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The problem of the first-order relativistic corrections to the conventional nonrelativistic perturbation
treatment of electromagnetic interactions of bound states is discussed. It is shown how the Thomas pre-
cession effect is usually mishandled for small excitation energies acting on a bound state. These results are
demonstrated by the explicit calculation of the single-particle matrix elements of the charge density and
the low-energy Compton scattering amplitude in a simple bound-state model. The amplitudes, which are
known by virtue of relativistic invariance and current conservation, are also explicitly calculated, but agree-
ment is obtained only by applying the relativistic modifications of the c.m. variables found in a previous
paper. At the same time, the Drell-Hearn-Gerasimov sum rule is shown to be consistent for this model and
also for simple models of the hydrogen atom and the deuteron when the constituent particles have arbi-

trary masses.

I. INTRODUCTION

HE calculation of the effects of electromagnetic
interactions acting on particles which are com-
ponents of bound states while incorporating consistently
the requirements of relativistic invariance, at least to a
given order in v/c, is an important problem covering
the whole realm of atomic, nuclear, and strong-inter-
action physics. Except for the purely nonrelativistic
case, where the calculational procedures to be followed
are clear cut, it is perhaps fair to say that only partial
solutions have been offered.

The goals that we have in mind are the determination
of moderately low-energy Compton scattering or photo-
disintegration cross sections for bound states, and also
the electromagnetic perturbations on such intrinsic
bound-state parameters as its mass and coupling con-
stant to its constituents, in terms of the assumed known
electromagnetic propertiesof the composite constituents.
In the energy range of interest here these constituents
comprise the only coupled channel of any importance.
By this we restrict ourselves to bound states with clearly
identifiable constituents, i.e., the weakly bound systems
of atomic or nuclear physics, naive bootstrap models
such as the nucleon composed of itself and a pion, and
quark models. (We do not pretend that quarks form
the most obviously coupled channel for hadrons, but
they do form, if they exist, a deeper level of elemen-
tarity: The properties of hadrons are then reducible to
properties of quarks, and the calculational procedures
used here can be adopted if the hadron spends most of
the time in its simplest quark configuration.) In this
domain, the full machinery of S-matrix theory involving
the choice of invariant analytic variables, crossing, and
dispersion relations seems rather complicated and in-
appropriate. The other method of achieving complete
relativistic invariance is by using the off-mass-shell
Bethe-Salpeter (BS) wave functions to represent the
bound state. While the matrix elements of operators
acting between a discrete bound state and other states
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can, in principle, be calculated in terms of these wave
functions, there are problems of practicality® unless an
instantaneous interaction (e.g., for electromagnetically
bound systems using only the Coulomb force in the
radiation gauge) is assumed.!

However, for relatively weakly bound systems in the
region when the excitation energies involved are small
compared with the particle masses, an expansion in
terms of /¢, or effectively the inverse particle masses,
should be valid. The aim here, then, is to study the
relativistic corrections required on the standard non-
relativistic perturbation procedure for processes in-
volving the electromagnetic field and bound states.
Hence the basic dynamical variables used are the in-
dividual particle observables—positions, momentum,
and spin—and the electromagnetic field itself. The in-
dividual particle operators act directly on the multi-
particle states, which are required to transform in the
correct relativistic fashion. We do not deal here with
representative wave functions for the bound states, such
as provided by the BS equation, so that the methods
used here lack contact with an explicit field-theoretic
basis (such as is contained in Ref. 1), which could be
regarded as furnishing an exact treatment of the inter-
actions of a bound state. On the other hand, we have
perhaps the merits of simplicity and in the end the re-
sults are the same.

To demonstrate this approach, we apply it to testing
the consistency of the Drell-Hearn-Gerasimov (DHG)?3
sum rule by seeing whether it is satisfied for a weakly
bound state if the sum rule is valid for the constituents

1This approach has been adopted for the problems tackled
here by S. Brodsky and J. R. Primack, Phys. Rev. 174, 2071
(1968) Ann. Phys. (N.Y.) (to be ubhshed)

2S.'B. Gerasimov. Yadern. Fiz. , 598 (1965) [English transl.:

Soviet J. Nucl. Phys. 2, 430 (1966)], S.D. Drell and A. C. Hearn,
Phys. Rev. Letters 16, 908 (1966). The sum rule is implicitly con-
tained in L. I. Ka,pldus and Chou Kuang-Chou, Zh. Eksperim. i
Teor. Fiz. 41, 1546 (1961) [English transl.: Soviet Phys.—JETP
14, 1102 (1962)]

# M. Hosoda and K. Yamamoto, Progr. Theoret. Phys. (Kyoto)
30, 425 (1966); 30, 426 (1966).
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of the bound state.*~7 The sum rule expresses the
anomalous magnetic moment of a particle as a weighted
integral over photon-absorption cross sections. For a
simple bound-state model with weak binding, the
anomalous magnetic moment is known in terms of
the magnetic moments of the constituents, and the in-
tegral of the cross section over the low-energy region
can be calculated explicitly by closure. In the high-
energy region, when production processes would domi-
nate, the photon cross section for the bound state can
be taken to be the sum of the photon cross sections for
the constituents.® The weighted integral over these cross
sections is known since the sum rule is assumed to
apply to each of the constituents.

This method has been used before for a variety of
semirealistic models, applying conventional nonrela-
tivistic perturbation procedures, when the claim was
that the DHG sum rule did not apply to weakly bound
systems. If true, this result would have cast serious
doubt on the general validity of the sum rule, since as
is well known, in strong-interaction physics, whether
particles are composite and what can be taken as their
constituents is a matter of uncertainty and perhaps of
convention. But then it is difficult to imagine dynamics
such that the sum rule applies to strongly and not to
weakly bound states.

Nevertheless, the results of Ref. 4 were very sug-
gestive in that, for all examples studied, there was
complete cancellation in terms dependent on the anom-
alous magnetic moment of the constituent particles.
Most remarkably, only in terms independent of the
anomalous magnetic moments was the low-energy cal-
culation of the sum rule inconsistent. Furthermore,
when the same calculational methods were applied® to
find the Compton scattering amplitude for the simplest
bound-state model of Ref. 4 to first order in the photon
energy, the results were in disagreement with the general
low-energy theorem!® on which the sum rule is based.
The discrepancy again occurred in a term proportional
to a by itself, arising from the spin-orbit part of the
conventional electromagnetic-interaction Hamiltonian.

However, the magnitude of the spin-orbit term de-
pends on the relativistic Thomas precession effect!!
which, as shown in Sec. II, is usually incorrectly treated
for a bound state. Thus the main substance of this
paper is the correct handling of this effect for two-body
bound states. Indeed, since the low-energy Compton

4 G. Barton and N. Dombey, Phys. Rev. 162, 1520 (1967).

5S. D. Drell and J. Primack (unpublished).

6 H. R. Pagels, Phys. Rev. 158, 1566 (1967), Appendix B.

7 G. Konisi and K. Yamamoto, Progr. Theoret. Phys. (Kyoto)
37, 538 (1967).

8 This additivity hypothesis should be valid for weak binding
and to first order in a=¢?/4r=1/137, which is the accuracy
required in the calculations.

® G. Barton (unpublished).

W F, E. Low, Phys. Rev. 96, 1428 (1954); M. Gell-Mann and
M. L. Goldberger, 7bid. 96, 1433 (1954).

1. H. Thomas, Nature 117, 514 (1926); also J. Frenkel,
Z. Physik 37, 243 (19206).
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scattering theorem relies only on current conservation
(or gauge invariance) and relativistic invariance, we
have only to maintain these requirements to order 2/c?
to give the proper low-energy Compton amplitude for
the bound state and, incidentally, to show that the
DHG sum rule is consistent. The basic idea is to use the
relativistic division of the single-particle dynamical vari-
ables on which the electromagnetic field acts into over-
all c.m. variables, which connect the ground state only
to unexcited states and internal canonical c.m. vari-
ables, which have matrix elements between the ground
and excited states. This relativistic c.m. decomposition
has been given by us before!? both exactly, and to first
order in M2 (or effectively v2/c?), which is the result
we shall use here.

The outline of this paper then is as follows. In Sec. II
we shall briefly discuss these relativistic c.m. variables
and Thomas precession for a bound state. We calculate
the matrix elementsof the charge density between bound
states in the No model and demonstrate the relativistic
corrections. In Sec. IIT the calculation of the low-energy
theorem for the No model is reproduced and the rela-
tivistic remedy which also cures the sum rule is applied.
In Sec. IV the panacea is used on the hydrogen atom
and deuteron sum rules for arbitrary constituent masses
and the isotopic spin sum rules also mentioned. Finally,
a few general remarks are offered in a conclusion.

II. THOMAS PRECESSION AND
BOUND STATES

In this and the following sections we shall be con-
cerned with the No model*? as a convenient dynamical
framework. This contains three particles with the follow-
ing properties:

Magnetic
moment

Particle Mass Spin  Charge

N M 3 e u=(e/2M)(1+4x)
o m 0 0 0
N M'=M+4+m % e u=(e/2M")(1+«")

N’ is a weakly bound Sy, state of N and ¢ with
binding energy B<<M, m. For the N particle the electro-
magnetic interaction Hamiltonian would have been
written before 1926 as

Hr nonrelstivistio= €2 (rn) — (¢/2M)
X[A(ry)-py+pw- A(rw) 4+ (€2/2M) A (xrw)
—upoy H(ry)— (u/2M){on-[E(ry) Xpx]
—ox [pyXE(tx) ]+ 2eon-[A(x) XE(@x)]}, (2.1)

with ry, pn, and oy as the canonical position, momen-
tum, and spin variables, respectively, for the IV particle.
Each of the terms in (2.1) has a simple interpretation,
the last (spin-orbit term) arising from a moving mag-
netic dipole in an electric field seeing a magnetic field.
Asis well known, (2.1) neglects the celebrated Thomas

2 H, Osborn, preceding paper, Phys. Rev. 176, 1514 (1968).
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precession effect. Because of purely relativistic kinema-
tics alone, the spin of the NV particle would not be a
constant of motion but obeys the equation!?

d 1
—ON= (VNXaN)XUN
dt 141/y
=§(VNX3N)X0N+O(7)N3) ) (22)

v=(1—vy?)"12 =1

where vy and ay=(d/di)vy are the velocity and ac-
celeration of the N particle. This time dependence in
our basically nonrelativistic formalism can be ascribed
to an additional interaction term in the Hamiltonian,

Vo=—%ox (vwXan)+0(va?). (2.3)
Now for a free N particle,
vy=(1/M)[py—eA(ry)]+0(M ), (2.4)

ay=eE(ty)/ M+0OM—),

so that inserting this into (2.3) and symmetrizing, we
have

Vr=_(¢/8M*){on-[E(ty) Xpnx]—on-[pxyXE(ry)]
+ 20y [Ary) XE(ey) B0, (2.5)

Adding (2.5) to (2.1) changes the coefficient of the
spin-orbit term to

1
—-—(Zu
aM
The result, if the Darwin term is also inserted, is then
just the same as applying the Foldy-Wouthuysen (FW)

transformation to the Dirac electromagnetic interaction
Hamiltonian to order M~2 and is the conventional inter-

———)_—. (1429,
oM/ sM?
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action commonly used,

Hr=e®(ty)— (¢/2M)[A(ry) - pyv+pn- Alry)]
+(e2/2M) A*(tn) —pon-H(xy)— (1/2M)
X (u—e/4M){V <y E(tx)+on-[E@n) Xpn]
—oy-[pyXE(ty) ]+ 2e0y-[A(ry) XE(ty) ]} . (2.6)

It is now easy to see how (2.6) will give mistaken
results when applied to the N’ bound state since, at
very low excitation energies compared to the binding
energy, the V and ¢ particles can be regarded as rigidly
coupled with an effective mass M’. Hence (2.4) is
changed to

vy=(1/M)[py—eA(ry)]+-0(L~?),

ay=eE(ry)/M'+0(M*), 2.7)

for w<kB, where w is the energy of excitation supplied by
the electromagnetic field. With (2.7), the coefficient of
Vr is changed to ¢/8M M’ and the effective interaction
Hamiltonian for very low energies should have a co-
efficient of the spin-orbit term

1 e e m
——~<2,u,—-—)= — (1—[—2:«-{-——).
aM 2M’ 8M? M’

While these arguments are sufficient to show the
presence of a difficulty in the treatment of Thomas pre-
cession for particles in bound states,’* they are by no
means sufficient to permit dynamical calculations with
interaction energies of the same order as the binding
energies. Before addressing ourselves to the solution of
this problem, we first show how the Thomas-precession
difficulties occur in a simple observable matrix element.
The charge and current densities corresponding to the
usual FW interaction Hamiltonian (2.6) are, regarding
A, ®, and E for the moment as external c-number fields,

but

p(x)=0H1/6®(x)=ed(ty—x)— (1/4M)(2u—e/2M){— V20 (tx—X)+ox [Py X V :x8(ty—x)]

—oy'V

0Hr
8A(x) dt 6E(x)

ix)=-

d 0Hr
—— ——=(¢/2M){pw, §(tx—x)} — (¢¥/ M) A%(tn)d(tx—X)+pox X V 40 (ty—X)

NO(En—X) X py—2eon - [A(tn) X V y0(ty—x) ]},
(2.8)

d
—(e/2M)(2u—e/2M)on X E(rx)8(rty—x)+(1/4M) (Zu—e/ZM)é;]:V,NB (rxy—x)

— oy Xpnd(ty—X)—8(rv—X)on X py+2e0x X A (ry)d (txy—x) ]

to order M—2. For current conservation to this order we
expect

_ 9p(x) .

i[Ho+Hi, p(X)]+6—t+ Vi j(x)=0(M"3).

(2.9)

13 For a modern derivation see A. Chakrabarti, J. Math. Phys.
S, 1747 (1964). This equation is also implicitly contained in
Appendix A of Ref. 12.

The partial time derivative refers to the explicit time
dependence of the external fields; H, is the total
Hamiltonian of the system in the absence of electro-
magnetic interactions. In terms proportional to 2, (2.9)

14Tt is perhaps fortunate that atomic electrons are so nearly
free; otherwise, the g factor of an electron might have appeared
even more anomalous in the early days of quantum mechanics.
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is immediately satisfied (we take u~e/M), but for the
part proportional to e, it is necessary that

i[Ho, 8(rty—x)]=(1/2M)[px- V 1, 06(ty—Xx)
+ V y0(ty—x) - py JH+0(M~3),

or, alternatively,

[ Hoxrn]=px/M+0ML3). (2.10)
Equation (2.10) is automatically satisfied for a free N
particle when Ho= M- py?/2M~+O0(M—3); otherwise we
must require that in the interaction picture py=Miy
+0M—2).

After this disgression we now consider the matrix
element of the charge density between single-N'-particle
states,

(2m)¥(N'p2sz| p(0) | N'p1s1)

=u*(s2>[e~ﬁ[,(2u~5fﬁ;)<pz—pl>2

+£[—,(2u—2—;?)i0' (p2X pl)]u(sl) , (2.11)

where #(s) is an ordinary two-component nonrelativistic
spinor. The right-hand side of (2.11) is obtained by
taking the usual relativistic form for the matrix element
of the charge current density 4-vector between single-
spin-3 particle states and expanding consistently to
order M2 [including the invariant normalization factor
(M2/E,E;)'?7]. The momentum dependence of the
Dirac and Pauli form factors F; and F, has been ne-
glected since these will be unimportant here.

Given the form (2.8) for p(x), the matrix element can
be explicitly calculated. All that is required is the ex-
pansion of the single-particle dynamical variables in
terms of c.m. variables. Nonrelativistically,

PN= (M/M')P-I—q , IN= R+ (m/M')r, ON=O. (212)

This decomposition has the crucial property that the
momentum dependence of a two-particle state can be
factored off, e.g., | N'ps)=|p)Q|N’s), where the total
momentum and position operator P and R act only on
the over-all momentum part |p) and the internal mo-
mentum, position, and spin variables q, r, and ¢ act
only on the translationally invariant part |N’s).
Writing (2.8) as

p(x)=ed(ry—x)+8p(x), (2.13)

and then supposing ®=0 and E, A are second-quantized

HUGH OSBORN
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fields from now on, applying (2.12) gives

(21r)3<N'p2S2 l 5,,(0) |N’p1s1>= (N/52 l et (MIM’)(p2—p1)-r

1 e 1 e
S ) e )
aM 2M 2M 2M
1
2M’

1 e 1 e
=2t (so)] ——{ 2u—— V(po—11)2 2y
“ (sz)[ 4M< K 2M>(p2 P Jr2M'< . ZM)

Xio: (p2>< p;):lu(sl) . (2. 14)

ior-[(pr—p) X a1+ <2u—ﬁ)i0'(mxm):|lfv'51>

In the last line, the exponential factor which gen-
erates the form factor has been neglected, and also
(N's;|q| N's1)=0. Using the same nonrelativistic pro-
cedures on the single é-function term in (2.13),

(2m)3{ N'pysz| ed(rw) | N'pis1)
=(N'ss|e eimIM") (p—p1) 1| '5,)
=~ul(sy)eu(s)). (2.15)

Now the sum of (2.15) and (2.14) does not agree
with the general form (2.11). Agreement should not be
expected in the spin-independent ~M~2 terms since the
form factor F; contributes in this order, but the spin-
dependent ~M~? terms should agree, being of zero order
in the momentum dependence of F.. It can be seen that
the necessary correction is exactly that corresponding
to the effective low-energy modification of the Thomas
precession terms in Hy.

Our approach to the required changes in the above
calculations has been to study the relativistic correc-
tions to the c.m. decomposition (2.12). In Ref. 12 we
have shown that relativistically in the representation
of the generators of the Poincaré group where the in-
dividual-particle momentum, position, and spin oper-
ators are the basic dynamical variables (i.e., for spin-3
systems after FW transformation and so when Hj is
the correct electromagnetic interaction), then for any
two-particle state |f) which is an eigenstate of mo-
mentum p; and of the mass operator with eigenvalue
My

[)=1p)| fins}, [pr)=e"*7"R[0).  (2.16)
|fint) Is the internal two-particle state which is acted
upon by the internal c.m. variables; it is invariant under
translation, and boosts in the direction of motion. |py)
acts under Lorentz transformations, or the total mo-
mentum P and position operator R, as a single particle
of mass M.

To order M—2 (reckoning interchangeably also in
powers of m and M'), we have corresponding to (2.12)
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from Fq. (4.5) of Ref. 12

M m—M 1
pN=—P+q+< 9+ P-q)q,

M oM Mm 2M"
rN=R+(m/M/>r+%r( " P~q)+Hc
M Mm 2M"
(2.17)
1 m m
+%r-P—(%q——q———P)+H.c.
w2\ y o
1
- un'r PXU‘,
MM MM

ov=o+(1/2MM")(gXP)Xo.

The relativistic correction will not affect the calculation
of the matrix element of §p which is itself of order M—2.
However, (2.15) is modified to order M~2 by using the
form (2.17) for ry:

(27)3(N"pasa| e8(xw) | N'pisi)= (V'sz| e ei MM (p—p0)- £
X{1+0(M~*)—(1/4M'M)io-[(p2—p1) Xq]
+(m/4AM"*M )io- (p2Xp1)} | N's1), (2.18)

where the O(M~2) term in parentheses is spin-indepen-
dent. Proceeding as before, neglecting form-factor con-
tributions, we obtain

(27)3(N'pasz| ed(xn) | N'pisy) =~ ul (s3)e

X1+ (m/4M2M )io- (p X p1) Ju(si). (2.19)

This, combined with (2.14), gives the desired spin-
dependent term found in (2.11), showing how our c.m.
variable modification correctly treats Thomas preces-
sion for weakly bound states, at least in this simple
case.

III. LOW-ENERGY THEOREMS AND THE DHG
SUM RULE FOR THE N¢ MODEL

As is well known, the amplitude for Compton scat-
tering off spin-} particle states at rest, to zero and first
order in the photon energy w, is given by a general
theorem, at least to order ¢?, due to Low, and Gell-
Mann and Goldberger, in terms of just the charge,
magnetic moment, and mass of the spin-} particle. Any
method of calculation incorporating the requirements
of relativistic invariance and current conservation on
which the theorem is based should reproduce this re-
sult. We apply conventional second-order perturbation
theory using the FW electromagnetic interaction Hamil-
tonian (2.6) for photon scattering off a N’ particle

RELATIVISTIC CORRECTIONS TO TWO-PARTICLE DYNAMICS
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at rest.1®

ul(s") fu(s)(p'+ k' —k)
= — (2m)* (4o'w) *(E'/ M) X N"p's’ KN |
X[Hr+Hi(M'+o—H)"Hi]| N'0s)), (3.1)
(M)t B =Mool 0= K], /=K,

with kA and k’,)\’ the momentum, helicity of the initial
and final photon states. In the nonrelativistic regime
in which the FW transformation is expected to be valid,
w&M, o'=wt+w0(w/M). The first-order or direct con-
tribution to the amplitude f results from those parts of
Hy quadratic in the radiation field.

UH(s") faireottt(5)0(p'+ K — k) = — (N'p's’ | i =D =¥

e? e e
X I:——s’* ~e— —(2/.L——)iwazv' g*X s] | V'0s)
M M 2M

+io(;—2). (3.2)

e, ¢ are the polarization vectors corresponding to the
initial and final helicity states A, A’. In the exponential
factor ry=R+ (m/M")r and in any matrix element the
dependence on R can be factored off, giving rise to the
overall momentum conservation é function.The r depen-
dence gives rise to retardation. The expectation value of
|| is ~(2M rB)~/2, where M g=mM /M’ is the reduced
mass. For oK (MB)'/2, the exponentials can be expanded
and, taking (N’s’|r|N’s)=0 by parity arguments, we
have

et e e 1 w?
Fatent= —-—T1+—(2#—-—) T2+~o(———~) ,
u e\ )T e \uusye
3.3)

Ti=¢*e, Te=iwe £*Xe.

Any relativistic corrections are at least ~M—2, so
necessarily by dimensional reasons they must give con-
tributions to faireet of higher than first order in w. Simi-
larly, it is only necessary to use the FW electromagnetic
interaction Hamiltonian H; to order M—2.

In the second-order perturbation term in (3.1), only
parts of Hy linear in the field variables contribute to
order ¢2. The sum over intermediate states can be sepa-
rated into unexcited single-particle and excited states
of the bound-state system. For unexcited states the
denominator in (3.1) is ~w, while the single-particle
matrix elements of the electric and magnetic parts of
Hj are at least ~w, the spin-orbit single-particle matrix
element is ~w? and so is neglected. Adding also the
intermediate contribution of unexcited bound states
plus two photons so as to restore crossing symmetry
and using the nonrelativistic c.m. decomposition for the

18 The nonrelativistic part of the calculation for the low-energy
theorem is reproduced from Ref. 9.
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same reasons as in fyireet, We obtain

w 8’

1
uT(sl)funexcitedu(S)= —_> I:([V’s’ f e—i(m/M")k - ¢
€ e
% (_"* It —e* - uio- s'*xk) Vs
M’ M

e
X{N's" | i tmi M)k ‘(ﬂs- q—puio- st) |N's)

(o) o

Neglecting retardation, and using (N’s’|q| Ns)=018
and the result that the spin operator e (also the total
momentum P and position operator R) do not connect
the ground state to excited states, we get

e 1 w?
Junexcited= '—2#2T3*——T4+—0(———) )
M’ M \MMpB)\?
Ts=iwe- [ (£*XE)X (eXE)],
Ti=iw[o (e*XE)e- B —e* ko (eXE)].

3.5)

The result (3.5) is just that found generally by Low
for the single-particle intermediate-state contribution
to f. In his argument the remaining terms are dictated
by gauge invariance. Here we procede to directly evalu-
ate the excited intermediate-state contribution to f.

The matrix elements of Hy=—puoy-H(ry) between
the ground and excited states are ~w? so that if w<p,
when the denominator in (3.1) is not proportional to w
as the excited state, threshold occurs at E;—M'=g,
this magnetic term does not contribute to fexcitea tO
order w. Only the electric and spin-orbit interactions
are important. For the electric part of H;, which has
matrix elements of zero order in w, we obtain

uf(sl)fexcited E M(s)&(p’—}—k’_k)

= (2n)} (W) T [(N’p’s/,k’)\’]HE] 1
JHEN

1 ®
XU (E (G i) 2)
;T =

+(l‘§’ ::1}’)] (3.6)

g ¢

16 Lest it should be thought that the once retarded terms might
give a contribution ~w here, (V's’|e- gk-r|N’s)=0 since the N’
orbital wave function is in a Si/2 configuration which does not
deli(ine a direction. This matrix element must be proportional to
e k=0.

OSBORN
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neglecting terms of relative order w/8 and restricting
2.7 to zero-photon states. The matrix elements in
question are given for no retardation by

(f|Hg|N'ps,k\)(2m)* 2 (2w)\ 2~ — (e/ M)
X{f|e-px|N'p+ks).

To eliminate the summation over intermediate states
in (3.6) by closure, we apply to (3.7) the current-con-
servation requirement (2.10). With zero retardation, to
the same degree of approximation, (3.6) becomes

MT(-YI)fexcited mu(S)B(p’—l—k’— k)
=¢* 3 [(/M)((N'p'+K's'|[* px|f)
F#=N'

3.7

X{f|e tx|N'ks)— (N'p'—ks'|e-tx] f)
X{fle* px| N'=K's)+o(N'p+Ks' | *-1y| )
X{f|e x| N'ks)—(N'p'—ks'|e-xx| /)

X{f|e* ry|N'—Ks)]. (3.8)

Since the summation in (3.8) is only over excited
states, those parts of py and ry which connect the
ground state to unexcited states must be neglected be-
fore closure is applied and the summation eliminated.
In the first set of terms in (3.8), the nonrelativistic c.m.
decomposition is sufficient since they are already ~M 1.
The second set of terms is zero nonrelativistically, but
the relativistic c.m. decomposition (2.17) contributes
to order M—2. To first order in w, (3.8) reduces to a set
of commutators, the nonzero terms being

' (5") fexcitea m2s(s) = eX(N's" | { (m/M M )i[ "*- q,e- 1]
—w(m/AM"*M)([£"*- (qX o), e 1]

+Le* re-(@X0) D} N's).

It is not difficult to show that the once retarded

matrix elements are zero in the first term of (3.6), so
that

(3.9)

m m
fexcited E:02 ’T1+02 T }

1 w?
9 0(——) . (3.10)
MM 2MM'? M \MB

There remains only to evaluate that part of fexcitea
which results from the spin-orbit interaction term in
Hj. The matrix element between the ground state and
excited states for zero retardation is

(f|Hsmo| N'ps,]kN)(27)*1* (20) 12 =~ — (1/2M)
X (2u—e/2M)ic(f| 0+ (eXpx) | N'p+ks).

This is already of order w, so that for w8 in an ex-
pansion of the form (3.6), only the first term is necessary
here. Further, only the cross terms between the spin-
orbit matrix element (3.11) and the E1 matrix element
(3.7) are of the required first order in w. This expression
is ~M~2, so that a nonrelativistic c.m. decomposition

(3.11)
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is sufficient.
' (s") fexcited s—0t(s)= (e/2M)(2u—e/2M ) (m/M’)
Xo(N's'[{[e* 1,0(eXq) ]~z 1,0 (e*X @) ]} | N's),

e e\ m 1 /0
fexcited s—0— __<2#““)““T2+-“0(—> . (3 12)
M oM/ M M O\MB

Hence for o< to first order in w, adding (3.3), (3.5),
(3.10), and (3.12),

e? e e N
f= —*—~T1+—(2y—~—-——>T2— 2uTs——T4, (3.13)
M’ M’ 2M’ M’

in accordance with the low-energy theorem.!? If rela-
tivistic corrections had not been introduced the coeffi-
cient of T, would have been altered to (e/M’)
X (2u—e/2M), which would have had to be corrected
by the effective low-energy modification of the Thomas
precession term in the interaction.

However, this modification would not suffice to vali-
date the DHG sum rule for this model. Indeed, this
should not be expected since the sum rule involves an
integral over all photon energies. Following Ref. 4, the
sum rule can be written

21

M

* dw
K/2=/ __[g—N:P(w)_O'N'A(w)]
0 W

=Jy=K+Jy+J,, (3.14)

where oy 7'4(w) are the total absorption cross sections
for photons of energy w striking an N’ particle at rest
with the photon spin parallel, antiparallel to the initial
spin of the N’ particle. The integral over these cross
sections in (3.14), Juv, is decomposed into (i) a low-
energy part K due to photodisintegration of the bound
state into its constituents, for which the threshold is
w=p, and (ii) a basically high-energy part Jy+J, re-
sulting from the independent, effectively free-particle,
scattering of the photons by the particles N and ¢ in the
bound state. Jx and J, are then integrals of the same
form as Jy- over the N- and o-particle photon-absorp-
tion cross sections. Since the o particle is spinless, J,=0,
and assuming the sum rule to hold for the N particle,
Jn=(2n%/M?)«2. Then (3.14) becomes

(3.15)

To calculate K, the same procedure as used for the
ow-energy theorem is followed working consistently to

17Tt is interesting to note that in Ref. 9 for fKw< (M pB)!/?
it is shown that f has the form (3.13) with M’ — M, to first order
in w, which is the form of the low-energy photon scattering ampli-
tude for a free N particle. This demonstrates roughly as & —
in the sense described that the N particle in the bound state
scatters independently.
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zero order in 8/M [o: rather (8/M g)'/2 since retardation
effects are being neglected]. Defining

* dw
Keh= / —oy*Nw), (3.16)
0w/

where o%* is the cross section for an N’ of spin state s and
photon helicity A, then to order e?,

1
K-S,)\&(p):(27r)4 Z —<1le5,k>\|He.m.’f>
I#EN' Wy
X(f[He.m.|/\7/0‘Y’k}\> b
wy=E~M'= |k|.

(3.17)

Only parts of He.m. linear in the field variables are
required here which is very similar to the integral over
excited states required for the low-energy theorem. In
Ref. 4 it was shown, taking He.m. as the FW interaction
for the NV particle (2.6), that the magnetic part did not
contribute and that the cross terms between the spin-
orbit and electric parts of H with zero retardation and
using nonrelativistic c.m. decomposition gave

2120 m 1

o ta((2)). oo

There remains the contribution to K which is of
second order in the electric part of the interaction Hg.
Taking the difference between photon states of opposite
helicity,

Ks—o=

1
(Kg**—=Kg*Mé(p)=(2m)* > —[(N'ps,k\ l Hg l )
J=N

wr

X (F | Hg | N5\ — (e om¥)], (3.19)

since for helicity A——X\, the polarization vector £ —
—¢&*. For zero retardation, which is justified in the
limit of vanishing binding energy, the summation in
(3.19) and the second term of (3.6) are exactly the same,
so that from (3.9)

Kps*—Kg*=e2r(m/2M"M)u' (s)io- £* X eu(s)

= —2n%a(m/M"2M)ut(s)e- Eu(s). (3.20)

Choosing the N’ spin to be in the direction of incident
photon &, then g®*=¢7F, g®2=g4 and

m 1 B\Y2
+——0(<—> ) (3.21)
MM M \\M

This term arises solely by use of the relativistic c.m.
variables, in the nonrelativistic case Kg=0. It is at
once apparent that the sum of (3.21) and (3.18) is equal
to the left-hand side of (3.15), so that the DHG sum
rule is valid for this simple bound-state model.

Kg=—2nx
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IV. SUM RULE FOR HYDROGEN ATOM AND
DEUTERON; ISOTROPIC-SPIN SUM RULES

A simple model of a hydrogenlike atom is obtained
from the No model by giving the ¢ particle, which now
corresponds to the nucleus, a charge Ze. The N particle
corresponds to the electron but we retain the anomalous
magnetic moment ex/2M. The total charge is (Z+1)e
while the magnetic moment is still u=¢(1+4«)/2M . The
sum rule reads

(Z+1)e\2 21rza/ m M\?
27r<p,— )= k+ Z—)
M w\  uww
® dw
= / lon (@) —ox4w)]
w
’ ~K4+Ty+T,. (41)

(f|Hrs

(f|H g | V05, kN)(2m)*/%(20) 2= —ie(m/M")5(ps—K)w;(fine | ("”H—
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It is still true that for the integrals over the corre-
sponding free-particle cross sections J,=0, since a spin-
less particle does not define a direction and Jy= 2n%ax?/
M2, by assumption. The electromagnetic interaction
H.. .. is now the sum of the FW Hamiltonian for the IV
particle, Hr,, and the interaction Hamiltonian for the
spin-zero o,

Hi,=—(Ze/2m)[p, A(xs)+ A(rs) ps]
+(Z2%/2m) A%(x,) .

Defining K** again by (3.16), it still has the form
(3.17). The magnetic part of Hy, once more does not
contribute since with zero retardation the matrix ele-
ments (already ~w) between the ground state and ex-
cited states vanish. The required matrix elements, ar-
ranging them to be proportional to wy, or w, are

4.2)

m

—M 1
er ) s (q><a>)|N's>,
2M?*m 4M2
M—m
Hera?)—
2m2M AMm

e-<q><o>)|zv's>, (4.3)

(flHamo| N"05 kN)(27)/(20) /2= — e[ (14 2x) /AU * Jos6 (Ds— k) fint |0~ (eX @) [ N'5)

neglecting terms of higher order in w and the inverse masses on the right-hand side. In the first two matrix elements
of (4.3), the current-conservation requirements of the form (2.10) have been imposed separately for the IV and ¢
particles so as to bring out a factor w, for use in cancelling the energy denominators in the sum rule. To the re-

quired order,
2

Ko oth= (142 )<m 2 . .
s——os. _=— — A,?I . . . . N’ ’
M2 * M M’)< s|[e* ro- (eXq)+ o (e*Xq)e-r][N's)

(4.4)
2 m M .
Koo — Koot = (1+2,<)< Z—-)uf(s)o~ku(s),
M2 M’ M’ )
and also
K*422m<f|<+—1 : (
sA=47%0 —(fint|| & s{e1,q%}— -(qX N's
. E [l (et e ra—— e @ a)>|1 )
M m—M 1 2
i (e R R ) (B I
M’ 2M3m 4M2

2
Kg*—Kg* = —
M2 M

From (4.4) and (4.5), to zero order in (3/M)'?, K in
(4.1) is given by

21 m M m M\?
K= [2;{(——— 2——)+(———Z—> :| (4.6)
M2 M M M M
This is the expression required to automatically
satisfy the sum rule (4.1) (for M<<m see also Ref. 5).

Finally, we treat the deuteron for constituents of
arbitrary mass. Generalization of the low-energy the-

Tl M m M .
-—(1—|—Z)<————Z——)u*(s)a-ku(s) .
M’ M’

orems to the spin-1 case and unsubtracted dispersion
relations yield?:4¢

7r<w—]—;—>2= /0 w%‘”[adp(w)—adfi(wnzfd. @.7)

d

Assumptions of the same nature as applied previously
give, for the integral of the same form as J4 over the
low-energy cross sections for photodisintegration of the
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deuteron into a proton and neutron,

K=Jo—Jp—Ju

14k,  kn 1 2
= 47r2a< = — )
2M, 2M, M,+M,

Kp?  Kn?
—27rza< +——>. (4.8)
2 M2

P n

In Ref. 4, using nonrelativistic methods and the elec-
tromagnetic FW interaction Hamiltonians for the neu-
tron and proton, K is explicitly calculated. All terms
dependent on «, and «, cancel with those on the right-
hand side of (4.8), while the term merely proportional
to o is

—ma(1/M )+ 2xa(M /MM 2

(4.9
Mi=M +M,.

From the experience gained in previous calculations,
relativistic corrections to the order required here can
only come from those terms in the explicit calculation of
K which are of second order in the electric part of the
interaction Hg. Since only the proton is charged

Hp=—(e/2M ,)[pp- A(rp)+A(rp)-ps],

forgetting the unimportant e? term. The matrix element
in question, by using our c.m. variables for the case of
two particles with spin to order M~% and the current-
conservation requirement, may be put in the form

(4.10)

(f| Hg|d0s,kNY(27)3/ 2 (2w) 2= —je(M /M 3)w;6(ps— k)

Mp-—]l/[n1 \
(fint[(s‘f“f‘m—f{S'r,q }

n d

1
AM.M,

s~q><op’+(1/4Mn2)e~q><an')lds>,

wr=E;—Ma, (4.11)
neglecting terms of higher order in the photon energy w;
¢, and ¢, are the internal proton and neutron c.m.
spin operators. Defining K** by (3.16) again, the con-
tribution due to Hg acting twice is

€

Kph=4ra(M,2/M2) ¥
s

int

(fins] (S'r“‘
’ AM M,

2

, (4.12)

(gXey)+

e (axo) o)

where the ~M~2 spin-independent term is not included
since it does not appear when we evaluate to this order

RELATIVISTIC CORRECTIONS TO TWO-PARTICLE DYNAMICS

1531

the difference

Kps*—Kgo—r = —2n2%(M /M 2)uq'(s)

1 1 .
X (——o,,’ k——a,- k)ud(s) . (4.13)
M

? n

The spin-1 deuteron spinor is #4(2= 1) =1,(F=5)ua(£3).
Taking the deuteron to have spin-1 projection in the
direction of the incident photon, then (4.13) gives the
relativistic correction contribution to be

—2%a(M a— M )M 2M . (4.14)

Adding (4.14) and (4.9) is equal to the «p, xn-inde-
pendent part of the right-hand side of (4.8). Hence we
have demonstrated the DHG sum rule for the deuteron
constituted of a neutron and proton of arbitrary mass to
zero order in the deuteron binding energy.

Besides the sum rule studied here, which is expressed
entirely in terms of observable cross sections, isoscalar
and isovector DHG sum rules have been derived'®
which express the isoscalar and isovector magnetic
moments in terms of similar integrals to (3.14) over
isoscalar and isovector photon-absorption cross sec-
tions. Following Ref. 4, the No model can describe a
bound-state isodoublet p” and »’ by letting N be either
of two elementary members of an isodoublet p and =
while ¢ remains isoscalar. Since the sum rule is satisfied
for particles p’ and »’ separately, then the isoscalar and
isovector sum rules are automatically satisfied. For the
deuteron, since when M ,= M, (isospin symmetry) the
relativistic correction term (4.14) vanishes, the con-
clusion of Barton and Dombey that the deuteron
satisfies the isospin DHG sum rules is not altered. In
any case it should be noted that corrections to order
M~ in a photodisintegration cross section beyond the
leading term will not alter the isovector character of
M1 and E1 disintegrations (for the deuteron both the
spin-orbit term and relativistic effects have the nature
of such a correction).

Finally in Ref. 4 Barton and Dombey endeavored to
show that the H3-He? isodoublet flouted both the ordi-
nary and isospin sum rules. Without explicit calcu-
lation, since we cannot yet deal with the three-body
nature of these systems, as a consequence of the above
results we may confidently assert that relativistic cor-
rections should effect agreement. The sum rule would
indeed be confirmed if we were to assume that H3-He?
could be treated as a bound state of a nucleon and a
two-nucleon bound state, since then our calculational
procedures could easily be sequentially applied to the
two-nucleon bound state and then to the effectively
two-particle three-nucelon system. By such means the
DHG sum rule could be verified for any multiparticle
bound state.

3M.A.B.B

ég, Phys. Rev. Letters 17, 333 (1966); K. Kawara-
bagf/ashi and W, W. Wada, Phys. Rev. 152, 1286 (1960); see also
Ref. 6.
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V. CONCLUSION

We have endeavored to show that in order to calcu-
late relativistically electromagnetic processes in a con-
ventional noncovariant fashion, it is necessary to modify
the nonrelativistic form of the c.m. variables. The pro-
cedure adopted here is not very rigorous since, as is well
known, it is not sufficient in order to introduce an inter-
action while maintaining relativistic invariance just to
add on an extra term in the Hamiltonian. In general,
the generator of boosts has to be modified as well. For
a free particle, the FW electromagnetic interaction Hy
is justifiably added onto the free relativistic Hamiltonian
Ho=(m2+p2)'2, since the form Ho+H7, to given order
in the inverse mass, can be derived by a unitary trans-
formation on the Dirac Hamiltonian incorporating
electromagnetic interaction, which can be cast into a
manifestly covariant formalism.

In our case, for a two-particle system we have im-
plicitly imagined for H,, a Hamiltonian of the Bakam-
jlan-Thomas form (see Ref. 12 for more details and
references), where the instantaneous interaction is in-
corporated in the mass operator 1. This could be of the
form

=Gt it @ V(Jx)), - 6.1)
where q and r are the internal c.m. momentum and
position dynamical variables and V(|r|) is the inter-
action. With (5.1) we would have the result

mime

iLMx]=

q+0(M7). (5.2)

miT M

Now adding on H 7, expressed in terms of the canonical
single-particle variables, to Hy and proceeding through
our previous calculations but using (5.2) in place of
(2.10) would not produce the required relativistic cor-
rection, although the relativistic c.m. decomposition
was still applied. This demonstrates the need for care
in adding Hr to H, as the valid electromagnetic inter-
action. The form of H; has been taken here to be un-
changed from that for a free particle, but the dynamical
variables appearing to represent the momentum and
position operator of the interacting particle must have
the requirement (2.10) imposed, justified on the grounds
of current conservation. Whether merely imposing cur-
rent conservation is sufficient for relativistic, and also
gauge, invariance of the interaction to higher order than
discussed here is uncertain.

There is perhaps one other point to note. In Ref. 12
and here we have used the relativistic c.m. variables
for a free two-particle system. Consequently, these vari-
ables were appropriate to dynamical calculation with
weakly bound states. If we were dealing with a strong-
binding situation it would probably be more suitable
to let the c.m. variables become dependent on the mass
operator,

HUGH OSBORN
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Note added in proof. There are some points in the text
which are oversimplified and some further elucidation
is given here. The statement at the end of Sec. IV that
the isotopic Drell-Hearn-Gerasimov sum rules are auto-
matically satisfied for the modified No model since the
ordinary sum rule is satisfied for each member of the
isodoublet is fallacious. A little more calculation is
necessary. The isoscalar (S) and isovector (V) sum rules
are

es,v\? * dw
(s r—n) = [ =
2M’ 0

X[os, v (w)—0as,y™ (w)]

=JS,V(N/) )

(X.1)

with the same basic notation as before. Using
es= (Z+%)6, ev=%6, and pg= (6/4:M) (1+KP+Kn))
pyv=(e/4M)(1+kp,—«z), Eq. (X.1) can be rewritten

T

2M2

m M \2?
(Kp+xn+—— ZZ—) ~Ts(V,
M’ M’
(X.2)

w2

202

A2
<Kp~ Kn+']l-[—/> =Jy(N).

Assuming the validity of the isotopic sum rules for the
N isodoublet, the high-energy contributions to J (V') are

(m°a/2M) (kptxa)® (S,
(m°a/2M%) (kp—ka)* (V).

The low-energy parts can be found as usual, remember-
ing that the electromagnetic field acting on the o
particle only causes isoscalar contributions. The spin-
orbit parts are

(X.3)

o m M
—[1+2<Kp+xn>](——zz—) ),
2M? M’ M’

2 (X 4)

71'01[1 ) m v
20—kl (),

while relativistic corrections to the electric part give

a0 M m M
- ——<1+2Z>(————zz—) ),
2M2 M’ ’ M’
(X.5)
w2 Mm
- ).
2M? M2

Adding Egs. (X.3)-(X.5) is sufficient to validate the
two sum rules (X.2).

The justification for the use of the electromagnetic
interaction (2.6) for a relativistic (to order M~2) two-
particle theory with our choice of the c.m. decomposi-
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tion is not completely satisfactory. It is strictly correct
only for free particles. In general, a two-body interaction
will necessitate a modified electromagnetic interaction
(e.g., exchange currents). The condition (2.10) can
then be regarded as the requirement for an unchanged
electromagnetic interaction even in the preserve of
two-body forces.

In Ref. 1 an alternative electromagnetic-interaction
Hamiltonian has been derived to take account of the
relativistic modification of the spin-orbit forces for a
two-particle system while maintaining the conventional
nonrelativistic c.m. decomposition of the dynamical
variables. The extra terms that appear can also be very
simply derived using the approach considered in this
paper. For two particles 1 and 2 we define, in terms
of the c.m. variables,

m1 Mo
nNE-=R4—r, rNR=R——r,

Considering only spin-dependent corrections, the c.m.
decomposition from Eq. (4.5) of Ref. 12 forces us to
write for the individual-particle dynamical variables

1 81 S
r1=r1N.R.+__p2N.R.X(_____) ,
29

my M2
X.7
1 S1 So
ry=1;N R ——p N R (___> .
291 my  Me.

Using (X.7), the potential terms in the Hamiltonian
can be expanded to order M—2:

e1® (1) + 2@ (r2) = 12 (1N F-) €2 (1N -7-)

1 /81 s
+ (,__*___) [61V@(I1N'R')Xp2N'R‘

20M\my mq
— VRN R)XpNR]. (X.8)
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To obtain a Hamiltonian that satisfies gauge invariance
welet V& — —Eand pN-B—pN-R —¢A(r,N-R). Since
the correction term is itself of order M~2, the super-
scripts N.R. can be dropped, so that

1 /81 s
AHe .= _"—'—<"—__) . {31E (I'l) X [pg— 62A (1‘2)]
29\m1  me

—e;E(r) X[p1—eiA(r) ]}

Using (X.9) in addition to the usual electromagnetic
interaction is sufficient to derive the low-energy
theorems and the Drell-Hearn-Gerasimov sum rules
for arbitrary two-particle bound states, in the limit of
vanishing binding energy and with conventional treat-
ment of the c.m. motion.

The effect of the extra terms in (X.8) may possibly
be observable in the polarization in the low-energy
(<20-MeV) proton-proton scattering. A recent experi-
ment is in quite strong disagreement with the behavior
expected from current phase-shift analyses which are
unlikely to be in error to the required extent. J. S. C.
McKee and T. Osborn [Phys. Letters 28B, 7 (1968),
where other references are given] have suggested an
explanation of the discrepancy due to the spin-orbit
forces acting on the incident proton in the Coulomb
field of the target. However, these authors used only
the proton magnetic moment term which is larger than
the Thomas precession term in the ratio 2.79:0.5.
Hence, if these effects are to be calculated to better
than ~259, accuracy, then relativistic corrections are
important, since the proton masses are equal.

(X.9)
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