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Properties of event horizons are examined for static, axially symmetric, vacuum space-times. Israel has
shown that under fairly general conditions such horizons are singular. One would expect that a positive-
mass point particle would correspond to a pointlike singular horizon. It is shown, however, that the horizons
cannot be pointlike. The geometry of particular horizons is discussed.

1. INTRODUCTION

HK analysis of Kruskal' has provided us with a
definitive picture of the regularity of the Schwarz-

schild surface r =2m. Two physically relevant questions,
however, have not been completely answered: (i) Can
analogs of the Schwarzschild surface appear in nature?
(ii) Are the geometrical properties of the Schwarzschild
surface stableP

Models of gravitational collapse have been con-
structed' which lend plausibility to an aQirmative
answer to question (i), but a completely decisive argu-
ment has not emerged. Also, various perturbation-type
calculations' agree to some extent on an afhrmative
answer to question (ii). It is, however, a troublesome
feature of these latter investigations that stability is not
maintained if perturbations that become singular on the
Schwarzschild surface itself are considered. These
investigators have not taken such perturbations seri-

ously because they introduce singularities in what the
Kruskal picture describes as a regular space-time region.

In this regard, we have recently pointed out that the
exact, asymptotically Rat, spherically symmetric, static
solution of a massless scalar Geld interacting with an
Einstein Geld has some very surprising features. 4 For
any nonvanishing value of the scalar monopole, the
event horizon corresponding to the Schwarzschild
surface is a ssrtggtar Poirtt. It was emphasized that this
result could not have been built up from a perturbation
expansion (treating the scalar Geld as a spherically
symmetric, static perturbation of the exterior Schwarz-
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Earlier attempts to 6nd solutions of this nature are to be found in
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schild background). Passing to the limit of zero scalar
monopole gives, in fact, the external Schwarzschild
solution with a step-function behavior in the metric at
r=2nz. Moreover, to Grst order in a perturbation cal-
culation the scalar Geld would of necessity introduce a
singular perturbation at the Schwarzschild surface. In
this case, knowledge of the exact solution clearly de-
mands that such singular perturbations should not be
overlooked but interpreted as an indication that the
exact solution is singularly diferent from the assumed
background.

Since any physical implications to be drawn from this
model are obscured by the present lack of positive
experimental observation of a massless scalar Geld, it is
natural to ask the question: Which of its features might
be exhibited by other types of exact solutions' In
particular, we shall concentrate in this paper on the
exact, axially symmetric, static, vacuum solutions.
Using the methods due to Weyl and I.evi-Civita, a
family of multipolelike solutions can easily be con-
structed. s We shall then proceed to examine the proper-
ties of a generalized Schwarzschild surface (GSS). We
deGne such a surface in the static case in terms of the
timelike Killing vector P orthogonal to the t=const
hypersurfaces. The GSS is the boundary to the static
exterior region on which

t = const, P(„=0.

One aspect of our question is then partly answered by
a theorem of Israel. This theorem may be recast in the
following form:

The exterior Schwarzschild geometry js the only
maximally extended, static, asymptotically Qat, vacuum
space-time with a family of simply connected equj-
potential surfaces which converge to a nonsingular GSS
with Gnite two-dimensional intrinsic geometry.

The equipotential surfaces are given by t=const,
Pt„=const. The singular behavior refers to a scalar
of the Riemann tensor.

For the subclass of static, axially symmetric, vacuum.
space-times to which this theorem is applicable, it then
follows that for any arbitrary deviation of the mu]. tjpole
structure from the Schwarzschild case there will be a

See, for example, J. L. Synge, Eelafieify: The Gegera) Theory
(North-Holland Publishing Co. , Amsterdam, 1960), Chap 8
p. 309.

e W. Israel, Phys. Rev. 164, 1776 (1967).

1507



WIN1COUR, JAN IS, AND NEWMAN

singularity on the GSS. It remains to determine whether
singular pointlihe event horizons exist. This is answered
in Sec. 4, where it is shown that no GSS can be a true
pointlike source for a static, axially symmetric, vacuum
space-time. The feature of the interacting scalar-6eld
solution which is characteristic of asymmetric static
vacuum fields is the singular nature of the GSS; but
the pointlike structure of the GSS cannot be realized in
the static, vacuum case. By pointlike, in the present
context, we mean that the geometry of a sequence of
spacelike two-surfaces enclosing the GSS approaches
the geometry of a point. The truncated Schwarzschild
solution previously described by the present authors4
does not have a pointlike GSS in this sense, although if
interpreted as the limit of a sequence of nonvacuum
solutions, its GSS is pointlike.

In Secs. 2 and 3, we examine some interesting features
of a GSS in static, axially symmetric, vacuum space-
times. A particular solution (closely related to the
interacting scalar-field solution) is given that can be
considered to possess a GSS with zero two-dimensional
surface area, but it is shown that the GSS cannot be a
true point source. In Appendix A, we discuss the con-
nection between alternative treatments of static, axially
symmetric space-times. In Appendix B, we give an

interesting solution for coupled negative- and positive-
mass sources that give rise to a positive total mass.

2. FORMALISM OF WEYL AND LEVI-CIVITA

Acyl and I.evi-Civita have shown that the metric
of a static, axially symmetric, vacuum gravitational
field may be put in the form'

ds'= e'&dt' e'~'&(dp—'+dz') p'e 't'dP—' (2.1)

where tp is an axially symmetric solution of the New-

tonian potential equation (in cylindrical coordinates)

fee+ (1/p)ge+$. ,=0 (2.2)

and p is determined by a path integral of the equations

7,=p(4.' 4.') 7*=2pk—A* (2 3)

Formally, we may view P as a Newtonian gravita-
tional potential in the background Euclidean three-

space
dP dp2+dz2+ psdys (2.4)

There is, however, a certain amount of distortion in-

herent in this viewpoint. The Schwarzschild solution is

not generated by the monopole solution of Eq. (2.2) but

by the potential of a rod of length 2' with uniform
half-unit density. The monopole solution of Eq. (2.2)
generates the Curzon solution7 of Einstein's equations,
a nonspherically symmetric solution.

In terms of the Weyl —Levi-Civita coordinates, the
timelike Killing vector is given by

P= (1,0,0,0).
& H. E.J. Curzon, Proc. London Math. Soc. 23, 477 (1924).

(2 5)

where the coefficients S~ are linear combinations of the
appropriate spherical harmonics and (r, g,&) are related
to (p,z,p) by the usual transformation between polar
and cylindrical coordinates. The constant term c can
be eliminated by the usual coordinate convention that
gps approach 1 at spatial infinity. For a GSS, P must
uniformly approach —~ for all directions of approach
to r =0. There are, however, directions of approach for
which the term

is always positive (this follows from the observation
that the average of S over a sphere r = const centered
about the singularity is zero). For sufficiently small r
the term S in P will dominate. Hence, for a point singu-
larity in the Euclidean background to give rise to a GSS
we must have S=O.

To investigate the positive-mass aspect of a GSS,
consider the following application of the Gauss integral
theorem:

V'(e'&)d'V= V(e'&).dS (2.6)

where the volume and surface elements are determined
here by the background Euclidean geometry [see Eq.
(2.4)). The region of integration E is the Euclidean

'The following proof is somewhat heuristic. The basis for a
mathematically more rigorous proof can be found in O. D. Kellogg,
Fogndateons of Potentt'at Theory (Dover Publications, Inc. , New
York, 1953), p. 270.

The conditions for a GSS are t =const and goo ——e'&= 0,
so that the GSS corresponds to either a point or line source

of positive density for the Nevvtonian potential f.Thus the
GSS forms a singular boundary to the background
Euclidean manifold. In the four-dimensional curved
geometry, the time evolution of the GSS is a null hyper-
surface generated by null rays with tangents P. As in
the Schwarzschild case (but, perhaps, in a limiting
sense), this null hypersurface is shear-free and diver-
genceless by virtue of Killing's equation

((trav)

—0

A GSS also serves as a source for an asymptotically
tlat, exterior Einstein field that has posi tive total mass. To
show this, it is first useful to establish the following
lemma.

I.emma. In an asymptotically Qat space-time, for a
GSS whose domain in the background Euclidean mani-
fold is a single point, the potential tP is that of a pure
positive-mass monopole.

Proof. ' Asymptotic flatness implies that we can
expand f in a series
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three-space with the domain of the singular Newtonian
source deleted. The boundary 8 then consists of two
limiting surface integrals, one being over an infinite
sphere S„and the other over the equipotential surface
5, determined by e'& = ~ in the limit ~ —+ 0. Carrying out
the differentiations in Eq. (2.6) gives

2 eq&(V)t/ VP)dqV = e2&VP dS

correct expressionsq for P and y are
X—1

4 = 2L +4q(»' —) (3/' —)3n
1

+-48q) (3/42 —1), (3.1)

7(2—1 /' 7 —1
7=2(1+2q+q') ln —zq(1—/42)~ )(ln +2

~

l(2—/42 k X+1

Sg

e &2VP dS. (2.7)

+ (9/4)q'(1 —/42) (X2+/42 —1—9) 2/42)

If the source of the Newtonian potential P corresponds
to a point in the background Euclidean manifold, the
above lemma tells us that lt 1/r and that the equi-
potential surfaces S, are spheres. Consequently Vf dS
is bounded and the surface integral over 5, tends to
zero as ~~0. For an arbitrary line source in the
Euclidean background or for a combination of line and
point sources this result is easily generalized. The
Gauss integral theorem gives

eq~vg dS=» vP dS=e Vf dS.

For large r we now use Eq. (2.5) (putting c=0) to
obtain

V$ dS= e2&Vf dS=4qrq)2,

where ns may be identified as the total mass of the
system. In general, therefore, the integral over S,
vanishes as ~~ 0, and from the positive definiteness
of the left-hand side of Eq. (2.7) we obtain /)2) 0.

This result is quite apparent physically. A total
positive mass is necessary for the creation of an infinite
red-shif t surface, negative mass giving rise to blue shifts.

3. EREZ-ROSEN FORMALISM

Erez and Rosen' have pointed out that the multipole
structure of static axially symmetric solutions takes on
a simpler form when elliptical coordinates are used to
describe the background Euclidean manifold rather than
the cylindrical coordinates of Weyl and Levi-Civita.
The connection between the two formalisms is eluci-
dated in Appendix A.

It is illustrative to examine the properties of the GSS
in two simple cases. First, consider the case of a
Schwarzschild particle with a superimposed quadrupole
moment, as constructed by Erez and Rosen. The

2 G. Erez and N. Rosen, Bull. Res. Council Israel SF, 47 (1959).
Their Eq. (15) for p contains an error that was corrected in Ref.
2(a), Kq. (I.1}.This latter equation contains a misprint that is
corrected in our E(l. (3.2).

X 2 (g2 1) lnq +2 () 2+'7~2 s 9/42/2)

7(+1

) —1
XX ln +-'4l~2(1 —9/42)+/42 —-', , (3.2)

A

where the radial coordinate ) and the angular coordinate
p, are related to the Acyl —Levi-Civita coordinates of
Eq. (2.1) by s=q)27(/4 and pq=n22(X2 1)(1——/42), and
where positive values of the quadrupole parameter g
imply that the body is elongated along the symmetry
axis. As noted in Ref. 2(a), for reasonably small q the
equipotential surfaces are simply connected, closed, and
embedded in one another, quite unlike the situation for
a Newtonian monopole plus quadrupole (whose equi-
potential surfaces bifurcate). The GSS is given by X= 1.
%e now examine the shape of the GSS by calculating
the arc length of small coordinate circles in the limit
X —+ j.. To determine the azimuthal dimensions, we take
coordinate circles about the 2 axis at some Axed polar
direction p, . The arc length depends upon

Q(—g») =rle &(X'—1)"'(1—/4')" .

Up to a finite constant of proportionality, we find,
for X

For positive q, the circumferences will be zero for polar
directions 3p,'(1 and infinite for polar directions 3p.'& 1.
Similarly, for the polar dimension, we have

Q( g )~ (7, 1)q(ss~&) [&+f2(so~&)l/4

X(&'—/4') ' '"(1-/4') '.
The polar arc length obtained by integrating Q(—g»)
from /4= —1 to /4=+1 also tends to infinity as 7(-+ 1.
On the other hand, the surface area of a coordinate
sphere ) =const is determined by

Q(g g ) (g 1) (1/8) qq(3pq —l)2() 2 +2)—q—.'qq

Integrating over the sphere gives the rather surprising
result that for reasonably small values of g the surface
area tends to zero as X~ 1 Lthe opposite conclusion was
stated in Ref. 2(a)j. Even though the GSS can be
enclosed in a sphere of arbitrarily small surface area,
it is obviously not a point.
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As a second illustration, consider the superposition of
a Schwarzschild particle and an Krez-Rosen monopole
(this augmented Schwarzschild solution is discussed
further in Appendix A):

p=-,"1 L(X—1)/(X+ 1)g, (3.3)

with e= 1 giving pure Schwarzschild. The path-integral
equations for p give

v=-' ' h t:(~'—1)/( '-p') j (3 4)

Although in the Erez-Rosen coordinates this solution
looks harmlessly different from Schwarzschild, this is
not actually the case. The geometry is no longer
spherically symmetric. For X 1, we have

V'(-g~~)- P —1)'" '(I-p')',
V'(-g )-(li-1) "" '(~' —p')'" "'(I-p') '

Taking 0(«1, the azimuthal circumferences have zero
arc length in the limit X —+ 1; but the polar circum-
ference will be infinite in this limit. The surface areas of
the spheres X=const, determined by

4(g g«)-(l —I)-:"-"(~'-"):"-"i
approach zero in the limit X~ 1, but again the GSS
cannot be considered to be a point. This augmented
Schwarzschild solution is especially signiGcant because
the Newtonian potential P is formally equivalent to
the Newtonian potential obtained in the coupled
scalar-Geld model. In fact, this vacuum Krez-Rosen
solution satisfies all the coupled Einstein equations with

the appropriate energy-momentum tensor for a spheri-

cally symmetric, static, scalar field except the coupled
analog of Eqs. (2.3) for the path integral of y. The
critical role of the coupled scalar Geld is to introduce

just the right source for these path-integral equations to
establish the spherical symmetry and pointlike character
of the GSS.

For both the Erez-Rosen Schwarzschild plus quad-

rupole and augmented Schwarzschild solutions, the
Riemann scalar E p„,E. &I"" is inGnite on the GSS. These
results, however, cannot be inferred directly from the
formulation of Israel's theorem as given in Sec. 1,
because in both cases the two-geometry of the equi-

potential surfaces becomes singular as It -+ —00. For
the Schwarzschild plus quadrupole solution, Ref. 2(a)
gives

R.p„„R»"-g'(X—1)-'.

pe-& —&0 as p-+0. (4 1)

This condition again makes it clear that the Newtonian
source must be a line distribution and not a point
distribution.

Ke also require that it be possible to surround the
GSS with a closed polar curve (along which &=const)
having arbitrarily small arc length. In terms of the
background Euclidean geometry, any such curve will
contain a Gnite segment along which ds does not vanish.
Hence, at least for one value of s occupied by the GSS
we must have

g(—g„)=e~&-+0 as p~0.
This requires that P—y be unbounded from above for
small p. From the 6rst of Eqs. (2.3), we have

It'—7+c=— (It'p —y~) dP =— (4. p4.'+A')dp, —

where c is a Qnite integration constant. Therefore

a point or line distribution of positive density. However,
the shape of the GSS in terms of the background
Euclidean geometry and its shape in terms of the four-
dimensional curved geometry may radically diBer.
Indeed, as expressed by the lemma in Sec. 2, for a GSS
to correspond to a point in the background Euclidean
manifold, the source must be a pure positive-mass
monopole. The associated monopole potential generates
the Curzon solution of Einstein s equations. But it is
easy to verify that the equipotential surfaces of the
Curzon geometry attain infinite intrinsic dimensions as
they approach the GSS.' Hence, what does correspond
to a point GSS from the Euclidean point of view is
distinctly not a point in the four-geometry.

Using the formalism of Weyl and Levi-Civita, we
now establish in the general axially symmetric, static,
vacuum case that a GSS cannot be a true point. To
begin, consider the consequences of being able to
surround the GSS with azimuthal circles of arbitrarily
small arc length. We immediately obtain from Eq. (2.1)
that

Q(—Ap) = pe
—&

must tend to zero at the GSS. But at the same time e &

tends to inhnity. Therefore the GSS must arise from a
line distribution on the s axis such that

For the augmented Schwarzschild solution, we Gnd for
0«(1 that

R.s„„R»"-(~—1)'(X—1)-'i'-~"&.

1

y+c( —pf p
—(lnp f)dp. — —

p Bp
(4.2)

4. NONEXISTENCE OF A POINT GSS

In Sec. 2 we observed that a GSS consists of points
where the potential it tends to —~. From the stand-

point of Newtonian potential theory in the background
Euclidean manifold, the source for f must then be either

The p component of the Newtonian force ( f,) due to-
a positive-mass distribution on the s axis can never be
repulsive, so that

fp) 0. (4.3)
'0 This has also been noted by J. Stachel, . Phys. Letters 27A, .60

(1968).
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(&!~p)(h p —lb) &o.

Combining Eqs. (4.2)—(4.4) now gives

lb —y+c&0.

(4.4)

For all values of z, f y is b—ounded from above, in
violation of the requirements necessary for the existence
of a point GSS.

5. DISCUSSION

The preceding results support the conclusion of
Israel' that a singular GSS is the rule for static vacuum
solutions and that the Schwarzschild case is the excep-
tion. Unlike the situation in the presence of a scalar
field, the GSS cannot be a localized point source in the
static, axially symmetric, vacuum case."As illustrated
by the two examples in Sec. 3, however, it is possible for
the GSS to have zero surface area. In the augmented
Schwarzschild case, this feature of the GSS can be
pictured in terms of an infinitely long rod having zero
cross section. In the Schwarzschild plus quadrupole case,
we believe that there is no such simply connected global
picture of the GSS in terms of the limiting member of a
family of surfaces embedded in a Euclidean three-space.

The singular nature of the GSS suggests a possible
extension of a theorem due to Penrose, '& ) "This very
important theorem states that, once a trapped surface
is formed, either singularities are unavoidable or some
basic notions of relativity physics must break down. A
trapped surface is a compact two-space all of whose
normal null rays converge. The compact Schwarzschild
surface is almost trapped in the sense that one of its
families of normal null rays converges and the other is
divergenceless. It appears that under a wide variety of
circumstances singularities are also unavoidable after
the formation of an almost-trapped surface. In the
static vacuum case, the singularities would exist on the
almost-trapped surface itself, except in the Schwarz-
schild case. The same applies to the scalar-field solution'
and to a wide class of static Einstein-Maxwell fields. "

What physical implications these results should bear
upon the process of gravitational collapse is not at all
clear. It is reasonable to expect that upon collapse to an

"Considerable progress toward eliminating the requirement
of .axial symmetry has been made by J. Stachel (private
communication)."R.Penrose, Phys. Rev. Letters 14, 57 (1965).

's W. Israel, Commun. Math. Phys. 8, 245 (1968).

Also, lnp —P is the superposition of the Newtonian
potentials of an infinite rod of half-unit density and —f.
Prom Eq. (4.1), we have

lnp —P~ —ao as p~ 0

for all values of z. Hence the source of the Newtonian
potential lnp —g must also consist of a line distribution
of positive density. Again, the resulting p component of
the associated Newtonian force cannot be repulsive, so
that

almost-trapped surface, the dynamics of a body as
viewed by external observers will appear to slow down
because of the gravitational red shift. This, however,
does not guarantee the conclusion that after a long time
the system will asymptotically approach an exact
static state (or stationary state, when rotation persists).
In fact, some theoretical results caution against too
hasty an acceptance of such a conclusion. In particular,
certain newly discovered conservation laws' impose
severe restrictions on the possibility of an asymptotically
Qat system possessing a quadrupole moment reaching a

- static configuration after a finite time. The attainment
of an equilibrium state can be expected, in general, to
take place only in a limiting sense after an infinite time.
Because from our present mathematical standpoint
there are essential djLtIiculties in the description of
temporal infinity in general relativity, "it is problemati-
cal whether one can answer the key question: After a
long time does an asymptotically (in time) static state
diGer in essential features from an exact static stateP
(Also related to this question is the appearance of terms
with secular time behavior in the various treatments of
asymptotically Qat space-times. " These terms corre-
spond to what one would normally expect from objects
that are freely separating, so that their multipole
moments increase secularly in time. The same secular
terms might also arise, however, from the tail of an
outgoing radiation field emitted by a single body. )

With these reservations, it is of interest to note
certain implications that mould hold if an asymptotically
static state did approach an exact static state. In that
case, it has been pointed out that if collapse through a
nonsingular almost-trapped surface takes place, then
the asymptotic state must be spherically symmetric. '~

All multipole moments (and, presumably, all traces of
a scalar field) must be radiated away. If, on the other
hand, an asymmetric equilibrium state was reached just
before the evolution of an almost-trapped surface, the
strange properties of the intrinsic spatial geometry
wou1d contradict our intuitive notion of the interaction
distances between the constituents of a body decreasing
as collapse progressed. Whether these implications are
of physical consequence or manifestations of a
breakdown in classical general relativity is again
problematical.

APPENDIX A

The metric of an axially symmetric, static space-time
can always be put into the form (with no use of field
equations)

dss=nsdts —ps/(dx')s+ (dms)s] —ysdps, (Al, )
~4 F. T. Newman and R. Penrose, Phys. Rev. Letters 15, 231

(1965);Proc. Roy. Soc. (London) A505, 175 (1968).
rs R. Penrose, Proc. Roy. Soc. (London) A284, 159 (1965).r' See, for example, H. Bondi, M. G. J.van der Burg, and A. W.K. Metzner, Proc. Roy. Soc. (London) A269, 21 (1962); W. B.

Bonnor and M. A. Rotenberg, ibid. A289, 247 (1965).r' See Refs. 2 (a) and 6.
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~ = g+ ip plonk g = re' plane If we now introduce polar coordinates by rs=zs+ ps,
tan8=p/z (we shall call these Curzon coordinates—
later other polar coordinates called Erez-Rosen-type
coordinates will be used), the form (A2) will be violated.
However, the violation can be simply remedied by
introducing a relabeling of the r =const surfaces,
namely, by the transformation r =e~. Then (A6)
becomes

Fro. 1. Mapping from Weyl-Levi-Civita manifold
to Erez-Rosen-type nianifold, &o = I +a'/4I'

where n, P, and y are functions of x' and x'. A more
useful alternative form is

o&=—x'+ ix'= f(x'+ix') = f(o&). (A3)

Under this transformation i' and Iz transform as scalars,
and

dfdf
~2')r ~2y ~

tgM Zco
(A4)

The field equations R„„=O imposed on (A2) yield,
with Q —82/(Qxl)2+82/(8x2)2

ds'=e'&dt' e't—& &&$(dx')'+(dx')'5 Ir'e —'&drt&' (A.2)

Aside from the trivial coordinate freedom for the origin
and scale on t and p, the only freedom that preserves the
form (A2) is

h = (ez a'/4e—") sin8

=2e s sinh(R+8) sin8
= (F—a'/4r) sin8, (A8)

with —,'a=e ', and with F=e~ and 0 being the Erez-
Rosen-type' polar coordinates. The three choices of h
appear to be the only ones that lead to the separation
of variables in (ASb), and hence are the only ones to
be discussed here. Note that the three choices of h can
be considered to be the same function,

h= p=e~sin8= (ea 4a'e —") sin8,

if we connect the three coordinate systems by the
analytic transformations

ds'= e'&dt' e'&7 —&&e'n(dR'+d8') e'&—e'" sin'8 dP'.

Thus we have h=e" sin8, which is easily seen to be
a solution to (A5a) if x'=R and x'=8. A third choice
of h is now made. Calling x'=R and x'=8, (ASa) yields
Bs a solution

hg h2
AP+—Ii,i+—4,s= o,

It

(A5a)

(ASb)

(A5c)

z+ip reis —eR+H —ez+gs+ Laze-(8+iei

=Fe"+(a'/4r) e rs (A9)

eGI = eM+ Rase

The transformation between the Weyl —Levi-Civita
coordinates and the Erez-Rosen-type polar coordinates
is then simply

The choice of a solution to (ASa) is not a restriction
on the general solution but only a coordinate condition. 5

This is most easily seen by remembering that h must
transform like a scalar under (A2) and that it is also a
harmonic function, and hence can be chosen as the
imaginary part of the analytic transformation 1eading
to a new allowed coordinate system. This will be illus-

trated shortly.
The most common choice of h is h =x', which leads to

the Weyl —Levi-Civita coordinates. If we call x =p and
x'=z, (A2) becomes

ds = e &dt e'ir &&(dp +dz') —pe &drIP, (A6)—

z+i p =Fe"+ (a'/4r) e-'ll,

z= (F+a'/4F) cos8, p = (F—a'/4r) sin8.

It is convenient to look upon this transformation as
a mapping of the upper half (the physical portion,
p&0) of the complex z+ip plane onto the Fe'z complex
plane (see Fig. 1). The line segment is=0, —a&z&a
gets mapped into the semicircle of radius —,a. (It is this
mapping that explains why the Schwarzschild solution,
when expressed in %eyl—Levi-Civita coordinates, ap-
pears to be the metric of a rod. )

It is now a relatively easy task to express any solution
in either of the coordinate systems.

%'e now wish to make some comments on several of
the known solutions.

with the P and p )from (A5)5 satisfying

(A7a)

(A7b)

"Strictly speaking, these coordinates are not identical to the
ones used by Erez and Rosen, Their r is related to our r by
r= (I+ra/2r)'r. The Schwarzschild solution in our coordinates is
thus in the isotropic form, while in the Erez-Rosen coordinates it
is in the usual form.
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The most interesting solutions to Eq. (A7a) are those
that are singular on a finite portion of the line p=0;
for example, the Curzon-type multipoles f= (8"/Bz")
X (1/r), N&0, are singular at the origin, the Schwarz-
schild solution is singular on the line between
—no& s(m, with mass density —,', and all the Krez-Rosen

multipoles can be given as solutions to (A7a) with a
variable mass density on the same finite portion of the
line Lfor the mass plus quadrupole, the density is
o = ,'+-,'(q-/mp) (z' ',—m'-) 5

There is one obvious solution with unusual properties,
which appears to have been overlooked in the literature.
This is the solution to Eq. (A7a) due to a uniform mass
density diferent from p on a finite portion of the line
p=0. It appears as if it should be the SchwarzschiM
solution, but on further analysis it turns out not to be
spherically symmetric, becoming so only when r =—', .

This solution, when transformed to the Erez-Rosen
coordinates, is the Erez-Rosen monopole solution with
an arbitrary monopole moment. Erez and Rosen con-
sidered this solution only when the moment was ~~, it
being then the Schwarzschild solution. When the total
mass of this solution is kept constant but the density is
increased to infinity, the solution goes in the limit into
the Curzon monopole solution. The general Erez-Rosen
monopole solution, which we call the augmented
Schwarzschild metric, is discussed in Sec. 3.

APPEN'DIX B

We present here an axially symmetric, static, vacuum
solution to the Einstein equations with two parameters
ys and M, such that m=O gives the Schwarzschild
solution with mass M, and M=O gives the Curzon
monopole solution with mass m. Asymptotically (i.e.,
for large r), the solution appears to have mass M+m.
The motivation for finding this metric arose from the
observation that the rtegatise mass Curzo-n metric could

be considered to be due to a point source. We thus
wished to explore the possibility that a combination of
this solution with a positive-mass Schwarzschild solu-
tion could lead to a pointlike solution with positive total
mass. This combined Schwarzschild-Curzon solution,
however, does not turn out to be pointlike.

The combined Schwarzschild-Curzon metric is

ds'= L(1—M/2r)/(1+M/2r)5'e 2"~"odt2

(1+M/2r) 4/& 4mAl M—G mnB~/r—PG4 (dr2+r2dg2)

+e' ~" r'si 'nHd$5, (B1)
where

G=+$(1 -M'/4r')'+(M'/r') cos'85'I'

A = 1 G+M'/4—r' M/2r, —
8= (1—M'/4r') sin8.

It is easily seen that M= 0 and m= 0 give, respectively,
the Curzon and Schwarzschild metrics. An expansion
of gpp in powers of 1/r shows that the asymptotic total
mass is M+m.

It is easy to see from the metric (Bi) that, for M=O
and ns(0, the solution is pointlike at r=O. The equi-
potential surface at r=0 is not an event horizon, how-
ever, since gpp becomes infinite rather than zero as r —+ 0.

If we now take M) 0 and m(0, we find that there is
an event horizon at r =-', M, except at the equator, where

gpp again becomes infinite as r —+ ~M. There is in this
case no event horizon at r=0, since gpp~ 1 as r —+ 0.
An examination of the remaining part of the metric
shows that neither the event horizon nor r=0 is
pointlike.

Finally, we consider the case of M(0 and m) 0. Now

gpp vanishes only on the equatorial circle r =—
~3f,

8=-,'m. Once again we find that the metric does not have
the geometry corresponding to a point source.


