, J; generates rotations in the trans-
verse plane, and K; is the mass scaling operator.

If we are to fully describe the scalar particle, we must
complete the representation of the Poincaré group in
terms of these nonrelativistic variables. This is ac-
complished by

d
Ji=— 8—32+%[x2,P3]+ ’
n
(I1.11)
a
Jo=—01—3[21,Ps]y,
9
7 Because the infinite-momentum limit is equivalent to this

change of variable, we can essentially forget the motivation of the
representation in terms of infinite momentum. In this sense, one
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where P; (and Py) is already known from (II.10)

—V4-m? — Vitm?
PF%("______), Poz%(n-]-—————). (IL12)
7 n

For the case of # free particles, we need only add the
single-particle representation # times. Of special interest
in what follows is the representation for two free par-
ticles, and, in particular, its form in “center-of-mass”
variables. We define these variables in accord with our
Schrédinger analogy:

1
P:. P(1)+P(2)’ Zzﬂ(nlx(l)—}_nzx(?)) ,

1
ﬂ=ﬂ—[(mP<I>—mP<2>), 0=xO—x® (IL13)

nne 6 3
N

p= = _

b )
dn2 dm

M= mn+ n2,
M+ 72

where Z, P, =, and o are two-dimensional (=1, 2) vec-
tors with the properties

[Z:,Pj]=1bij, [wimi]=10s,
[Z,0]=[P,0]=[Z~=]=[P,=]=0.

The result for the Poincaré group is, after some algebra,

(IL.14)

P0+P3=M,
H=PO—P3= (_VZ2/M)— (ng/ﬂ)_*_(mQ/#) )
JI+K2=MZ2, Kl—‘J2=MZ1,

Ky=3i[M,0/0M ] +3i[n,0/0uls,
J3=21Ps—ZsP1+wime—wemry,
Ji=—3[1/M, K], Pot-3[Zo, Py ] +3i[N,mo ]y
— 1lws,(2/M)=- P+ (no—m1/mina) (w2 +m?) 1.,
Jo=3[1/M,Ky], P1—3[Z,Ps ] — 5[ N,m ],
+ilw1,(2/ M)z P+ (n2—mn1/mma) (w2+m?) ], .

The next question is how to put an interaction into the
system. We set ourselves the task of doing this while
keeping the nonrelativistic analogy, namely Py+ P;,
Py, J1+ K, K1—Js, J3, K3 should keep the above forms,
while H, the Hamiltonian, changes to

P12 71'2
H=———+47V.
M

(I1.15)

(I1.16)

The problem then is to find the restrictions on V and the
forms of Ji, J» such that we still have the Poincaré
group. Instead of trying to guess these things, we intro-
duce in Sec. IIT a fairly general method of construction
that does everything automatically.

might choose to describe our work in this paper simply as finding
Schridinger-like representations of the Poincaré group.

8 The term m?/y is an almost trivial constant potential. See
Susskind, Ref. 4.
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Notice that we do not explicitly include the term
m?/u in the potential, as we expect to find the mass spec-
trum directly by diagonalizing the Hamiltonian. The
four-momentum squared has the form

P =M((n*/w)+V)=MH;., (I1.17)

so the eigenvalues of M H;,; give the mass spectrum,
and it need not resemble the “bare’ spectrum. We shall
leave the discussion of positivity of the mass spectrum
(P2>0) until the end of Sec. III.

III. CONSTRUCTION OF INTERACTING
SYSTEMS

By commuting A (including V) with the generators
of the Galilean subgroup (and demanding the Poincaré
group), one learns immediately that?®

[J1+K,, V]=[Ki—Js, V]
=[Pot+Ps, V]=[J5V]=0,
[Ks,V]=—iV.

Thus the potential must be Galilean-invariant (just as
in two-dimensional quantum mechanics), and have scale
(—1) with respect to Kj. To get the rest of the condi-
tions on ¥, and the form of J; and J,, we introduce a
construction due to Wigner® which reduces the problem
to internal variables. Although the contruction works
with states, it will yield operator representations in the
end.

Consider the states of the system at rest, say |0),
where

(II1.1)

P;|0)=0 (i=1,2,3).
We can boost these states to states with finite P,
X (=1, 2, 3) in the following way®:
[P)y=U(P")|0), P:|P)=P/|P"),

U(P") = explica(K1— Jo)+iaa(J1+ Ko)+iasK3], (IIL3)
a1=P1'/PoI+P3’, ax=P)/P/+ Py,
az=In(Py'+ Ps'/(P?)'?),
where the primed quantities denote (c-number) eigen-
values, and P?=(Py)?—P/P/ is the invariant four-

momentum squared. Now consider the action of J on
the boosted state

J[P)=UP"I|0),
J=ur@HIuP).

One can easily calculate ¥ from the commutation rela-
tions of the Poincaré group. For example

j1= (1/33)J1+O£1]3—¢12K3
+(1/285)[(a2?—a?+1)8s2— 1]
X1+ Ko)+a100B85(K1—J») ,
Bs=exp(az) =P+ Py /(P2)1/2,

9 These conditions are equivalent to guaranteeing that P? is
Galilean-invariant and commutes with Kj.
10 E. Wigner, Ann. Math. 40, 1 (1939).

(I11.2)

(I1.4)

(I11.5)
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In Eq. (IIL.4), § operates directly on |0). We denote the
angular momentum operators as they operate on states

at rest by j, i.e.,
J[0)=3[0);

j is the “internal” angular momentum. Of course, we
shall in general take

(I11.6)

(IT1.7)

J3= Wi — WaeT1,

while 7; and j, are as yet unknown.

Our task basically is now to guess forms for j and
boost appropriately. Wigner guarantees!! us that the
following procedure leads to a J which satisfies the
Poincaré algebra: (1) Construct the rest of j such that
it is Galilean-invariant and satisfies the algebra of SU(2)
on states at rest!?:

[74,7i]|0)=1ein7i] 0). (I11.8)

(2) Construct P?=M Hy,; out of the rotational scalars

of this group®®
G,P2]]0)=0.

Physically, this requires that a rotation does not
change the energy of a state at rest. (3) Invert the
above machinery—i.e., from J, now as a function of j,
calculate

(II1.9)

I®H=Uu@P)IGUIP).

Put all the factors P’ in this expression to the right, and
replace them by operator P. The resulting J will satisfy
the Poincaré algebra.

Thus our problem is mechanical. We need only con-
struct various sets of j, and run the machinery back-
ward. Not surprisingly, j may be constructed either (a)
out of =, o alone or (b) out of =, ®, N, ns—n;:. The first
case realizes garden-variety two-dimensional Schrod-
inger equations, while the second yields two-dimensional
Schrédinger equations with much more general “mass-
dependent” potentials. We begin with case (a).

(IT1.10)

Two-Dimensional Potentials

Construct a Galilean-invariant j as
Ji=iloym—m? ]+ 3l m limit e,
Jo=—3ws,m2—m? ] F3[wr,m ymetFwe, (II1.11)
J3=wime— w1,
Doing the inverse machinery, we find

Ji=—3[1/M ,K5], Po+3[Z2, P51+

+ 7s(Py/ M)+ j[(PV2/M ],
Jo=3[1/M K3, Pr—3[Z,P:];

+ js(Po/ M)+ jo [ (PH)'12/M].

11 Tn general, Wigner’s construction is guaranteed for irreducible
representations. Our representations are, of course, infinitely re-
ducible, and the results of the construction need be checked.

12 Tn general, our j will satisfy SU(2) as operator conditions.

13 Because j is Galilean-invariant, the requirements (III1.1) are
automatically satisfied except for the scale (Ks). In practice, this
is fixed up trivially with factors of M.

(I11.12)
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The first three terms in each of these expressions are of
course independent of our choice of 71, 7.. What about
P?=MH;n? The only invariant in this two-dimensional
representation of j is 72 itself. Thus P2 may be an arbi-
trary function of j%. The most general internal Hamil-
tonian is then

(7*/w)+V=(1/M) f(5?). (I11.13)

Note that the conditions (III.1) are automatically
satisfied. With this form for P2, the reader is invited to
check the Poincaré algebra. The restricted form of the
Hamiltonian in this representation means that the spec-
trum is always discrete (although arbitrary). It is not
likely that such representations will be of help in the
saturation of current algebra.

Unitary equivalents of the representation (III.11)
may easily be constructed, but there is at least one
inequivalent representation using only = and w. We take

j1= %(T12—7r22+w12*‘w22) )

Je=3(mmetwiws) ,

(ITL.14)
Js=%(wima—wamry).

This is the SU(2) part of the representation of the
Lorentz group generated by the two-dimensional har-
monic oscillator. That it is not equivalent to (III.11)
is evident in the factor  in 73.1 This angular momentum
has half-integral eigenvalues—thus being an illustra-
tion of our contention in Sec. II that the bosonic sub-
stratum of the representation need not be observable.
The only invariant of this representation is the familiar
form

wet=2j+1, (II1.15)

so P?=M((w*/u)+ V) must be some function of this—
again an arbitrary discrete spectrum. The special case
that looks most like a two-dimensional harmonic
oscillator

Pr=(M/u)(r2+o?) — V=0?/u  (IIL16)

illustrates a general property of all these two-dimen-
sional representations. The potential cannot be turned
off (because 7 alone is not a rotational scalar). In the
more general three-dimensional representations, we shall
have a choice in this matter.

Three-dimensional Potentials

First consider the Galilean-invariant structures

7
W= {,ul/?w, [#1’2 n
(ORK N2—11

7
,N+——P~w]
M "

—(—Z—)llzﬂ'm} . (IIL17)
= G) ]

“T. T. Grodsky and R. F. Streater, Phys. Rev. Letters 20,
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where C is an arbitrary constant. These have the prop-
erties (4,  range from 1 to 3)

W ¥]=148i;, [W:,Wi]=[¥:¥;]=0. (IIL.18)

We have written W, W as three-dimensional vectors,
and indeed they will be if we construct

j¢= Eijij‘I’k.

After a little algebra, we can write j explicitly as

m [ mme  Poe
1= CH gy ——  iN———
N2 =11 M 1,

C1i2
+ zcuzl:“ ' (";7r2]+ ’
) [ mme | Po
jom — ity Ty 22
C2Lyy—m M 1
—ZC”Z[?:- o,m ]y, ([I1.19)

J3= w1 Wamy.

The inverse machinery!® yields exactly the form Eq.
(I11.12). P?=MH;,, must be constructed out of the
invariants W2, w- W, and ¥2= (x2/u)+ (C/u), or, more
precisely, to get the scale right, out of M¥2, W?2/M,
and W-W. Thus the most general Hamiltonian is
(V=M-17)
P2 w C 1.
H= —~+—+~+A—ZV(M v W /M - W). (II1.20)
"

We learn that C is the analog of m? in the free-particle
representations, although, even in the limit =0, J does
not go over into the free two-particle J of Eq. (I1.14).
Notice finally that this representation is not restricted
to discrete spectra; indeed the class of potentials is
strikingly large.

It would be nice to have a representation which re-
duces to the two-free-particle case when the potential
is turned off. Such can be constructed in the following
way. We take the Galilean-invariant j as

— 1/2
. . N2 M1 M2
= ‘1/N17T2— [w2,77'2]+ } (—2> )

4non T
o (IT1.21)
_ ., MM nimz\'?
J2= {'—1’N 7l'1+ [w1,1r2]+ )
4mm (s

J3= Wi —WeT1,

695 (1968); H. D. I. Abarbanel and Y. Frishman, Phys. Rev.
171, 1442 (1968).

15 The inverse machinery yields (II1.12) again. Also, of course,
Js=2Z\Py—ZsP1+ js. ..

16 The characteristic form N+ (:/M)P-  in j is taken for ex-
plicit Galilean invariance. The P+ @ term can actually be omitted,
but then the inverse machinery will put it back in.
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where N'=N+(i/M)P- o, as introduced above. These
4’s are Hermitian because 72/719. commutes with the
(curly) bracketed structures in 7; and j». The inverse
machinery yields

Ji=—3[1/M,K3] Pot+3[Z,,Ps ]+ jsPy/M

. 772111 7‘.2 " 1/2 1l"2 1/2
+| iN'm— m,—) ] —2> —+V) , (IIL22)
dmne\  p/y N\ u

etc. We need the invariants of j to construct the Hamil-
tonian. These we find again by exhibiting three-vectors
under j:

71'2 1/2
W= {ﬂ, %(m-—m)(———) ] ,
172

W= lau—'i

1
- Mz[(nz—- )Ny,
m

(I11.23)

e
wa— zW2M2[(nz'— n)mne,N' ]y,

[(mm)““’ mne ,:l }
! i G S
7T2 Af2 I+

The invariants W2, W-W, and ¥2=(7%/u)(tu) are
Galilean-invariant, now with zero scale, so we can use
them directly to form P2. The most general Hamiltonian

is then
P2

21
He—t D — V(o0 W), (IT1.24)
M uw M

Notice that with V=0, all the square roots cancel and
the representation reduces to the free two-particle
representation (II.14). To see this explicitly, one needs
to use the identity

— 1o, (2/M)=-P],
= j3(Py/M)—3[P-o/Mmy], (I11.25)

in Jy, etc. Of course we attain the m2=0 (free) case, but,
if desired, this can be trivally fixed by writing 7> —
w2+m? in"(I11.21). As a final comment on this repre-
sentation, ‘we note that it is unitarily equivalent to
(I11.19), being an evident change of variable.

There is another unitarily equivalent representation
of interest because it is simpler than the previous two.
We take

W= ((’); '—"’MN,): = (“7(771—172/2M)) )
ji= e,-]-ij\I/k.

(I11.26)

The inverse machinery yields (I11.12) again, and the
most general Hamiltonian is

P |¥

H=—rk

,2

1_
TV ww W), (IT127)
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Before passing on to a discussion of positivity of the
mass spectrum, it is helpful to relate these representa-
tions to the literature. These representations appear to
accomplish for the infinite-momentum frame what
Foldy'” accomplished for the center-of-mass frame.
Among the differences between our representations and
Foldy’s, one is particularly notable. While Foldy was
not actually able to find representations which reduced
(for zero potential and arbitrary frame) to the repre-
sentation of two free particles (separable representa-
tions), we have had no particular difficulty with this.
Thus the infinite-momentum frame carries with it a
rather more thoroughgoing nonrelativistic analogy.

Positivity of the Mass Spectrum

For the case of one free particle of mass 7, we have
P2=m?>0. For two free particles of mass m, where

Pr=M[(r*/u)+(m*/u)], (I11.28)

one can easily show by the usual argument that
P2>4m?. What about our interacting representations,
where m2/u— V?

In the first place, positivity of the mass spectrum is
always trivial if one is asking only for a representation
of the Poincaré group itself. These operators do not
connect different values of P2, so it is easy to stay in the
space P2>0. This is of course not the whole story. In
general, one would like the individual operators in the
representation, say x, 9/dn,, etc., to be observables,
and hence not to link timelike and spacelike states.
There are two reasons why one might like the individual
operators to have this property: (1) If the potential
fell off rapidly for large distances, one would like the
individual particles, sufficiently separated, to be sepa-
rately observable. Of course, this does not apply to any
of the harmonic-oscillator-like potentials for which there
is no hope of observing the input particles. (2) One has
in mind constructing (observable) currents out of (all)
the operators in the representation. Thus we must in
general have P2>0 as an operator condition.

Of course it is easy to guarantee P2>0 formally
simply by constructing it as a positive-definite function
of the invariants of j (as does Foldy), but then the
breakup Hiny=M ((x2/u)+ V) is somewhat formal [i.e.,
V=(P/M)—(x%/n)], and we would have trouble with
separability. Since we have a representation which goes
to two free particles when V=0, it is instructive to dis-
cuss the conditions directly on V itself.

Working in the space discussed in the Appendix, with
71, 12 and hence M positive, we see from (I1.16) that
P2>0 is guaranteed if Hin=(w%/u)+V is a positive
(essentially) self-adjoint operator. Strikingly, this is
just the condition that the potential theory itself be
well defined. Strictly speaking, the potential-theory
Hamiltonian must be bounded from below. For our

17 L. L. Foldy, Phys. Rev. 122, 275 (1961).
y,



1692

relativistic case, this involves a finite shift of the (en-
ergy) origin. The problem is then essentially the same as
in nonrelativistic quantum mechanics: to find ;those
potentials which, if they analytically dominate %/,
then they do so in a positive manner—i.e., singularities
of the potential need be in general positive. In the gen-
eral case, our potentials are more’complicated than those
of two-dimensional quantum mechanics, in that they
involve the “masses” and their derivatives, but this
does not appear to hinder one’s ability to tell acceptable
potentials on inspection. [One need remember that
operators like w?— M2(N')?, etc., are formally positive. ]
Such points however can be subtle, and a rigorous de-
scription of the allowed potentials (with attention to
overlap of the domains®® of 7%/u and V, etc.), although
beyond the goals of this paper, is worth investigating.

A comment about currents is in order here. If the
mass spectrum is constructed positive definite, then the
currents, constructed out of the operators in the repre-
sentation, cannot connect spacelike with timelike states.
That is, either we can find currents in our scheme or not,
but if we can, they will not be diseased. Put another
way, one can show (Sec. V) that M commutes with the
currents at infinite momentum, so if the currents re-
quired spacelike states, then, again from (II.16), Hins
would not be positive self-adjoint, and hence the poten-
tial theory would not have been well defined in the first
place.

IV. SECOND-QUANTIZED REPRESENTATIONS

To allow eventually for creation and annihilation, we
will need second-quantized representations. To con-
struct these we introduce the second-quantized (Schréd-
inger) fields

[¥(x,7), ¥ (x',n")]= 6@ (x—x")o(n—7"),

where, as usual, x and x’ are the (transverse) two-
dimensional position vectors. Later we will append iso-
spin indices, etc., to these fields. The fields have the
usual nonrelativistic expansion in terms of creation and
annihilation operators

d’q ]
W(xn)= f o, V)
i

(IV.1)

d’q ]
W (xm)= / i), (V.20
™

La(q,n),a"(q’,n")]1=8®(qa—q)s(n—"7"),

where q, ¢’ are two-dimensional momentum vectors.
In terms of these fields, it is easy to construct a second-
quantized representation for free particles. Simply
sandwich our first-quantized representation (II.10) and

(Iv.2¢)

18 For potential theory, see, for example, the review article, T.
Kato, Progr. Theoret. Phys. (Kyoto) Suppl. 40, 3 (1967).
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(I1.11) for one free particle between ¥' and ¥, and
integrate over x and ». Thus

P0+P3=/d2x dn¥i(x,n)n¥(x,n) ,

PO—P3=H=/d2xdn ‘I/T(X,‘/))

X (= V¥/n+m?/n)¥(x,n),

P;= / d2xdy \I/’f(x,n)(—i—6—>‘1'(x,n),

X3

Tt Kam [ dPadn U (x;n) () ¥ (1), 1v.3)
Ko= f drady W (xyn) Giln,0/anJ ) ¥ ()

Jy= / dxdy Vi(x,n)

a V2—m?
X (_“62'}' %l:xz,ﬂ‘l‘ :l )‘I’(Xﬂ?) )
on 7 +

and so on.

Schriodinger and Heisenberg Pictures

The reader is aware that both in our first- and second-
quantized representations, we have been working in
a “Schrodinger” picture—in that the variable conjugate
to the Hamiltonian has not appeared. In fact, the intro-
duction of a “time” variable £ conjugate to H allows
some geometric intuition about the Lorentz transfor-
mations and will help us introduce potentials.®

We introduce £ in the “Schrdinger” picture via an
equation for the state vector

)
H| \I'(£)>=i-£l ¥(8)), (IV.4)

where H is given in (IV.3). In the ‘“Heisenberg”
picture

‘I/(X:W:E) = eiHE\I/(X’n)e—»iHE )

Vi+-m?

0
U (x,n,8)= igg‘l'(x,n,i‘) . (1Iv.5)

n

In terms of creation and annihilation operators, the

19 Although we illustrate our remarks below in the second-
quantized case, they apply as well, of course, to the first-quantized
situation.
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free time dependence is

dq )
W(x,n,6)= / 21 explig- x)ala,n)
2w

g2 _|._ "l2
Xexpl:——i( )E:] (Iv.6)
n
and similarly for ¥f,

Of course £ is not the “real” time because H is not
Po. Writing
Poxo—Psx3=%(Po‘FPs)(xo—xa)
+3(Po—Ps)(xo+2x5)  (IV.7)
with all indices covariant, we learn that &=1(t—3z).

Later we shall have some use for the variable I=21(t+2)
conjugate to Po+P;.

Action Principle

Toward finding interacting representations, it will be
helpful to introduce an action principle. Among other

(¥ — V+iad, ¥, Vo U4iad, ¥}
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things, this will allow us to give a more familiar geo-
metric interpretation for our generators of the Poincaré

group.
We begin with the action for a free system:

+o0 00
I=/ d&/ dn/d2x W (x,,8)
—0 0

><(P2;m2)w<x,n,s>, (1v.8)

where P2= (Py— P3)(Po+P3)— P.2=1in(d/9¢)+ V2 is the
invariant four-momentum squared of the first-quantized
representation. At first, we consider the system as a
classical field theory and derive the Poincaré transfor-
mations in the usual way via ¢c-number invariances of
the action. 7 is invariant under any of the transforma-
tions.

(P1)

{V — V—ian¥, Vo Ui4-ian¥t} (Po+P3)
{V — ¥ —a(—V2+Hm2/n)¥, Vi Uit o(— Vidm?/n)V'}) (Po—P;=H)

{(V — V—anx,¥, Ui Uit o, '}
{V — V—anu, ¥, Ui Ui+t o Ui}

(J1+K>)
(K1—J3)

{V — V+ia(x10:— X200V, Vi Uitia(r0,—x20:) ¥} (J5)

9

1 a 1
{‘I/ — ‘P*%ia[ﬂ’ﬁ_h—] v, ¥i— \I/*—%ial:n,—————:l ‘IIT] (K3)
+ "

an 29
1

an 29

d

dn 29

(1)

9 1 i)
Yo \I/T+'ial:— (—— —)62— %ixg—-i-%xm—l-ié&z:l‘lﬁ

an 29

23

o 1 d
¥ — \I/—i(x|:—|— <-—~)al+%ix1———%xm——igal]\lf
9k

adn 29
1

» (Jo) (1v.9)

a J
‘I’L'-) ‘I’T—f—la[:(—*——-)al—*- %tx :9—— %xm-— iE(%]‘I’T
3

an 29

where o is some constant, different in general of course
for each transformation. In this way, one identifies the
Poincaré group. In addition to the introduction of ¢ de-
pendence, there are two simple differences between this
representation and our previous (IV.3). In the first
place, wherever H appeared, it has now been replaced
by #(d/d%). This is closer to the usual field theoretic
way of approaching the Poincaré group, and, not sur-
prisingly, allows geometric interpretation (which is par-

ticularly needed for our Ji,5). For example in the case
of J1, going over to Laplace transform space [#((8/dn)
—(1/29)) — 1, n— —i(9/dl)], the rotation due to Jy
takes a more familiar form,?° namely i(x29,—¢d,;) where
t=21(¢+1). The second difference is that, wherever (3/
dn) appeared before, we now have ((3/%)— (1/27)).
This is the natural (Hermitian) derivative in a space

20 This is not the usual Ji, but it is an angular momentum
nonetheless.
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where the 5 metric is dy/n—as is dictated by the action.
In the corresponding Hermitian second-quantized rep-
resentation, say for J,

Ji= / Pz / ¥ (x;n,8)

X<—*“32 1x2_+ 3% +1£0, )‘I’(xﬁ’l:f) , (IV.10)
dn 3

the extra terms in (1/29)d;, being anti-Hermitian,
cancel out. For convenience we will continue our dis-
cussion in Sec. IV via the c-number transformations.

Now we want to add an interaction term to the action.
In general such a term must be Poincaré-invariant, but
we would like also to preserve the Schrédinger analogy.
To keep ¥ conjugate to ¥, we must demand that the
interaction is local in £ Thus, before imposing Poincaré
invariance, the most general number-conserving inter-
action is of the form

00 00 0
/ dE/ d"?l' . ./ dm/d%cr .o
—0 0 0

X / 22T (1,71, 8) W (X9,72,€)

Xro(xl' * * 774)\1/()(31773:5)\1/()(4;774;5) ) (IV'II)

Xy
where U is the “potential”. Because the interaction is
local in £, it is simple to show from Poincaré invariance
that it must also be local in x and / (the Laplace-
transform conjugate of 7); in fact, we are allowed only

A/—w dé/d? / (n)‘“/ (CORE

0 dTIII

()1
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one number-conserving interaction
400
I=If,ee+)\/ dé/dzx
5(?11+ N2— 13— 14)

[ [
(mnznsm)” 2

X ‘I/T(X;nlys) ‘I,T<X)7727 E)W(X;ﬂa; s)‘I’(XﬂM;E) )

where \ is a coupling constant. It is instructive to reduce
this to a Schrodinger equation in the two-particle sub-
space. In our first-quantized notation, one obtains in the
usual way

(IV.12)

Vo Vil
<_~ - )‘I’(Xl,xz,ﬂl,m,f)
m N2
dni'dn2'8(nitna— ' —ns")
+>\8<”(X1—X2)/
(n1mami'ns")112

l¢]
XV (x1,Xg,m",m2’,£) = ia—g‘l’(xx,xz,m,nz,i) . (Iv.13)

Potentials nonlocal in 7 were not explicitly discussed in
Sec. IIT but the reader will verify that this potential
meets all the requirements set forth there. This Schréd-
inger equation is algebraic in the position variables and
is almost trivial, corresponding, as we shall note below,
to an S-wave ‘“‘chain graph” approximation in the A¢*
theory.

More complicated potentials can be constructed if
creation and annihilation is allowed. The general pre-
scription for constructing a scalar interaction is simply
to take any local product of ¥’s and ¥'s with a factor
712 for each, and the y-conserving & function. Of par-
ticular interest is the interaction

XL (x,m, &)W (x5, )W (x,0", )8 (n+0"—0'") + T (3,1, £) W (x,0,£) W (X1, £)8(n—n"+n")
+ \I’T (Xynyé)\l-,(xfr]l: E)\I’(X}ﬂ,/) 5)6(77_ 77,_—' 77,,)+\I/(Xy777£) ‘I/T(X;"II; E) ‘I’T(X;"?H: 5)6(77 - 77’— 77”)
+ 4 (Xyn;g)\P(an,; E) vt (X777H: 2)6(77_ 77[+ 77”) +\P1’(x,.,,,g)\1ﬂ'(x’n” E)\I,(Xﬂ’”s 2)6(77_*— 77,'— 77”)] (IV' 14)

consisting” of every combination™of three fields, but
omitting terms which are purely creation or purely
annihilation. As we shall note below, this turns out to
be exactly the A¢? theory. The analogous quartic inter-
action (14 terms, being all possible quartics, omitting
purely creation or annihilation terms) similarly turns
out to be the A¢* theory.

S Matrix

Just as for ordinary theories, each picture has its
characteristic form for the S matrix. Suppose we wanted

to calculate in the Schrodinger picture. The potential
V(H=Hy+V) can be read off from the action

o0
I= [iree+ V(E)df

—o0

00
=l | dE eHEVHE,

—0

(Iv.15)

Thus, for example, in the case of the number-conserving



176

interaction (IV.12)
) (771+ N3 "N3—n4)

Y / a2 / dny- - /
("71"72"13"14)”2

XU (o, 70) U7 (x,m2) ¥ (%,75) ¥ (,m4) ,  (IV.16)
and so on. From V, the 7" matrix may be constructed in
the usual way via the Lippmann-Schwinger equation

=V+4+VGTs, G.=1/E—Hot+ie (IV.17)

taken between states constructed by creation operators
on the vacuum. £ is of course the eigenvalue of the
Hamiltonian. In an infinite-momentum interaction pic-
ture, constructed in the usual way, the S matrix is given

by
400
S=E exp(i/ dt V(£)> ,

where = denotes time ordering with respect to £, and
the fields in V are free fields.

These structures will in general guarantee unitarity,
but Lorentz invariance is more difficult. Evidently,
St V(£)d§ must be a four-scalar, but this is probably
not sufficient. In the higher-order terms of (IV.18),
locality may play a role in making the & ordering co-
variant. It is an interesting problem to find the neces-
sary and sufficient conditions on V such that S and 7°
are scalars, but, except for the following paragraph, this
is beyond the scope of the present paper.

Using the T-matrix formulation in the Schrédinger
picture, we have examined the perturbation expansion
for the potentials given above, with these results: The
potential (III.14) yields exactly the graphs found by
Weinberg? for the infinite-momentum limit of the A3
theory. To make direct contact with Weinberg, one
calculates 7" between states with Py+P3;=1. There is
no loss of generality here because the S-matrix explic-
itly commutes with this generator’. Similarly, the 14-
term quartic potential mentioned above gives Wein-
berg’s A¢* graphs. The interaction (IV.12) yields a set
of chain graphs in Weinberg’s notation, that is, the
S-wave, number-conserving part of the A¢* theory. This
is then a Zachariasen model?! at infinite momentum.

(IV.18)

Infinite-Momentum Limit of A ¢® and A ¢* Theories

In this section we want to show directly by boosting
that the theories exhibited above correspond to the A¢?
and A¢* theories. We shall content ourselves with
boosting the potentials themselves, leaving the rest as
an exercise similar to that of the Appendix. We begin
with the interaction Hamiltonian for the A¢? theory at
zero time: A\ S'd%x ¢3(x,0). Boosting this as in Sec. II,

U F. Zachariasen, Phys. Rev. 121, 1851 (1961).
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and doing an obvious rescaling, we reach

)\/d%c dz dt 8(t—2)p3(x). (Iv.19)

We will evaluate this integral with ¢ a free field, namely

( )-—/______(i:;.li.___[b(k)e—ik.x_'_bT(k)e-i—ik.z]
") Tonge ’

(IV.20)
[o(k),bt (k") ]=8® (k—k'),

where %-x is the invariant four-product; that is, one
imagines working either in the (ordinary) interaction
picture, or to lowest order in perturbation theory There
are eight different terms (with different cubics in 4,5%)
over which to integrate. Consider one of them, say the
term in bbb'. Using 8(f{—z), one can do the dz dt inte-
grations, obtaining another & function o[ (ko+ks)
—(ko'+ks")— (ko’+ks")] (all indices covariant, as
above) which one rewrites as

/ dn f a6 Geort ) ToC — (k)]
» X[ p+n"— (ko' +k5")].

These & functions can be used to do the dk; integrations.
Then make the identification

k12+m2_.” 1 1/2 k12+m2+’l72 1/2
s Y

29 7 29

Wi 1/2
=( ) b(k)
kotk;

and similarly for b'. These new quantities satisfy the
commutation relations (IV.2c), and are in fact the
creation and annihilation operators at infinite mo-
mentum.?? With this identification, and the relation
between a,a’ and ¥,¥%, we find finally for this term

/ 8(ntn"—n")
d®x / dn / dq’ / dy/'——m——
O E

XU (%) ¥ (x,7") ¥ (x,77).

(IV.21)

(1V.22)

(IV.23)

The other terms may be treated similarly. Terms which
are purely creation operators or purely annihilation
operators (pair-production terms) integrate to zero.
They involve 8[ (ko+ks)+ (ko' +ks')+ (ko' +k5") ] whose
argument is always positive. Thus out of the eight terms,
six survive and these are exactly (the Schrédinger pic-
ture form of) Eq. (IV.14). An entirely similar calcula-
tion can be done for the A¢p* theory, leading to the 14-
term quartic potential described above.

22 The relation (IV.22) is the second-quantized form of the re-
sults sketched in the Appendix.
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The number-conserving potential (IV.12) is just the
boosted form of the term in 576%b of the A¢* interaction,
that is, in terms of the positive and negative frequency
components of ¢, it is A S'd*x ¢t¢tg¢~. At finite mo-
mentum we do not really know how to formulate a
theory with such a nonlocal interaction. At infinite mo-
mentum, on the other hand, such an interaction gen-
erates, quite straight forwardly, a covariant unitary
(not crossing symmetric) S matrix. It will be interesting
to study this case more fully, especially with reference
to the ¢-ordering [Eq. (IV.18)] and locality.

To reemphasize that our boosting is essentially a
change of variable, we note finally that the (free) field
¢ can be written directly in terms of ¥ and ¥f, From
Egs. (IV.20) and (IV.22),

00

$(x)=—(2m)

0 771/2

XL (x,n, et 24U (x,m, £)etnt+a12]. - (IV.24)

A formal comment is in order here. We have noticed
that our limit procedure yields the infinite-momentum
results in the “Schrédinger” picture. This happens of
course because of the factor 8(—z)=348(¢) that appears
in the limit. We can get some feeling for the different
pictures via the following argument. We have shown
that if S(x) is the scalar interaction of an ordinary field
theory, then

V= f d2xdzdt 5(t—2)S(x) (IV.25)

is the potential in the Schrodinger picture at infinite mo-
mentum. There is a simple relation between S d*x S(x)
and the interaction in the “interaction” picture
ST V(§)dE. In fact, they are equal: Changing vari-
ables, using translational invariance, and ignoring fac-
tors of 2,

/ d*x S(x)
= /d%dédl S(xy,0)
-0
= / eiHs( / d2xdl S(xl,O,l)>e—iH5
—+0
=/ d¢ ein(/d%dzdt ¢S(t—~z)S(oc))e‘“’i'E

o0
=/ aE V(D).

This is then another way of seeing that this structure
must be a four-scalar.

(IV.26)
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V. CURRENTS

One of the main motivations for introducing dy-
namics at infinite momentum is the problem of finding
relativistic currents that satisfy current algebra

[p2(x.),08(x.") ]=1iCB7p7(x, )6 (x,—x."). (V.1)

Our formalism provides a fairly general approach to the
problem: (a) Because we have Schrédinger equations,
simple currents that satisfy (V.1) are always provided.
In general, e.g., the “good” current is the probability
density ¥'W. (b) As discussed in Sec. III, any reason-
able Hamiltonian will guarantee a positive mass spec-
trum. (c) We can allow as much inelasticity as necessary
in the saturation. That solutions to the scheme exist,
given enough inelasticity, is obvious: The ¢® and ¢*
theories (with isospin, rewritten at infinite momentum)
solve the problem mathematically. The task is to find
more interesting solutions, preferably in smaller spaces,
so they can be handled nonperturbatively.

In our formalism then, the difficult part of the current
algebra problem is to insure that the current transforms
like a four-vector at infinite momentum. In what fol-
lows, we examine this requirement.

The currents at infinite momentum are given by

pa“(xl)Efdzdt 8(1—2)Vt(x), (V.2)

where V ,#(x) is a local four-vector current. The “good”
current [that combination which appears in current
algebra, Eq. (V.1)] is pa=ps"—p.’. From the integral
representation (V.2), one deduces the following light-
like (or Galilean) transformation properties of the
currents

[Ks,0°]=[Ks,0°1=1i("+0%)
[Kap]=—ip', [Pot+Ps, p#]=0,
[J1+ K, p*]=[J1+Ks,p*]= —ip?,
[Jit+Ks, pt]=0, [Jit+K., p*]=tp,
[Ki—Js, p]=[K1—T>, p*]=—ip!,
[Ki—Js, pt]=—1p, [K1—J3, p*]=0,
where the internal symmetry label « has been sup-

pressed, and p'=(p',p?). As mentioned in Sec. II, the
good current then commutes with the lightlike group

[Ks,p]=[Po+Ps, o]
=[J1+Ks, p]=[K1—J3 p]=0. (V.4)

In the first-quantized notation,?® one can verify that
the general solution to this algebra is

p°=(1/2M)[f,Po]— (1/2M*)[Ps,g ]+ (x/M?),
pt=—1/2M)[f P+ (1/M)g,
p=p"—p*=f,

(V.3)

(V.5)

23 The second-quantized solution is essentially the same (sand-
wiched between ¥t and ¥, and integrated dy).
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where f, $=(g1,g2) and « are as yet undetermined func-
tions that commute with J1+ K,, K1—Js, Po+ P, and
K;. In the two-particle case, these functions must then
involve only Z, =, , and scale-invariant combinations
of N’, 71, and .. By further commuting the currents
with Js, one learns that f and « must transform as
scalars under this rotation, while g is a two-vector.

There is one final condition that must be met to in-
sure correct Lorentz transformation properties for the
current.

[P:i[Jipo(x:)]]=0 (i summed from 1 to 3). (V.6)

This “scalar angular condition” follows immediately
from the definition of p# and the commutation relations
of V#(x) with J and P. In fact, the scalar angular con-
dition has a very simple physical interpretation: The
fourth component of the current carries no spin, its
angular momentum being entirely orbital. Thus, on pf
we must have J-P=0 (4=1, 2, 3), which is the content
of (V.6). Equations (V.5) and (V.6) are necessary and
sufficient for the correct Lorentz transformation proper-
ties of the infinite-momentum current.?

In general the scalar angular condition is a set of
coupled linear differential equations for f, g, and «. The
easiest way to project out these equations is by com-
muting (V.6) with the generators of the lightlike group.
As an example, we give the results for the case of two
free (first-quantized) particles.

- P,f/MJ—;;—;EPI,ng— [Pog])=0,
[J P iEP1 gi]]‘*’-i_[Hint,([Pl,gz]_ [P2;g1])]=0:
‘Mo 2M?

1 1
[J-P,J—[([Pz,gﬂ—[Pl,gz])]+ﬂ—l;[1’z,[l’z,x]]
Wv.7)

1 i
—[Py,[Prx ] ]+ —[Ht,[ Ps,g: 11=0,
+M2[P_[P I|+2M[ CPigill
i
[J-Px/M :H‘m[P [P1,g2]—[P2,81]1]

i
‘*‘EEEP 1,821~ [P2,81],Hint]=0,
where

[J-P,0]=[P:,[J:,0]] (i summed from 1 to 3)

. (V.8)
[P2,0]=[P:[P:,0]] (i summed from 1 to 3)

24 Actually the scalar angular condition can be simplified some-
what by using translational invariance. Call the position label of
the current a= (a1,a2), i.e., p*=p*(a). Then we can write

p*(a) =exp(ia- P1)p#(0) exp(—ia-Py),
with which it is easy to show that [P;,[J;,02%(0)]]=0 (; summed
over 1 and 2) is equivalent to (V.6). In this form, of course,
[J3,/2(0)]=[J3,xa(0)]=0, )
U3,8%(0)]=1g2*(0), [J3,82%(0)]1=—1£:%(0).
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and Hin=7%/u. These equations commute with the
lightlike group and hence have no hanging derivatives.
In fact, they are relatively simple equations. For any
function, say 4, which has scale (—1),

[J-P,A]= —3[Hunu[j5,A 11+ L[5 P:4]]

1
+E[]‘37[P1:EP1’A]]+ [P27|:P2;A]:|]+' (V,Q)

This applies to each of the equations in (V.7). We shall
not attempt to find the general solution to this system,
although a particular solution will be noted below. One
remark is instructive however: If fis known, then (from
these equations) g and x are known up to constants.
This feature is independent of the free case, and, in
fact, perfectly general.

One can also write a “vector” angular condition on
the good current p. Either by combining (V.5) and
(V.6), or directly one can verify that

[J-P,[J-P,[J-Pypa(x) []]=[J - P,[P*pa(x,) ]]. (V.10)

This relation is essentially, but not quite equivalent to
the scalar angular condition: Evidently it does not
determine g and «, although these can always be deter-
mined from equations like (V.7), once p=f is known.
This “vector” angular condition is equivalent to the
“angular condition” popular in the literature, the usual
form being derived for certain matrix elements of the
currents, thereby involving the masses of the states in
a complicated way. We believe that the operator for-
malism, and in particular the scalar angular condition,
is simpler and more transparent.

It is also useful to know the statement of current

conservation at infinite momentum. Again from the in-
tegral representation (V.2), it can be shown that
9,V o#(x)=0 implies*
[H,pe]+2[Pispa’]=0 (¢ summed over 1,2). (V.11)
This is in fact just the statement of probability con-
servation for a two-dimensional Schrodinger equation
(p being the probability density and p* being the two-
dimensional probability flux). In terms of the functions
f% g, «* introduced above, current conservation
becomes

2
[Hint,fa:l‘i‘ﬂ_ltpi,gi]: 0. (V.12)

Simple Solutions

Although we shall not attempt to solve the current
algebra problem in this paper, we can at least give solu-
tions for the free cases, and for the A¢? and A¢* theories
at infinite momentum (with internal symmetry).

For the case of two free (first-quantized) particles,
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a solution is

pa(“)=fa(’)=)\a(1)5(2)(X1(1)‘“a)
FAP6D(x,P—a) (V.13)

gia_:,ca:(),

where a= (a4,as) is the position label of the current, and
A is a representation of SU(2), SU(3), etc. In fact, each
term of p.® satisfies the angular condition separately
(similarly for p.). It is gratifying to note that, at
least in the free case, the nonrelativistic analogy is
preserved: p, is precisely the probability density for two
Schréodinger particles in a two-dimensional world. Simi-
larly, po' is the (transverse) probability flux. Moreover,
of course, this current satisfies the two-dimensional
continuity equation (V.11). It is not likely that this is
the most general solution to (V.7), but it may be that it
is the only solution that satisfies a local current algebra.

The situation for the second-quantized theories is
quite analogous. For the free case or the A¢® and A¢* in-
teractions discussed in Sec. IV, we have directly from
Noether’s theorem and the action principle

pal(xs)=Co7 / dn Vs ()W (x,1)
’ (V.14)

*dn -
pat(x)= 18 / O s ) (— i30T (),
0o n

where we have trivally addended internal symmetry
to the basic fields

[Pa(x,7), " (x' 1) 1= 858 @ (x—x)8(n—1').

From this, one might guess

(V.15)

* dn -
pa(x) = 3Ce67 / s (m) Bty (x,m),  (V.16)
o n

where P, is just the usual first-quantized form in (I1.10).
This form is entirely analogous to (V.13) and indeed
solves the angular condition. This form may also be
derived directly by boosting the analogous field theories;
that is, take V,*=C*#7¢f3,¢47 and evaluate the integral
representation for p.* (in the fashion of Sec. IV).
Before passing on, we can make a few comments
about the general case. A form for p and p* is always
given (by Noether’s theorem) that satisfies the local
current algebra (V.1). Because of the Schridinger for-
malism, this p always has the characteristic form dis-
played above, while the form of p* will change in the
presence of derivative coupling. One approach then is
to check directly whether p satisfies the triple (vector)
angular condition. Alternately, one can try to use the
(simpler) scalar angular condition to calculate p°. For
the free case and the simple field theories discussed, the
angular condition is satisfied, but it is doubtful that this
is true for very many of the first-quantized potentials.
If it turned out that none of the (nontrivial) Noether
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currents transformed correctly, one might be tempted
to solve the angular condition anyway and take what-
ever (in general nonlocal) currents resulted.

VI. DISCUSSION

There are a number of loose ends that we would like
to discuss in Sec. VI. The first is half-integral spin.

In the first place, it is easy to construct half-integral
spin representations (at infinite momentum) while
keeping the nonrelativistic analogy. For example, we
take the one-free-particle forms of P+ P3, Py— Ps, Py,
J1+K2, Kl—Jz, and Ks, plus

I} Pl m
Ji=——08y+3[we, Ps ]y +305—+—01,
0 n 29

ad Pl m
]2=—61_%[CX,‘1,P3]++%0’3—+‘0’2 3 (VI.I)
9 n 27

J3= —7:(36152‘“96231)4“%0’3 ;

where ¢ is the set of Pauli matrices. This is a represen-
tation for a particle of spin 3, positive energy, and mass
m. The representation can be constructed via the
method of Sec. III, taking j;=3o0y, or alternately by
boosting the usual representation. Having this repre-
sentation, the paper could be repeated for it. Here we
only want to make some comments about second-
quantization, and spin statistics: A free second-quan-
tized representation may be constructed, as in Sec. IV,
either with commuting or anticommuting ¥’s. Thus,
although the correct connection between spin and sta-
tistics can be maintained, it is not required. (Although
it was not explicitly mentioned in Sec. IV, the spin-zero
particles can also be second-quantized with anticom-
muting ¥’s). Similarly, antifermions may be included
but are not required.

On the other hand, it may be possible to include
half-integral spin without such direct methods. That
the bosonic substructure of the previous representa-
tions need not be observable was already evident in the
representation (III.14), which contains half-integral
spin. More generally, however, it is well known that the
two-dimensional Schrédinger equation for two free
particles admits half-integral solutions,? in the space of
whichZall operators are self-adjoint and all observables
single-valued. At infinite momentum, we are dealing
with exactly this situation, and there may be both in-
tegral and half-integral solutions to many of the first-
quantized theories of Sec. III. Whether this is in fact
true depends on whether the rest of the Poincaré gen-
erators are self-adjoint in the space of the half-integral
solutions. This is presently under investigation.

A second comment concerns our second-quantized
theories. Evidently, our unfortunately brief list of

% We thank Professor C. Schwartz for a discussion on this
subject.
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theories follows from our strict adherence to the usual
second-quantization scheme—which guarantees that
all particles are on an equal footing. In Sec. ITI, we ob-
tained much larger classes of theories by manipulating
the internal variables freely. On the other hand, the
interactions of the second-quantized theories do not
disturb the current algebra, while most of the potentials
of Sec. III probably do not admit (relativistic) current
algebra. This gives rise to two possible lines of thought:
(a) Can one write other kinds of creation-annihilation
theories, say that are not derivable from an action?
Such a question is of course relevant to ordinary theories
and is probably too much to ask at the present time.
(b) More practically, can one find first-quantized repre-
sentations that more closely resemble the field-theoretic
representations? These are likely to satisfy the angular
condition, etc., but are difficult to find. This is also
under investigation.
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APPENDIX: INFINITE-MOMENTUM LIMIT
AS VARIABLE CHANGE

Our purpose here is to spell out the change of variable
necessary to achieve the infinite momentum limit repre-
sentations of Susskind, and our completion of the Poin-
caré group. In this way, we can also learn the appropri-
ate inner product and suitable dense sets of test func-
tions. We confine our discussion here to the case of one
free particle of mass .

We begin with the Poincaré group

J=—iPXVp, K=i(P)2Vp(Py)'2, (A.1)

where Py=(P>+ P2+ Ps®>+m?)'2. The inner product
appropriate for this representation is

olf.g]= f SP FPegP)=0,  (A2)

where the integration is over all momentum space and
0 is some operator. A suitable dense set of test functions
for obtaining relations between unbounded operators
is, for example, the usual set of Gaussian-smeared
functions
lim,_exp(+[P[?)(B)=0. (A3)
Now we want to make a change of variable from the
set (P1,Ps,P3) to (P1,Ps, n=Py+P3). The metric of the
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new inner product differs by the Jacobian of the
transformation.

00 Py
(‘)[f,g]= ew[fw:gco]: /dzP/ dﬂ<—>foo*®oogw )
. 0 n
. (A4)
Po=—(n*+P.2+m?),
29
where f., g and O, are the same functions and operator

as before, now in terms of the new variables. To com-
plete the change of variable, we list

1
Py=—(n*—P.>~m?)
27

ad J
——

0P, 4P,

P, o

(A.5)
Po 677

With this in hand, we can rewrite the generators
themselves. For example, in the case of Jy, we find

9 9 o Py
Jl=—iPz—*—+iPa< +-—>. (A.6)

PO 67’] 61)2 I)o 617

With a little algebra and the fact that (Py,J1)=0, we
can express this as

Po\—1/2 F) 9 Po\!/2
Jl=(—) (—i——P2+i[P3,—:I )(—) (A
n 677 6P2 L4 n

In fact, one learns that all the generators can be put in
the form
Mw’: (Po/'ﬂ)"”"M,wT(Po/n)”z,

where M,,7 are (the transverse momentum space
counterparts of) the generators given in the text. If new

test functions .
Jo=(Lo/m)M 2], (A.9)

are defined, the generators can thus be taken as M7,
with the simple metric d?pdn. Note finally the typical
behavior of the test functions for large and small %
(P3 going to plus and minus infinity respectively)

exp(— | P|?)
=exp[ — P.*— (1/49®)(n*— P2—m?)?]. (A.10)

This is certainly adequate to drop boundary terms.



