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Trajectory and Mass Shift of a Classical Electron in a Radiation Pulse~
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(Received 21 August 1968)

We solve the Hamilton-Jacobi equations of motion of a classical charge in the presence of a traveling pulse
of electromagnetic radiation. The orbit solutions for arbitrary radiation pulse shape are given in terms of one-
dimensional integrals, and for a particular choice of singly peaked pulse shape are given in detail as a function
of the particle's proper time. The question of the particle mass is then investigated, and an expression for the
classical interacting mass is given as an explicit function of the time width of the radiation pulse. The
average shift in the square of the mass, Am2, varies smoothly from zero to a maximum and then to zero
again as the pulse overtakes and passes the charged particle. The maximum value is Am=e-', e' 'a(where
e and a are the particle charge and the &eld amplitude). We conclude that for the free-electron —photon
scattering experiments currently being contemplated at optical frequencies the maximum figure is likely
to be the relevant one.

I. INTRODUCTION

HE problem of electrons described quantum
mechanically interacting with very intense and

effectively monochromatic radiation Gelds has received
a great deal of attention, experimental as well as
theoretical, in the past four or Gve years. ' Discrepancies
among early published calculations of Compton scatter-
ing' 4 in very intense radiation fields has led to an
enduring controversy over the mass of the interacting
electron, and the possibility of an extra, radiation-

intensity-dependent, Compton wavelength shift. '
Much of the controversy stems from the fact that,

although almost all questions can be answered exactly
in a certain sense, the exact solutions require the

assumption of plane wave electron and electromagnetic

fields. This results in the impossibility of ever asymp-

totically decoupling the interacting objects, which fact
has led to several diferent points of view on the question

of experimental measurability. Needless to say, it is

therefore very interesting to examine the question

experimentally. However, it seems unlikely that an

experimental answer will be provided soon, and this

has encouraged a number of theoretical attempts to
reconsider the same problems by introducing wave

* Research partially supported by the National Science
Foundation.

f National Science Foundation Graduate Fellow.
' For a review of recent developments and principal references
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~I. S. 3rown and T. W. 3. Kibble, Phys. Rev. 133, A705
(1964).

4Z. Fried and J. H. Eberly, Phys. Rev. 136, B8'71 (1964).
e T. W. B. Kibble, Phys. Rev. 138, B740 (1965); P.G. De-

Baryshe, Ph.D. dissertation, University of Pittsburgh, 1965
(unpublished); O. Von Roos, Phys. Rev. 150, 1112 (1966);
Z. Fried, A. Baker, and D. Korff, ibsd. 151, 1040 (1966);P. Stehle
and P. G. DeBaryshe, ibid. 152, 1135 (1966).

packets and adiabatic damping explicitly in the quan-
tum-mechanical calculations.

However, as one of us has pointed out (Ref. 1, Sec.
2.2), there is nothing essentially quantum mechanical
about the questions being asked. The same time-
dependent electron mass that is the root of the Compton
scattering controversy occurs in the classical electron-
radiation Geld interaction as well. In the present paper
we determine exactly the trajectory of a classical charge,
moving in the Geld of a pulse of electromagnetic radia-
tion, and show the eGects of changes in initial condi-
tions, measurement times, and pulse width. Since the
charge is a classical object, obeying relativistic equa-
tions of motion, and the radiation Geld is a travelling
pulse, there is never any dBBculty with asymptotic
conditions or with initial and final separation of the
charge and the Geld.

II. HAMILTON'8 PRINCIPAL FUNCTION

The most direct method of solution is the Hamilton-
Jacobi technique. The relativistic equation for the
principal function is a nonlinear second-order equation
in three space variables and one time variable:

(rtS/at)' (vS eA)'= rn'— —(1)

where m is the particle mass. We have assumed the
electromagnetic fieM to be completely described by the
transverse vector potential A, and have set the scalar
potential C equal to zero. We assume the vector poten-
tial depends only on the proper time parameter' z= t
—n. r, where n is the direction of propagation of the
pulse. We will later assume a speciGc pulse shape.

In the absence of the radiation field, when A=O, the

'H. R. Reiss, Bull. Am. Phys. Soc. 11, 96 (1966); 12, 1054
(1967); F. Ehlotzky, ibid 13, 684 (196.8); R. A. Neville, ifnd 13, .
685 (1968).

~ The identification of r as the proper time may be established
in several ways. Perhaps the most straightforward method is to
observe that the Lorentz force equation of motion leads to the
condition 1—n v= (1—v')'", where v=dr/dt, which is sutlicient.
See, for example, N. D. Sengupta, Bull. Math. Soc. (Calcutta)
41, 187 (1949);41, 189 (1949).
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solution to (1) is obvious:

S=Pt e—r, . (2)

where the parameters e, p, and the mass m are related
in the following way:

p' —e'= m'. (3)

Since A is a function of r only, we assume the solution
to (1) may be written:

S=Pt er—+f(r),
where f is also a function of space and time only
through v. By substitution of the assumed solution
into Eq. (1), one finds immediately a first-order
equation for the unknown function f(r):

In order to evaluate the n's let us now impose our first
physical condition on the solutions. We will require
that e;(r) -+ 0 for those values of r for which A(r) —+ 0.
In other words, we assume that in the beginning when
the radiation pulse is far away and the vector potential
vanishes, the particle has zero velocity. In this w'ay we
can be certain that whatever velocity the particle has
at other later times will be due solely to the interaction
with the pulse. Since the o.'s are constants they are
independent of the limiting process by which w; and A

approach zero, and so must themselves be zero.
After applying Eq. (11) to the principal function„

and using our result that n;=0, one finds finally an
expression for the ith component of the electron
coordinate that is quite simple:

2(P—e ~ n)df/dr=2ee. A(r)+e A2(r), r;(r) c;= (—e/m)I~+n;(e /2m') J (13)

having set m' —PP+ e'= 0 again. The solution for f(r) is
easily found by a single integration with respect to r'.

(2ee ~ A(r')+e2Ap(r')jdr'. (6)

I(r, rp) = dr'A(r'),

J(r, rp) = dr'A'(r').
TO

IIL ELECTRON TRAJECTORY

In the usual way, the derivative of the principal
function with respect to r; gives the ith component of
the canonical momentum:

8$/Br;= p;= mp, +eA;, (10)

where e; is the ith component of the particle's kinetic
velocity, dr;/dt. Also the derivative of the principal
function with respect to the integration constant 0.;
equals a constant, say —c;, which later will be related to
the rp appearing in Eqs. (8) and (9):

8S/Be; = —c;= constant.

The straightforward application of Eq. (10) to Eq.
(7) leads immediately to an equation which allows the
three independent constants 0.; to be evaluated:

mu, (r)+ed;(r)= —e;——,'n;(p —e n) '

&& L'2ee A(r)+e AP(r)g. (12)

Thus we may write the full solution for the principal
function in the following convenient form:

S=Pt—e r+-,'(P —e n) '$2ee I+e'J],
where the integrals I and J depend on the specific
shape chosen for the radiation pulse, and on certain
initial conditions:

Now it is obvious that the constant c; is simply r;(rp).
At this point we impose the second physical assumption,
namely, that in the beginning the particle was not only
at rest but located at the origin. We have the option of
choosing any particular proper time Tp to be the initial
instant, but in the present circumstances the choice
rp= —pp is the most satisfactory. Thus r, (—pp )=c;=G.

The proper velocity components are easily found
also by di8erentiation with respect to r.

p, (r)= (e/m)A;(r)+n, (e'/2m')A'(r). (14)

Here one can make several observations rather
easily. Since A is, apart from the influence of the pulse
envelope, a sinusoidally oscillating function, it will have
an essentially zero average, whereas A' has a nonzero
average. As a consequence, after the pulse has passed,
the electron will have suGered a net displacement in
the n direction much larger than its displacement in
the direction of A. There is no displacement at any
time in the direction n)&A.

One further remark is in order. We must keep in
mind that our solutions are only implicit, since the
electron position vector r is known only as a function
of the proper time v which is in turn a function of r.
A complete explicit solution as a function of 3 instead of
r is possible to find only approximately.

At this point it is convenient to choose a particular
radiation pulse shape. There are no constraints on
the choice, in principle at least, but since we expect the
main features of the trajectory to be the same for any
shape with a single peak we are motivated strongly to
choose the simplest shape that has an adjustable width
and allows the integrals I and J to be done analytically.
We therefore will write the vector potential explicitly,
in the following form':

A (r) = ea coscor e &~ ~ .

8 Kibble (Ref. 5) has also made use of this pulse-shape function
in an approximate quantum calculation.
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eP T

I(r(0) = eg (Y coscor+co sin&or),
& +'Y

2.y e r'
I(r) 0) = ea~

l

(16a)

Thus the radiation Geld is described by a real constant
amplitude a, a single oscillation frequency ~, and a
space-time pulse-width parameter 1/Y. It is important
to note that the exponential dependence is on

~
r

~
and

not on
~
l ~. This guarantees that the form chosen for A

describes a travelling pulse and not simply an adiabati-
cally time-damped oscillation. In addition, we should
point out that our specializations to linear polarization,
and zero phase at r=o, are inessential and may be
trivially generalized.

The integrals I and J then have the values:

and velocity of the electron can be assumed known only
well in advance of the interaction with the Geld, while
the monochromatic field calculations assume that the
electron is at the origin at rest (or at rest on the average)
at the peak of the interaction. Such assumptions are
patently unrealistic.

rv. mAsS sam
The solution for the principal function may now be

used advantageously to discuss the electron mass shift
from the classical point of view. In the usual way we
make the identification of the interacting mass M(r)
through the relation

3P=8'—y'= (clSjell)' —(VS)'.

Our solution, in Eq. (7), leads to the result:

M'(r) =rss'+e As(sr). (19)
&& (Y cososr co sincor) ~,

—(16b)

v t:os2 + sin2
J(r(0)=-'a'e"'~ —+

2++2

2 27 ~, 1 1
I( )0)=-',a' —+ — —& "' —+

-'Y co +'Y Y ~ +Y

(17a)

Before going on to the question of the mass shift,
we should point out that the classical electron tra-
jectory in a given monochromatic radiation field is well

known, ' but is not directly comparable with the solu-

tion given in (14), or with the results calculated above
in the monochromatic limit. This is due to the choice of
initial conditions, which specify that at r= — both
the displacement and the velocity of the electron are
zero. In all previous trajectory calculations for mono-
chromatic waves of which we are aware, the electron
is chosen to be at rest either at v. =o, or to be at rest
on the average for all v. Both of these sets of conditions
can easily be imposed on Eqs. (12) and (13), in which

case the standard results are obtained.
However, these monochromatic field trajectories can

be misleading for two reasons. First of all, a nearly
trivial objection is that no experiment is ever done with

truly monochromatic radiation fields. One must always
use a pulse with greater or lesser spectral width. Much
more important is the experimenter's inability to
duplicate either set of initial conditions assumed in the
typical monochromatic Geld calculations. The position

Clearly, in the presence of a pulse of radiation,
3P(r) is generally not equal to m'. However, it is
certainly equal to m' if the pulse is far enough away.
Thus the physically desirable asymptotic separation
of the electron and the radiation is manifest again in
the mass equation.

In most imaginable experiments, especially at optical
frequencies, an average rather than instantaneous
shift will be important. Thus we calculate the average
shift during a time 2T symmetric about v=o:

where

((3Ils—m') )=—Dm'= -'e'a'X (Y 2T) (20)

GO GO

X(Y,2T) =
(STY +Gl 2Y cv

+e '7 comT~ sincoT ——cos&uT
~

——
i (21)

In this simple classical formula we can see both of
the conclusions reached in the recent quantum calcula-
tions. In the monochromatic limit (Y —& 0) an average
over an integral number of periods gives y=1 and a
mass shift Am'= -', e'a', in agreement with the quantum-
mechanical and quantum-field-theoretic results of a
number of authors. ' '"" Qn the other handy fol
arbitrary finite y, the average mass shift is identically
zero if the average is taken over the entire electron
trajectory. This is the classical analog to a point raised
by Stehle and DeBaryshe~ in the course of an argument
against the existence of a frequency shift. The question
to be decided is which of these correct limit results has
any relevance.

e L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Addison-Wesley Publishing Co. , Inc. , Reading, Mass. ,
1951),p. 120; X.D. Sengupta, Bull. Math. Soc. (Calcutta) 41, 187
(1949); Vachaspati, Proc. Natl. Inst. Sci. India 29, A138 (1963);
I.. S. Brown and T. W. B.Kibble, Ref. 3 (where the solution for a
nonmonochromatic field is indicated in implicit form).

' I". Ehlotzky, Acta Phys. Austriaca 23, 95 (1966).u J. H. Eberly and H. R. Rriss, Phys. Rev. 145, 1035 (1966l;
H. R. Reiss and J. H. Kberly, ibid. 151, 1058 (1966)."P. Stehle and P. G. DeBaryshe, University of Pittsburgh
report, 1964 (unpublished).



176 CLASSICAL ELECTRON IN RADIATION PULSE 1573

We may test the relevance of these estimates of the
mass shift by comparing them with the exact classical
mass shift in a "reasonable" experimental situation.
We assume cv))p so that the field oscillates many
times within its pulse envelope; and then calculate Am'

over a time interval b,T=4/y centered at v=0. This
choice of averaging time means that we have included
more than 98% of the pulse. We find heP=-,'e'a'x(y,
4/y), where

So, in this situation, the average mass shift is roughly
one quarter of the monochromatic result.

The mass shift changes very rapidly in the neighbor-
hood of v =0, of course; and decreases sharply outside
the 98% interval. In an earlier or later neighboring,
but nonoverlapping, time interval of equal size,
AT=4//y, the mass shift is less than 1% of the mono-
chromatic result.

V. DISCUSSION

We have solved exactly the classical equations of
motion for a charge interacting with a pulse of electro-
magnetic radiation. In the solutions for the electron
trajectory we recover some of the features of earlier
calculations which assumed monochromatic fields. How-
ever, our choice of more realistic initial conditions than
are possible with a monochromatic Geld allow new
aspects of the trajectory to be investigated. We have
found, for example, that the charge is carried a 6nite
distance in the direction of pulse travel. This displace-
ment is proportional to the time width of the pulse,
and it is easy to show that the ratio of this displacernent
to the time width is identical with the effective velocity
of propagation calculated by Sanderson. "There is also
a net Gnite displacement of the charge in the direction
which the electric Geld takes at v =0, but it is inversely
proportional to the pulse time width. In general, there
appear to be no effects which are important for long
times or broad pulse shapes which are proportional to
the field amplitude u. As in the earlier quantum calcula-

tions the important dimensionless parameter is Am'/m',
which is proportional to the square of the amplitude.

In addition we have calculated the change in the mass
of the charge due to its interaction with the Geld as the
pulse of radiation passes over it. On the basis of this
classical calculation we think that it is possible to
resolve the convicting claims that have arisen from
various quantum estimates of the same quantity. We
have exhibited the average mass shift for arbitrary
pulse width and arbitrary averaging time, and have
shown that if the averaging time corresponds roughly
to the time width of the pulse, then the average mass
shift is only a few times smaller than the full monochro-
matic mass shift. Insofar as averaging times of this
order of magnitude are the experimentally appropriate
ones, we can assert that a mass shift can be expected to
occur and to have a value within an order of magnitude
of the monochromatic value. Qn the other hand, the
opposite contention that the mass shift is zero is also
supported by our calculation if the appropriate averag-
ing time is suSciently long. We think, however, that
this latter situation would arise only in the unlikely
event that the experimenter did not know very precisely
when the radiation pulse was present. The transition
between two maximum and minimum values of the
mass shift is continuous, of course.

We should remark finally that the interest in the
mass shift has arisen recently because of its direct
connection with radiation-intensity-dependent eGects
in photon-electron scattering at optical frequencies.
The mass shift is especially relevant to the question of
an additional intensity-dependent contribution to the
Compton wavelength shift in Compton scattering. It
is in connection with observations of eR'ects such as
these that one can assert with greatest confidence that
the mass shift miO be present. The reason is that only
the electrons which interact with the radiation pulse
near its peak will be scattered strongly enough to be
detected. Thus, those electrons which are detected will
necessarily have experienced a mass shift which is
nearly equal to the maximum.

"J.J. Sanderson, Phys. Letters 18, 114 (1965).


