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We consider the quantum-mechanical problem of the interaction of two particles, each with arbitrary
electric and magnetic charges. It is shown that if an additional 1/72 potential, of appropriate strength, acts
between the particles, then the resulting Hamiltonian possesses the same higher symmetry as the non-
relativistic Coulomb problem. The bound-state energies and the scattering phase shifts are determined by
an algebraic and gauge-independent method. If the electric and magnetic coupling parameters are « and
=0, =3, =1, ---, then the bound states correspond to the representations ny+ne= |u|, |u|+1, -+,
n1—ns=p of SULRSUz~0;, and the scattering states correspond to the representations of SL(2,C)~0(1,3)
specified by J2—K?=p?—a/2—1, J-K=0a', with o’ =a/v. Thus, as a and x are varied, all irreducible repre-
sentations of Oy and all irreducible representations in the principal series of O(1,3) occur. The scattering
matrix is expressed in closed form, and the differential cross section agrees with its classical value. Some
results are obtained which are valid in a relativistic quantum field theory. The S matrix for spinless particles
is found to transform under rotations like a p — —u helicity-flip amplitude, which contradicts the popular
assumption that scattering states transform like the product of free-particle states. It is seen that the Dirac
charge quantization condition means that electromagnetic interactions are characterized not by one but by
two, and only two, free parameters: the electronic charge e~ (137)71/2, and the electric charge of the mag-
netic monopole, whose absolute magnitude is not fixed by the Dirac quantization condition but which de-
fines a second elementary quantum of electric charge.
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1. INTRODUCTION

HE interaction of two charged particles with
coupling parameter a=—ee/4r (a>0 for
attraction) is described nonrelativistically by a
Hamiltonian which possesses the higher symmetry of
0(4) for bound states and 0(1,3) for continuum states,
as is well known. We will show that if the two particles
have, in addition to their electric charges e; and ey,
magnetic charges g1 and g so that the coupling parame-
ters are a=— (eieat+g1g2)/4m, and u= (e1g2— g1ea)/4mc,
then the Hamiltonian possesses the same higher sym-
metry as the pure Coulomb Hamiltonian, provided that
an additional scalar potential V = u?/2mz?is also present.
The nonrelativistic charge-monopole interaction is well
explored in the literature,*~” but the study of the higher
symmetry of the related problem, nor of an additional
Coulomb interaction, does not seem to be represented.
In the concluding section we discuss those features of
the model that have general validity, and make some
over-all observations about the magnetic monopole
problem. Inter alia there is a discussion of the trans-
formation properties of the .S matrix, and it is seen
that the Dirac quantization condition leads not to one,
but to two elementary quanta of electric charge.
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The magnetic field B(r) due to a magnetic monopole
of strength g at the origin is

B(x)= (g/4m)7/r* (L1)

and may be obtained as the curl of a vector potential

A@):

B(r)=VXA(r), (1.2)
with A(r) given by
X7
Aw=2_70 (1.3a)
o r(r—r-#)
or by
Xfir-fi
A(I)=-§- ik (1.3b)

dr 12— (r-A)?]

For these A(r), Egs. (1.1) and (1.2) agree except along
the singular line r=c#, with 0<c< o0 (1.3a) or — o <¢
< (1.3b). Accordingly, the dynamics of a pair of
particles, of masses m; and m,, electric charges ¢; and
€3, magnetic charges g1 and gs, is specified by the
Hamiltonian

1 e182— gi62 2
H= '—(p1—'———D(r1— 1‘2))
47c

2'm1
1 exg1— goe 2
C /pz-— 281— &2 lD(rg—rl)) +6162+g1g2
2mz\ 47c T
1
X——+V(lr1—1s]), (1.4)
]f1—f2|
where
( tXA A
r=———-, 1.5
r[r2—(r-A)?] (1.5)
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and V(r) is an arbitrary additional potential interaction.
The justification for this Hamiltonian is that the

Heisenberg equations of motion for r; and

== pi— (4wc) " (eigi— gie) D(ri—1,),
i, j=1, 2, yield the Newtonian equations of motion

(1.6a)

ti=mi/m;,
. (eieitgagy) ri—r (eigi—gie)

T T
dr |r—1)?
1 T T r,—r;
A
2L\m; m;/  |ri—r;|®

The first term in Eq. (1.6b) is a Coulomb force, the
term proportional to v;=m;/m; is a Lorentz force, and
the term proportional to v;=m;/m; represents the force
produced by Biot-Savart fields. Only the difference,
v;—v;, occurs, in accordance with Galilean invariance.
These are the desired classical expressions, symmetrized
where necessary so that the quantum-mechanical
operators are Hermitian, and are correct to order v/c.
The interaction violates parity and time-reversal in-
variance separately, but is invariant under their
product PT.

Upon introducing the usual relative and c.m.
coordinates

4me

r—r; T Ty
)

lti—r;|  \mi m;

—VV(|r—r;]). (1.6b)

R= (M1l‘1+ mﬂz)/(’ﬂh‘}" mZ) )
p= (M2p1— mmz)/(mrf- M2) ) P= P1+ P2,

Ir=r1—r.,

one obtains?

1 1
He— Pt —[p—pD@ et V(r), (L7
2M 2m 7

where M = my+ms and m= (mi~'4ms1)~! are the total
and reduced masses, respectively, and where

a= — (e1ee+g1g2) /4w (1.8)
and

(1.9)

are the electric and magnetic coupling parameters.

From now on we set the total momentum P equal to
zero and reexpress the Hamiltonian (1.7) in a form
which is manifestly gauge-invariant and rotationally-
invariant. In terms of

u= (e1g2— g1€2)/4m.

==p—uD(r), (1.10)
the Hamiltonian takes the form
H==22m—a/r+V(r), (1.11)

8If in Eq. (1.4), the symmetric form (1.5) for D had not been
chosen, then a gauge transformation would be necessary before
the separation of the c.m. and relative motion could be effected.
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which is associated with the gauge-invariant and rota-
tionally invariant commutation relations

[xi,xi]=0’ (112&)
[riywi]= —1d4, (1.12b)
[riymi]=ipesprn/r®. (1.12¢)

The commutators (1.12b) and (1.12c) appear to violate
the Jacobi identity, since we have, for ¢ j =k,

[7!' i,[Tj,Tk]:|+ [7"1" [Wk)wi]:]
+ [, [7"’5’7"1']] =4mud(r) (1.13)

instead of zero. This paradox can be resolved by a study
of the domain of definition? of the operator 7;, defined
by Eq. (1.10), and of the conditions under which it can
be extended to a self-adjoint operator. Such a study has
been effected by Hurst” for the angular-momentum
operator J which will be introduced shortly. The result
is that the paradox is removed only for values of u
which satisfy the Dirac quantization condition

u=0,4%+1,---. (1.14)

We will obtain this condition by algebraic argu-
ments which also lead to an elucidation of the higher
symmetry.

2. ASSOCIATED HAMILTONIAN AND ITS
CONSTANTS OF MOTION

The first thing to do in a problem which has spherical
symmetry is to identify the angular-momentum opera-
tor J. In the classical problem it is well known that
L=mrXiis not a constant of the motion because of the
angular momentum —u7 in the crossed static electric
and magnetic fields, given by the spatial integral of the
moment of the Poynting vector. The quantity J=mr
Xi—u# is conserved, however; so it is natural to con-
sider the corresponding quantum-mechanical operator

J=rX=m—pur. (2.1)

One easily verifies from Eqs. (1.12) that J satisfies
(2.2)

[ oxj]=degmar, [Jom]=iemums,
so it is the generator of rotations of position r and
velocity =/m. Consequently it commutes with any
scalar formed out of them, and in particular, the
Hamiltonian itself,

[J,H]=0. (2.3)
Likewise, it is the generator of rotations for any vector
formed out of x and =, and in particular, J itself,

iJi]=1eint k. (2.9)

9 Clearly, the left-hand side of Eq. (1.13) can only be applied
to wave functions which vanish at the origin.
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In addition to J, it is convenient to introduce the
new dynamical variable

D=%(r-m+=-1). (2.5)

The advantage of D over the more customary variable

Tr=3( mtm #)=r12Dy 102 (2.6)

is that =, is the generator of translations in the radial
direction and thus leads to negative radii. This is
meaningless, so that 7, cannot be self-adjoint, whereas
D is the generator of radial dilatations, which is all right.
Equations (2.1) and (2.5) may be inverted, to express =

in terms of J and D:
m=Fr 12Dy 1124 2(IXF—7XJ) /7. .7

The commutation relations (1.12) become, in terms of
the new variables,

[xs27]=0, (2.8a)
[JoJi)=tentr, [JD]=0, (2.8b)
[Ji,xjj = ie;jkxk ’ [D,x,- =—1ix;. (Z.SC)

These commutation relations are formally those of the
Lie algebra of the three-dimensional similarity group
Ss which consists of the dilatations plus the three-
dimensional Euclidean group Es; of rotations and
translations.’® The representations of this group are
easily found in terms of the known representations of
the Euclidean group.! It is not our purpose to do this
here. However, we note in passing that the irreducible
representations of this group are labelled by the in-
variant £-J, a helicitylike quantity which takes on the
values

£-J=0,41,41,---. (2.9)
From Eq. (2.1) we have £-J=—p; thus we find
p=0,3+1-.-. (2.10)

This is an algebraic derivation of the Dirac quantization
which is alternative to those of Peres® and Hurst.”
However, we refer the interested reader to the exposi-
tion of Hurst for a Hilbert-space analysis of how the
quantization condition arises.

Let us express the Hamiltonian (1.11) in terms of the
new variables. One easily finds

1

1 «
H=—m2+ P=p)——4+V(). (2.11)
2m 2mr? r
At this point we note that if V(r) takes the particular
form

V(r)=u2/2mr?, (2.12)

10T am grateful to Dr. F. Yndurain for pointing this out to me.
11 A, S. Wightman, Rev. Mod. Phys. 34, 851 (1962).
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then the net 72 effective potential looks like an ordinary
centrifugal barrier, with J2 replacing L?, and the result-
ing H, which we call H¢, the Hamiltonian of the as-
sociated problem, is simpler than if V(r)=0. One has

Ho=—1r 2} Jo—— (2.13a)
2m 2mr? 7
or
1 a u?
Ho=—g2—— (2.13b)
2m r 2mr?

Equation (2.13a) has the same form as the Hamiltonian
of the Coulomb problem expressed in radial coordinates,

1

9 a
L_"‘:

(2.14)
2myr? r

1 o
a 2mpr

and has the same commutation relations. This suggests
that the Runge-Lenz vector!?

A=(1/2m)(=XI—IX =) —a?, (2.152)
whose definition is symmetrical to that of J,
J=3(Xn—=X1)—p?, (2.15b)

may be a constant of motion of He This turns out to be
the case, and brief manipulative exercises yield

[3,He]=[A,H*]=0, (2.16a)
oJil=ieints, (2.16b)
[JuA]=ieinds, (2.16¢)
[4:,47]=—iesuTo(2H/m), (2.16d)
AJ=J-A=qy, (2.16¢)
A?—o?= (2H%/m) (>~ u2+1). (2.16f)

Except for the fact that u has a nonzero value in the
last two relations, these equations are identical with
the corresponding equations for the Coulomb problem.

3. ENERGY EIGENVALUES AND
SCATTERING MATRIX

Having obtained the constants of the motion, one
can find the eigenfunctions of H¢, the Hamiltonian of
the associated problem, just as for the Coulomb
problem, by making a separation of variables in spheri-
cal, parabolic, or ellipsoidal coordinates. However, we
will forego this here and find instead the energy eigen-
values and scattering matrix by algebraic and gauge-
independent methods.

Consider first the possibility of bound states. The
method is that introduced by Pauli!? for the Coulomb

2 There is a rich literature on higher symmetry in the Coulomb
problem. References to earlier work may be found in the review
articles by M. Bander and C. Itzykson, Rev. Mod. Phys. 38,
330 (1966); 38, 346 (1966).

13 W. Pauli, Z. Physik 36, 336 {(1926).
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problem. From Eq. (2.13b) we see that unless a>0 the
Hamiltonian is positive definite and there are no bound
states. Thus we assume a>0 and seek any possible
bound states. In relations (2.16) we replace H* by its
eigenvalue E<O0, since it commutes with all quantities
appearing there, and set

He=E=—mu?, u>0. (3.1)

The relations (2.16) may be written
[JoJil=t€iTk, (3.2a)
[JoNil=1€ixNk, (3.2b)
[NiNl=1teut s, (3.2¢)
N-J=d'u, (3.2d)
Jp Ne= o242 1, (3.2¢)

where we have introduced

N=A/u, (3.3)
d=a/u. (3.4)

Equations (3.2a)-(3.2c) define the Lie algebra of the
group SU:Q@SU3~0s, as is well known. For, upon
introducing

J:=3J=£N), (3.5)

we have
Vi ix]=teinT pe (3.6a)
[]H"Jj—]= 0, (36b)
J*=1(e/£p)*—1]. (3.6¢)

The commutators (3.6a) and (3.6b) are the defining
relations of SU;QSU.. It follows that

Ji?=7:(++1), (3.7)
with
j+:j—‘= Ox%;lr' )
so the eigenvalues are determined by
(jat3)?=1d =)’ (3.8)

If |u| >, one has j,+ j_+1=|u|, which means that
7<|p| because in the representation (j4,7_), the values
of j that occur are | j4— j_| - - - 74+ j-. This contradicts
72 | u|, which follows from J-£= —u. Consequently we
must have

o> |ul, 3.9)
and hence
irth=3+a), (3.100)
J-ti=3("—w (3.10b)
or
jsticti=a, (3.11a)
j>“"j<=lyl. (3.11b)
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Upon introducing the principal quantum number

N=jstjctl=d (3.12)

we have
N= [l‘|+17 Iﬂ]+2; Tty

and the energy eigenvalues are determined by o/ =o/x,
so that

(3.13a)

E=—3mu*=—3m(a?/N?). (3.13b)

This equation is the familiar Bohr formula, but it has a
more general meaning here because the values of Vare
integral or half-integral, according as || is, and only
assume values greater than | u|. The angular-momentum
values that occur in the degenerate level with principal
quantum number N are

lu]+1, -+, N—1. (3.14)

This completes our discussion of the bound states and
we consider next the continuum scattering problem.

The phase shifts may be obtained algebraically follow-
ing a method applied previously’® to the Coulomb
problem. !5 We return to Eqgs. (2.16) and set

j='#|,

He=E=3m®, v>0. (3.15)

These equations take the form
WaJil=ieisl, (3.16a)
Lo Kil=ideuKe, (3.16b)
[KoKi]=—ieint, (3.16¢c)
J-K=a/y, (3.16d)
P—Ke=p—a'2—1, (3.16e)

with the definitions

K=A/v, (3.17)
od=a/fv. (3.18)

Equations (3.16a)-(3.16c) define the Lie algebra of the
group SL(2,C)~0(1,3), whereas Egs. (3.16d) and (3.16€)
specify its irreducible representation labelled by?¢

(3.19)

which is a unitary representation in the principal series.
The only result'® which we will need is that in the basis

(jo,C) = (‘“I sie! sgnu),

4 D. Zwanziger, J. Math. Phys. 8, 1858 (1967). This algebraic
method was, in fact, developed for the purpose of making a
gauge-invariant calculation of the magnetic-monopole scattering
amplitude.

18 Professor Biedenharn has kindly pointed out to me that
L. C. Biedenharn and P. J. Brussaard, Coulomb Excitation (Oxford
University Press, New York, 1965), contains the suggestion that
the Coulomb scattering phase shifts may be obtained by analytic
continuation of the Clebsch-Gordan coefficients of O..

18 M. A. Naimark, Linear Representations of the Lorentz Group
(American Mathematical Society, Providence, R.I., 1957), Chap.
3, Sec. 2, No. 3, Egs. (51)~(55) and Sec. 5, No. 6, Egs.” (1)-(4).
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|jym,
]2_ 2 j2+a/2)1/2
Ks|j =i i1+
S i Vi) IIESERE
N ¢ AE
——| j,Eu)—
JG+1) (j+1)
(]+1)2_|_ 72\ 1/2
(———“) | 1,2, (3.20)
4(j+1)2—1

Let us now focus our attention on the in (out) states
correspondlng to a plane wave of momentum k enter-
ing (leaving), travelling in the direction k. Because
J-£ and K- are commuting constants of the motion,
whatever values they have for appropriate wave
packets before (after) scattering, they will have these
values at all times, and are suitable labels for the
in (out) states. We may suppose that as {— — oo
(t— 4 =), the in (out) state travelling in the £ direc-
tion approaches a wave packet which lies in the direc-
tion —% (4-£), that is, the scattenng state approaches
an eigenstate of £ Then from J-£=—u we find

(oo ()

To find the eigenvalue of K- £, we observe that

A=(1/2m) (=X J—IX=)—at
=(1/m)(in— I X=)—ot,

A-b=1/m)(im-E=T-=XE)—at k.

As t— —ow ((— 4 o) the scattering states also
approach eigenstates of velocity =/m, with eigenvalue

vk. Hence
in in
k( )>= (iv-ka) k( )> ,
out out

or, since K=A/v,
in
k( )> . (3.21b)
out

()i

The energy eigenvalue and the eigenvalues of J- k
and K-% characterize the scattering states to within
a multiplicative constant. However, it is also necessary
to establish conventions for the relative phases of scat-
tering states with different k, because Eq. (3.21a) shows
that the scattering states are states of helicity 4u, and
nontrivial phase conventions enter the definition!? of
states of nonzero helicity. We present a fairly detailed

Py

J-E (3.21a)

Py

A-k

K-k

1 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959);
G. C. Wick, ibid. 18, 65 (1962).
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discussion because the behavior of the .S matrix under
rotation has not been given previously. Let us see how
Egs. (3.21) transform under rotations. Because J and
K are vector operators, as seen in Eqs. (3.16a) and
(3.16b), we have

URJU(R)=R', URKU(R)=RK.
Thus from Eq. (3.21a) we find

(-2
(o)
=J-(RE) U(R)‘ (Out>> ’

and similarly for K-£. This shows that

@ [yl )]

To each momentum vector k let us associate some
definite rotation Ry which carries the fixed direction 2
into the direction £:

UR)I-E|k

=[UR)I-EU-(R)JU(R)

.Rkﬁ:é.

The rotation Ry is determined up to an initial rotation
through an angle ¢ about 2, and the phase convention is
some definite specification of the angle ¢= ¢(k). The
relative phases of the states |kin) and |k out) are

fixed according to
in
()
out

(2 )y-u

With this convention the scattering states have the
definite transformation property

k<::t>>= IRk(OiZt>> expline(k,R)] (3.242)

in which the angle ¢(k,R) is determined from
R 'RR=R.[¢(k,R)], (3.24b)

where k'=Rk and R.(¢) is a rotation by ¢ around the
z axis. Equations (3.24) are the standard transforma-
tion law of states with helicity u.

Let us now consider the expansion of the scattering
states |kin), |k out) in states |j,m) with definite J2
and J, (and energy E which is suppressed). From Eq.

(3.21a) we find
in in
()=, 529
out out

in
ké( )> =J,
out

(3.22)

(3.23)

U(R)

J-3
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so that the states |k2in) have the expansion

|kgin)= > (2j4+1)"%a|ju).  (3.26)
7> el
Then, by Eq. (3.23), we may write
[kin)= > (2j+1)"%a;™| jym)Om /(Ri), (3.272)

3> lul
and similarly

|kout)y= 3 (2j+1)""a;"*| j,m)Dm,—, (Ry), (3.27b)
!

i>u

where we have used the known behavior of the states
| j,m) under rotation. Equations (3.27) provide the
desired expansion of |kin) and |k out) in an angular-
momentum basis, provided only that the a; are known.

They are found from
in
k%( )> ,  (3.28)
out.

ké((:t>>= (i+a’)

which is a special case of Eq. (21b), upon substitution
of Egs. (3.20) and (3.26):

12 (2j+1)2efr(1—id)| ju)=1 2 (25+1)2;in
J J
Putf Pty . w!
XI: . ( . )l]—l,u)—z_ A
J \4j—1 JG+1)
(D=2 (1) +a”
j+1 \dG+1)—1

Ks

[ 71)

)mlj+1,u>J. (3.29)

The result for a;°'t is obtained by the substitution
o — —d, p— —u. Upon equating coefficients of
| 7,1), one obtains the recursion relation

(G+1)2—p .
T[(]_l_ 1) 2+a’2:|1/2aj+11n

2
—(2 j+1)[1—ia’+—'—#——ia’]aji“

JG+1)
]'2_ 2
[ o], i, (3.30)
Upon setting j= |u|, one obtains
|| +1—ida’\172
Alul1in= (I—H-—IIT;) Q| iny (3.31)
I o

and the general term is easily proven by induction to be

ajm=

(Q—ia ) (3.32)

1/2
E]:;a,—)') ) jzl/"l: l:u]+1;
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and by o — —d/, u— —u,

(j+id)!
ajoutz (______

1/2
. ) ’ j=|ll-|, Iﬂ[+1’ (333)
(j—iad')!
There is actually an arbitrary coefficient on the right-
hand side of these equations, which is independent of j
but may depend on k. Its magnitude is fixed at unity
by normalization, and its phase to zero by convention.
The scattering matrix is now obtained directly from
its definition

S(k’,k)=(k out|k in), (3.34)
and Eq. (3.27):
Sk k)= > (2j+1)a, e,
7> |nl
X Z §Dm,—yj(Rk') iDm,nj(Rk) )
) (j—1ia)! ]
SK)= 5 (241D, IR R (3.39)
i> 1wl (]+za’>!
The phase shifts
- (J—id)!
M= s ng? j=lﬂly Iﬂ[+1: tee (336)
(j+ia)!

have the same form as the Coulomb phase shifts, just
as the energy eigenvalues (3.13b) look like the Balmer
formula, but with the same generalization in meaning,
In particular, the angular function which multiplies
%% is not a Legendre polynomial. The poles of (3.36)
occur at j—iamk™'=—n,n=1,2,3, -+, or

Tom 1 a?
n+j ’

which agrees with (3.13b).

The angular dependence may be made more explicit
by using the transformation properties of S(k’,k) under
rotation, which are completely standard for helicity
amplitudes. We have

S(K,K)= (K’ out|k in)= (K out| U'(R)U(R) |k in)
= (RK out| Rk in)exp[ipe(k',R)+ipe(k,R)],

k=

(3.37)

where we have used Eqgs. (3.24); therefore,

S(RK,Rk)
=S(k'k) exp[ —ipe(K',R)—ine(k,R)].

Each term in the expansion (3.35) has this behavior
because
Dy, (R Rex)

=D_ /{[RRwR;(¢") ' [RR R ()1}

=D_,[RA¢) RV ReR ()]

= —i“‘°'5)_“,“j(Rk:_le)e"i“‘P,

(3.38)
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where we have used Eq. (3.24b) and written
e=¢(kR), ¢'=¢K,R).

At this point we interrupt our discussion for a
parenthetical observation. The transformation law
(3.38) is sufficient to justify a phase-shift expansion even
though the .S operator, defined in the usual way, does
not commute with J. For from

S(k’,k)= (k' out |k in)= (k' out|S|k out) (3.39)

we have

|k in)=S|k out), (3.40)

so that, by Eq. (3.21a), J cannot commute with .S. This
paradoxical situation arises because the .S operator in-
troduced here differs from the S operator of more
familiar problems which connects states of the same
helicity A:

| kA in)=.S|k X out).

The differing behavior of the S operator in the two
cases reflects the fact that normally the total angular
momentum in scattering states is the sum of the angular
momenta of the corresponding free-particle states,
whereas in the monopole problem there is also an “inter-
action angular momentum,” analogous to an inter-
action energy, but which remains finite as the inter-
particle separation becomes infinite. We return now to
the angular dependence of S(k',k).

To be completely definite, let us make a particular
choice of Ry. For k=(6,¢), with ¢=0 for =0, set

Ri=R.(¢)R,(0). (3.41)

Let us also call the “standard orientation” for scatter-
ing angle 6 the orientation &'= 2 and k= cosf £+sinf £,
so that in the standard configuration

(-D—-u,uj(Rk'—le) = :D—u.nj[Ru(e)] = d—n.nj(o) .

Any other orientation with scattering angle 6 is ob-
tainable from the standard orientation by a rotation
R(k’,k) which is unique except when k and k’are
collinear. Hence S(k’,k) may be found from the S for
the standard orientation by Eq. (3.38) and we have

SR =eke® 0 5 (25+1)

7> ul

(3.42)

LUy

i (3.43)

where cos6=FE-%/,

oK, k)= ¢(8,R)+ ¢(cosb £+sinf £,R) ,
and

R=R(Kk).

Equation (3.43) is familiar if 4=0, or if3* o/ =a/v=0,
but the scattering amplitude for arbitrary « and y, and

DANIEL ZWANZIGER

176

its behavior under rotation, Eq. (3.38), do not seem to
have been stated before.!®
The sum (3.43) yields for the scattering amplitude

& k)=Sk' k)/2k, 640
PEE
f(k"k) = e ) (— 1)Inl+u
1k(1—cosf) (3.44)
1—cosf ‘I([u|—ia')!
Xexp[ia’ln( ) —,
2/ d(|ul+ic)!

as may be verified using Rodrigues’s formula!® for the
d—p,,". Here &’ = o/v. The differential crosssectionfollows
immediately :

do wia'?
—=|f k)| =——,
dw k2(1—cos)?
do  m*(u2?+a?)

do k4(1—cosh)? ’

(3.45)

and has a Rutherfordian angular dependence. The
classical trajectory corresponding to the force (1.6b)
is easily obtained when V=u2(2mr%)1, and yields the
same differential cross section. It is the sum of the
separate cross sections for purely electric and magnetic
interaction. However, the phase of the amplitude
(3.44), which shows, up in interference phenomena, has
a more complicated dependence.

4. CONCLUSION

This section consists of a few observations which
are unrelated to each other, but mostly have to do with
those features of the model that are of general validity.

(i) The associated Hamiltonian with the higher sym-
metry was obtained by the ad koc introduction of the

potential
171 1\ p?
V(ti—15)= —(——l———)——————

. (4.1)
my Mo ]l’l—rzl 2

This potential leads to a static classical force, Eq. (1.6b),
for which there is no evidence or justification, although
it is possible that the classical limit of a theory with
superstrong and quantized interactions may contain
such an unexpected term. However, if the potential
(4.1) is present, then two striking features of the non-
relativistic Coulomb interaction of two particles are
preserved when the two particles are allowed to bear
both magnetic and electric charges: (1) The same dif-
ferential cross section is obtained both classically and

181f V=0, one sees by inspection of Eq. (2.11) that the energy
levels and phase shifts may be obtained from present formulas by
JG+D = j(G+1) —p? or j— [(j+§)2—p? 12—,

1 A. E. Edmonds, Angular Momentum in Q. Mechanics
(Princeton University Press, Princton, N. J., 1957), Eqgs. (4.1.18)-
(4.1.23) and (4.2.6).
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quantum-mechanically, and (2) the Hamiltonian ex-
hibits the higher symmetry of O, for bound states and
SL(2,C) for the continuum.? It is quite unexpected
that these seemingly exceptional properties of the
Coulomb force can, in fact, be maintained in the pres-
ence of velocity-dependent forces. The associated
Hamiltonian thus seems to define the natural generaliza-
tion of the Coulomb problem.

(ii) We have seen, Eq. (3.38), that the scattering
matrix transforms under rotation like a helicity-flip
amplitude, with helicity changing from u to —u, even
though only spinless particles are present. This result
remains true also in the absence of the higher symmetry.
Thus the S matrix and also the scattering states do not
transform under rotations like the product of free-
particle states, contrary to standard assumptions.?' In
relativistic theories of magnetic monopoles also the
S matrix and the scattering states cannot transform
like the product of free-particle states, for if they did
this property would carry over to the Galilean limit.
Thus some traditional concepts must be abandoned for
a consistent theory of magnetic monopoles.

It is tempting to conjecture how the relativistic S
matrix must transform. In general, the scattering ampli-
tude transforms, in spin space, according to an ir-
reducible representation of the little group of a mo-
mentum 4-vector, the little group being the subgroup of
the homogeneous Lorentz group which leaves the
4-vector invariant. It is interesting to observe that a
pair of 4-vectors also has a little group—the subgroup
of the homogeneous Lorentz group which leaves both
vectors invariant. Let us find the little group of two
linearly independent timelike future 4-vectors, p; and
po; pE=m2>0, E;>m;>0. Choose the time axis along
p1+p2 so that one is in the c.m. frame;

p1=((m?+9°)'"%p),  p2=((ma>+52")'%,—p).

If the z axis is chosen along p, one sees that the set of
Lorentz transformation which leave both 4-vectors
invariant is the set of rotations about the z axis. This is
the familiar 1-paramenter (call it ¢) Abelian Lie group
with irreducible representations

du(‘P):eXPi#(Pa 0< p<drm, M=0,:E%,:f:1,"'. (42}

Corresponding to any Lorentz transformation A and a
pair of 4-vectors p1 and ps, a unique element of the
little group o(p1,p2,A) is determined as follows. As-
sociate with each pair of 4-vectors p: and p. a Lorentz

20 There is, in fact, a third feature of the Coulomb interaction
which is preserved here. If there are three nonrelativistic particles
with electric and magnetic charges and the pairwise interaction
(4.1), then if two of the particles are held fixed, the Hamiltonian
for the third particle is separable in ellipsoidal coordinates.

21 R. Streater and A. Wightman, PCT, Spin and Statistics, and
All That (W. A. Benjamin, Inc., New York, 1964), pp. 24-27.
’Ehese authors do express reservations about massless particles,

owever.
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transformation A,,,,, such that
P1=Apy, ;a1 (4.3a)
p2=Am.1’zp2o: (43b)
with
Plo: ((m12+;i’2) ”2;070)?) ’ (443')
0= ((ma*+*)'"2,0,0,— ), (4.4b)

(P1° p2)*—mi*ma?\ 12

( (prtp2)? )

and let p1'=Ap1, p2'=Aps. Then o(p1,p,A) is defined by
RLo(p1,02,8) 1= Apy oy " A g, 3,

where R,(¢) is a rotation through an angle ¢ about the
z axis. We conjecture that under the Lorentz trans-
formation A, the S matrix S(p1,p2) (other variables are
suppressed) transforms according to

S’ (p1,p2") = exp[ Fine(p1,p2,4) ]S (b1, p2)
with

4.5)

(4.6)

4.7)

The upper or lower sign holds according as both par-
ticles are in the initial or final state. For rotations in
the center-of-mass frame Eqgs. (3.38) and (4.7) agree.
(This discussion neglects the standard infrared dif-
ficulty in the definition of scattering states of charged
particles.)

We note with relief that the little group of three or
more 4-vectors is the identity, so #-body forces (n>2)
cannot change the transformation law of the .S matrix
in this way.

(i) In a previous work? it was argued from the
appearance of unwanted analytical singularities in the
scattering amplitude that magnetic monopoles cannot
exist. That work explicitly assumed [assumption (a)],
in accordance with standard® practice, that the ampli-
tude transforms like the product of free-particle states.
This assumption we have just seen to be incorrect be-
cause the amplitude for spinless particles transforms
like a helicity-flip amplitude. This allows us to under-
stand the origin of the “unwanted” singularities: They
are the kinematical singularities of a helicity-flip ampli-
tude. As such, the analytical behavior of (3.44) is quite
conventional. Apart from the kinematical singularities,
its only other singularities are poles at the bound-state
energies, a normal threshold cut from E=0 to E= »,
and a cut in {= —2k2(1—cosf) from =0 to t=— . It
has, of course, particularities due to infinite-range
forces, namely, lack of separation between scattered
and unscattered wave (no clustering), and a cut in ¢
starting at =0 instead of an isolated pole there.

(iv) Accelerator experiments to produce magnetic

M= €182—g1€63.

22 D. Zwanziger, Phys. Rev. 137, B647 (1965).
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monopole pairs? have always yielded negative results.
However, we should like to emphasize that they do not
lead to unambiguous lower limits for the mass of the
monopole because of superstrong attractive Coulombic
final-state interactions, characterized by the coupling
strength a=137/4, 137, - --. These could suppress the
production amplitude by causing the oppositely
charged magnetic particles to rejoin, radiating strongly,
and thus annihilate, or bind, into magnetically neutral
particles. It may be relevant in this connection that the
solutions to the Dirac equation are unstable for (j4%)
<a=137/4,137, ---.

One of the most striking experimental characteristics
of a magnetic monopole is its property of producing
constant ionization along its track as it comes to rest.!:23
This property is lost if the magnetically charged par-
ticle also bears an electric charge. Such a possibility is
the subject of our concluding remark. It would be
realized in a trivial way if an electrically neutral
magnetic monopole were bound (by nuclear forces, for
example) to an ordinary nucleus.

(v) We may regard the electric and magnetic charges
of a particle as a vector q=(e,g) in a real two-dimen-
sional linear vector space. The electric and magnetic
coupling parameters between two particles ¢ and j
are given, according to Egs. (1.8) and (1.9) and after
changing to unrationalized natural units, by the inner
and cross products of the charge vectors q; and q;:

(4.8)
(4.9)

a;=eititggi=qi 4,
bij= eigi— gi€j=q:iXq;.

The two-dimensional cross product is a pseudoscalar.
These forms are, of course, invariant under proper rota-
tions in the two-dimensional space. The dependence of
the coupling parameters on the invariant forms (4.8)
and (4.9) is the same in the present nonrelativistic
model as in a quantum field theory of particles with
both electric and magnetic charges, and the con-

% E. Amaldi et al., CERN Report No. 63-13, 1963 (unpublished).
This work gives a general survey and bibliography of the subject.
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sequences are the same.?* The Dirac quantization con-
dition applies to the cross products (4.9):

q:Xq;=0,£3,2+1,---. (4.10)

As shown in Ref. 24, if there exist two charge vectors
q; and q satisfying

©Xqe=7%, (4.11)
then the most general solution to Egs. (4.10) is
q=Zaqi+Z 9, (4.12)

where Z;; and Z » are integers. If one sets q;= (1,0), by
appropriate choice of axis, then q.=(es,3e1r™), by
Eq. (4.11). Here, presumably e;= (137)"1/2, and e,, the
second elementary quantum of electric charge, is the
electric charge of the Dirac monopole. Because one
may replace q2 by q:+Zq: in (4.11), e, is defined
modulo e.

Note added in proof. Some readers find it difficult to
understand why the conserved angular momentum J
does not commute with the .S operator, defined by
Eq. (3.40), as may be verified by multiplying Eq. (3.40)
by J-£ and using Eq. (3.21a). A conserved quantity,
by definition, is one which commutes with the total
Hamiltonian H. In a scattering theory which allows the
decomposition H=H+V, a conserved quantity gen-
erally does not commute with .S unless italsocommutes
with Ho and V, separately. In the present case there
is no such decomposition of H, but J depends explicitly
on the coupling parameter u=eg describing the strength
of the interaction and therefore it should not be ex-
pected to commute with .S.
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