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The quantum Geld theory of particles with both electric and magnetic charges is developed as an obvious
extension of Schwinger's quantum Geld theory of particles with either electric or magnetic charge. Two new
results immediately follow. The Grst is the chiral equivalence theorem which states the unitary equivalence
of the Hamiltonians describing the system of particles with electric and magnetic charges e, g„and the
system with charges e '=cos8, e +sin8 g, g~'= —sin8 e„+cos8g„.This result holds in particular in the
absence of physical magnetic charges. The second result is that if physical magnetic charges do occur, then,
in consequence of chiral equivalence, the charge quantization condition applies, not to the separate products
e~g~, but to the combinations e g~—g e, which must be integral multiples of 4x. The general solution of
this condition leads to the introduction of a second elementary quantum of electric charge e2, the electric
charge on the Dirac monopole, besides the Grst elementary charge e1, the charge on the electron, There are
no other free parameters.

I. INTRODUCTION

(1.1)

(1.2)V E=j,', V H= j,o.

These equations, together with the Lorentz force

HE equations of Maxwell have a natural gen-
eralization which allows as sources both the

electric current density j,& and a magnetic current
density j,&:

E= VXH —j, ) H= —VXE—jo,

respond to an identity satisfied by the Hamiltonian
H(E", H', e„,g), regarded as a function of the radia-
tion fields H", E" and the electric and magnetic charges
of the eth charge bearing field:

H(cos8 E"—sin8 H", sin8 E'+cos8 H",e,g„)
=II(E",H', cos8 e„+sin8g„,—sin8e„,+cos8g„).(1.6)

Furthermore, one easily constructs the unitary operator
U(8) which effects the substitution on the left-hand
side of this equation, thereby obtaining the result

F=j,'E+1.XH+j oeH joXE—,

are invariant under the substitutions

(1.3) U( 8)H(E", H', e„,g) Ut(8) =H(E",H', cos8 e„+sin8g„,
—sin8 e„+cos8g„). (1.7)

E —+ cos8 E—sin8 H,
H~ sin8 E+cos8H,

jJ'~ cos8 j,I"—sin8 j,I',
j,"—& sin8j.o+cos8 joo,

(1 4)

*Work supported in part by the National Science Foundation.
t This work was performed while the author was a visitor at

the Centre d'Etudes Nucl6aires de Saclay, France.' J. Schwinger, Phys. Rev. 144, 1087 (1966).
2 J. Schwinger, Phys. Rev. 151, 1048 (1966); 151, 1055 (1966).' N. Cabbibo and E. Ferrari, Nuovo Cimento 23, 1147 (1962);

T. M. Yan, Phys. Rev. 150, 1349 (1966); 155, 1423 (1967).
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as is well known. Because of this invariance, it cannot
be asserted that the absence of physical magnetic
charge (namely, the absence of particles that interact
in a particular way with electrons), which nature has
heretofore manifested, reQects an asymmetry between
electric and magnetic charge. It can only be said that
the electric and magnetic current densities observed

up to now are proportional.
A quantum Q.eld theory of particles with both electric

and magnetic charges is easily constructed as an ob-
vious extension of Schwinger's field theory' of particles
with either electric or magnetic charges. ' ' Once this is
done, the invariance of the Maxwell-Lorentz equations
under the substitution (1.4), (1.5) is seen to cor-

Systems that are described by unitarily equivalent
Hamiltonians are physically indistinguishable, so that
no experiment can decide between alternative descrip-
tions of the world that differ by a simultaneous rota-
tion of electric and magnetic charges of all particles.
In quantum theory, the transformation (1.4) is a chiral
transformation on the photon state of momentum k
and helicity X:

~k, ) ) ~ U(8) ~k, ))=e'"e~k,X),

so that one may state alternatively that no experiment
can measure the relative phase of left and right circularly
polarized light, nor, consequently, the absolute plane
of polarization of linearly polarized light.

Because of chiral equivalence, it is found that Dirac's
charge quantization condition4 applies, not to the prod-
ucts e g„/4sr, but to the chiral-invariant combinations

(1/4s. )(e g„—g e„)=0,&1,%2, . (1.9)

Half-integral quantization, implying half-integral an-
gular momentum in the static electromagnetic fields,
which is allowed in Diracs single-particle theory, is
forbidden by chiral invariance and locality in the com-

4 P. A. M. Dirac, Proc. Roy. Soc. (I ondon) A133, 60 (1931);
Phys. Rev. 74, 817 (1948).
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mutator of the electric and magnetic vector potentials.
This accords with physical intuition for it directly re-
lates the vector nature of the electromagnetic Geld to
the absence of spin-~ angular momentum. The integral
quantization condition was proposed by Schwinger,
but with a somewhat di6erent mathematical justiGca-
tion [see Eqs. (3.38) and (3.39)).'

The solution to the charge quantization condition is
easily expressed by introducing a two-dimensional
charge vector q„=(e,g„).If qi and qz are two charge
vectors which satisfy (qiXqz)/4s. = (e&gs—giez)/47r= 1,
then the most general solution to (1.9) is

q Z iqi+Z zqz, Z .=0,+1,+2, ~ ~ . (1.10)

If qi is the charge vector of the electron, qts= e'= 4u/137,
then Eq. (1.10) introduces a second elementary quan-
tum of electric charge e', the electric charge of the
Dirac monopole, deGned by g& q2= ee'. The product ee'

is a measure of the strength of the parity and time-
reversal violating interaction.

There are three obvious possible explanations for the
failure to observe mangetic monopoles: (1) They do
not exist; (2) they have a very large mass; and (3)
their large magnetic charge causes them to annihilate
or bind into magnetically neutral matter. The third
possibility is susceptible to theoretical analysis. A
monopole-antimonopole pair interacts like an electron-
position pair, but with coupling strength 137 instead of
1/137. It would be valuable to estimate the relative
probabilities of scattering (with emission of radiation)
or annihilation, if such a pair is present at I= —~.
This branching ratio also controls the competing out-
going channels in any experiment designed to produce
magnetic monopole pairs. ' If it can be shown to be
small, then the Dirac quantization condition may not
only explain the quantization of electric charge, but
also the difhculty of observing magnetic charge.

In Sec. II the chiral equivalence theorem is proven.
In Sec. III the quantization condition on e g —g e~

is derived from Lorentz invariance. In Sec. IV it is
solved, and the symmetries of the theory are presented.

II. CHIRAL EQUIVALENCE THEOREM

Let us begin by considering the free electromagnetic
radiation Geld. It is conventionally described by the
Hamiltonian density'

Here E"(x) and H"(x) are the transverse radiation fields

V E (x)= V.H"(x)=0, (2.3)

which satisfy the canonical equal-time commutation
relations

[E;"(x),E;"(x'))= [H,"(x),H;"(x'))=0,
[E;"(x),H;"(x'))= iegsVsb(x —x') .

(2.4)

E"—+ cos8 E"—sin8 H",

H" -+ sin8 E"+cos8 H".

(2.6a)

(2.6b)

To make this invariance manifest, it is convenient to
introduce a two-dimensional real vector space, which
we call chiral space, with elements V, e=1, 2. This
space has two tensors that are invariant under proper
rotations, the Kronecker symbol 8 &, and the anti-
symmetric symbol e &, with e"=1.

If we introduce the Geld variable

(2.6c)

then the energy and momentum density are

P"(x)"=-'F F,
Ts;(x)"=—rze, ;se ~F, "(x)Fse"(x).

(2.7a)

(2.7b)

The canonical commutation relations take the form

These Gelds, and all others appearing below, are
evaluated at a common time t, which is suppressed.
From the Hamiltonian H"= J'T '(x) "dx and the canoni-
cal commutation relations, the Heisenberg equations of
motion yield the desired source-free pair of Maxwell
equations involving time derivatives,

E"(x)= —i[E"(x),H)= VXH"(x), (2.5a)

H"(x)= —i[H"(x),H) = —&XE"(x). (2.5b)

It is not really necessary to impose the transversality
condition (2.3) on the radiation fields. For the com-
mutation relations (2.4) show that the longitudinal
parts of the Geld commute with everything, including
the Hamiltonian, and are thus time-independent
c-number functions of position which may be sub-
tracted out.

All relations appearing up to now are invariant under
the chiral substitutions

Tee(x)~= [E~(x)'+H~(x) ) (2.1) [F. "(x),F,e"(x'))= ie ee;p, V—sb(x x'), (2—.8)
and carries the momentum density

T"(x)"=-', [E"(x)XH"(x)—H"(x) X E "(x))'. (2.2)
and the equations of motion become

p.ar ~op~ .. q.p pr (2.9)
'According to the noted added in proof of Ref. 1, special

attention should be given to the point z=z' in Eq. (3.27), with
the result that the right-hand sides of Eqs. (3.28) and (3.29)
should be doubled.'I am grateful to Dr. J. Basdevant for a discussion of this
point.

r For Lorentz tensors we use the metric g""=(1,—1,—1,—1),
units A=c=1, and Dirac matrices {y&,y") =2g&".

As a convenience, which partially avoids the ap-
pearance of nonlocal interaction in describing the
coupling of the radiation Geld to electrically charged
particles, it is conventional to change variables from
the magnetic Geld H" to the vector potential A" defined
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With these definitions, the total Hamiltonian de- specified below. The fields and potentials are allowed
scribing the radiation and particle fields and their to depend on them and on functional derivatives with
interaction is given by respect to them. If one introduces the extended fields

H = Too(x)dx, (2.27a)
1

8(x)=E"(x)—V dx'$(x —x')-, (3.1a)
i 8~(x')

T"='F~ F-2

+Z /~ED ( iV—q„—V )+m„$P„,(2.27b)
j.

X(x)= H'(x) —V dx'X)(x —x')-, (3.1b)
2 bp(x')

where the f„are antisymmetrized with respect to
derivative and spinor index. Maxwell s equations (1.1)
result from the Heisenberg equations of motion. This
Hamiltonian is not invariant under the chiral trans-
formation (2.6) or (2.18). However, the chiral equiva-
lence theorem follows immediately. Because U, Eq.
(2.17), effects the substitution (2.18) on E" and H",
it eRects the same substitution on any function of them,
including T":
U(8) T"(E"H") Ut(8) = T"(cos8 E"—sin8 H"

sin8 E"+cos8H') . (2.28)

and makes the replacements

A"(x) ~ A"(x)+.VX(x),
B"(x) -+ B'(x)+Vp(x),

then the local commutation relations (2.4) between the
fields remain unchanged and the nonlocal commutation
relations (2.15) between Acids and potentials become
local, as desired, but the nonlocal commutation rela-
tions (2.16) between potentials remain unchanged. If,
instead, one substitutes for the potentials

dx'a(x —x')- +VX(x),
2 Bp(x')

1
8(x)= B'(x)+ dx'b(x —x')— +Vp(x),

2@,(*')U(8) T"(e„,g„)Ut(8) = T"(cos8 e„+sin8 g,
—sin8 e„+cos8g ) . (2.29)

then the commutator of Sand 6 becomes

Furthermore, each q in T" is contracted via 8 e or @(x)=A"(x)+
o e with F~" or V"' or another q„.Hence the trans-
formation (2.28) may equivalently be stated

(3.2a)

(3.2b)

Systems that are descirbed by unitarily equivalent
Hamiltonians are physically indistinguishable; con-
sequently no experiment can detect a simultaneous
rotation of the charge vector of all particles. This result
is familiar classically, particularly for 0= ~x, where it
is known as the duality principle. Its consequence for
the Dirac charge quantization condition is the subject
of Sec. III.

III. CHARGE QUANTIZATION CONDITION

In the present section we propose to examine how the
condition of Lorentz invariance leads to the quantiza-
tion of charge. Although the commutation relations
(2.15) and (2.16) and the Hamiltonian (2.27) are not
manifestly local, one may nevertheless use them di-
rectly, with some brute force, to prove that the over-all
theory is Lorentz-covariant, provided that the charges
satisfy certain conditions. However, it is more con-
venient to use a formalism in which locality is as
manifest as possible, and which provides a clearer in-
sight into the origin of the Dirac strings. For this pur-
pose we adapt Schwinger's device of group parameters'
to the present problem.

Let X(x) and p(x) be a pair of arbitrary c-number
functions, regarded as an infinite set of free parameters,
and let the state vectors be functionals of them, as

8 J. Schwinger, Xuovo CimeIIto 30, 278 (1963).

b(x) = —a(—x), (3.3)

new terms symmetric in i and j are introduced, instead
of cancelling the antisymmetric old ones. With this
choice one obtains the locality condition

VS(x)+V&&a(x)=0, x/0.
It cannot be satisfied for all x/0, but must be violated
at least on a singular line, called a Dirac string;

V&& a(x) = —VS(x)+h(x), (3.4)

where h is nonzero only along a string to be specified
below, and obeys

V h(x)= —8(x). (3.5)

To complete the specification Of a, one may, without
loss of generality, impose

V a(x)=0, (3.6)

which can always be achieved by a unitary
transformation.

t K(x),p, (x') ]=—ie,;A,.Vga)(x —x')

+iq, a, (x—x')+iV;b, (x'—x),
where a(x) and b(x) are to be chosen so as to make this
expression local, if possible, by cancelling the term in
$(x—x') for xWx'. Unless they satisfy
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The commutator of 5 and I now becomes

I 5,(x),8,(x')]= —is;;elhi, (x —x )'. (3 7)

If a rotation 8 is performed on the chiral vector ('g, 8),
then in the commutator, h(x —x') is replaced by cos'8
Xh(x—x') —sin'8h(x' —x). Hence if chiral symmetry
is to be maintained in this commutator, h(x) must be
odd:

Upon comparing the expressions (2.25) and (2.26)
for the physical fields and potentials with Eqs. (3.11)
and (3.12) for the extended fields and potentials, we

see that, except for the gradient term in the potentials,
they become identical when applied to states whose
functional dependence on the gauge parameters
v (x)= P.(x),p(x)] satisfies

h( —x) = —h(x),

so that a(x) is even:

a(—x) = a(x) .

(3.8)

(3.9)

I»= j"(x)lv),
i bv (x)

j" (x)=2 q- k-(x)VV. (x)

(3.16)

(3.17)

The string function h in this case cannot be semi- This dependence takes the explicit form
infinite, but must be the difference of a semi-infinite
string function and its image, lv&=&(v)l ), (3.18)

00

h(x) =——
I 8(x—s)—8(—x—s)]ds,

2 0

U(v) =expl i v (x)j' (x)dx I,)' (3.19)

where the integral extends along any path from the
origin to in6nity. If it is chosen along the s axis, one
obtains

(3.10)h, (x)= —-', zs(s) 8(x)b(y) .
If one introduces the chiral notation

1
g (x)= F "(x)—V dx'$(x —x')—

i 8v (x')
(3.11)

Q (x) = V "(x)+ dx'a(x —x')s"ti

1
+Vv (x). (3.12)

i 8v&(x')

They obey the commutation relations

L5'; (x),g, ~(x')]= is 1's;;sruti, 8(x x') )
—(3.13)—

L5'; (x),8,s(x')]= i8"sb;,8(x—x'), (3.14)

LS,'(x),P,s(x')]= is se,,ihi, (x—x') . (3.15)

The erst two are local, but the last has its support on
a string. The import of the present discussion is that
if vector potentials are introduced for both electric
and magnetic fields, then manifest locality cannot be
achieved for the cornmutators, as is already obvious
on dimensional grounds. The least possible violation is
along the strings introduced by Dirac. Furthermore, if
chiral invariance is to be maintained in the cornmutators,
then tht; string function must b|; aptjsymrn|;tj. jc.

v (x)= P.(x),p, (x)];
8v (x) Q.(x) Bp(x)

then the definitions, (3.1) and (3.2), of the extended
fields and potentials may be written

where
I ) is independent of v . LThese states would

not be normalizable if the inner product included a
functional integration over )i(x) and p(x), but it does
not. The X(x) and p(x) are simply free parameters. s]

The motivation for introducing the parametric
mt;thod is that the Hamiltonian density

8"=lS'8 +Z 0-LV (—i&—q- )+m-]4- (3 2o)

when applied to states (3.18), satisfies

8"(x) ~(v) I )= U(v) T"(x)
I ) (3 21)

where T"(x) is the physical Hamiltonian density de-
fined by Eq. (2.27). Now T"(x) defines a I.orentz-
covariant theory if its satisfies' ~

LT"(x),T"(x')]
= —iLT"(x)+T"(x')]V,h(x —x') . (3.22)

The verification of this equation is replaced by the
verification of

I 8"(x),8"(x')]= —L8"(x)+8"(x')]7;8(x—x'), (3.23)

which is much simpler because 8" depends on fields
and potentials with local, or almost local, commutators.

The calculation of the commutator (3.23) from (3.20)
leads to nonlocal contributions on strings, arising from
the commutator of the potentials LQ; (x),Q;s(x')].
However, the singular operator products appearing in
(3.20) should in fact be replaced by a limit of non-
singular products such as'

X1t„(x—-', s) exp iq„™ Q"(xi) dxi, (3.24)
x—e/2

9 P. A. M. Dirac, Rev. Mod. Phys. 34, 592 (1962);J. Schwinger,
Phys, Rev. g7, 32$ (1962); 13/, +6 (1963); $30, 800 (1963),
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On the other hand, suppose (4.1) is satisfied for two
vectors, call them q~ and ~~, with

qiX qa/4s ——1. (4 2)

Then these two vectors are linearly independent and
any vector in the two-dimensional charge space may be
written

q~ = c~iqi+c~2q2 ~

On forming cross products of q„with q& and q2 and
using (4.1) and (4.2), one finds that c i and c g must be
integers, Z„~,Z 2,

q„=Z„iq,+Z„,qm, Z„;=0,&1,a2, . (4.3)

served-parity and time-reversal operators are defined by

P: E(x),H(x),f„(x)pP„(x)-+ —E(—x),H(—x),
vv (-x),7'4 '(-x) (48)

E(t),H(t)A-(t)A-(t) ~ E(—t), —H(—t)

v'7V-(-t), v'vV-'(-t). (4.9)

This is the situation discussed by Ramsey. "On the
other hand, if a particle, say, qm, has both electric and
magnetic charges, then no conserved-parity or time-
reversal operator exists. A convenient chiral-invariant
measure of the strength of the parity and time-reversal
breaking interaction is

The cross product of any pair of vectors is then

q Xq =(Z iZ s—Z 2Z.&)4n,

1
ql 'q2'qlXq2 ql "q2 ~1~2

(kn.)2 4ir her
(4.10)

so that (4.1) is satisfied for all m and e. Consequently
(4.3) is the most general solution to the charge quanti-
zation condition provided that there exists a pair of
vectors whose cross product has the minimum nonzero
value.

A chiral transformation may be used to align qg
along the electric axis, so that

the product of the two elementary quanta of electric
charge. This could be a fairly large coupling and yet
not show up very much in present experiments be-
cause magnetically charged particles are bound into
magnetically neutral systems via the parity-conserving
superstrong coupling constant

qi= (oi 0), (4 4)
qP/4n = eP/4ir+4z/oi '= e22/4m. +137

with presumably eim/4s =1/137. In this case we have

q2 (82 4~ol ) . (4.3)

There is no further restriction on e2, the electric charge
on the Dirac magnetic monopole, and it de6nes a
second elementary quantum of electric charge.

Let us discuss the discrete symmetries of the Hamil-
tonian (2.27). For this purpose it is convenient to use
the Majorana representation. The Hamiltonian is, of
course, invariant under the CPT transformation O~,

0: E(t,x),H(t, x)g(t, x) ~ E(—t, —x),H(—t, —x),
y'Pt( t, x), (4—.6)—

and it is also invariant under charge conjugation,

C: E,H,f-+ -E,—Hatt. (4.7)

To discuss parity and time reversal, assume that (4.3)
holds and that the electric axis is aligned along q&.

Otherwise a chiral transformation would be included
in the definition of P and T. Two cases are to be distin-
guished, depending on whether or not the magnetically
charged particles appearing in the Hamiltonian (2.27)
also bear electric charges. If they do not, let f corre-
spond to the purely electric particles and let f cor-
respond to the purely magnetic particles. Then con-

Besides these discrete symmetries, each type of
particle in the Hamiltonian (2.27) has its own conserved
current f yQ„.Finally, there are the gauge trans-
formations involving two gauge functions Ii(x) and
p(x):

A, BpP„~A+VX, B+Vtj,,f exp(ie )+ig p), (4.11)

but they require a larger framework than the present
one to be studied adequately.
/Because of the superstrong coupling of the present
theory, and because no Lorentz-covariant perturba-
tive expansion exists due to the nonlocal commutator
of the vector potentials, new calculational techniques
are required to extract physical predictions. However,
the nonrelativistic form may be studied unambigously. "

Pote added ie proof. The quantization proposed here
has also been proposed recently by J. Schwinger, Phys.
Rev. 1Z3, 1536 (1968), Eq. (80).
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