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The quantum field theory of particles with both electric and magnetic charges is developed as an obvious
extension of Schwinger’s quantum field theory of particles with either electric or magnetic charge. Two new
results immediately follow. The first is the chiral equivalence theorem which states the unitary equivalence
of the Hamiltonians describing the system of particles with electric and magnetic charges e, g, and the
system with charges e,’=cosf, ex+sinfd gn, ga'= —sind ea+cosd gn. This result holds in particular in the
absence of physical magnetic charges. The second result is that if physical magnetic charges do occur, then,
in consequence of chiral equivalence, the charge quantization condition applies, not to the separate products
emga, but to the combinations emgn— gmen, which must be integral multiples of 47. The general solution of
this condition leads to the introduction of a second elementary quantum of electric charge e, the electric
charge on the Dirac monopole, besides the first elementary charge e;, the charge on the electron. There are

no other free parameters.

I. INTRODUCTION

HE equations of Maxwell have a natural gen-

eralization which allows as sources both the
electric current density 7. and a magnetic current
density j7g*:

E=vxH-j., H=—-vXxE—j,, (1.1)
v.E=32, v-H=.. (1.2)
These equations, together with the Lorentz force

F=j E+j.xXH+j,'H—j,XE, (1.3)

are invariant under the substitutions
E— cosf E—sinf H, (1.4)

H — sinf E4-cos6 H,
o —> cosl jA—sind 7,*, (1.5)

Jg#—> sinfd jr4-cosf j,*,

as is well known. Because of this invariance, it cannot
be asserted that the absence of physical magnetic
charge (namely, the absence of particles that interact
in a particular way with electrons), which nature has
heretofore manifested, reflects an asymmetry between
electric and magnetic charge. It can only be said that
the electric and magnetic current densities observed
up to now are proportional.

A quantum field theory of particles with both electric
and magnetic charges is easily constructed as an ob-
vious extension of Schwinger’s field theory! of particles
with either electric or magnetic charges.?® Once this is
done, the invariance of the Maxwell-Lorentz equations
under the substitution (1.4), (1.5) is seen to cor-

* Work supported in part by the National Science Foundation.

t This work was performed while the author was a visitor at
the Centre d’Etudes Nucléaires de Saclay, France.
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respond to an identity satisfied by the Hamiltonian
H(E"H"en,g,), regarded as a function of the radia-
tion fields H7, E” and the electric and magnetic charges
of the nth charge bearing field:

H(cosd Er—sinf H*, sinf E*+ cosf H,e,,g,)
= H(E"H, cosf e,+sinf g,,—sinf e,,+cosd g,.) . (1.6)

Furthermore, one easily constructs the unitary operator
U(0) which effects the substitution on the left-hand
side of this equation, thereby obtaining the result

U@O)H(E"Hr e,,8,)UT(0)= H(E"H", cosf e,+sinb g,
—sinf e,+-cosf gn).  (1.7)

Systems that are described by unitarily equivalent
Hamiltonians are physically indistinguishable, so that
no experiment can decide between alternative descrip-
tions of the world that differ by a simultaneous rota-
tion of electric and magnetic charges of all particles.
In quantum theory, the transformation (1.4) is a chiral
transformation on the photon state of momentum k
and helicity A:

[k\) = U©) [kA)=e™[k,)), (1.8)

so that one may state alternatively that no experiment
can measure the relative phase of left and right circularly
polarized light, nor, consequently, the absolute plane
of polarization of linearly polarized light.

Because of chiral equivalence, it is found that Dirac’s
charge quantization condition? applies, not to the prod-
ucts exg./4m, but to the chiral-invariant combinations

(1/47) (emgn— gmen)=0,1,42,- - - . (1.9)

Half-integral quantization, implying half-integral an-
gular momentum in the static electromagnetic fields,
which is allowed in Dirac’s single-particle theory, is
forbidden by chiral invariance and locality in the com-

4P. A. M. Dirac, Proc. Roy. Soc. (London) Al133, 60 (1931);
Phys. Rev. 74, 817 (1948).
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mutator of the electric and magnetic vector potentials.
This accords with physical intuition for it directly re-
lates the vector nature of the electromagnetic field to
the absence of spin-} angular momentum. The integral
quantization condition was proposed by Schwinger,
but with a somewhat different mathematical justifica-
tion [see Eqgs. (3.38) and (3.39)].5

The solution to the charge quantization condition is
easily expressed by introducing a two-dimensional
charge vector q.= (en,g). If q1 and ¢ are two charge
vectors which satisfy (qiXqe)/4m= (e1g2—gie2)/4m=1,
then the most general solution to (1.9) is

Zne=0,+1,+2,---. (1.10)

If qis thecharge vector of the electron, ;2= ¢?=4m/137,
then Eq. (1.10) introduces a second elementary quan-
tum of electric charge ¢/, the electric charge of the
Dirac monopole, defined by qi-g2=¢e¢’. The product ee’
is a measure of the strength of the parity and time-
reversal violating interaction.

There are three obvious possible explanations for the
failure to observe mangetic monopoles: (1) They do
not exist; (2) they have a very large mass; and (3)
their large magnetic charge causes them to annihilate
or bind into magnetically neutral matter. The third
possibility is susceptible to theoretical analysis. A
monopole-antimonopole pair interacts like an electron-
position pair, but with coupling strength 137 instead of
1/137. It would be valuable to estimate the relative
probabilities of scattering (with emission of radiation)
or annihilation, if such a pair is present at ¢=— .
This branching ratio also controls the competing out-
going channels in any experiment designed to produce
magnetic monopole pairs.® If it can be shown to be
small, then the Dirac quantization condition may not
only explain the quantization of electric charge, but
also the difficulty of observing magnetic charge.

In Sec. II the chiral equivalence theorem is proven.
In Sec. III the quantization condition on emgn—gmén
is derived from Lorentz invariance. In Sec. IV it is
solved, and the symmetries of the theory are presented.

4n=Zn191+Z 2292,

II. CHIRAL EQUIVALENCE THEOREM

Let us begin by considering the free electromagnetic
radiation field. It is conventionally described by the
Hamiltonian density?

To°(x) =3[ E(x)*+H(x)?] (2.1)
and carries the momentum density
7o%(x) = 3[E"(x) X H'()—H (x) XE"(x) J*. (2.2)

5 According to the noted added in proof of Ref. 1, special
attention should be given to the point z=2" in Eq. (3.27), with
the result that the right-hand sides of Egs. (3.28) and (3.29)
should be doubled.

¢I am grateful to Dr. J. Basdevant for a discussion of this
point.

7 For Lorentz tensors we use the metric g#=(1,—1,—1,—1),
units #=c¢=1, and Dirac matrices {y#y"}=2g".
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Here E7(x) and H"(x) are the transverse radiation fields
v-Er(x)=Vv -H"(x)=0, (2.3)

which satisfy the canonical equal-time commutation
relations

[Es(x), By () ]=[H.(x),Hy(x')]=0,

(2.4)
[Es(x),H i (x')]= i€z Vib(x—X').

These fields, and all others appearing below, are
evaluated at a common time #, which is suppressed.
From the Hamiltonian H*= f*T%(x)"dx and the canoni-
cal commutation relations, the Heisenberg equations of
motion yield the desired source-free pair of Maxwell
equations involving time derivatives,

Br(x)= —i[E"(x),H]=VXH(x), (2.5a)
Hr(x)= —i[Hr(x),H]=— VXEr(x). (2.5b)

It is not really necessary to impose the transversality
condition (2.3) on the radiation fields. For the com-
mutation relations (2.4) show that the longitudinal
parts of the field commute with everything, including
the Hamiltonian, and are thus time-independent
c-number functions of position which may be sub-
tracted out.

All relations appearing up to now are invariant under
the chiral substitutions

Er— cosf Er—sing Hr,
Hr — sing E~+cosf Hr.

(2.6a)
(2.6b)

To make this invariance manifest, it is convenient to
introduce a two-dimensional real vector space, which
we call chiral space, with elements V¢, a=1, 2. This
space has two tensors that are invariant under proper
rotations, the Kronecker symbol §°f, and the anti-
symmetric symbol €*f, with e2=1.

If we introduce the field variable

Fer=(ErH"), (2.6¢)

then the energy and momentum density are
T9(x)r=%Fa . Fe, (2.7a)
Toi(x)"= —FeinePF 27 (X)F1#7(x) . (2.7b)

The canonical commutation relations take the form

[Fer(x),F,#7 () ]= —ie*Pein Vid (x—X') ,  (2.8)
and the equations of motion become
For= €*Pe;i ViF 18", (2.9)

As a convenience, which partially avoids the ap-
pearance of nonlocal interaction in describing the
coupling of the radiation field to electrically charged
particles, it is conventional to change variables from
the magnetic field Hr to the vector potential Ar defined
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by
A" (x)=VX / D(—xH"(x)dx’. (2.102)

To maintain symmetry in the treatment of electric and
magnetic fields, one may, following Schwinger,! in-
troduce the second vector potential

Br(x)=—VX [ Dx—x)E(x)dx’, (2.10b)

with
D(x)=1/4r|x]|. (2.11)
These definitions are, of course, equivalent to
Hr=VXAr, V-Ar=0, (2.12a)
Er=—VXBr, V-B=0. (2.12b)

The pair of vector potentials constitute a vector in
chiral space

ar= (A", B7), (2.13)

so that these relations may be written

Vier(x)= eaﬂéijij/‘eD(X— XFif(x)dx’, (2.14a)

&= — e“ﬂe;jijVkﬁ'; V-Ver=0, (214b)

From the definition (2.14a) and the canonical com-
mutation relation (2.8), one derives the equal-time
commutators

LF e (x),Vf7(x') ]=16*F[ 648 (x—x') ]t~
LV (x),VPr(x)]= —ie*Peiju ViD(x—X') ,

(2.15)
(2.16)

where
[5,’,’5 (X— X’):]tr: 0:;0 (X— x)— V.‘leﬁD(X— x’).
The chiral transformation (2.6) may be implemented
by the unitary transformation

U(6)=exp(i6G), (2.17a)

1
G=5 /V‘"(x) -e*BFBr(x)dx

1
= / (A"H—Br-E)dx. (2.17b)

The generator G is a Hermitian quantity which is con-
served by the free radiation field. It could be called the
“total chirality” because it measures the number of
right-hand photons less the number of left-handed
photons, and may have a finite value even when the
number of infrared photons is infinite. Because the
Var are defined in terms of the Fer by chiral-invariant
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equations, U rotates the Vo also;
U(0)FerUt ()= Fprdt=(9), (2.182)
U(0) VarUt (6) = Verdbe(), (2.18b)

where df* is the matrix of the transformation (2.6).

Now let the radiation field be coupled to fields ya
bearing electric charge e, and magnetic charge g,. For
simplicity we take them to be four-component Dirac
fields, so that the electric and magnetic current 4-vectors
have the form

T (@) =2 enn(X)vba(x), (2.19a)

Ju0X) =Y guln(X)vn(X). (2.19b)

The total fields and potentials are given by!

Ex)=E(x)—V / D(x—x)jI(x)dx', (2.20a)
Hx)=H"(x)—-V f D(x—x')j,0(x")dx’, (2.20b)
A®X)= A'(x)-l—/a(x-— x)7,0x")dx’, (2.21a)

B(x)=B’(x)—_/a(x’—x)j?(x’)dx’, (2.21b)

where a(x) is a numerical vector function defined by

vXa(x)=h(x), V-a(x)=0. (2.22a)

Here h(x) is nonzero along a string, described in Sec.
IIT, and satisfying

V-h(x)=—4(x). (2.22p)

The definition of the total fields may be written ir

chiral-covariant form. The same is true of the potentials
only if a(x) satisfies the important symmetry condition

(2.23)

which is assumed to hold for the remainder of this sec-
tion. If a charge vector

a(x)=a(—x),

gn= (€n;gn) (2.24)

is introduced for each particle type #, the total fields
and potentials may be written

Fo(x) = For(x)+ Foe(x) = For(x)
_v / Dx—x) T eua Y Yn(X)dX, (2.25)
Ve(x) = Vor(x)+ Ves(x) = Ver(x)

e f A=) 5 g ln(X )y Yu(x)ix . (2.26)
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With these definitions, the total Hamiltonian de-
scribing the radiation and particle fields and their
interaction is given by

H=fT°°(x)dx, (2.27a)

T00=%Fa. Fa
+3 Yuly (—iV—ga2Ve)+m, W, (2.27b)

where the ¥, are antisymmetrized with respect to
derivative and spinor index. Maxwell’s equations (1.1)
result from the Heisenberg equations of motion. This
Hamiltonian is not invariant under the chiral trans-
formation (2.6) or (2.18). However, the chiral equiva-
lence theorem follows immediately. Because U, Eq.
(2.17), effects the substitution (2.18) on E~ and Hr,
it effects the same substitution on any function of them,
including 77

U@)1T°(E"H")U*(6)= T%(cos§ Er—sind Hr,

sinf E+cosd H"). (2.28)

Furthermore, each ¢,* in 7% is contracted via §*f or
€*f with Fe7 or Vo7 or another ¢, Hence the trans-
formation (2.28) may equivalently be stated

U(6)T%(en,g,)UT(6)= T%(cosb e,-+sinb gy,

—sinf e,+cosf g.). (2.29)

Systems that are descirbed by unitarily equivalent
Hamiltonians are physically indistinguishable; con-
sequently no experiment can detect a simultaneous
rotation of the charge vector of all particles. This result
is familiar classically, particularly for 6=3r, where it
is known as the duality principle. Its consequence for
the Dirac charge quantization condition is the subject
of Sec. III.

III. CHARGE QUANTIZATION CONDITION

In the present section we propose to examine how the
condition of Lorentz invariance leads to the quantiza-
tion of charge. Although the commutation relations
(2.15) and (2.16) and the Hamiltonian (2.27) are not
manifestly local, one may nevertheless use them di-
rectly, with some brute force, to prove that the over-all
theory is Lorentz-covariant, provided that the charges
satisfy certain conditions. However, it is more con-
venient to use a formalism in which locality is as
manifest as possible, and which provides a clearer in-
sight into the origin of the Dirac strings. For this pur-
pose we adapt Schwinger’s device of group parameters?
to the present problem.

Let AM(x) and u(x) be a pair of arbitrary c-number
functions, regarded as an infinite set of free parameters,
and let the state vectors be functionals of them, as

8 J. Schwinger, Nuovo Cimento 30, 278 (1963).

DANIEL ZWANZIGER

176

specified below. The fields and potentials are allowed
to depend on them and on functional derivatives with
respect to them. If one introduces the extended fields

8(x)=E’(x)—Vfdx’5D(x-—x')1 ! , (3.1a)
7 ON(X')
1 9
se(x)=H"(x)—V / dx’fD(x——x')E )’ (3.1b)

and makes the replacements
Ar(x) = A" (x)+ VA(x),
Br(x) — B (x)+ Vu(x),

then the local commutation relations (2.4) between the
fields remain unchanged and the nonlocal commutation
relations (2.15) between fields and potentials become
local, as desired, but the nonlocal commutation rela-
tions (2.16) between potentials remain unchanged. If,
instead, one substitutes for the potentials

A(x)=Ar(x) + f dx’a(x— x’)E —6—+ VA(X), (3.2a)
2 du(x")

B B dx’b ¢ t? v 3.2b

(x)= (x)+/ ) kT, (2D

then the commutator of & and B becomes

[U:(x), B, (x') = —ieia Vi D (x—x)
+1iV;a; (x—x")+1v:8;(x'—x),

where a(x) and b(x) are to be chosen so as to make this
expression local, if possible, by cancelling the term in
D(x—x’) for x5#x’. Unless they satisfy

b(x)=—a(—x), (3.3)

new terms symmetric in ¢ and j are introduced, instead
of cancelling the antisymmetric old ones. With this
choice one obtains the locality condition

VD(x)+VXalx)=0, x0.

It cannot be satisfied for all x50, but must be violated
at least on a singular line, called a Dirac string;

vXa(x)=—VD(x)+h(x), 3.4)

where h is nonzero only along a string to be specified
below, and obeys

V-h(x)=—4(x). (3.5)

To complete the specification of a, one may, without
loss of generality, impose
V-a(x)=0, (3.6)

which can always be achieved by a unitary
transformation.
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The commutator of A and B now becomes
[Ai(x),B;(x") = —deijuha(x—X') .

If a rotation 8 is performed on the chiral vector (U,B),
then in the commutator, h(x—x’) is replaced by cos?d
Xh(x—x’)—sin20 h(x’—x). Hence if chiral symmetry
is to be maintained in this commutator, h(x) must be
odd:

3.7

h(—x)=—h(x), (3.8)

so that a(x) is even:
a(—x)=a(x).

The string function h in this case cannot be semi-
infinite, but must be the difference of a semi-infinite
string function and its image,

(3.9)

h L
(x)=-—5/0 [6(x—s)—d6(—x—s)]ds,

where the integral extends along any path from the
origin to infinity. If it is chosen along the z axis, one

obtains
h,(x)=—32¢(z)6(x)d(y).

If one introduces the chiral notation

(3.10)

=\ P — —[ 6 :
v(x) =[A(x),u(x)]; ay“(x)_ ) 5#(x)j]:

then the definitions, (3.1) and (3.2), of the extended
fields and potentials may be written

1
%“(x)=F‘"(x)~V/dx’3)(x—x’)— , (3.11)
7 w*(x’)
B(x) = Vor(x) +/dx’a(x— x')e*f
1
- ve(x). (3.12
X W(X,)+ Vre(x). (3.12)
They obey the commutation relations
[Fex),FAE)]= —ieBepnVid(x—x), (3.13)
[T (x),B,A(x') J=13°%6.;6(x—X'), (3.14)
[LB:(x),B,f(x')]=ie*Peiphn(x—X) . (3.15)

The first two are local, but the last has its support on
a string. The import of the present discussion is that
if vector potentials are introduced for both electric
and magnetic fields, then manifest locality cannot be
achieved for the commutators, as is already obvious
on dimensional grounds. The least possible violation is
along the strings introduced by Dirac. Furthermore, if
chiral invarianceis to be maintained in the commutators,
then the string function must be antisymmetric.
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Upon comparing the expressions (2.25) and (2.26)
for the physical fields and potentials with Egs. (3.11)
and (3.12) for the extended fields and potentials, we
see that, except for the gradient term in the potentials,
they become identical when applied to states whose
functional dependence on the gauge parameters
ve(x)=[A\(x),u(x)] satisfies ‘

0
- vy=j(x)|» 3.16
g, (3.16)
7#X) =2 g2 Pn(X)7"¥n(x). 3.17)
This dependence takes the explicit form
=00 ), (3.18)
U() =exp(i/v“(x)j°°‘(x)dx) , (3.19)

where | ) is independent of »* [These states would
not be normalizable if the inner product included a
functional integration over A(x) and u(x), but it does
not. The A(x) and u(x) are simply free parameters.®]

The motivation for introducing the parametric
method is that the Hamiltonian density

HOO:%%“'%L{‘Z Kzn['f'(—iv—qn%a)_!'mn:lﬂbn, (320)
when applied to states (3.18), satisfies
°@UE)| Y=U@T ®)]| ), (3.21)

where 7°(x) is the physical Hamiltonian density de-
fined by Eq. (2.27). Now T%(x) defines a Lorentz-
covariant theory if its satisfies®-®

[T°(), T*(x')]
= —i[T0(x)+ T%(x) ]V (x—x'). (3.22)

The verification of this equation is replaced by the
verification of

[6°(x),6°(x") ]= —[6°(x)+6"(x) IV:d (x—x'), (3.23)

which is much simpler because 6°° depends on fields
and potentials with local, or almost local, commutators.

The calculation of the commutator (3.23) from (3.20)
leads to nonlocal contributions on strings, arising from
the commutator of the potentials [LB;%(x),8B,;4(x’)].
However, the singular operator products appearing in
(3.20) should in fact be replaced by a limit of non-
singular products such as!

Py [V — g2 B(X) Wa(x) = Pa(x+3e)

iy e
&
xte/2

Xn(x—13¢) expl:iqn“ / %“(xl)-dxl] , (3.24)

x—e€/2

9 P. A. M. Dirac, Rev. Mod. Phys. 34, 592 (1962); J. Schwinger,
Phys. Rev. 127, 324 (1962); 130, 406 (1963); 130, 800 (1963).
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where it is understood that an average of the direction
of ¢ is performed before letting e — 0. The nonlocal
contribution to the commutator then depends on

x+e/2
E=exp[i f Cen®(x0) 4 gnB (x)]- d%s,

—€/2

x4’ /2
; / [ea2(xt)+ 2B (x1) ] -dx,'] ,

e [2

or, by (3.7),

x+e/2 x'4-¢ /2
E= exp(’l,/ dX1X / Xm'
x—e/2 x'—e' /2

-[emgnh(xl—xl’)+gmenh(x1’—x1)]) . (3.25)

We have replaced Be= (,B) and ¢.*= (en,gx) by their
definitions so as not to assume chiral invariance of the
commutator of the extended potentials, guaranteed by
h(—x)= —h(x), but rather to see to what extent this is
required by Lorentz invariance. It is sufficient to con-
sider the alternative of semi-infinite or symmetric in-
finite strings lying along the z axis:

h(x)=hi(x)= —20(z)5(2)5(x)3(y)  (3.26a)

or

h(x)=ho(x)= —%8¢(z)8(x)d(y) .

The integrand in (3.25) is zero unless the projections on
the x-y plane of € centered at x and of ¢’ centered at x’
intersect, in which case one finds in the corresponding
alternative cases

Ey=exp{—i[engn0(z—2")+ gnea0(z'—2)]
Xsgn(eXe'-2)},

(3.26b)

(3.27a)
E;>= exp{—3}i(engn—gmex)

Xsgn(z—3') sgn(eXe'-3)}. (3.27b)

The nonlocal contributions vanish when E=1, that is,
when the exponent is an integral multiple of 2. If
the semi-infinite string function is chosen, one obtains
the quantization condition on the products émgx,

emn/4r=0,£% 1.+, (3.28)

as discussed by Dirac® and by Schwinger.*> On the
other hand, if the infinite antisymmetric string function
is used, the quantization condition is much weaker and
applies instead to the chiral-invariant combinations

(emgn— gmen)/4m = (gm*€*Pq.P)/4m

=0,41,42,---. (3.29)

Conversely, if it is assumed that the products emgn
of electric and magnetic charges are not separately
quantized, then Lorentz invariance leads to the weaker
chiral-invariant quantization condition (3.29), and to
the antisymmetric string function h which assures chiral
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invariance of the commutator (3.7) or the potentials
(2.21).

When the charge quantization condition holds, the
calculation of the commutator of the s is straight-
forward, yielding the right-hand side of (3.23) with
extended momentum density

0% =00=1F*X eBFE+Y" Yuy(—iV— Qn“%“)ifn
HEVX @y 0¢n).
This operator satisfies
U@ Y=UumT| ),
with physical momentum density

To=1F*X e*8F+Y" ¥ (—iV—q,2 V)Y,
+iVX (\;n'yoml’") .

It is understood that this expression is properly anti-
symmetrized, and regularized by a limit such as (3.24).
After rearrangement it yields a total momentum

(3.30)

P= / Todx= / (EsVA+Y §uy™(—iVga)dx  (3.31)

and a total angular momentum

J= / xX Todx= / (ErxX VA +EXAr

+3 U (—ixX VA4-Lo)n)dx—1 3 gnefy, / dxdx’

><[sv,,.*<x>¢m<x>(<x—x'>><a<x—x'>+i ¥ )
4 |x—x|

xmx')m(x')]. (3.32)

IV. SOLUTION OF CHARGE QUANTIZATION
CONDITION

Let us write the charge quantization condition (3.29)
for a set of charge vectors ¢, (a=1,2) as

qnXqn/4r=0,41,42,-- -, (4.1)

This equation is obviously satisfied with O on the right
for all m and #» if all charge vectors are parallel. A
chiral transformation may then align all these vectors
along the electric axis corresponding to a situation
where all particles bear arbitrary electric charge. This
agrees with observation, since no magnetically charged
particles are known, but fails to account for the quanti-
zation of electric charge which was Dirac’s original
motivation in introducing magnetic charges.
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On the other hand, suppose (4.1) is satisfied for two
vectors, call them q; and q,, with

QX qe/dr=1. (4.2)

Then these two vectors are linearly independent and
any vector in the two-dimensional charge space may be
written

Gn=Cn1q1+Cn2Q2.

On forming cross products of q, with q: and qs and
using (4.1) and (4.2), one finds that c,1 and ¢,e must be
integers, Za1, Zn2,

UGn=Znti+Znot2, Zni=0,1,42,---. (4.3)

The cross product of any pair of vectors is then
QmXan (Z‘len2—'Zm2Zn1)4'7l',

so that (4.1) is satisfied for all # and #. Consequently
(4.3) is the most general solution to the charge quanti-
zation condition provided that there exists a pair of
vectors whose cross product has the minimum nonzero
value.

A chiral transformation may be used to align qu
along the electric axis, so that

q1=(e1,0), (4.4)
with presumably ei?/4w=1/137. In this case we have
q2= (62,4#61_1) . (45)

There is no further restriction on e,, the electric charge
on the Dirac magnetic monopole, and it defines a
second elementary quantum of electric charge.

Let us discuss the discrete symmetries of the Hamil-
tonian (2.27). For this purpose it is convenient to use
the Majorana representation. The Hamiltonian is, of
course, invariant under the CPT transformation ©,

0: E(l,X),H(If,X)!I/(f,X) - E(—l,-X),H(‘—t,"X),

75‘1/1.(—' 4, -'X) ’ (46)
and it is also invariant under charge conjugation,
C: EHy— —E,—Hyt. %))

To discuss parity and time reversal, assume that (4.3)
holds and that the electric axis is aligned along qi.
Otherwise a chiral transformation would be included
in the definition of P and 7. Two cases are to be distin-
guished, depending on whether or not the magnetically
charged particles appearing in the Hamiltonian (2.27)
also bear electric charges. If they do not, let Y., corre-
spond to the purely electric particles and let ¢, cor-
respond to the purely magnetic particles. Then con-
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served-parity and time-reversal operators are defined by

P E(X),H(X),t//m(X),\//n(X) - —‘E(_ X),H('—X),
YYm(—=X) 7Yt (—x), (4.8)
T: E@OH@OYn0)¥n() = E(—8),—H(—1),
YA Ym(—1) YvYaT(—1). (4.9)

This is the situation discussed by Ramsey.!® On the
other hand, if a particle, say, ¢s, has both electric and
magnetic charges, then no conserved-parity or time-
reversal operator exists. A convenient chiral-invariant
measure of the strength of the parity and time-reversal
breaking interaction is

1 1 1
(z;)-qu ~q2q1><q2=;q1~qz=4—7—releg , (4.10)

the product of the two elementary quanta of electric
charge. This could be a fairly large coupling and yet
not show up very much in present experiments. be-
cause magnetically charged particles are bound into
magnetically neutral systems via the parity-conserving
superstrong coupling constant

q22/41r= 622/47r+47r/61 2= 622/41T+ 137.

Besides these discrete symmetries, each type of
particle in the Hamiltonian (2.27) has its own conserved
current ¥ay*,. Finally, there are the gauge trans-
formations involving two gauge functions A(x) and
u(x):

A By, — A+ VA B+ Vi, explieatigas), (4.11)

but they require a larger framework than the present
one to be studied adequately.
B Because of the superstrong coupling of the present
theory, and because no Lorentz-covariant perturba-
tive expansion exists due to the nonlocal commutator
of the vector potentials, new calculational techniques
are required to extract physical predictions. However,
the nonrelativistic form may be studied unambigously.!
Note added in proof. The quantization proposed here
has also been proposed recently by J. Schwinger, Phys.
Rev. 173, 1536 (1968), Eq. (80).
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