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The definition of the total momentum, position, and spin for Galilean- or Lorentz-invariant two-free-
particle systems is discussed by using the requirement that the generators of the respective invariance groups
should have the same form expressed in terms of them as for a single particle. Internal c.m. dynamical vari-
ables are introduced by applying the singular transformation due to Gartenhaus and Schwartz on the basic
single-particle dynamical variables, the transformation mapping the whole Hilbert space onto the c.m. sub-
space spanned by states of zero total momentum. The form of the internal c.m. position operator is given
for particles with spin, for what appears to be the first time. Using these dynamical variables, it is shown
how an interaction can be introduced while maintaining Galilean or Lorentz invariance and satisfying the
asymptotic condition of freely propagating particles for large separations.

X,=SC(Lnt,s,])SX([ntsssj)

are given by the sums of the individual-particle gener-
ators acting in their respective Hilbert spaces. With the
basic dynamical variables as the momenta, position, and

spin operators of each particle, the commutation
relations are

[r.;,pp;j=ta. p"a;;, ~,P=1, 2

Ps;,sp;)=i8 pe;;&s&, i,j,k= 1,2,3

all other commutators vanishing, and also

s '=s (s +1). (1.2)

r M. Hsmmermesh, Ann Phys. (N. V) 9, 5&& (&96O); J
Levy-Leblond, J. Math. Phys. 4, '776 (f963).

'We confine ourselves throughout to positive-mass represen-
tations.

I. INTRODUCTION

'HE role that the c.m. dynamical variables play in
nonrelativistic quantum mechanics is well known.

The intention here is to derive the corresponding form
for the c.m. dynamical variables appropriate to a
relativistic quantum two-particle problem when the
fundamental dynamical variables are also the indi-
vidual-particle dynamical observables —momentum,
position, and spin. ln order to motivate the subsequent
relativistic discussion, we retread in this introduction
the familiar nonrelativistic ground, paying careful
attention to the essential requirement of invariance
under the inhomogeneous Galilean group g. '

As is also true relativistically for the inhomogeneous
Lorentz or Poincare group 6', the irreducible represen-
tations of g, which describe a single elementary particle,
are characterized by the values of the two Casimir
invariants, mass m and spin s. For two noninteracting
particles of mass m~, nz2, and spin s~,s~ associated with
Hilbert spaces 3.'(LntrsrJ), K(Lntsssg), ' the generators
of 8 acting in the direct product Hilbert space

The forms of the total Hamiltonian, momentum, and
angular momentum are obvious':

H =est~+ nts+pr'/2rnr+ ps'/2nts,

P=pr+Ps ~

J=rrXpr+rsXps+sr+ss.
(1.3)

To complete the algebra of g (which is not really a
Lie algebra unless the total mass ntr+nts is included;
but these complications are not material here), we need
the generator of boosts

K= t(ps+ p2) rnlrl ntsrs ~ (1 4)

H=M+ddf+P'/2M, P=P,
J=RXP+S. K=tP—MR.

(1.5)

By virtue of the algebra of g—P, R, and S obey the
commutation relations (1.1) while they necessarily
commutate with M and AM. To maintain simplicity~ is assumed to vanish as both the individual-
particle momenta go to zero; thus M=ntq+trts. LThe
equivalence of (1.5) to (1.3) and (1.4) does not define M
uniquely but since mass is absolutely conserved in
Galilean-invariant theories, this is the only natural
definition; if the algebra is extended to be a Lie algebra
by including the mass term among the elements, then
this follows immediately. j Hence P and R can be ex-

3 We choose the form of II to coincide with the nonrelativistic
limit of relativistic expressions given later. As far as the algebra of
8 is concerned, any operator or c number commuting with the
generators may be added to H.

Given (1.1), the expressions (1.3) and (1.4) automati-
cally ensure that the algebra of g is satisfied and hence
if these operators are used on K2 to generate time and
space translations, rotations, and boosts, then we obtain
a nonrelativistic two-particle theory invariant under g.
The total momentum, position, and spin are now
introduced by requiring that the generators expressed
in terms of these operators have the same form as they
would for a single particle:
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pressed in terms of the single-particle variables,

'rl lrl+ m2r2
P=yg+p2, R=

151+m2
(1.6)

By expressing the generators in terms of P, R, S, and

AM, we have electively reduced 3C2 to a direct sum over
irreducible representations of g, '

K2 g dM'K„(fM'j $), (1.7)

where the label g is used for the multiple occurrence of
equivalent irreducible representations. The Casimir
invariants M+ ddsc and S' acting on K„(t M', j$) have
t.he values M' and j(j+1); the generators transform
states within a given irreducible subspace in the usual

fashion. Besides the operators P, R, and S which

act between states within irreducible subspaces, the
basic dynamical variables contain parts which mix such

subspaces. To form a complete set of dynamical vari-
ables with P and R under which X~ is irreducible,
further variables are formed from the basic set which

commute with P and R. Thus the basic algebra gener-

ated by r p s, o.= 1, 2, has now to be contracted to a
subalgebra which commutes with P and R.

As is shown in Sec. II, this can be achieved by a
singular transformation' such that

UPU*=0, USU*= S,
U*RU=0.

(1.8)

The transformation U ~ U* is not de6ned on the
whole algebra but diverges when applied to any oper-
ator which does not commute with P; otherwise it
preserves c1.mmutation relations and the transformed
operator commutes with R and P. Def'ming the trans-
formation on p~, p2, r~—r2, s~, and 82, we obtain the
internal c.m. dynamical variables

k= Up~U*= —Up2U*,

r= U(rg —rg) U,
s '=Us U*, n=i, 2.

(1.9)

In the nonrelativistic case, the conventional expres-

sions are found (see Ref. 3 for details or the discussion

in Sec. III here):

~2Pl ~lP2k=-, r= rg —r2,
fgg+fgm

Sa = Sa~

which obey the expected commutation relations (1.1).
The form of dM and S in terms of these variables can

4The decomposition has been studied most closely in- the
relativistic case in A. J. Macfarlane, J. Math Phys. 4, 490 (1963).

'

' S. Gartenhaus and C. Schwartz, Phys. Rev. 108, 842 (1957).

now be easily seen from (1.3) and (1.5), using (1.8)
and (1.9):

&M = U(EE —M) U*=k' ,'(-1/my+ 1/m2),
S= U(J—EXP)U*

= UL(r& —r2) Xyi+sj+S2+(rm —R) XPgU*
=rXk+s~+s2,

where we have used the fact that rm —R commutes
with P and so is a valid operator on which the trans-
formation is weQ de6ned. The form of AM demonstrates
that, for noninteracting particles, the range of interga-
tion over M' in (1.7) extends from M'=mq+mm to ~.

Having obtained the c.m. internal dynamical vari-
ables, it is now obvious how the generators of g may
be modi6ed so as to include an interaction between the
two particles represented by the Hilbert space K&. It is
only necessary to modify ~M such that it still commutes
with R, P, and S. The most general form for two spin-

2 particles is

&M = -,'k'(1/my+ 1/m2)+ Vg( (
r (, ~

k (, (1()
+ V(2/rf, /kf, /1[)sx s2+V, (fr[, /k[, fl/)1 s,
+V4(/r/, /k[, /1[)1 s2+V~([r(, [kf, [1/)I s~l s,
+Vg(/r/, /k/, /1/)r sgr s,
+V7(i ri, / k/, /

li)k sik s2,
l= rXk (1.12)

where the interaction is assumed to be invariant under
time reversal and parity. Furthermore, it is easy to
apply the condition of separability, that as the distance
between the particles becomes large they behave as
independent free particles, merely by requiring that
the potentials V~'(lrl~lkl ~Ill) vanish fast enough for
large particle separations, i.e., as ~r~ ~~. Then for
large

~

r ~, the generators describe two freely propagating
particles, each individually transforming according to g.

In Sec. II we exhibit the Lie algebra pf (p and shpw
hpw the total momentum and position are to be de6ned
in the relativistic case. Furthermore, the existence of
the singular operators U, 0*with the required properties
is demonstrated. In Sec. III these operators are applied
to obtain the internal c.m. dynamical variables.
Finally in the conclusion (Sec. IV) the introduction of
a relativistic separable two-particle interaction and a
few other points are discussed. In two Appendices
I prentz transformations of the single-particle dynamical
variables are explicitly calculated and the spin de-
pendence of the c.m. position operators are demon-
strated by a diferent procedure than that followed in
the rest of this paper.

II. RELATIVISTIC POSITIO5' OPERATOR

The necessary and sufhcient condition for s, (quan
tmed) theory to possess relativistic invariance
that the generators of time and space translations,
rotations, and boosts acting on the Hilbert space pf
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physical states should obey the Lie algebra of (P,

[Aq'j] zeijk'kq Pi~~j] ei-/k~kq

[Ji'Pi]=ieiikPk' PJi'H]=0, (E;,H]= iP—, ,

[Z;,K;]=—ze,"Jk, [E P]=—z5@H,

[P;,P;]=0, [P;,H]=0, z, j, k=1, 2, 3

(2.1)

and also

H=(m'+p')'"—=E, P=p,
J=rXp+s,
K= 1p ,'(rE+Er) —p—Xs/(E+m—),

ss=$($+1).

(2.2)

These expressions are automatically Hermitian and
obey the Lie algebra (2.1); the division by E+m is well
delned since E is a positive de6nite operator. For spin

stthe forms (2.2) are exactly those obtained by applying
the Foldy-Wouthuysen transformation to the generators
in the Dirac representation and disregarding factors P.
Because of its applicability to arbitrary spin, and other
simplifying features, (2.2) can be regarded as the
canonical form of the generators of (P. The single-
particle states are especially simple for if Io) represents
a state at rest (o labels the spin), then the state with
momentum q is represented by

I«&)=[m/E(«)]'/s exp( —z8j'K) I&)
=eilz. r—«slilIg) (23)

«nhe= I«I/E(«), («'~'I «~) = ~".~(«'—«).

For two noninteracting relativistic particles 1 and 2,
generators in the direct-product Hilbert space 3C2 are
given by the sum of the individual generators of the
form (2.2). The total momentum, position, and spin
are now defined, in exact correspondence to the non-
relativistic case, by requiring that the generators of

where the generators are Hermitian so that the Hilbert
space supports a unitary representation of (P-conserving
probability. The signs of the generators are such that the
general element of (P infinitesimally close to the identity,

1—i5$ J—i5v. K—i5x P+iRH,

operating on a state vector corresponding to a given
physical system, at time ], gives a new state vector
corresponding to the same physical system rotated
through an angle 5g, given a velocity bv and a displace-
ment Sx at a time 1+9.Fora finite boost of aphysical
system by a velocity v, the transformation of the corre-
sponding state is given by

exp( —i88 K), 8=tanh 'IvI.

For an irreducible representation of the algebra (2.1)
characterized by a mass m and spin s, the form of the
generators expressed in terms of the corresponding
particle momentum, position, and spin operators
obeying the commutation relation (1.1) is

(P in 3C& expressed in terms of them should have exactly
the same form as for a single particle, (2.2).'r In this
case it is possible to solve uniquely for P, R, and S as
functions of the generators:

P=P, S=J—RXP, M=(Es —Pz)'/',
(2.4)

P 1(1 1q PXJ PX(PXK)
R=t—-I —K+K—I—

E 2~E El M(E+M) EM(E+M)

The Lie algebra (2.1) now ensures that P, R, and S
obey the commutation relations (1.1); M and S' are
the Casimir invariants.

To determine the internal c.m. dynamical variables,
we now introduce the unitary operators'

U(u) eia(R P+P R)/2 Ua(u) e
—ia(R P+P R)/2 (2 3)

where, taking 1=0 since the time dependence after the
transformation can be found by applying the Hamilto-
nian in the usual way,

—',(R.P+P R)= —{(IPI/E)V.K}, 8=P/IPI (2.6)

the curly brackets denoting symmetrization so as to
maintain a Hermitian result. The operators U(u),
U*(u) are used to generate an automorphism on the
algebra of the basic dynamical variables rp, pp, sp,
preserving the commutation relations [it should be
noted that U(u) and U*(u) are not elements of the Lie
group generated by E, P, J, K]. Applying this trans-
formation 6rst to the total momentum, we de6ne

P(u) = U(u)PU*(u).

By differentiation,

so that
dP(u)/du= —P(u),

P(u) =e- P. (2 &)

By taking the limit o, ~co,' it is at once apparent
that we have obtained a transformation which fu16lls
the 6rst of the conditions (1.8),

UPU*=O, U=U(~), U*=U*(m). (2.8)

Of course, in the limit u-+", U(u) and U*(u) can
no longer be unitary operators since no inverse exists

'For a general discussion see T. D. Newton and E. P. Wigner,
Rev. Mod. Phys. 21, 400 (1949); L. L. Foldy, Phys. Rev. 102,
568 (1956); C. Fronsdal, iMd. 113, 1367 (1959); R. Acharya and
E.C. G. Sudarshan, J.Math. Phys. 1, $32 (1960); A. S. Wightman,
Rev. Mod. Phys. 34, 845 (1962); A. Chakraharti, J. Math. Phys.
4, 1223 (1963).

7 Dehnitions of the total position operator for a two-particle sys-
tem exactly equivalent to ours have appeared in Chou Kuang-Chao
and M. I. Shirokov, Zh. Eksperim. i Teor. Fiz. 34, 1230 (1958)
LKnglish transl. : Soviet Phys. —JETP 7, 851 (1958)g; B. Barsella
and E. Fabri, Phys. Rev. 128, 451 (1962); APChakrabarti, J. Math.
Phys. 5, 922 (1964); R. A. Berg, ib@ 6, 34(1965); D J. Can.dlin, .
Nuovo Cimento 3?, 1396 (1965); K. M. Bitar and F, Gursey,
Phys. Rev. 164, 1805 (1968).

'This procedure is very similar to that of contraction of a Lie
algebra; see R.Hermann, Lie Groups for Physicists (W. A. Benjamin,
Inc. , New York, 1966), Chap. 11.
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for the transformation (2.8). This can also be seen in
another way since, from (2.8), U* maps the whole
Hilbert space BC2 onto the c.m. subspace (spanned by
states of zero total momentum). However, U and U*,
being the limit of unitary operators, are isometric.

Since the unitary transformations for finite n leave
commutation relations invariant, then necessarily U,
U* applied to an operator which does not commute with
P will diverge, e.g. ,

U(a)RU*(u) =e R

This requires that U, U* can only be applied to the
subalgebra that commutes with P, i.e., to pp, sp (P = 1,2),
and r~—r2. On this subalgebra, the transformation will

preserve the commutation relations even in the limit
n—+~. The results, found by performing the trans-
formation for 6nite n and then taking the limit, are
given in Sec. III.

The rest of the requirements (1.8), besides (2.8), are
easily seen to follow from

where 8 is an invariant, since the transformation leaves
the direction of P unchanged, (2.7); and since M is
also invariant, it commutes with both R and P, we
thus have

E(u) = t-M2+. P~(a)]»2=E,(u)+E,(a)
Ep(u) = L~p'+up'(a)]'".

(3.3)

If we define

t' IP(a) I i8(a)=tanh '(
f

—tanh '/—
I Ei &E()i'

slnl18(a) = L ~

P [ E(a)—) P(a)
~
E)/M

cosh8(a) = LEE(u) —j Pi [P(u) i]/M',

(3.4)

dyp(a)/d8(a) = Ep(u)8.— (3 5)

so that as u goes from 0 to ~, 8(u) goes from 0 to
tanh '(~P~/E), and (3.2) then becomes

U*(u)RU(a)=e —R, U(u)SU*(a)=S. (2 9)
As shown in Appendix A, (3.5) integrates to a con-

Now suppose X is an operator which commutes with ventional Lorentz transformation,

P so that we can define
pp(u) =yp+I cosh8(u) —1]8 pp8 —sinh8(a) Ep8,

X'=UXU*=lim X(u), X(a)=U(u)XU*(a). ( .10) E ( ) h8( ) E; h8( ) „-
(3.6)

From the converse of (2.7), and (2.9), we have

LP,X(u)]=e U(u)LP, X]U*(u)=0,
PR,X(u)]= e—U(a) LR,X]U*(a).

Then as LP,LR,X])is automatically zero, by applying
the Jacobi identity and the assumed condition on X,
we see that LR,X] is a valid operator for the transfor-
mation, so that

In the limit 0.—& we are just transforming these
dynamical momentum variables to the instantaneous
c.m. frame moving with velocity v= P/E:

~=pi( )=—I2( )
=$(E2+&2)pl (E1+~1)p2]/(E+M) y

E (ao) (~ 2+k2)1/2
(3.7)

M =E(~)=a&i+(up.

LP,X']=0, LR,X']=0. (2.11)

Furthermore, if LS,X]=0 then LS,X']=0.
The internal dynamical variables found by our

procedure are thus guaranteed to commute with P and

For the spin operators de6ning

sp(u) = U(u)spU*(a), (3 8)

R as required.
d /Pf 1

III. DETERMINATION OF THE INTERNAL C.M. —sp(a)=iU(a) L8 (ppXsp), sp]U*(a)
DYNAMICAL VARIABLES d E Ep+mp

The transformation is first applied to the individual
particle momentum, so we de6ne

IP(u) I

L8X&p(a)]Xsp(u) (3 9)
E(u) Ep(u)+mp

Iip(a) = U(u)IipU*(a), P= 1, 2.

Sy di6erentiation,

(IPl—pp(u)= —iU(u) 8 K,pp U*(a)
dA E

(3.1)
By using the variable 8(a) again, (3.9) can be cast

into the form of a conventional Lorentz transformation
as shown in Appendix A:

dsp(u)/d8(u) = t:Ep(u)+~p] 'L8Xpp(a)]Xsp(u) (3.1o)

IP(u) I

Ep(a)8 (3 2) The integration of (3.10), demonstrated in Appendix
E(u) A, gives the well-known Wigner rotation or Thomas
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precession' of the spin variable sp about an axis yp)&8 where
in going to the instantaneous c.m. frame.

sp(a) = cosy sp+ (1—cosy)8 st—sing 8X sp,

ap= (Ep+mp)((op+me)(E+M)M,
bp= (Ep+mp)(E+M) —P pp

bt, s ((e—p—+mp)(E+M)aP k.
(3.14)

I ppX8I ppX8 (3.11)
tangly=

(Ep+mp) coth-', 8(a) 8—yp I ypX8I
To determine the internal c.m. (relative) position

operator we first study the transformation of {8.rt}:

Taking the limit 0.~~, and using the relations
so that

{8 rt(a)}=U(a){8 rt}U*(a), (3.15)

tangly=
I—cos+ 1

=—lppXPI, »»=(bp/~p) lypXPI,
sing bp

—(( r&(a)) = —((( ) ii — v K)U~( ). (3.16)
dQ Bpy E

cosy=1 ——IppXPI', 2(rp=bp'+ IypXPI'
Cp

we then have

(3.12)
Using

8
8' 8=0,

~Pa

8 IPI 1
(EEt—P pt),

gp~ g +2jV~

'=s ( )=(1—(IppXP!')/ )s, and the expression for K as the sum of two single-

+(]/gp)ypXP spppXP —(bp/ap)(ppXP)Xsp, (3.13) particle terms of the form given in (2.2), (3.16) becomes

8 yt(a) IP(a) I—,'rt(a) 8+H.c.=-,'rt(a) 8 — — +H.c.
dQ Et(a) E(a)

'p, () IP()l (p,x8)',
(EEt—P yt) 8.K, (3.17)

Et(a) E(a) I„E1(a)+mt] E(a) I P(a} I Et(a)

where we have used the result that under the transformation

(ytX8) st, EEt—P pt, and {(!PI/E)8 K}

are invariant. By virtue of these same conditions, and also

I P(a) I
(E

8.yt(a) — = ——Et (a),
E(a) da

(3.17) can be integrated and simplified to yield

1 sinh8(a)
do!

E(a') IP(a')
I IP(a) I IP I

Et(
-'rt(a) 8+H.c.=-', rt 8—

I
e + I+-,'rs 8—! e — — I+H.c.

Ek E,()i Ek E,()j
t

+(ptX8) st ! e+
I

—(ysX8) s, le-
-Et(a)! El(a)+mls E(El+mt) k El(a)~ — E(Es+ms) &

I. (3.»)
Et(a)P

It should be noted that this result diverges as n~~, as was to be expected, but if we form the difference

{8 I rt(a) —r,(a)j}the divergent terms disappear:

E(a)
s! rt(a) rs(a)j 8—+H c =s(rt .rs.) 8 — +H.c.

E Et(a)Es(a)

Es E(a)
+(ptX8) st I, (3.19)

E1(a)!El(a)+mt) (Et+mt)E Et(a)Es(a)&

9 V. I. Ritns, Zh. El(sperim. i Teor. Fiz. 40, 332 (1961) )English transl. : Soviet Phys. —JETP 13, 240 (1961)g; A. Chakraharti,
J. Math Phys. 5, 1747 (1964).
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p E() E()&IP()l
dLn(~) —r ( )V& =K'(~) —~s( )j.~(ni( ) +v (~)

l
+H ~.

Eg(n) Eg(n)) E(a)

)t'pi(a) 8 (pixy) BX»(n) ) IP(n) I y~(a)»(a) ) & (y~X») IP(n) I

&Eg(n) [Eg(a)+m))' Eg(n)+mal E(n) Ex(a) E2(a)&R(n)+my E(n)'
~ (3.2O)

Substituting (3.19)
EE ~p() p.() ~

d[r~(a) —r2(n)) = l(r~ —») 8
I + ldB(n)+H c

E (Eg(n)' Eg(n)'I

y~(a) ( 1
+(piXB)» l

— + ld8(n)
El(a) ~[E1(a)+ 1) E1(n)[E1(n)+ 1) E1(n)(E1+ 1))

y~( ) p ( ) 8Xsg(n)
+(piXt)) si l Eg E2 —dB(n) — dB(n). (3.21)

E(Eg+my) k Eg(n)' E2(n)' Eg(n)+my

This is quite close to the diGerential form of the standard Lorentz transformation of a position operator demon-
strated in Appendix A. Using integrals such as

where the term dependent on s2 has been omitted since it can easily be formed by subtracting the sq term with
1~2. Continuing to apply this convention, we may now directly 6nd r)(n) —r2(n) by using the same procedure as
reviousl:

then

yp(n') pp(n) sinhB(a)
dB(a') +[coshB(n) 1)8/—Ep,

E~(n')' EPs(n)

sinh8(n) E2 jv~

r~(n) —r2{n) = r~—r2+-', (r~—r~) Bl [coshB(n) 1)8+— p~(n) +p~(n) +H.c.
l E Eg(n) Em(n)

sinhB(n) Eg—E)(n)
+(piXB) si(yi f) piv—). +(plX8) ' »r

(Eg+m$) [Eg(n)+ mQEg(n) (E)+my) [Eg(n)+ mg)Eg(n)

+(p,xe) s, sinhB(n)
pi(a) y2(n) 1 coshB(a) —1

+8' s)(p).X&)
E.(-) E.() E(E.+ ) (E)+my) [Eg(n)+my)

(Et+m~) [coshB(n)+1)—8 p~ sinhB(a)—8X sq sinhB(n) (3.22)
(%+m&)[Ex(n)+my)[coshB(n)+1)

Finally, by letting 0, go to in6nity we obtain the comparatively simple form

r =ri(co) —rm(ao) P- P Pk ]1 1
= rg —rm+-', (rg —r2) — — —k+l ——k +H.c.

M E+M E(ogos (cog cog

1 E+M~ 1
+(kXP) sil + lk+—[P si(kXP)+(kXP) siP) ——PXsi, (3.23)

(E(El+ml)%1NR N181 I gl
where it should be noted that

(kXP) si=(kXP). si'=(piXP) si= —(y~XP) si.

This is obvious from the equations, often used in the above calculations, which express the individual particle
momentum and energy entirely in terms of the c.m. variables

P k (ag

pg=k+ P+—P,
M(E+M) M

Eg= (E/M)cog+P k/M, (3.24)

and also 1 &-+ 2 when, it is to be remembered, k changes sign.
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IV. CONCLUSION

In the above we have shown how the generators of (P for two noninteracting particles can be written in the
canonical form

+—E—(Ms+Ps) 1/2 P P
J=RXP+S,
K= ——,'(RE+ER)—(PXS)l(E+M),

(4.1)

where the following commutation relations hold:

I Rg;]=i3,;, [5,,5]=is,,gSk, I RS]=LPS]=IRM]=l PM]=[SM]=o. (4.2)

In terms of the single-particle dynamical variables, we have

P=pt+ps, M=tot+ces,

1. G)y M2 p & p
R=— rt—+rs—+(rt—rs) +(rt —rs)— Ik- P

I
+H.c.

2 M M M(E+M) M(E+M) k E(E+M)

S=rXk+st'1 ss'.

kXst y —5$y
PX»— (PXk) s&, (4.3)

M(Et+~t) M(E+M)(Et+~, ) EM(E+M)(E,+~,)

For R the ss-dependent terms have been dropped since

they have exactly the same form as the s& terms with
1+-+ 2. A variety of different expressions for R are
possible"; we have chosen the form where the momen-

tum-dependent coeKcients are given in terms of c.m.
momentum variables as far as is consistent with

simplicity. The form of S is derived as simply as in the
nonrelativistic case in (1.11).

The internal c.m. dynamical variables, which
commute with R and P, are given in the text by (3.7),
(3.13), and (3.14), and (3.23).

To introduce an interaction while retaining relativ-
istic invariance, it is necessary to modify the functional
form of the generators E, P, J, K in terms of the basic
dynamical variables while retaining the commutation
relations (2.1). To obey the condition of separability,
it is necessary that the generators should approach the
form (4.1) for large particle separations, i.e., large

These conditions can easily be satisfied in the
Hakamjian-Thomas form of the Hamiltonian" which

is obtained by modifying the form of M in (4.1) while

maintaining the commutation relations (4.2). Dt
should be noted that the functional form of the c.m.
variables R, P, r, k, st', ss' in (4.3), (3.7), (3.13), (3.14),
and (3.23) is not to be altered; M=c0t+tes. Equation
(2.4) still holds, but with M-+M'.] Thus letting
3E—+ 3I', the most general expression for a relativistic
two-spin-2 particle theory with a parity- and time-

B.Barsella and E. Fabri, Phys. Rev. 126, 1561 {I962);and also
Ref. 7, where the internal c.m. dynamical variables are given for the
spinless case."B. Bahamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953);
R. Fong and J. Sucher, J. Math. Phys. 5, 456 (1964).

reversal-invariant interaction is given, similarly to the
nonrelativistic case in (1.12), by

M'= (zzzt'+k')'"+(zzss'+k')'"+ Vt(l r I, I kl, I II)
+V&(lrl, lkl, lll)st' ss'PVs(lrl lkl Ill)i. st'

+V4(lrl Ikl Ill)l »'+Vs(lrl, lkl, Ill)l. »'l »'
+Vs( I

r I, I
k I, I

I
I )r st'r s,'

+Vz(lrl, lkl, lil)k st'k s,',
1=rX k. (4,4)

The separability condition is then achieved by en-
suring that the V;( I

r I, I
k I, I

I
I ) vanish sufficiently

rapidly for large Irl."
The expressions obtained here for the c.m. dynamical

variables are much toa complicated to be used in actual
computation. However, we intend to show elsewhere"
that the modifications from the nonrelativistie form are
necessary in order to achieve correct relativistic results
in two-particle dynamical calculations. Since our treat-
ment of the two-particle system neglects such expli-
citly 6eld-theoretic e8ects as pair creation and crossing,
we expect it to be valid in the relatively low-energy
region where an expansion in the inverse masses (or
effectively tt/c) is permissable. To lowest order beyond
the nonrelativistic case the results for the basic
single-particle variables in terms of the c.m. variables

~'Relativistically there is some difhculty in the interpretation
of r& and r2 as the position operators for particles 1 and 2 since they
do not transform covariantly under Lorentz transformation even
for free particles (see Appendix A). However, all that is required
here is that, for states in which the physical particle distances of
separation become increasingly large, the expectation value of

~
r(

or ~r&
—r2~ should increase without limit. For any interpretation

of r1 and r& this would seem very likely to be true.
"H. Osborn, following paper, Phys. Rev. 176, 1523 (1968).
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are

m1 ( m2 m—1 1
p1=—P+k+l k'+ P k!P,

I 2m1m2OR 2OR2 )
s1= s1'+ (1/2m1OR)(kXP) X s1', OR= m1+m2,

m2 ( m1—m2
r1= R+—r+-', rl k'—

OR &2m1m2OR

1 1 ( m2 m2
P k +-', r P

l

-', k——k— P!+H.c.
2oR2 oR2& m, 2oR i

1 1 m2
kx s1 + kX s2'+ — PX sl PX s2',

25Rmq 25gmq 25K mq 25t|,

and also 1~ 2. It may be verihed that these expressions This can be solved to give
obey the commutation relations (1.1) to order M '.
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APPENDIX A

We here discuss the transformation of the basic
dynamical variables in canonical form (2.2) of the
generators by the boost elements of the Lie group (P.
For any operator I in a reference frame S,

X'=exp(i0v K)X exp( i08 K—), tanh0=
l vl (Ai)

ds
(p'X8) Xs'.

d0 E'+m
(A7)

This describes a rotation around an axis 6 where

s'= cosy s+(1—cosy)R s8+sinylxs,
(AS)

&=pX8/lpX8l.

For the spin, following the same method as above, we
have

&v !yx8l

d0 E cosh0+8 y sinh0+m
(A9)

e'(E+8 p)+m)
~y=tan '

lpxv f—y'= i exp(i08 K—)! {Ev r),p) exp( —i08 K)
d8 E+8 p+m)

(Aio)
lyxvl=E'v, E'= (m'+ y")"'.

represents the same dynamical quantity referred to a
reference frame moving with velocity —v relative to S.
In contrast to Sec. III, 8 and 8 are now ordinary t,

numbers. Even in the two-particle Hilbert space K2,
there is no mixing of the dynamical variables for the
diferent particles; thus the subscripts 1 and 2 are

This can be integrated to

For the momentum

Letting Substitution in (AS) gives

then

y'=p —8 p8+ f(0)8„ f(0) =8 p
E~—(E2 8 .p2+ f2) 1/2 E (m2+ p2) 1/2 (A3)

df/d0= E'

s'=L1—(1/a) IpXul'js+(1/a)(yXu) s(yXu)
+(&/a)(pxu) Xs,

(A11)
a = (E+m) (E'+m) (cosh0+ 1),

(A4) b= (E+m)(cosh0+1)+p u u= sinh0 8.



1522 HUGH OSBORN

For the position operator, we hrst use the obvious
result 8 K=8 K' to obtain

8 (p' —p) 1 E E
8'I' = $ +—8r +——8r~E' 2 E' E'

1( 1 1
+(pX8) s—

I

— I, (A»)
E'&E'+m E+m)

'

where for generality we do not take t= 0; it is only the
transformed position operator which is time-dependent.
The usual procedure gives

dl' 1( p p=t—t)
~

8 r' +—ii r—'
~

d8 2 E E' E'

~Xs' p' pX8 s
+ —— . (A13)

E'+m E' (E'+m)'

APPENDIX 8
In momentum space it is usual to represent the total

position and relative position operators R and r by the
differential operators i8/BP and i8/Bk. lt is then not
obvious that these operators should be spin-dependent.
The necessity for spin dependence arises since the spin
operator undergoes a momentum-dependent transfor-
mation si ~ si' (we neglect sp here). Since R and r are
required to commute with the transformed spin 8y', we
have

8P «,„
8

Bk p, «1s

(31)

In terms of the relative position operator for spinless
particles ro, it is possible to write r as

8 Bsq 8
r=i +i—

Bk P,g1 Bk )g, g1s 8sl )s,P

=1'p+X. (32)
With the substitution of (A12), we find

I)' 8 (p' —p), &
1t' p' p'

+
d8 E E" ) 2 k E" E"

The expression for xo has been calculated before. "
Given that

Sy ~=gy~ Sy
&

Sy =gy~ Sy ~&

where gj is an orthogonal spin-independent matrix, then

p ( 1 1 1—(p&&8l s—,I, +,E'k(E'+m)' E'(E'+m) E'(E+m) I
8 1( 8

X =2 gy~ P Qg~ — Sy —Sy
8k' 2 E Bsi Bsi

(34)

+ . (A 14)
E +m

The evaluation of the integrals in (A14) is too tedious
to relate here but the result, which may be checked by
diGerentiation, is

%e have used the result

8 8
g&~" gZ~~ ——— — g&~78 gZ»

Bk 0k'

to ensure that (34) is explicitly Hermitian. Now for
any spin operators,

r'=r+(cosh8 —1)8 r8+sinh8 $8

p'
—(cosh8 —1)—t—sinh8 —

~
8 r—+—v r

~E' 2( E' E'

1 t)' p—
~

(coshg+1)—«)(pX«) s
a& g/

Sn8/C)S« S«8/8$n „snn«Ss«

so that (34) can be written

gs i pnsnkg jn8(J jk/8Ips
t
~sg

Writing the total position operator R as

R= Rp+y,

(36)

(37)

b
+-(pXn)u s+-nXs. (A15)

The first line of (A15) is the same as for the conven-
tional Lorentz transformation; the other terms are an
example of the result that a position operator does not
transform covariantly.

with Rp spin-independent, then y is given by exactly
the same reasoning by

p" Gi "88i «/8I'))g s—— (39)

With a& given by (3.13), we have veri&ed that (37)
and (39) produce the correct spin-dependent terms
shown in (3.23) and (4.3).The calculations are straight-
forward but tedious, so that we do not discuss them here.


