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The ~ejsskopf-Wigner theory of the natural linewidth of a single isolated atom is extended to a system of
N(»1) identical nonoverlapping atoms which are all in the same excited state at time t=0 The.positions
X& .X~ of the atoms are assumed to 611 a volume U of given shape and size with macroscopically con-
stant density. Emission of radiation from this system takes place only in the form of one narrow, but nonzero-
width, bundle of nearly equal photons, which contains all the emitted radiation. If the density of atoms
within '0 exceeds a certain threshold, the rate of emission of photons has the form of a typical spike. All
sects depend sensitively on the shape and size of '0 and on the density of atoms within '0, and cannot be
explained in conventional terms of spontaneous or stimulated emission of radiation.

I. INTRODUCTION AND DISCUSSION
OF RESULTS

t ~HE purpose of the present paper is to give a
completely quantum-mechanical description of

the emission of radiation by an extended system of

many atoms. The emission of radiation by a single ex-
cited atom is one of the classic problems of quantum
electrodynamics, the solution to which is given by
Keisskopf and signer. ' Our work is an extension of
this method to a system containing many atoms. The

system consists of S identical, nonoverlapping two-level
atoms located at fixed points Xi, , Xa. These points
are distributed with uniform macroscopic density over
a volume 'U of arbitrary shape, but are otherwise un-

correlated. All the atoms of the system interact with the
same electromagnetic Geld. The problem analogous to
that treated by Weisskopf and Wigner is to find the
time development of the state of this system from an
initial state in which all the atoms are excited and no
photons are present. The problem involves the corre-
lation between the many photons emitted as we11 as
their rate of emission. The former aspect is absent from
the single-atom problem.

Systems of many atoms interacting through a
common radiation field have been studied before.
Dickes recognized the analogy between a system of
two-level atoms and a system of spins, and used it to
describe a many-atom system with the techniques de-

veloped for magnetic resonance. In this way, he was led

to the concept of superradiance and the coherent
radiation of an extended system. Schwabl and Thirring'
discussed a system containing eGectively inGnitely

many atoms, replacing the atoms by a 6eld coupled to
the radiation field in such a way as to lead to a soluble
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problem. Many aspects of their results are mirrored in
ours. On a much smaller scale, Stephen4 investigated
two atoms interacting with each other via their common
radiation field when one atom is initially excited and
the other not. All of these studies use all the degrees of
freedom of the radiation field and are not restricted to
one or a few modes of that Geld.

Another line of investigation is inspired by the laser.
Most treatments of lasers are based on a single-particle
model in which the acts of emission and absorption of
radiation by individual atoms are identified, and only
one or a few modes of the radiation field are coupled to
the atoms. This latter rejects the presence of an optical
cavity in a laser. The simplicity gained by these approxi-
mations makes possible the introduction of realistic
complications occurring in actual lasers, such as pump-
ing mechanisms, nonradiative energy loss mechanisms,
Doppler broadening, etc. The theories of Lamb, s

Scully and Lamb, ' Lax, and Willis' are of this kind.
These theories, which are very successful indescribing
experimental results, are necessarily of a somewhat
phenomenological nature. It is one purpose of this paper
to see why these models work so mell.

The results obtained here are of two kinds, involving
the spatial and the temporal behavior of the system.
Starting from the initial state with all 1V atoms excited
and no photons present, we Gnd the following general
results.

(A) All photons are emitted in a narrow bundle or
ray. The direction of emission of the ray depends on
the shape of '0, being along the axis of a rod, for example.
The spread of the bundle is the spread of a plane wave
diGracted by an aperture in a screen when the aperture
has the form of a section of '0 perpendicular to the
direction of the ray. For a circular rod, then, the ray
has a distribution in angle given by the diGraction
pattern for light of the same wavelength passed through

4 M. J. Stephen, J. Chem. Phys. 40, 669 (2964).' W. E. Lamb, Phys. Rev. 134, A1429 (2964).
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a circular aperture of diameter equal to that of the rod.
The angular correlation within the ray is sharper than
the distribution in angle of successive rays. This focus-
ing occurs without the presence of any mirrors or other
optical devices.

(B) The rate at which the photons are emitted
depends primarily on the density of the atoms. If the
E atoms radiated independently in time, the one-atom
exponential decay law would also apply to the many-
atom system. This is not what is found. Initially the
rate of emission is higher than that for independent
atoms. Below a critical density the emission rate de-
creases monotonically with the time, while above this
density the emission rate at first increases with the
time, reaches a maximum, and then declines rapidly.
This maximum can be very high and occurs at a time
less than the single-atom mean lifetime. It is physically
meaningful to speak of such short time intervals, be-
cause the entire system is in a single quantum state.
The uncertainty principle relates the uncertainty in the
energy of the entire system to the uncertainty in the
time, while the single-atom mean lifetime is related to
the width of the line emitted by a single atom. Thus for
our problem the uncertainty principle requires only that

Ebkbt&1

if bk is the resolution in energy contemplated in any
measurement, or

For large E this puts no significant restriction on the
times that may be considered, and therefore the initial
condition "all atoms excited and no photons present"
is less problematical for large E than for a single atom.

An interesting problem which is not discussed here is
the coherence properties of the ray. The photocounting
correlations to be obtained in the ray should, in
principle, be calculable. The anal state contains E
photons, but there is a continuum of modes over which
they are distributed, so that the state is not at all like
that containing lV photons in a single mode.

In Sec. II the Weisskopf-Wigner approximation is
described and generalized to an X-atom system. Section
III is devoted to a system of independently decaying
atoms which provides the reference to which the results
of later sections are compared. In Sec. IV the two-atom
problem is formulated and solved, because here many
features of the general system appear in simple form.
Section V contains the approximate solution of the
A-atom problem. Section VI contains a discussion of
the properties of the functions introduced in Sec. V,
and Sec. VII is devoted to a discussion of the ray. The
time evolution is treated in Sec. VIII, and the role of
stimulated emission occupies Sec. IX.

II. WEISSKOPF-WIGNER APPROXIMATION AND
ITS APPLICATION TO THE MODEL

As stated in the Introduction, the model consists of
a, radiation field A„(x,t), subject to box normalization

(2.1)

In the Furry interaction picture, the time-development
operator U(t) of the system satisfies the equation

i—U(1)=&(~)U(1)
dt

(2.2)

with the initial condition

U(0) =1. (2.3)

The operator U(1) determines the pure or mixed state of
the system for any time t& 0, if the state of the system
is known at t = 0, regardless of how this state was reached
or prepared in the past 1(0.Condition (2.3) is thus the
mathematical description of the principle of "switching
on the interaction at t=0." A detailed evaluation of
(2.3) is given in Sec. VIII.

Let us assume now that a certain pure state ~i) of
the system is obtained at t= 0 as a result of some prepa-
ration (pumping, etc.) of the system at t(0, and that

G. Kallen, Emcyclopedho of Physccs (Springer-Verlag, Berlin,
1958), Vol. V/&, p. 274.

S. S. Schweber, An Introduction to Eelutivistic Field Theory
(Row Peterson and Co., Elmsford, N. Y., 1961),p. 464.

with box volume V and periodic boundary conditions,
which interacts with S identical, nonoverlapping atoms
with the centers of gravity at the fixed points Xi X&.
For convenience, the atom at position X, is caGed A, .
Nonoverlapping of the atoms means that the distance

~
X;—X;~ between each pair of atoms A;A; is so large

that the electronic wave functions of A; and A; do not
overlap and the possible eigenstates and eigenvalues of
A; are not affected by the presence of other atoms
A;, j/i. Identity of the atoms means that the possible
eigenvalues E of A; are also the eigenvalues of A;, and
the possible eigenstates of A; are identical with those
of A, up to a translation: If sc„(x—X,) is an eigenstate
of A;, then u„(x—X,) is an eigenstate of A;, speciGed

by the same quantum numbers E„.Interaction between
the atoms is thus possible only by means of the common
radiation Geld A„(x,t), i.e., by emission and absorption
of photons.

An atom A; will be described in the usual way
(Kallen, ' Schweber") by a Geld f~&'&(x, t) from which the
bilinear atomic current J'„~s&(x,1) is constructed, which
is independent of the radiation Geld A„(x,1). The Geld

corresponding to all atoms is the sum of all P's'&(x, t) and
because of the condition of nonoverlapping of the atoms,
the current J„(x,t) corresponding to the whole atomic
field is just the sum over all J„&s'&(x,t). The interaction
Hamiltonian of the system is given by the usual A„J„
coupling term

H(t) = O'*A„(x,1)J„(x,1)
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I i) can be described in terms of photons present and the
states u (x—X;) of the atoms. Taking matrix elements
in (2.2), we get

d
i—(~l U(t) Ii)=2 (~III(t) I z)(zl U(t) Ii& (2 4)

I~)

where the summation runs over a complete set of inter-
mediate states Iz) and Iu) is any one of these states.
The lowest-order Weisskopf-signer approximation con-
sists of the reduction of the intermediate states Iz)
to an incomplete set of "essential" states only, to be
determined later, and an application of the principle
that the creation of one photon is always accompanied
by the de-excitation of one atom, and the destruction
of one photon is always accompanied by the excitation
of one atom. We have thus (zI U(t) Ii)=0 and hence
(a I U(t)

I i)=0 for all nonessential states
I z) or

I a). This
reduction means also a reduction of the Hilbert space
of the original problem to the Hilbert space spanned by
the essential states Iz) only and the time-development
operator U(t) operates in this essential space only. In
this space U(t) is strictly unitary.

For the purpose of laser physics it will usually be
sufhcient to assume that only a few essential atomic
states (levels) make up the essential states of the system.
For such a situation we can associate to each essential
state Iz) a number K(Iz)) composed of the number
E, , of possible atomic transitions from the levels in

Iz) to lower levels, and the number Xnq, ~ of photons
present in Iz). The intermediate states in the lowest-
order Weisskopf-Wigner approximation are then those
states I z), which obey the rule

K(Iz)) =K(li)) K(Iz)) =(& .+&.b.s) ln Iz) (2 5)

Higher-order approximations can be obtained by taking
into account more intermediate states, for example, the
classes of states Iz) determined by K(Iz)) = K(Ii))&1,
K(Ii))&2, ~ ~ ~, until a complete set of states Iz) is
reached with regard to the essential levels, which corre-
sponds to the exact solution of the problem under the
condition that the essential levels are considered
complete. If the radiation field has only one mode of
oscillation and E two-level atoms are considered which
are all in the upper level at t=0, then K(Iz)) =E is a
conserved quantity" " and the lowest-order Weiss-
kopf-Wigner approximation is no longer an approxi-
mation at all. What is neglected in the lowest-order
Weisskopf-Wigner approximation K( I z)) =K( i))+0
are thus the fluctuations of the quantity K( z)) as
defined by (2.5), account of which could be taken in the
higher-order approximations K(I z)) = K(I i))&1,K( I i))
~2, , only.

n R. J. Glauber, Phys. Rev. 180, 2529 (1963).
n E. Abate and H. Haken, Z. Naturforsch. 19a, 857 (1964).
"V. F. Chelt'sov, Zh. Eksperim. i Teor. Fis. 48, 1139 (1965)

LEnglish transl. :Soviet Phys. —JETP 21, 761 (1965)g.

For the present model, we consider essential only
two atomic levels corresponding to an excited state
u, (x—X;) and a lower, relatively stable, ground state
u, (x—X;), j=i, 2, , 1V. The initial state Ii) is the
state with all atoms in u, ( ) and no photons present.
We have thus Evq, t, =0, E, ,=E in

I i) and hence

K(Ii)) =X, (2 6)

and we shall use the lowest-order Weisskopf-Wigner
approximation K( I z)) =K( I i))+0 only. As a conse-
quence of this, the system will be in a state of E
photons at t= , when all atoms are in their ground
level. So, we get automatically a pure E-photon state
for the emitted radiation at t= ~, and this is in agree-
ment with the results of Schwabl and Thirring for the
model under consideration. From this agreement with
these quite independent calculations we can claim some
merits for the lowest-order Weisskopf-Wigner approxi-
mation. However, physical intuition says also, that the
fiuctuations of K(Iz)) should be small in comparison
with E, and that the step-by-step introduction

I K(I i&)
+1, K(Ii&)&2, ~ j of such fluctuations should yield a.

converging approximation scheme. The strongest argu-
ment for this hope is the fact that the time-development
operator U(t) is kept strictly unitary in any order of
approximation, so that all transition probabilities
remain properly normalized and, of course, Qnite.

Formally, as in the discussion of Kallen' of the theory
of Weisskopf and Wigner, only one 6xed mode of photon
polarization will be considered. However, if that mode
is chosen properly, i.e., in accordance with the nature
of the atomic transition under consideration and in

proper dependence on the wave vector k, no approxi-
mation is implied in this procedure and a photon will be
specified completely by k alone. We are not interested
here in polarization phenomena and shall not discuss
more details concerning polarization.

The special case X=1 gives the original Weisskopf-
Wigner theory of the natural linewidth. Denoting the
state of the atom by e or g only, the absence of any
photon by 0, and the presence of a photon of mode k by
k, we have Ii)= Ie; 0) and the intermediate states are
given by

lg" k). (2 7)

In the case 1V=2, we have
I i)=

I er,es, 0) and the inter-
mediate states are

Ieres, 0), Iergs, k), Igres,
. k), Igrgs,

. krks&, (2.8)

where the subscripts on e and g refer to the indices of
the atoms ArAs, and krks indicates the presence of a
pair of a photons of modes krks, which need not neces-
sarily be different from each other.

For general E, it will be convenient to denote a certa, in
state Iz) by the indices jr. jar of the atoms A;, A, ~
which are in the ground level in that state, and by the
wave vectors krks .ksr of the photons in Iz). The
essential states Iz) for the lowest-order Weisskopf-
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signer approximation for the present system are then
given by

!ji j&, ki k&), M=O, 1, , cV (2.9)

where j& ~ j~ is any set of M diGerent numbers out of
1, 2, ~, S.The case M =0, for which we shall use the
notation !0; 0), corresponds to the initial state !i) of
the system, which would be denoted by !ei ez, 0) in
the notation of (2.8). M=X corresponds to the state
!gi gN, ki k») in the notation of (2.8) and indi-
cates the presence of X photons of modes ki k~. It
is understood that the values of ki k~ need not be
diferent from each other. If a certain value k&'& occurs
I; times among ki .ky, the presence of &&; photons of
that mode k&'& is understood.

If we now write down the Eqs. (2.4) with
I a) running

over the set of states (2.9), we obtain a coupled system

n„...,„""&"(t)=(j, "j~,k, "k~!tr(~)!0; 0),
M=O 1 S (2.10)

Taking into account the fact that the Hamiltonian
(2.1) has nonvanishing elements (a!H(t)!z) only if the
number of photons in !a) and !z) differ by &1, we get
for (2.4)

of as many linear equations as there are unknown tran-
sition amplitudes (a!U(t) I i). The establishment of that
system of equations and its solution is the problem
that remains.

Though straightforward, the act of writing down the
equations corresponding to (2.4) contains some inter-
esting points with regard to the role of the "Einstein
factors" (e;+1)'" about which some remarks should
be included here. Let us introduce the notation

i—n&, ...&~&& "J~(t)= p p (ji j~, ki k~lH(t) I
ji' j»i+i', k, ' k»r+, ')n„",„„,.&~'"& +~'(t)

(&') (P)

+2 2 (jl' ' ' jM kl' ' '4!H(&)!jl ' jM—i kl ' ' '4—1 )CKk '"gg, '"""~-"(/) M=O, 1,
(&') (i')

(2.11)

The intermediate states ! ji' jzqi", ki'. kzqi') are
chosen in accordance with the Keisskopf-signer
approximation, as speciled by (2.5) or (2.9). The sum-
mations in (2.11) have to be carried out in such a way
that each diferent intermediate state appears only once
and is counted only once. Hence, Eq. (2.11) must be
written down for all possible sets j& .j~ of M dif-
ferent numbers out of 1, 2, ~, F. %e get therefore

E~——M!r'(ki . k~). (2.14)

The results of these considerations can be put together
in the symbolic equation

e'(k, '. .k»t~, '), (2.15)
o'& (M&1)!& i' & a+i'

occurs among ki ~ k~, we get for the P»r of the set
ki k~ the formula

&Mi

different n functions of ki ~ kM for a 6xed value of M,
and hence a total number of

iV t' g)I=(1+1)~=2~
~=o &M)

(2.12)

~(ki" k~) = [II(~'!)j'", (2.13)

where n; is the pumger of times a special value k"&

equations for the same number of different 0. amplitudes.
Let us transform now the above specifications for the

summation over ki' k3r~i' into conventional multiple
sums over ki'. ~ .k~qi'. Since an M-fold sum

counts each fixed state !ki' ~ k»&') P~
times, where I'~ is number of diferent permutations of
the ordered elements ki'. k~', we have to compensate
for this multiple counting by multiplying each state
!ki' k~') by a factor I'~ '. After this, the sum can
be carried out in the conventional sense of a multiple
sum. Defining the "Einstein function" e(ki .k~) by

which specifies uniquely the sununations over the k"s
in Eq. (2.11).

After these specifications of the summations in (2.11),
we have to evaluate the appropriate elements of the
Hamiltonian H(t) in order to carry out as many of these
summations as possible. This can be done in a straight-
forward manner by representing the operators and states
in the el~~~~ts (ji j&a., ki k»r! H(t)! ji' j~+i'.,
ki' ~ k~+i') by creation and annihilation operators and
using the usual commutation relations. Since a normal-
ized state of M photons of modes ki ~ k~ is given in
terms of creation operators u t by

!ki ~ k~) = r'(ki. k~) a&„t .a&,~t!0), (2.16)

two additional Einstein functions

e-'(k, k~) r'(k, ' k~~i')

will appear from the elements of the Hamiltonian on the
right-hand side of Eq. (2.11). The details of further
straightforward calculations are not relevant to the
purpose of this paper and will be skipped. We shall
state the results only. It turps out that the elements of
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Ck = —$8 4 S CCp X—j Pp8p@g X— j' 8 ' 2.18

where e here denotes the electromagnetic coupling
constant, N, ,(x—X;) denotes the wave functions of the
excited and the ground state of A;, respectively, y„ is
the usual Dirac vector, and e„denotes the mode of
polarization under consideration (cf. Kallen ). For our
theory, it is of vital importance that the dependence of
Cq&» on the position X, of A, is included and can be
factored out as

(j)—g-ix)' kCky (2.19)

where C, is defined by putting X;=0 in (2.18). This is
of course due to our assumption that all atoms are

H(t) can be expressed in terms of the elements of the
partial Hamiltonian H'&'&(/) of the single atom A, at
position X;, i.e., by

(g, ; k~P&»(/) Je;; 0)=C~&&'&I e "~ ~&'/(2Vk)'~'j (2.17)

where 6 is the energy difference of the atomic levels,
k=

~
k~, V is the normalization volume of the radiation

field A„(x,t), and C&~» is given by

identical and have thus identical states N.(. ),
e,( ), and that plane waves have been used in the
expansion of A„(x,t), but it cannot be ascribed to the
special form of Cq'&', as expressed in (2.18). Indeed, a
factorization (2.19) must be possible for any type of
atomic transition, since only (2.19) guarantees that the
Weisskopf-Wigner theory (1V= 1) is independent of the
position Xi of the decaying atom, as will be shown later.
Since the presence of other atoms A;, i/1, has no
influence on such a pure one-atom property, (2.19)
must be true in any case. However, if the system is
made up of Inore than one atom, only one phase factor
is arbitrary, because of translation invariance, and the
other E—1 phase factors contribute to the behavior of
the system. Translation invariance requires only that
observable facts depend on the distances X;—X;, and
that will be the case in the present model.

In the course of the calculations, nearly all sum-
mations in (2.15) and (2.11)can be carried out by means
of Kronecker 8 functions, the factors 1/(M&1)!
compensate for the occurrence of (M+1)! equal
terms, the additional Einstein functions from (2.16)
combine with those in (2.15), and what comes out in
the end is

i—ng, ...g~&'" I"(t) = e-'(ki k~)
N—M gi(&—k) t

g P Cg&&"&* e(ki k~,k)ng, ...g„,g'&" &'~»'(t)

(2 VP) i&2

g
—i(4—k) tM All

+Q Q Cg, &» e(ki ki i,k)+, k~)ag, ...k, , g„,...,~&""&"-»'+&"&~(t), M=0, 1, , X. (2.20)
(2 Vk()'"

The summation over (j„) runs over the numbers

ji j~ as specified on the left-hand side of Eq. (2.20),
while the summation over j„goes over the set (1,2, .

,N
minus ji j~), i.e., over the excited atoms in the corre-
sponding state. In the special cases M =E (M= 0), the
first (second) sum of the right-hand side vanishes. The
initial values corresponding to (2.3) are

+kg "k~ (0) ~M, O y (2.21)

with 8~ 0 denoting the Kronecker 8 function.
In (2.20), the Einstein functions e '(ki k~)

)&e(ki k~,k) combine to the usual "Einstein factors"
(e;+1)'" as k runs over the values specified on the
left-hand side of (2.20). Similar factors appear also in
the second term of the right-hand side of (2.20). The
above factorization of these factors is very convenient
and gives valuable insight into their origin. We note
that their appearance has nothing to do with the
Weisskopf-Wigner approximation. Indeed, Eq. (2.11)
would be exact if the summation over (j') were not
restricted to the intermediate states (2.5) of the
Weisskopf-Wigner approximation. Equation (2.15)
would still hold for the case of an unlimited summation
over system states and the appropriate Einstein func-
tions from (2.16) would also appear. It follows from

1=—Qgf
2 1' ' N +k "-k 12, ~ ~ -,N (g) 2

g ~Io.g, g„i 2 ~(..m. ) j'. (2.23)
g! ki

this, that the e's and 0.'s will always appear in the form
of the product

ng, ...g~ (t) = e(ki k~)ng, ...g~ (t) (2.22)

as they do in our Eqs. (2.20). Upon inserting (2.22)
into (2.20), we obtain a set of equations for the n's
which does not contain the "discontinuous" Einstein
functions e. a will thus be a "smooth" function of its
arguments ki .kyar.

Since ~n&, ...&„&'&"'&'~(t) ~' is the probability for the
presence, at time t, of 3E photons of given modes
ki. k~ under the condition that the atoms A, , A,~
are de-excited in that moment, only nz, ...&~i 2 "' ~(t)
should have a nonvanishing limit for t —+~. The uni-
tarity of U(t) requires that the appropriate probabilities
~nq, q~i 2 ~. .(. ao) ~' be normalized to unity. Using
similar arguments as those leading to (2.15), we find
the normalization of these probabilities to be given by
the expressions
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we see, by reinterpreting Eq. (2.23) as the normalization
condition for

~ f), that
~ f) is normalized to unity. But

(2.23) can also be interpreted as

(2.25)

which means that
~ f) is the state of the radiation field

at t= ~.Therefore,
~ f) contains all possible information,

including all coherence properties, of the emitted radi-
ation. For example, if we are interested in the directional
distribution of the emitted photons, we can calculate
the expectation value nk of the operator a~tv~ in the
state

~ f). By direct calculation, we find

N
lrr~i »i, s, .-,~(ao)s

I
~ (2.26)

g! ji «Nj,

Higher moments (cf. Jordan'4 and Mukunda and
Jordan" ) of ma reveal the coherence state of

~ f), but
we shall not discuss them here, since, as we shall see,
Eq. (2.26) is rather impractical for the essential results
contained in

~ f).

III. RADIATION FROM N INDEPENDENTLY DE-
CAYING ATOMS AND THE ROLE OF THE

FACTORS (n;+1)its IN OUR MODEL

To prepare for the solution of (2.20) and its proper
interpretation we collect in this chapter some loosely
connected considerations and introduce some useful
notations.

We shall consider only such a large quantization
volume V for the radiation field A„(x,t), that the usual
transition

1 1—g -+
V ~ (2~)'

d'k (3.1)

is justified. This means, in the first instance, that the
radiation field of free space is considered, but if the
integral (3.1) is understood as an approximation for the
sum (3.1), our results will be valid as long as such an
approximation is valid.

&4 T. F. Jordan, Helv. Phys. Acta 37, 697 (1964).
&' N. Mnknnda and T. F. Jordan, J. Math. Phys. 7, 849 (1966}.

The normalization is thus accomplished by the smooth
functions rs. We shall use (2.23) to check and improve
the approximations used in the solution of (2.20).

At t= ~, the state of the system is given in the form
of a product of the state of the atoms, ~gi g~), and
a state of photons. Since the atomic state is known, we
have to look only on the latter to obtain all possible
information about the radiation field at t= ~. Defining
a photon state

~ f) by

If)=Z ~si-'~'-"(") lki "kN) (224)
(&)

For later use, we introduce the function

Cs(x) =
2(2ir)'

dQ[C t'e'"'* (3.2)

r,,= r(X;—X,) (3 4)

is therefore symmetric and has equal diagonal elements

r,= r,;= r(0). (3.5)

2rQ is the natural linewidth of Weisskopf and Wigner.
The matrix F;, plays a vital role in the further analysis

of this problem. For a dipole radiation process
~
Ci,

~

' is
proportional to sin'e, where 0 is the angle between k and
the dipole axis. Then, with 8Q denoting the angle be-
tween x and the dipole axis, we get

r(x) = 3r(0){cos'8oLsina
( x) —A

( x( cosa
~
x( g/(A [ x()'

+s sin'6s(sink [ x[/A [x [—
(sinA [x( —A( x) cosa] x[)/(A( x[)'j) . (3.6)

It follows from this that I';, will approach the limit

(3.7)

if the distances
~
X,—X,

~
are large in comparison with

the half wavelength i
sX, X= 2m/6, of the emitted photons,

and
I'g —+ I'Q (3 8)

if all these distances are small in comparison with 2X.
The former case corresponds to the low-density limit

of the active substance, while the latter could be de-
scribed as a "point laser. " A real laser will be some-
where between these two limits, but much closer to
(3.7) than to (3.8).However, this does not mean that we
can go to the limit (3.7) without caution, as follows from
the second remark on the properties of I';; below:

The invariance of our problem against a renaming
of the atoms requires that all physical results depend
only on the eigenvalues A„~ of the matrices F;; corre-
sponding to any set of 3f atoms, with M = 1, 2, ~ ~, E.
For large M, we cannot compute these eigenvalues
explicitly, and hence we shall have to circumvent this
problem somehow. This will be done indeed later, but
it will prove helpful to know the eigenvalues of I";; in
the limits (3.7) and (3.8). We have

Ai =A2 = =A = Fo for I';;= 8,,Fo, (3.7')

and

(3 8')

where C~ is given in (2.18) and (2.19), and the inte-
gration goes over the angles in the k space. We shall
also use the function

F(x)= a.Cs(x)
~
s q. (3.3)

Since Cj,= C ~ holds, we get I'(—x) = F(x). The matrix
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gi(h—k1) t

i—np'(t) =P Cg ~'&* ng '(t)
dt » (2 Vk&) 'I'

~
—i(A—Tcg) t

i—eg '(t) =Cg &'& np (t),
dh (2Vkg)"'

(3.9)

We may expect that the eigenvalues for a real laser
are somewhere between these cases, but we cannot
expect that Fo will be a good approximation for all
eigenvalues, even if the system is close to the limit
(3.7'). The reason for this is that we have to expect from
the structure of (3.8'), that the small deviations from
Fo of many eigenvalues can sum up to a large deviation
from Fo of a few eigenvalues. This is the true reason for
some troubles which occur later.

Ke have included the above remarks in order to see
how the case X=1, which is identical with the original
theory of Weisskopf and Wigner, is embedded in the
general case E&1.Let us treat now the case X=1 in
more detail.

The system (2.20) reads for E= 1

= I'p/~. This transforms the integral (3.13) into

F,
P„(h)dk„ (3.14)

which can be solved exactly. The solution with the
proper initial values is

po(t) =~"'
p„(h) —(~Fpt ei(4 kg) t)/—(g k ip )

(3.16)

This statement is easily proved by using the formula

where the limits &~ are approached symmetrically,
and we obtain instead of (3.12) the system of equations

d Fo
i—P,(t) =— P„(t)dk„

(3.15)

k,—+i ~p„(t)=p, (t),
dt's

with the initial condition

ap'(0) = 1, a»'(0) =0. (3.10)

g
—zt girt

(3.12)

Inserting (3.11) into (3.9) yields the equations

d 1 [C»f'
i Pp(h) = —E—P.,(h),
dt V &1 2k'

(3.12)

In order to obtain a solution of (3.9), we follow closely
the spirit of the original approach of Weisskopf and
Wigner. ' We introduce new quantities Pp(t), Pp, (h) by
putting

~i(h—k1) t

no'(t) =Po(t), ng, '(t) =Cp, &" P&,(t). (3.11)
(2Vkg)'"

which is true for real t and for each 6nite complex value
of s.

Since we shall use the arguments leading from (3.13)
to (3.14) throughout this paper, it is worthwhile to
compare the results (3.16) with the formally exact
solution of (3.9) as given by Xallen. p We see that the
transition from (3.13) to (3.14) involves only a few
inaccuracies referring to a small shift of the line peak
and to small deviations of the actual line shape from the
symmetric, purely Lorentzian line shape obtained in
(3.16), and also to a deviation from the purely exponen-
tial decay law (3.16) for small t It is als. o worthwhile
to mention that the normalization condition

~—k +i—Ip.,(t) =Po(h).
dh

lnp'(t) I'+Z in"(t) I'=1, (3.18)

Cy, (0)Pp, (t)dky. (3.13)

If we assume (a) that p~(t) is appreciably different
from zero only for k in a small neighborhood about 6,
and (b) that Cl,(0) is slowly varying in that region, we
can (a) extend the limits of the integration over kq

from (0 to pp) to (—pp to pp), and (b) take Cp, (0) out
of the integral over k~ by ascribing to it the value C4(0)

The second equation (3.12) shows that P~, (t) does not
depend on the direction of k&, as was quietly assumed
already in (3.11). Going to the limit V ~~ in accord-
ance with (3.1) and using (3.2), we obtain for the right-
hand side of the erst equation (3.12) the expression

which holds exactly for any time I, as a consequence of
the structure of Eqs. (3.9), still holds if the n's are ex-
pressed by the p's as given in (3.16) and the summation
over kq is approximated in the same way as in (3.13).
This means that these arguments do not seriously
violate the unitarity of the time-development operator
and hence the normalization of the probabilities. We
consider these small inaccuracies as nonessential for
the problem at hand and conclude that the arguments
leading from (3.13) to (3.14) are valid within satis-
factory limits. The simplilcation gained by these
arguments is one key to a satisfactory solution of
(2.20).

In the solution (3.16) the essential features of the
process usually called "spontaneous emission" are
still contained: A single atom, somehow excited at t=0,
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jumps "spontaneously" to its ground state and emits a
photon. The lifetime of the excited state is (2FO) ',
the linewidth of the emitted radiation is 270, and the
requirements of the uncertainty principle are thus met
correctly. It follows from (3.11) that the probability
for the photon to have the direction of kq is proportional
to le, &'&l'= le, lm and hence independent of the
position Xq of the atom, as it must be.

Tracing back this result we see that it is due to the
factorization (2.19). If (2.19) were not true, there
would be a dependence on X& in Eq. (3.12) and hence
in Fo. The factorization (2.19) is thus necessary to
obtain the translation invariance of the decay of a
single atom. This proves the statements made in con-
nection with the discussion of (2.19).

Considered against the case of a large X, the simplicity
of the above theory is due to the fact that the E-by-S
matrix F;; reduces to the single element I'0, and that all
Einstein factors are 1. Our general model yields a
generalization and modi6cation of this process, and not
merely a repetition of independent decay processes.

To point out the latter possibility, let us consider a
purely fictitious model consisting of E independently
radiating atoms, each of which is described by the above
theory of Weisskopf and Wigner. This must be thought
of as arising from the atoms being in different physical
spaces or the emission processes being separated by time

intervals T»(2FO) '. In this model, we can ask for the
probability for "A& emitting a photon of mode k&,

A~ ~ ~, and AN emitting a photon of mode k~,"which
is given by the expression

l~„(~)l xl~., (~)l x" xi~.„'(~)l . (3.19)

But this probability has a sense only in this 6ctitious
model, where the photons can be associated with the
atoms and are thus made distinguishable. If we dispense
with this 6ctitious distinguishability, we can only ask
for the probability of ending "S photons of modes
k~ ~ k~" in the same sense that this phrase was used
previously. The probability that the X photons are in
the modes k~ ~ kN under the condition that each atom
decays independently of the other atoms, is given by

1 00

e'(kg kN)

x la~, '(~) l'x x lag„'(~) l'. (3.20)

We shall use this Gctitious nonlasing model as a con-
venient "background" for our real model and the proba-
bility (3.20) as a convenient normalization for the proba-
»»ty la~, ...~ """ (~) l', that the E photons from
our real model are in the modes kq ~ k~. Both intentions
are met by considering the ratio

S! 1,2 "N 00

Ql, I 00 2

&' ll l~~.'(~) I'

(3.21)

where we have used the de6nition (2.22) of n.
If the atoms of the real model could radiate inde-

pendently of each other, i.e., "spontaneously, "we would
obtain Rq, ...q„=1. Deviations from this value are thus
due to the mutual inQuence the atoms have on each
other in the real system, and R&,...» is a convenient
measure for such "se1f-stimulation eGects." We shall
see that E~,...~N assumes values as high as Xt, and that
the occurrence of the photon avalanche in the form of a
single ray, the direction of that ray and similar features
are most easily understood against the background of
the nonlasing model, i.e., in terms of E~,...». Note that
R depends on Xq ~ X~.

Ke are now in a position to give a complete discussion
of the role of the Einstein factors (Nq+1)'" in our model.
The quantity (3.20) is "discontinuous" in (k& kN) due
to our dispensing with the distinguishability of photons
in that 6ctitious model. ln~, ...~„' '""~(~)

l

2 contains
the same discontinuous factors e '(k~ kN) as (3.20)
does, such that these factors cancel in (3.21) and Z
becomes "smooth. "We have to conclude from this that
the factors e play the same role in both models, which
means that they do nothing else but to take care of the
proper normalization requirements of a statistical

theory of actually indistinguishable photons. This was
indeed the reason why these factors had to be intro-
duced, but it follows from their cancellation in (3.21)
that they do not lead to observable effects in the real
model: The occurrence and shaping of a ray of photons,
our most important result, has nothing to do with these
factors. Such eGects would also appear in a symmetric
quantum theory of distinguished objects, where no
Einstein factors appear. We would like to mention
also, that the Einstein functions e act on a domain of
measure zero in the limit V —+, and do not possess
any 8-like singularities in that limit. It is thus trivia1
that they cannot lead to measurable facts in that limit,
and yet we obtain very strong eGects for V-+00.

IV. TWO-ATOM PROBLEM

Since a solution of Eq. (2.20) with the same accuracy
as for Ã= 1 is obtainable for E= 2, and since, at least
in rudimentary forms, nearly all eGects of the general
case are already present for X=2, we feel that the
complete treatment of the two-atom problem pro-
vides the best key for the understanding of the general
case,
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(4.1)

For 1V=2, Eqs. (2.20) specialize to
~i(A—k1) t ~i(h,—k1) t

z~{)'(t)=Q Ckt("* nk '(t)+g Ck ('&* nkk'(t)1
(2Vk )1(2 )II (2Vk )«2

g
—i(dL—k1) t ~i(4—k2) t

i—nkk'(t) =Ckk(') np'(t)+p p(k, k2)Ck (')' nk 2 "(t) I
dt (2Vkl)'(2 k2 (2Vk2)'"

~
—i(h-k1) t ~i(h—k2) t

z—nkt'(t) = Ckk(" np'(t)+g e(klk2)C22("* ngkg '(t)
dt (2 Vkl) '" (2Vk,)'"

g
—i(A—k1) t e

—i(d,—k2) t g
—i(b,—k1) t ~

—i(A—k2) t

nktk 12(t) k
—l(klk2) Ck 2)' nk 1(t)+C (2) nk l(t)+Ck (1) nk 2(t)+Ck (1) nk 2(t)

dt
''

(2 Ukl) ' " (2 Vkz) '" (2Vkl)'" (2 Vkz)'"

with initial values

«'(0) = 1 nk '(o) =nk '(o) =«,2,"(0)= o (4.2)

In order to solve this system of equations, we generalize
the ansatz (3.11) to

no'(t) =po(t),
—i(h—k1) t

1(t) C {I) pk (+)(t)+et)II {Xl—Xt)pk (—)(t)j
(2 Vkl) 'I'

~i(h—k1) t

nk 2(t) =Ck Dtk + (t)+e )tl Xk2 X )pk ( )(t)j
(2 Vkl)'"

(43)
n„„»(t)= 2

—1(k,kz)(Ck (»C„(»

&
—i(d,—k1) t

&
—i(h—k2) t

+Ck (2)Ck (1))
(2vkl)'" (2Vk2)'t'

)({P„,„.(+)(t)+ ((t,»1 (»—X2)+2,tttp'(Xl X2))—1

+(gt)tl (X2—XI)+tktttp (Xt—Xl))—17p (—)(t))

It is assumed that Pki(+)(t), Pktko(+)(t) are functions of
the energies k&, k&k& only, which are appreciably different
from zero only in small neighborhoods of k&=~, k&=A
and kz= 6, of dimensions rp or I'p', just as in (3.11).

Inserting (4.3) into (4.1), going to the limit V —koF) as
discussed in (3.1), and carrying out the integration over
the angles in the integrals over k~ ~, we introduce the
function Ck(X1—X2), as defined in (3.2), into the
remaining integrals of type (3.13). If Ck(X1—X2) does

kl+i— !Pk,(——&(t)
dt's

P OF)

Pp
dk2Pkt k2'+) (t)+ dk2Pklk2

—(—& (t),

(44)

~

~

d
~—k)+~—k2+z—Ipk k "'(t)=p„(+)(t)+p„(+)(t).

dt

The equations for Pkl(+)(t) and Pk, ( )(t) show that a
secular problem is involved in the solution of this set of
equations, and that the eigenvalues Fp&F]g of r,, must
appear in the solution of (4.4), which is indeed the case.
The exact solution of (4.4) is

not vary much in a region around k=6 of dimension

rp, we can take Ck(X1—X2) out of the integrals and
obtain thus the elements F;; as factors in front of the
k integrals. Extending also the limits of the k integra-
tions to go from —~ to , we obtain for the functions
Pk, (+&(t), Pk, ko(+)(t) the coupled set of equations

220 21'xs
i—PP(t) = dklP„(+) (t)+ dklP. ,( &(t),

-
dt x QQ

k,+i —!P„(+)—(t)
dti

r,
=P,(t)y— dk,P„„+(t)+ dk, P ...—(t),

p (t) t,
—zrot

1( ( r0 r12) t &i (~—k1) t g
—(&0+F12)t gi (+—k2) t

Zk (+)— I Z
—(r0+r12) t ~&—(r0—r12) t

t k1
2X a—k,—z(r, —r„) s—k,—z(r,+r„)
1 g

—2 r0t gi(h —kI+d —k2) t (r0 r12) t gi(k-) —k2) t

P (+)(t) et(k—kl) t

2 6—k —i(r,—I'1 ) d, kl+5 k—2 2iI'o — — 6—k2 —i(I'p+ I'1 ) &—k2 —z(I'o —rl )
tI~

—21'pt ~t(k—kl+il —k2) 1
&
—(ro+r12) t tkt(k —kl)tk)— &

—»0t ~i(~—»+~—k2) t

&t(k—ko) t

kk —2+k —k —lil' k—k —i{I'+F )) I k—k —i{I'+I' )(k—1+k—k —IIF

(4.5)

~
—(I'p—rko) t &t(k—ko) t~

!
&i(b,—k1) t

a—k,—i(r,—r„) i
(g

—2rot gt(6—kt+5—k2)t g (ro r12)t gt(k—kl)tk)—

t&,—k,—z(r,+ r„)&a—k,+a—k,—2zr, t&,
—k,—z(r,—r„) i
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—(1—q) i'tl~ &~(~—&I) ~

pk (t) —e—(1+y) rgt

6—ki —i(1—y) I'o

p„(t)—
$ ) — hei(k —k&+6—») t

t

X dt'e ' "+ '"(p (t')+—p»—(t')), —

0

(4.10)

In order to avoid retardation eRects and to give thus
an unambiguous physical meaning to the initial con-
dition (2.3) and its equivalents, we have to keep the
distance ~Xi—X2~ so small that a light signal can
travel several times between A~ and A2 during the life-
time of the excited states. This requirement imposes on
~Xi—X2~ the condition

i Xi—X2i «I.o——(21'o)-'. (4.6)

Accidentally, it follows from (3.6) that (4.6) will keep
the variation of the function Ck(Xi—X~) small in the
essential interval 6—I'0&k&A+I'0 for any case of
interest, so that the solution (4.5) should have about the
same accuracy within the limits (4.6) as solution (3.16)
has for E= 1. For lifetimes of 3.3)& j.0 ' sec, we obtain
Lo 10' cm, ——and (4.6) is not a very serious physical
restriction.

It follows from the first lines of formulas (4.5) and
(4.3) that the state ~eie2, 0) Lcf. (2.8)j dies out like
e '(' »', which is exactly the law one expects for a
system of two independently radiating atoms, as dis-
cussed in the preceding chapter. At first sight this is
surprising, since the presence of a nonexcited atom has
a marked influence on the lifetime of a single excited
atom, as has been shown by Stephen. 4 For the present
case, one must expect an even more pronounced mutual
inhuence of the atoms on each other, and the above
result can only be explained as being due to an inherent
symmetry of the model and the initial condition (2.3).
If thisis so, we have to expect

~ 0(t) —e—xrpt (4 7)

for any E, and this is at least not in contradiction to the
results of the following sections. More details of (4.7)
will be considered in Sec. VIII.

We start with a discussion of the leading features of
the solution (4.5). This can be done by observing that
the brackets ( } in the expressions (4.3) for nk, ', nk, ',
and (xkI&g can be replaced approximately by

Pk, (t) =P»(+)(t)+Pk, (—)(t),
Pk, »(t) =Pk, g„(+)(t)+Pk,»(—)(t).

Indeed, if ~Xi—X,
~

is such that e'" (x(—~&) may be
approximated by 1, i.e., for ~Xi—X~~ &~h ', we can
replace those brackets by (4.8). But if ~Xi—X2~ is
large, ~Xi—X2~ &7rh ', we have I'i2=0 and hence
Pk, (t) =0, Pk, »( )(t) =0, which is also compatible with
(4.8). Introducing the notation

v= I'i /I'0, (49)
we obtain the expressions

p (t) e—2I'oi

where [ ](i) indicates the contents of the first bracket
in the formula (4.5) for P&,»(+)(t). The equivalence of
that expression with the integral (4.10) is easily checked.

In the approximation (4.10) it is easily seen how the
system develops in time. For very short times, the state
~eie2, 0) is predominant, and Pk, (t) and Pk, »(t) are very
small. This state dies out as t obtains the value of about
one half of the natural lifetime of the isolated atom, and
the states ~gie2, ki) and ~eig2, ki) become dominant
around that moment, since ~eie~, 0) is no longer and

~ gig&, kik2) is not yet present, as follows from the third
line of formula (4.10). As the time proceeds, these
intermediate states vanish and only the states
~gig~; kik2) are present. It follows from (4.5), that the
limits

P (6) —ljm e i( i'&+5»)iP (+)(t) (4 1 1)
g -+Oo

are weH defined and exist. Defining pk, » correspond-
ingly, we obtain

251 o'y ')( 1
Pkk, = 1+

~

~

&—k,+a—u, —2il, )a—u, —i(1+~)r,

X . (4.12)
~—t,—i(1+~)1,

Since the first factor of (4.12) varies only between the
values 1 and 1+&, it has only a slight influence on the
line shape of the emitted photons which is a broadened
Lorentzian line as given by the other two factors. The
first factor has only the eRect that the probability for
both photons to have an energy 6+ () is a little smaller
than the probability that one photon has energy t)+(),
the other 6—8. Apart from this eRect, the 6rst factor
of (4.12) could be replaced by 1+y.

It is interesting to note what has been lost in the
approximation (4.10) in comparison with (4.5). For the
intermediate states ~gie2, k) and ~g2ei, k), there are
some small additional terms with a long lifetime
$2(1'0—I'i2)j ' which must be considered as traces of
the trapping effect discussed by Stephen. 4 For t —&~
there is a weak dependence of the line shape of the
emitted radiation on the direction of emission, since
Pk, k, (+) and Pk, »( ) are coupled with coefficients de-
pending on Xi—X~ and the direction of emission. These
small eRects should be of secondary importance for
larger E.

The most important eRects contained in the present
model are those connected with the directions into
which the photons are actually emitted. We can study
related questions by considering the ratio 8&,&, as
defined by (3.21). We get from (4.3) and (3.11)

~ ~
(ei» (» xm)+eik2'(x& x2))pk k (+)

+(1+ei(k&+k2). (»—x&))p&. k ( )
~

2

X
~
(6—k,—'I', ) (6—t't —'I', ) ~

'. (4.13)



V. F. R. NST AND P. STEHLE

In the limit Xq —+ X2, Ei„i„does not depend sensitively
on the direction of kqk2, which shows that the photons
are emitted into the same directions as in the case of
independently radiating atoms, and the line-shape
effects discussed above are the only important results
for that case. For ~X&—X2~)mh ', we may expand
Ek,j„in powers of y, which becomes small for this case.
Retaining only terms linear in y, we obtain

Ri„i„=$1+cos(k~ —k~) (Xq—X~)]

—yt coski (Xi—X2)+cosk2 (X~—X2)]

—2iI"p

kg+—5 km
—2iI—'0

(5—ki —iI'p b,—k2 —ii'0)
XI + I

. (4.14)
kh —kg —iI'p 6—ky —il'o/

The factor involving y is bounded for all photon pairs,
since Re[ ] assumes values of order of magnitude 2

only, and the above expansion in powers of p is quite
unproblematic. If y is small enough, we can neglect the
second term, but even then R&,&, is different from unity,
which is the most important result of this paper.
El„~,&i indicates here a mutual inhuence of the two
radiating atoms over large distances, which has the
effect that the emission of certain pairs kqk2 of photons
is favored (Ri„i„=2) over the emission of the same pairs
from independently radiating atoms, while other pairs
are suppressed (Ei„i„=0)and cannot be emitted. The
favored pairs k&k& are the solutions of the equation

(kg —kg) (X~—X2) =0 mod 2', (4.15)

which shows that the effect depends on the geometrical
relations between the photon wave vectors kqk2 and
the positions of the atoms. The photon pairs with
k~ ——k2 are always favored, but one should not forget
that (4.15) is empty unless 6—I'0& ~k;~ &a+ ro, for
i=1, 2, is true. Dicke' found (4.14) with y=0 for the
directional correlation between the two photons in this
case.

This effect can neither be explained in terms of
"spontaneous emission, " nor in terms of "stimulated
emission, "but it is a generalization of both of them such
that "self-stimulation" might be an adequate notation
for its basic features. Ke could also speak of an inter-
ference effect in the phase space of the two photons.

Although self-stimulation is obviously an important
laser effect, this model gives only an obscure picture of
a laser. One reason for this is that S= 2 is smaHer than
the dimension 3 of ordinary space, as will come out
clearly from the treatment of the general case. Another
reason is the fact that our model has no statistical
properties since the positions XqX2 are 6xed. If we
consider a Gibbs ensemble of two-atom systems, de-
scribed by a density function f(Xi,X2))0 in the
appropriate I' space of the points (Xq,X2), and if

f(R,X2) is properly chosen such that the ensemble
represents a "laser rod of two atoms, "we 6nd indeed
that the Gibbs expectation value for the probability of
the emission of a pair kqk2 parallel to the axis of the rod
is 1arger than the Gibbs expectation value for a pair
not parallel to the axis, and that pairs kq&k2 have very
small expectation values. Since neither a two-atom laser
nor a Gibbs ensemble of such lasers can be realized, we
shall be content with these remarks. Similar consider-
ations will turn out much more simple for large X.

det(I';,—A8;;) = 0 (5.1)

can be solved explicitly. Even if such a procedure were
possible for large E, say, X=10",we would not expect
all the details of the formal solution of (2.20) to be
equally important and we might even fear that the
complexity of that solution would hide more than reveal
the physics we are interested in. This means that some
sort of elimination of unimportant details must be
carried out and a reasonable approximate solution of
(2.20) must be sought for.

To exclude pathological situations, we apply in this
chapter the restrictions made in the introduction, that
the atoms are distributed randomly over a given volume
'U, such that their macroscopic density is constant in 'U.

In order that light signals can travel several times
between each pair of atoms during the natural lifetime
of the atoms, we restrict the linear dimensions I. of 'U

to be such that

1.«L, (5 2)

holds, where 1.0 is the bound given in (4.6). For an
actual laser, we have the additional inequality

X&&1., (5.3)

where A is the wavelength of the emitted radiation.
Remembering the properties (3.7') and (3.7") of the
eigenvalues of I';;, we shall not go to the formal limit
I';;—& I'&P;; as a consequence of (5.3), although we can
solve the Eqs. (2.20) with the accuracy of the cases
X= 1, 2 in that limit. Our approximations will of course
be such that this limit is treated correctly.

To obtain an approximate solution of (2.20), for
ni„...i,~""~'~(t) we make the ansatz

xp~, ...i ji""' pi, ...s„(t), (5.4)

V. APPROXIMATE SOLVTION FOR LARGE N

From the experience gained from the case /=2 we
expect that a solution of Eqs. (2.20) with the same ac-
curacy as in the cases Ã= 1, 2 should not be too compli-
cated as long as the necessary linear equations and the
secular problems of the type
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where p)„...),~" "ii' is a given function to be discussed
below and p&1...&~(t) is an unknown symmetric function
of the photon energies k1 ~ kM and of the time t,
whose form depends on the shape and magnitude of 'U.

If P)„...),~(t) were replaced by an unknown function
P)., ),~"-'~(t), we would only have introduced new
quantities p)„...), ""t'ai(t) for ni, 1...),~~'"'t)i'(t) and no
approximation would be involved in (5.4). The assumed
simple nature of p1„...1~(t) is thus the point in the ansatz
(5.4), the structure of which is designed so that it can
lead to a generalization of the approximations (4.10)
of the case N=2. The crucial function p)„...),~&'&'-&ii' is
given by

arises only from the 6rst sum

N—M—1

on the right-hand side of (2.20), for which the ansatz
(5.4) yields an expression (R1 given by

( )ir g it(i1 k)i)—

(R =.-'(k, "k )I Q — C., I

ki'-1 (2Vkp)'I2 j
P 00

X— P~,...) ii, a(t)(gk

p), ...), &'"'&"i= P exp[i(X;, .1i1+ . +X;~ gM)]
«l ~ «~

Dl"'2M

P exp[i(k1 X„,+ . +k1i.X„~)],
vie ~ ov+

(5.5)
where the symbol

Cl ~ c+
P F(x1 ~ x1i) (5.6)

( ~ ~
—i$(h—kp)

z=.—(k," k )I g c„.Ip„...,„-'
5&'-1 (2Vki. )'t'

XI Z (~-k.)+'—lP..- ..(t). (5.7)
gati

indicates the sum over the M! terms F(a1,am )
+F(a2,a1 ~ )+ ~ ~ ~ arising from inserting for x1 ~ x)((
all gal permutations of the elements a1 ~ aM into F.
By convention, the "permutation sum" (5.6) has the
values 1 for M = 0 and F(u1) for M = 1.

In order to explore the potentials of (5.4), we calcu-
late the various parts of the system (2.20) with the
n's replaced by the expressions (5.4). The left-hand side
of (2.20) leads so to an expression 2 given by

with

P exp[i(X;, x1+ ~ ~ +X; xi(r)]
«1 ~ ~ «M

X (N M+S.1" x~'1"')~)
~ (5 9)

N—M M
V' I . .~~, mg;xs, )&l" &X —

C C i~Sv
I 0 v~1 p~1

(5.10)

Here, we have carried out the integration over k in the
same way as in the corresponding transition (3.13)~
(3.14) for N= 1 and in the derivation of Kqs. (4.4) for
N = 2, i.e., it was assumed that P)„...),~(t) is appreciably
diBerent from 0 only in a small neighborhood of the
Point 01=6, k2=6, ~ ~, kM=D.

The crucial point is the appearance of S&,...&~~'1- ~~

in (5.9) which shows that the ansatz (5.4) leads in

principle to certain inconsistencies, since in the equations

Z= (R,y(R, (r) (5.11)

corresponding to (2.20) the dependence on the direc-
tions of the vectors k1 k~ does not cancel out. How-
ever, if S~,...~~&'"&~ can be replaced with sufhcient
accuracy by a symmetric function of the photon energies

kM, which may depend on 'U, say,

S)„...„~» "~1i~ (N M)My(k1 —k)(i), (5.12)

we can take the expression

[N M+S]~ [(N—M)—(1+yM)]
Denoting the double sum e ' +,=1~p( 1~ ~ on the out of the operator
right-hand side of (2.20) by (R2, we obtain by the same
process the expression

«I" ' «M

( )il g
—it(6—ki )

c„,. I

k&'-1 (2Vki.)'I'
which again leads to a factor p)„...),~&&"'&~ in (R1 as in
2 and (Rm. Assuming that (5.12) holds, we obtain for
for the P's the system of equations

M

X il "jM ~P~1"'~)f D P&1"'&1-i&1')+1"'4'(t)'
l 1

The appearance in (R2 of p)„...),~&'"&'~, which has been
built up from the p's corresponding to M—1 photons
by carrying out the sum (P„), is a sign that the ansatz
(5.4) Gts to some degree to the structure of (2.20). 8
and (R~ could be equated without any trouble, Trouble

I 0+(N M)(1+My(k1 ~ k~—))— t41...i,ii,1(t)dk,

M =0, 1, ~ ~ ~, N (5.13)

(5 8) ( ~
2 (6—k.)+~—IP1,- ~ (t)= Q P1,"~,.~ „-.1 (t)
v 1 l 1
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with initial conditions

Po(0) = 1, P),(0)=P),),(0)= =P„,...„)(((0)=0. (5.14)

The proper solution of (5.13) depends, of course, on
y(ki . .k~) and hence on 'U, and meets all the other
requirements of ansatz (5.4).

Therefore, in order to use (5.4), we have to justify
the replacement (5.12) and this justification will con-
stitute the proof that the ansatz (5.4) leads actually to
an approximation of the solution of (2.20). No justi-
fication is necessary in the limits I";,—+ 8;;F0 and
I';;~ I'o discussed in (3.7), for which we obtain y=0
and p= 1, respectively. So we are again led to the prob-
lem of an approximate interpolation between the limits
(3.7), but now we have the proper means to achieve
this interpolation by calculating the proper function
p(ki k~), which must satisfy 0&y&1. The justi-
fication of (5.12) and the definition of y(ki kM) will
be given in two steps, (A) and (8), to follow below.

(A) First, we make the approximation

&& d &( + 1(X~,—y) expLi~. (X~.—y)3), (5.15)

where 'U* denotes the volume of 'U. Here, we have

approximated the summation over X;„by a space
integral over '0, where the factor (S—3II)/'U* takes
care of the proper normalization of this process. This is
justified as long as the (E M) points X,"„are—distributed
randomly over 'U, and E—M is a large number. We
shall take care of exceptional cases below.

Second, in a similar way we replace the sum over X,„
by a space integral over 'U. To this end, we consider
first only the case of large 3f, and distribute the photons
ki k~ appearing in some permutation xi air in

(5.15) over a number of classes i, which are defined by
the condition that

(5.16)

holds with good accuracy for each photon k, belonging
to class i, where k") is a given fixed wave vector charac-
terizing class i. The numbers of such classes can be
kept small in comparison with the number M of photons
under consideration, such that at least for the leading
classes the number m; of photons in one class i is still
a large number. The X;„corresponding to the x„'s
belonging to class i are then still distributed randomly
over 'U, and this holds for any permutation x& ~ x~ of
k, . k~. Hence, we can approximate the partial sum
over X,„corresponding to the k, 's of class i by the
expression

S—M
d'x d'y I'(x—y)e' "' ') (5.17)

and the whole sum over X;„will be obtained by sum-

ming up the contributions of all classes i. This yields

E—3f~ 1

j. o

d'y I'(x—y)e'"( (' ~) (5.18)

where the terms (5.17) appear as m; single terms in the
above sum and the classes have been dissolved formally
by the replacement k(') —+ k(, which only reverses (5.16).

The accuracy of the combined approximations (5.15),
(5.17), and (5.18) is excellent for any reasonable
case even in the exceptional cases of small S—M and
small 3f. In the former case, we can carry out the ap-
proximations (5.17) and (5.18) first and with high
accuracy. After this, the integrand of (5.15) is a smooth
function which varies only over distances comparable
to the linear dimensions of 'U and the y integration will
be a good approximation for the summation over X;„
as long as there are at least several such points in U.

Only for very small values of N —M is the approximation
(5.15) poor, but states with very few excited atoms are
governed by the de-excited atoms and an erroneous
treatment of the excited atoms can have no inhuence
on the behavior of the system. This is related to such

problems as "which atom decays last" and belongs to
those inessential details which must and can be elimi-
nated in a reasonable approximation. In the latter case,
for small M and hence large E—M, we exchange inte-
gration and summation in (5.15) such that the integrand
of (5.15) becomes smooth over distances comparable
to the dimensions of 'U and the x integration becomes
again a reasonable approximation for the corresponding
summation. Besides, the value of S does not count in
comparison with E—M for small M, and we need not
worry over this limit. The over-all accuracy of the above
approximation depends a little on the density of the
active atoms and is poorer at low densities, where the
average minimal distance between any pair A;A; is

very large in comparison with P, but this case is not
very interesting in practice. The above approximations
are poor only for those states

~
ji. .j&„ki k&) in

which the excited or the de-excited atoms 611 out only a
macroscopic part of 'U with a volume comparable to
'U*. But the number of such exceptional states is so
small in comparison with the number of "regular"
states, where the excited and de-ex&.ited atoms are "well
mixed, " that inaccuracies in the treatment of these
exceptional states can also have no inQuence on the
over-all behavior of the system. Therefore, we consider
the above approximations as satisfying.

The above step (A) leads to an approximation (5.18)
for S„,...„~~~=™,which is already symmetric in xg x~
and can therefore be taken out of the permutation sum
in (5.9). If '0 is a sphere, the expression (5.18) is actually
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independent of the directions of the k~'s, and therefore
satisfies all requirements of (5.12). For general 'U,

however, we need a further approximation to follow
below.

(B) In the expression (5.18) we average over the
directions of the k~ s, which leads to the definition

(5.19)

of y, as introduced in (5.12), with

y(k() = d'x
CQQ eo CQQ

I'(x—y) sink~~x —
y~

X d'y (5.20)
I'o kt(x —y[

In general, a term of the sum in (5.19) differs from a
corresponding term of the sum in (5.18) by a 'U-depen-
dent factor of magnitude 1.This could lead to important
variations of S&,...&~""'~, as given by (5.18), only if a
large number of k&'s is rotated at the same time. How-
ever, these variations of S must be compared to the
va, riations of pq, ...~~""'~upon the same rotation of the
same k~'s, and we shall see later that p~,
responds in the physically significant region of the phase
space of M photons ki k~ to a significant rotation of
one single k& by a factor g different from 1 by many
orders of magnitude, and by a factor g", if I kt's are
rotated at the same time. In general, a rotation of one k~
sects a fraction of M' —1 in M terms of pQ

and only a fraction of 1 in M of the terms in S&,...&~~1" ~ 1.
We use this different behavior of S and p for the
following justification of step (B).

Assume that the presence of the factor p~, ...~M~'"'~"

in the solution of (2.20), as introduced in (5.4), is
completely false. Then the variations of pa, ...q~""'~
upon a rotation of k~'s would have to be compensated
by a factor of the P's with variations comparable to
those of (p&, ...z~&''"&'~) '. The necessity of such a factor
would lead to correspondingly striking inconsistencies
in Eqs. (4.11), which could arise only from an
S„,...„~~'"~1 with variations comparable to those of
p&, ...&~""&'~. The actually very weak variations of S
can in no way lead to such a compensation, and it is
hence a justifiable step of approximation to disregard
them completely, as it was done in the transition from
(5.18) to (5.20). Therefore, we can consider expression
(5.4), with P obeying Eqs. (5.13) and with y being
defined by (5.19), as a reasonable approximation to the
actual solution of (2.20). The accuracy of this approxi-
mation, as far as steps (A) and (B) are involved, is
comparable to the accuracy of thermostatistics and
hence beyond reasonable doubt.

The physical significance of the above approximation
lies in the separation of the directional distribution of

the emitted photons, which is contained in the factors

p~, ...~~&'"&'~, from their energy distribution, which is

influenced also by the P's and from the behavior of the
system in time, which is completely contained in the
P's. Though many important results can be derived
from pq, ...~~ alone, it is still interesting to get at least
an idea of the explicit form of the functions Pt„...q~(/),
BE=0 1 S7 ) )

To achieve this, we look at the function y(ki k~)
which has an important influence on the P's. If 'U is
a sphere of radius r, the function y(k) can be calculated.

explicitly for the dipole radiation law (3.6). We obtain

7(0)=9/2(rd)' for rh&)1. (5.22)

For k= g the integral (5.20) can be transformed to

y(g) = df'{'L3 (sinrDt' —rht' cosrh{')/(rAt')'j'.

(5.21')

The main contributions to this integral come from the
region 0&{'&{0, where f'0 is of the order of magnitude

1/rA Therefo. re we have for rd&)1

(5.23)

We see further that this particular y(k) has a steep
maximum at k= 2 which is due to the long-range term
sinbIx(/A(x~ in the dipole radiation law (3.6). This
maximum will be washed out a little if '0 has the shape
of a rod, and it vanishes completely, in essence, if 'U is
a one-dimensional straight line. A similar behavior must
be expected for any realistic radiation law. Nevertheless,
we put

y(k) =y(0) =y= const, (5.24)

and we shall see that this is the only choice for the
value of y(k) if we want to neglect its k dependence.
In assuming (5.24) we given up the claim to obtain the
"fine structure" of the emission line; in fact, we obtain
only the "best Lorentzian 6t" to the actual solution
of Eqs. (5.13). However, we also obtain important
results on the time development of the system, which
justify our approach even if certain details should have
been lost in the approximation (5.24).

Let us look first at the case X=2. We see from (5.10),
that only Sk,&' is involved in this problem, and bypassing

y(k) =-,'dt {3Lsin«(P)—«(f) c sora(f)5/L«({)5')',

(5.21)
with

a(p) (g2+, k~+.2k'{-)itm

For k=0 we have a({)=6 and the integrand does not
depend on f'. Neglecting terms which vary rapidly with

rh))1, we obtain
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step (A), which is not applicable to this simple system,
we obtain from step (8)

v(k~) = r(X)—X2) s)nk&l Xq—X
7

k, iX,-X,
i

(5.25)

and hence from (5.24)

v= v(0) = r„lr„ (5.26)

p oo

~—k~+i—P»(t) =Pp(t)+1(+7)— P») ~(t)dk»
dt QQ

( d)
~

t) —k&+6—kp+i—~PA, ,»(t) =P»(t)+P»(t), (5.27)
dt

with the initial condition

Po(0) =1, P»(0) =P~ »(0) =o. (5.28)

Surprisingly enough, the exact solution of Eqs. (5.27)
is given by expressions (4.10), which were proven to
constitute a very good approximation to the formal
solution of (2.20) for N= 2. This means that the result
obtained from (5.4) and the succeeding approximations
is much better than could be expected at the outset,
and this is so in spite of the fact that the above approxi-
mations are far fromconvincing for X=2. The least
gain from this result should be an additional con6dence
in the approximations as developed so far.

Since expressions (4.10) are rather complicated even

for the simplest case X=2, we expect that the formal

solution of (5.13), even with (5.24) taken into account,
is still too complicated for practical purposes. However,
at least for values of p and S obeying

(1+q(N 1) ~«1~-')—
e-»'~ =1, (5.29)

(1+y(N—2)

the solution of (5.13) is approximated with at least the

accuracy of the approximation N! =(N/e)~ by the

which is in agreement with our former definition (4.9)
of p.

Equations (5.13) and (5.14) become

P' Po
i—Pp(t) =2— P»(t)dkg,

X'

expressions

P „(t)—T e rpt(—v—1lf) ()+y3E)

e—Fpt [1+y(235—N—1)] ei(A—kg) t

xII&-» k—( i—rp L1+y(2M N— 1)j
3f=0, 1, ~ ~ ., S (5.3o)

where T~ T~(y——) is a normalization factor given by

T~ '(y) =Li+y(M —1)1&"~')e &~ ') Tp 1. (——5.31)
U (5.29) is violated, the accuracy of the approximation
(5.30) is still better than the accuracy of the formula
X!=EN, which is usually a sufhcient approximation in
statistical physics.

To prove the above statements we insert (5.30) into
(5.13) and use, at the appropriate places, the approxi-
mation (5.29) as well as

e+Fpty

1+y(2M —N —1)= 1+y(2M —N —1)&2y, (S.32

and the assumption that C),(X;—X;) can be considered
constant in the interval

5—rp(1+(N —1)y)&k&6+ rp(1+(N —1)y). (5.33)

Under these conditions, we obtain from (5.13) an
identity, which includes especially the complete proof
that (5.30) gives the exact solution of (5.13) for 7=0.
Equation (5.32) does not impose a serious restriction
on the validity of (5.30) for realistic values of y; viola-
tions of (5.29) refer only to the normalization of P)„...),M

and lead only to insignificant violations of the normali-
zation condition (2.23). Hence, only (5.33) might be
serious, but by a proper redefinition of Fo we would even
repair most damage introduced by a violation of (5.33).
However, we shall see later that the exact width of
P». ..p~(t) is insignificant once it exceeds a certain value
and so we shall not care about the fact that (5.33) might
be violated. It is more important to stress the positive
features of expressions (5.30), which solve all N+1
equations (5.13) with about the same accuracy, assume
the correct initial values (5.14) at t= 0, and yield a non-
vanishing limit for t —+~ only for the correct amplitude
a),,...),„""~(t).Even more, Pp(t)=np'(t) assumes the
value e N p', as it should also in the formal solution of
(2.20), as discussed in connection with (4.7).

To prove that (5.30) meets the normalization con-
dition (2.23) with the accuracies stated above, we

compute ~n» ), ""~.(..~) ~' as follows from (5.4) and
(5.30). We get

1 ~ N 1 ~ N
~
C),„~

'e'~~&x~'~*~")

~,P" ~(~) ~2=T 2(~) P P (5.34)
ji "jx ix'"iver' ~ & 2vk„L(6—k,)p+ rp(1+y(N —1))pl

Carrying out the summations over kz. . kz, as required by the right-hand side E of (2.23), by means of (3.1) and

(3.2) and the usual extension of the limits of integration over k„, we obtain for R the expression

P P g r(X;„—X,„).
N!Lrp(1+~(N —1))j& —t~ "- ~ =~

(5,35)
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In the limit I';;-+ 8;,I'0, y -+ 0, we obtain R= 1, as expected, but we obtain R= 1 even for y ~ 1, I';;~ 10 with
the accuracy of Stirling's formula N!=(X/a)~, since the double permutation sum assumes the value I'P(E!)'
in that limit. To prove R= 1 for any value of p, we observe that operator equation

i ~ ~ og is ~ og N N N N N N
~ ~ ~ ~ ~ ~ (5.36)

~ tg] ~ ~ ogN g1 ~ ~ ogN j~=i j~'=i JN ~ij NWJl
HjR

gJN a

j N

gN gJ18js'

HjN-1

holds exactly. Since the summations go over the
positions of the atoms, it should be feasible to approxi-
mate the 3fth of the above double sums by a double
integral

d'x1r d'y~( ),'U*
(5.37)

with a slight modification due to the nature of the
diagonal elements of r;; to be discussed below. This
approximation is based on the same principles as the
former step (A) and takes into account correctly that
the Mth double sum has M' terms. It mak. es the Mth
double sum independent of j&. jM &, j&' ~ jM &' and
yields thus automatically a factorization of the double
permutation sum in the form

2'1 ~ ~ ~ 2N )1'~ ~ .2N v~1

vrith

r(x—y)
dBX (5.39)

P 1nL1+(M—1)yj
M=1

by the integral

N—j
dx ln(1+x') .

This yields still Stirling's formula E!=E~e ~ in the
worst case y=1.

Inserting (5.38) into (5.35), we obtain R=1, which
proves the statements made about the accuracy of (5.30)
under various conditions. If we had replaced TM by 1

We have written the factor occurring from (5.37) in the
form ~(1+(M—1)yl in order to take care of the fact
that the diagonal elements of any 3II)&M matrix r;; give
the contribution Afro to a double sum over all its ele-
ments, while in the integral (5.39), the points x= y have
measure zero and give no contribution to y. The second
equation (5.38) is obtained by approximating in the
usual @ray the sum

in (5.30), the condition (5.29) would not have arisen,
but the normalization of p1, 1.„(~) would have been
poorer, yielding R= 1 only in the approximation
Ãf=S~, which is of course stiQ quite satisfactory. The
inclusion of T~(y) in (5.30) improves P&,...&~(t) slightly,
as is seen from the case X=2, with T2' ——(1+y)
Xe(1+&) "&=1+y, replacing satisfactorily the 6rst
factor of formula (4.12). This remark shows even what
has been lost in the approximation (5.30) in comparison
with the exact solution of (5.13) with (5.24) taken into
account: It yields equal probabilities for the events "all
1V photons have energy 6+8" and "some photons have
energy A+6, the rest having A —5."The exact solution
should slightly favor the second type of event, as is the
case for /=2. Hence, we expect that approximation
(5.30) will "conserve the energy" a little worse than the
formal solution of (5.13).

It was also proved that y must have the value (5.39),
which is equivalent to the restriction (5.24) of
y(4 ~ kyar). For shapes of '0 other than a long rod, the
expressions (5.30) can be considered at least as the
properly normalized best Lorentzian fit to the actual
solution of the unrestricted equations (5.13). This
follows from the fact that (5.38) and R= 1 will hold in
any case, such that the normalization of

~ P&, . . .&~(~)
~

'
must in any case cancel the expression (5.38). On purely
physical reasons, ~P&,...&„(~)~

' must in any case have
a maximum at k& —— =kz ——b. Hence, especially in
view of the fact that the physical meaning of PI„...&„(~)
becomes rather insignificant as its width exceeds a
certain value to be discussed later, the above Lorentzian
fit should be quite satisfactory. %hat will be needed
in any case is only the fact that ~P~

' has a maximum
at k&= . =kN= 6, even if that maximum is very Qat,
as in the case of a very broad

~ p1,...q„( ) ~

'.

VI. PROPERTIES OF THE FUNCTION
Pg ...g "' '11' FOR LARGE M

The appearance of the factor pq, ...q~»"'&~ in the
approximate solution of Eqs. (2.20) is the most striking
and the most important result obtained in the preced-
ing chapter. Since pq, ...~~""&'~ governs the act of
focusing a ray in the emission of radiation from the
system of excited atoms almost completely, it seems
desirable to collect its most important properties in
this separate section.



V. ER NST AN D P. STEHLE

We shall see that pq, ...q~&''"&ii' appears in all results
in the combination

(6.1)

where the superscripts jj. j~ have been omitted for
simplicity. Hence, we can restrict our discussion to that
function. From the definition (5.5) of p„-,...q~" "ii', we
obtain the formulas

kl ~ ~ skM kl ~ ~ okM

P P g expLiX;, (~,—~,')]
M t &1'"+M &1 "'&M

k1 "kM kl "kM

P P cosLX;, (xi—i~i')
3I ~l"'&M &1 " &M

+ +X (i~g—r.M')]

21' "2M Jl"'2M

P P g expLik„(X„,—X„,.)]
M.t vl' ~ vM v1 "-vM p 1

1 )'I"'2M )1' ~ 'gM

P P cost ki (X„,—X„,.)
M.'t vl" vM vl'"vM'

The necessity of (6.4) is proved as follows: If (i i ~ vM)

is a given arbitrary permutation of the numbers

ji jar, and if (i i' i iii') is the permutation obtained
from (vi i~) by the exchange of one arbitrary pair
of numbers, say, v, ~~ v, the contribution of the pair of
permutations ((vi i ii) and (i i' vii')) to the double
sum (6.2) is cos(k, (X„,—X„.)+k,(X„,—X„,)]. This
contribution is maximal only if (6.4) holds at least
"modulo 2~,"but "modulo 2m" allows for no additional
solutions of (6.3), if M) 2 and if the points X;, X;~
are not contained in a regular lattice, which we assume

true in all our applications. The sufficiency of (6.4) is
proved by showing that the solutions of (6.4) lead indeed

to maxima. This, in turn, can be seen "by inspection"
from the explicit solutions of (6.4) to be discussed

below:
If U reduces to a "point" in comparison with the

wavelength I,, which corresponds to our former limit

r,,= r, and p=1, we have E'k, ..., ——M t for all points
of X~. In this case, I'k, ...kM acts only as a normalization
constant in the solution of (2.20).

If U is a straight line g ("laser line" ) of any length

2a, the manifold of points (ki'. kii') solving (6.4) is

given by

+ +kii (X„ —X„ .)]. (6.2)
kio=k+aiini+a('n, , /=1 M (6.5)

and

X;„-+X;,+X, v=1 M (6.3a)

These formulas reveal immediate1y that E'k, ...kM is
invariant under the translations

where k is an arbitrary but fixed wave vector, ai' ' are

arbitrary energies, and n~ ~ are unit normal vectors of g,
which are orthogonal to each other. The points kio lie

in that normal plane /i, ' of g, which contains the point k.
If 'U is contained in a plane /i, the solutions of (6.4)

are

ki -+ ki+k, /=1 M. (6.3b) k(' k+ain, ——/=1. . .M (6.6)

The invariance under the translation (6.3a) is obviously
a consequence of the invariance of the system under
translations. Hence, we note that the phase of

pz, ...&M""&~ can have no physical significance, and

no physics has been lost in the transition from

p~, ...q~""&'ii' to Pq, ...i,M. The invariance under the
transformation (6.3b) is obviously a consequence of

(6.3a) and the symmetric structure of the formulas

(6.2). It implies physically, that the energies of the
emitted photons, or better, the emission line under con-

sideration, are not determined by p&, ...q~&'&""~. This
line is contained in the factors Pi,...i~(/), as we shall

see later.
The most important property of I'k, ...kM is its

capability of assuming very high maxima for certain
points (kio kii') of the 3M-dimensional phase space
X~ of M photons. Indeed, the double permutation
sums (6.2) contain (M!)' terms with maximal value 1

each. The necessary and sufhcient condition for E'k, ...kM

to assume its maximal value M! in a point (kg . . kii 0) is

kio=k, /=1 M (67)

with an arbitrary wave vector k, which yields only one

point k for any kio.

It is easily seen that I'&,...kM assumes actually its
maximal value M! in the points (ki' k~0) defined in

(6.5)—(6.7). However, we need more details about the
structure of the function E'k, ...kM around these points,
and to obtain these details, we consider 6rst the vari-

ation of E'k, ...kM under a change of arguments from
(k' k~')=(k k) to (kio kii')=(k k, k+q).
The value of Eq, ...q~ changes then from M! to M!i!~'(g),
with

where k and ai are again arbitrary, and n is the unit
normal vector to the laser plane h. The points ki lie

on the straight line g~' normal to h which contains the

point k.
If 'U is an arbitrary three-dimensional volume, the

only solution of (6.4) is

(X;„—X;„) (k„o—k„')= 0 for any p, i = 1, 2 M,
and any j„,j„. (6.4)

M 3II

it~'(iI)= P g cosy (X, —X,„.).
~2 v=1 v'=I

(6.S)
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with

M —1
n~'(q) =—+ n'(q)

M M
(6.9)

i!'(q)= d'x d'y cosq (x—y) . (6.10)
cQ Q, '

~ cU Q

Here again we have taken care of the nonrandom di-
agonal elements 1 of the matrix cosq (X,—X,). It
follows from the symmetry of P&,...&~ with respect to its
arguments ki k~, that a factorization of P~, ...~~ of
the form

Assuming that the points X;, X,~ are distributed at
random over 'U, this double sum can be approximated
by a double integral over 'U in the same way as (5.37)
approximates the corresponding double sum in (5.36).
This yields

with an equivalent meaning of q„q~, and q,. The
physical implications c,f Eqs. (6.9) to (6.15) will be
discussed in Sec. IX. Here we note only that the dif-
ference between g~'(q) and i!'(q) becomes negligible
for small q, and only these refer to physically observable
quantities. The following de6nitions are therefore made
with q'(q) instead of g~'(q).

In order to comply with later definitions, we call
a bundle of ki's with values close to a given k a "ray"
ko. The "geometrical shape" of the ray k is defined as
the three-dimensional region u{k—k'} around the point
k', which contains only points k such that

g'(k —k') &-,' (6.16)

holds for all points k of u(k —k'}.The geometrical shape
of ray k' corresponding to the above ellipsoid (c,b,c)
for 'U is the ellipsoid

I'„,...„~=M!g g~'(k„—k,o) (6.11) (k,—k ')' (ki,—ki,o)' (k,—k,')'
+ + = 1, (6.17)

(bib)' (4/c)'
must hold at least around any point (kio .k~0) at
which there is a maximum of P~, ...~~. However, if we

apply the operator equation (5.36) to the third form
(6.2) of I'z, ...&~, and approximate the double sums by
the double integrals of type (5.37), we again obtain
(6.11), which is thus not restricted to a too narrow
vicinity of a maximum. If in (6.11) we replace the point
(kio k~') by (k, k, ), where k, is the center
of the gravity of the vectors k„, i.e.,

M

k. =—P k„,
M v-i

(6.12)

sin aga sQ1 bgy sin chic~".'(q) =
(~a.)' (be~)' (e.)'

(6.15)

the formula (6.11) yields the same maxima as the
original function P&,...&~, independently of the shape
of 'U, and it also has the invariances (6.3a) and (6.3b).
It follows from this, that the approximation (6.11),
(6.12) has satisfactory accuracy even far away from the
maxima of P~, ...~~.

The integral (6.10) can be calculated explicitly for
at least two speci6c shapes of 'U of great physical
interest. If 'U is an ellipsoid with semi-axes a, b, c, we get
for all values of a, b, c the expression

3 t'sin) ) P P
n.«(q) =-I -cos& ~=1-—+ -o(&'), (6 13)

Pk $ 2 10 280
with

P= (~V.)'+(be~)'+(cV.)' (6 14)

where q,q&q, are the components of q in the direction of
the axes a, b, c. The analytic expression (6.13) for $ can
be expressed in terms of the spherical Bessel function of
the first kind. ji(g) by 3ji(P)/P. If 'U is a rectangular
parallelepiped with semi-axes a, b, c, we get

with po being the solution of the equation

3 (sin& —cos& i=-,'V2.

pled

i
(6.18)

u{k—k'}=Q ug{k—k'}. (6.20)

The suKciency of (6.18) is trivial, but its necessity is
also easily proved: If k' is a point outside u{k—k'}, we
can always find a g such that k' is also outside u, (k—k'},
and this violates the condition (6.16). If convenient, as
in the case of a laser disk, one can construct Grst
uq{k—k'} corresponding to the intersections of planes
k with 'U and take later the intersectiono f all uI, {k—k'}.
If 'U is an ellipsoid, Eq. (6.20) yields the ellipsoid (6.17)
as it must.

A remark should be included now on the statistical
properties of the system. So far, it is still assumed that
we know the positions Xi. X~ of our atoms. Actually,
however, this information has been washed out in
several approximations, the latest being Eq. (6.11).
Therefore, if we consider a Gibbs ensemble of systems
of E atoms at positions Xi ~ X&, described by a

Using the approximation (6.13) of the above function
of (, we obtain for $0 the approximate value

(0= L10(1——,'v2) j'"=1.7. (6.19)

If 'U has a shape different from an ellipsoid, u{k—k }
can still be constructed in the following way: We con-
struct, first, all u(k —k'}=u, (k—k'} corresponding to
the intersections of all straight lines g with 'U. u, {k—k }
is therefore the space between the parallel planes of h,
(cf. (6.5)j at distances &$0/u, ', where 2a, ' is the length
of the intersection of g with 'U. The u(k —k'} for any
simple shape of 'U is then
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properly chosen density function f( X& ~ X&)&0 in the
"parameter I' space" of the ensemble, and if we average
over the members of the ensemble, we get no visible
changes in the results to be discussed in the Allow-
ing sections. The reason for this is seen easily from
(6.20), which can be used in two ways: First, if g is
allowed to run continuously over all straight lines g
having an intersection with'U, we get a smooth N(k —k'}
of the type of the ellipsoid (6.15). However, if we
restrict g to aQ actual "line lasers" contained in the
system, i.e., to all actual diagonals of the points
X~ ~ ~ X~, that smooth N(k —k'} is replaced by a
polyhedron with a very large number of corners, which
encloses the smooth N(k —ko}. A change of the micro-
scopic structure Xz X& affects only the microscopic
structure of that polyhedron, but the difference between
that polyhedron and a smooth N(k —k'} cannot be
observed on a macroscopic scale. For the present case,
then, we have obtained a proof of Gibbs's hypothesis
which states in general that the value of an observable
(here the shape of the ray as described by a polyhedron)
of a large system is macroscopically indistinguishable
from the average value (here the smooth N(k —ko}) cf
that observable over an ensemble of such systems.

VII. EXISTENCE AND STATIC
PROPERTIES OF A RAY

We can now discuss the physical content of the ap-
proximate solution (5.4) and (5.30) of Eq. (2.20) without
further mathematical digressions. In this section we

look at the system at time t= ~, while its evolution in
time wi11 be considered in Sec. VIII. Here, we shaQ

prove 6rst the existence of the many photon collective
phenomenon, which has been called a "ra.y" in
Afterwards we shall discuss in detail its most important
properties.

Let us consider the ratio R~,...~„, as dered in Kq.
(3.21). Combining the results of Eqs. (3.11) and (3.16)
with those of (5.4) and (5.30), and using the definition

(6.1) of I'~,...~~, we obtain

~~,".~ =~~,- ~„C'I," a (v) (7.1)
with

(6—k )2+I'P

.=i (6—k„)'+I'0'(1+s)'

where 1'~(y) is given in (5.31) and s is defined by

I'(x—y)
X d'y . (7 3)

Fo

As we should, we have R~,——1 for any value of k~

and C „,...q~(0) = 1 for any X.
Since I'(x—y) decreases rapidly with increasing

(x—y), the integral over y will not depend too sensi-

tively on 'U and x. Therefore the integral over x will be
roughly proportional to '0*, and the whole second factor
of (7.3) will depend rather insensitively on 'U. s is
therefore mainly a function of the density E/'U* of
atoms and does not depend sensitively on the total
number E of atoms in 'U*. The E single factors @ of
Cz, ...&~(y) have thus lower bounds and are actually
independent of N. As a consequence of the capability
of E~,...~~ to assume maxima of the height E!= (E/e) ~,
E~,...q„can assume maxima as high as (glV)~ for
certain sets (kq k~) of X photons, with @—+e ' for
s —+ 0. This must be ascribed physically to a very strong
inQuence the atoms have on each other under the con-
ditions of the present model, or to very strong effects
of "self stimulation": By de6nition, E~,...~~ would
have the value 1, if no such inQuence were present and
the atoms could decay independently of each other.

To see immediate consequences of these e6ects, we
compare the value of E~,...~N for different sets of photons
(k& kz) of a given energy k&—— .——kz ——k', such that
PI„...q~(y) = C qo. ..qo(y) has the same value for all
competing sets (k~ k~). We see from Sec. VI that
E&,...&~ assumes its maximal value if and only if the
k~'s are parallel. This means that the relative proba-
bilities for the emission of S photons of above modes
(kq ~ k~) have very high relative maxima if all photons
are in the same mode. For example, it follows
from (6.8) that the probability for the emission of E
equal photons k' is by a factor g~ '(q) larger than the
probability for the emission of N photons of modes
(k' ~ k', k'+q). For realistic situations the value of
p~ ' is different from unity by many orders of magni-
tude, if the angle between k' and k'+q is substantial,
e.g., if

( q( = (k'( = [k'+tlj holds. These relations
are only slightly altered by the function C»,...&~(p)
if the competing sets (k~ k~) are not restricted to
equal energies. We have to conclude from this that the
N photons are actually emitted in the form of a bundle
of nearly equal photons, which we call a "ray." The
emission of E substantially diGerent photons is so
much less probable, that such an event is practically
impossible.

The existence of the many-photon collective "ray"
is independent of the speciic atomic transition under
consideration. Indeed, the dependence on the one-atom
radiation law

~
Cz~ ', as given by (2.18), has dropped out

of R&,...», leaving only a weak dependency on the far
less characteristic one-atom constant Fp. The results
derived from (7.1) are thus valid for any type of tran-
sition in any type of atoms, for which the initial
condition (2.3) can be established. The 'U dependence of
the eGects must be attributed to a very long range of the
effect of self-stimulation

C
cf. (4.6) and the discussion

following (4.14)j, and there is no reason why such
e6'ects should not occur for radiation of wavelength
shorter than visible light, provided that an eGective
pumping mechanism can be found for a suitable atomic
transition.
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We note that the above conclusions are subject only
to the approximations (A) and (8) of Sec. V, since the
actual form of the function P&,...»(~), as defined by
Eq. (5.13), has no important infiuence on the above
considerations. From now on, however, we shall use
all approximations of Sec. V in considering in more
detail the stationary properties of a ray.

Since I'z, ...» has maxima of equal height for all
diagonal points (ki ~ .ky) = (ko .ko) of the phase
space X~ of X photons of modes (ki k~), the value
k' of the "center of a ray" is not determined by
E~,...q„. k' follows, however, from the properties of the
function ~n~, ...~„'"~(~)

~

', as defined in (2.22), because
the latter can be considered, in analogy with (3.19)
and (3.20), as a probability distribution in X~. Factor-
izing Pq, ...q„ in accordance with (6.11), we obtain the
formula

ki k2 ' ' kg ka.m. (7 5)

will be emitted, as we know already. Therefore, the
emission of a ray with center k' will be the more probable
the more points (ki ~ k~) there are around the point
(k' k') such that ~ng, ...g„'""(~)

~

is still com-
parable with its absolute maxiinal value. Consequently,
the total probability for the emission of a ray with
center k will be proportional to the volume of a 3X-
dimensional neighborhood 80 of the point (ko ko),
which contains only points (ki ~ k~) of X~ such that
~ci~,...~~'"N(~)

~

' has values of the order of magnitude
of the maximal value of jnqo".qo'"~(~)

~

'. The latter
is reached for

fkof =A, (7 6)

as is easily seen from (7.4), and therefore the center
energy of any ray will be given by (7.6). As a conse-
quence of the factorization (7.4) of ~a&,...&„'"N(~)

~
2,

an approximate measure for the volume of 5' is given
by ~C~o~'N times the cVth power of the volume of the
intersection of the geometrical shape of a ray ko,

u(k —ko), as defined in Sec. VI, with the spherical
shell o,(k—k },of mean radius

~

k'~ = 6 and arbitrary,
sufficiently smaQ shell thickness 2r. The direction of
k' is therefore determined by the condition

ICg, f'
X- (7.4)

2Uk, L(b,—k,)'+Fp'(1+s)'j

where k, is the mean value (6.12) of ki .
kyar. Con-

sidered as an "event" in X~, we observe the "emission
of a bundle of E photons with center ko" any time S
photons of modes (ki ~ k~) with k, close to ko are
emitted. Since g~'(k„—k, ) has a narrow and rela-
tively very high maximum for k„=k, , only a narrow
bundle, or ray, with

Since the influence of
~
Cqo~ 2 on the solution of (7.7) is

small under realistic conditions, and since
~
C~o~ ' is due

to the initial, rather unrealistic condition that all atoms
have identical states up to a trarislatiou, the direction of
k' will usually be determined by the second factor of
(7.7). For characteristic shapes of 'U, this leads to the
following results:

If 'U is a sphere, we have a constant volume of the
intersection ufo and the direction of ko remains in-
determined. All directions of k' will therefore be equally
probable for the emitted ray.

If 'U is approximately a disk, then I is approximately
a rod normal to the plane of the disk. vol (ufo) will be
maximal if and only if the axis of the rod I is a tangent
of o,(k—k'). This means that k' will be in the plane of
the disk 'U, and all directions within that plane are
equally probable, if 'U is exactly circular.

If 'U is approximately a rod, which includes nearly
all cases of physical interest, then e is a disk in a plane
normal to the axis of U, and vol (ufo) will be maximal
if and only if the plane of the disk I is a tangent plane
of o,(k—k'}.k' must therefore be parallel to the main
axis of '0, but the two possible directions of k remain
equally probable. This is true even if 'U is a long cone,
as one can easily deduce from (6.20). The relative
probability of k' being in a direction other than the
most probable direction is P~, where I' (&1) is the
fractional reduction in the volume of the above inter-
section for this k' relative to that for the most probable
k'. This is a much more slowly varying function that
n'(q).

So far, the ray is still defined as the most probable
event in X~. For a description of what can be observed
of the ray in an ordinary three-dimensional k space, we
have to translate the results from X~ into the language
of a X'. This can be done in principle by formulas of the
type (2.26), but this would prove unpractical and even
misleading physically, since such a procedure includes a
weighted averaging process over all possible rays and
would thus smear out the characteristic correlations
between the emitted photons which lead to the "one-
ray" aspects as discussed above. For example, if 'U is a
sphere, the number of photons of mode k, as defined by
(2.26), would turn out independent of the direction
of k. However, we would no longer know that all X
photons have been emitted into a neighborhood of the
mode k, if a substantial number of photons of mode k
have actually been measured.

Consequently, we can only ask for the most probable
distribution of photons around ko provided that ko is
the center of an observed ray. The possibility for such
considerations arises from the fact that the maxima of
I'i„...i,~ lie on the diagonal points (k' k') of X~, such
that an approximate factorization of 3 in the form

~
Cqo~ &(vol(u(k —k')Po, (k—ko})=max. (7.7) 5'= )(ki—k') ~ )(kg—k') (7.8)
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can be obtained around every point (k'- k'), where

){k—kp} is a quantitatively well-defined three-dimen-
sional volume around the point k'. To obtain such a

){k—k'}, we proceed as follows: Consider a system of
S atoms which radiate independently of each other by
a "distorted" one-atom radiation law

1" iV( )!. )
2N

&&max! ng, ...j,„'"~(~)!' (7.11)

holds. On the other side, if we consider a point (ki kii)
with an appreciable number n of k's taken not from

){k—k'}, then !rr&,...i,„'"n(~)!' drops by a factor rt'"

which soon becomes so small that !n~,...K„'"~(~)!'
cannot be compared reasonably with its maximal value.

In the limited sense of the above approximations, we

can say that an observed ray k' is described by (7.9) or

by its physical shape ){k—k'} as defined in (7.10). If
'U is a rod which can be approximately described by a
long ellipsoid, we can define as the "line shape" of a
ray the intersection of ){k—k'} with a plane which
contains k . The line shape Z(A —k) of such a ray is

therefore given by

1 (sin(A —k)a

a4(~—k) 5 (~—k)a
—cos(t),—k)a !

X (7.12)
(t),—k)'+ry(1+ s)P

where 2a is the length of the rod. The half-width I" of
this line is given by the equation Z(1")=s Z(0). Expres-
sing this linewidth in terms of fractions Q/)i of the

W e'Ii-rt'(k —k') (7.9)
2VkL(6 —k)'+ I' '(1+s)'$

with a given fixed k'. Constructing for this system the
analog of expression (3.19), we obtain, up to an irrele-
vant normalization factor, the product (7.4) for
!a~,...q~'"~(~)!', for k, equal to that given k'.
This means that the distribution in angle and in fre-

quency of an observed ray k' from the real system can be
looked at, to the accuracy of the factorization (6.11)
for given k', as if the ray were produced by inde-

pendently radiating atoms with one-atom radiation
law (7.9) instead of the interacting atoms radiating by
the real one-atom radiation law !n~'(pp)! ', as obtained
from the case cV= 1. Looking at (7.9), we see that the
"geometrical shape" of ray k' is on the same footing
with the usual de6nition of the half-width of a radiation
line. Hence, if we define the "physical shape" ){k—k'}
of a ray by the condition

5'~ '"&-'W'~p '" for all k's of ~{k—k'} (7.10)

we see that 5p, as defined by (7.8), contains only points
(ki kip) such that

wavelength X= 2ir/6, we have the inequalities

W /)«2~, /as= () /2a) 2~,/~
and

9/)i & (X/Lp) (1+s)(1/ir) .

(7.13)

(7.14)

Lp is the distance used in (4.6). With the exception of a
transition region where the above bounds are of the
same magnitude and (7.12) must be used, the line shape
is either given by the first or the second factor of (7.12),
depending on whether Lpjp«a(1+s) or Lp(p))a(1+s)
holds.

Comparing the proof of existence of a ray with the
above detailed examination of its properties, we note a
remarkable difference in the "strength of the forces"
leading to the respective results: The existence of a ray
is due to an interference —or "self-stimulation" —effect
in XN, leading to relative probability ratios of order of
magnitude 1:qN'N for the alternatives "ray" or "no
ray. "The relative probability of two directions of that
ray, and to a degree even its mean energy, is governed
by relative probability ratios P~, where IP (&1) is of
the order of magnitude 1. We can thus state that the
ray is formed by "forces of strength" rt~ ', but it is
driren into its final direction by much weaker forces of
strength I—' only. Actually, for the case of a spherical
'U we have I'=1 and hence no driving force. This
provides the basis for the following hypothesis concern-
ing the forming of a ray in the presence of laser cavities.

Considering the interference nature of the function
I'~, ...~~, which governs the existence of the ray, and the
strength of the "ray-forming forces, " it is hardly
imaginable that the presence of a cavity has any
influence on the existence of a ray, since the grid of the
points Xi . Xii is present in any case. However, it is
very well possible and even necessary that the cavity
interacts with the above "driving forces I2," such that
the ray is directed into one or another "cavity mode. "
The existence of a ray would thus be to a high degree
analogous to the existence of many molecule collectives,
like sound waves in acoustics, or water waves, and the
presence of a cavity would thus produce resonance
phenomena (modes) analogous to those produced in
acoustics by the presence of resonant bodies. As the
acoustical resonance phenomena cannot be understood
on the basis of molecules independently interacting with
a resonant body, and the macroscopic phenomenon
"sound wave" is needed for a satisfying explanatio~, so,
our hypothesis states, the resonance phenomena of laser
physics cannot be understood on the basis of atoms
interacting independently (i.e., "without seeing each
other at their respeotiiie p/ c ae)swith a macroscopic
cavity but some collective, macroscopic phenomenon of
the nature of a ray would give an easy understanding
of these phenomena.

Since laser activity without mirrors, "' and hence
"A. Lempicki and A. Heller, Appl, Phys. Letters 9, 108 (1966).
~~ W. R. Bennett, J.W. Knutson, G. N. Mercer, and J.L. Detch,

Appl. Phys. Letters 4, 180 (1964).
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without distinct cavity modes, has been obtained
recently, an explanation of "mirrorless" lasers is needed
in any case. The above hypothesis explains easily the
practical importance of cavities by putting them into
analogy with the resonant bodies of acoustics.

Apart from the triviality that N photons are emitted
from X excited atoms, no essential N dependency has
been obtained in the above results. Instead of this we
had to emphasize the dependency of self-stimulation
effects on the shape and size of 'U and on the density of
excited atoms, as contained, e.g., in the physical line

shape (7.12) of the ray. On the basis of this situation
we put forward a second hypothesis related to a system
of active atoms between mirrors:

Until now, mirrors have been considered exclusively
(cf. Lamb') as creating, in the sense of Fox and Li,"
certain equivalents of cavity modes, which in turn are
considered responsible for laser effects. Ke question the
dominance and necessity of this view by hypothetically
stating that at least some aspects of laser activity can
be understood in terms of the classical "mirror
principle, " which implies that the actual volume 'U is
multiplied and/or modi6ed in a certain way and can be
replaced by an "e6'ective" 'U, «. This is possible only
because the number N of actual atoms plays no vital
role in all of the above results, such that we need not
worry about the fact that the images of excited atoms
add nothing to the total energy output NA, which
remains of course unchanged. Hence, we expect, e.g.,
that the line-shape properties from a system with
mirrors can be obtained to some degree by the simple

replacement ~ eff. (7 ~ 15)

For example, looking on Eq. (7.12) for the line shape of
a rod, we expect that the actual length 2u of the rod
can be replaced by an effective length 2a,«& 2a, while s
should remain more or less constant. However, we do
not claim that the mirror principle can replace com-
pletely the concept of Fox-Li modes, which is included
in our first hypothesis on the interaction of rays with
resonant cavities.

VIII. TIME EVOLUTION

In this section, we look at the evolution in time of the
ray, starting from the initial state at 3=0 with N
atoms excited and no photons present, and ending with a
ray of N photons and no excited atoms. %e are de-
scribing a single pulse from an ideally pumped system
and not the time dependence in the presence of pumps
or other external influences. The nearest realistic
sys™~probably the Q-switched laser, and we believe
the connection between our model and such a laser is
close. This connection is being investigated. It must be
emphasized that this time development is that of a
pure quantum state involving all the atoms and the

»A. G. Fox and Tingye Li, Bell System Tech. J.40, 453 (196&).

radiation field. This type of time development must be
distinguished from that in which the radiation and
absorption of individual atoms are identified, even when
these are treated quantum mechanically by means of a
density matrix involving an atom interacting with the
radiation field as is done, for example, by Scully and
Lamb. ' It is not comparable to a rate-equation treat-
ment'" for the above reason and because a continuum
of modes of the radiation field is considered. A rate-
equation formulation with all modes admitted on an
equal footing does not lead to the formation of a ray
because in such a formulation the necessary correlations
between atomic states are not included.

Because of the large number of atoms present and
because the system is in a pure quantum state, the
Heisenberg uncertainty principle involves the energy
of the entire system and not the energies of the atoms
separately. If 8k is the minimal uncertainty in the energy
of an individual atom or photon, then the uncertainty
principle requires that

If&the photon energies are not to be resolved more
closely than the single-atom natural linewidth, then this
places no practically effective bound on bt. Times much
shorter than the mean lifetime of a single atom can be
considered in a meaningful way, and the initial condition
used is less problematical for many atoms than for a
single atom. A more stringent restriction on meaningful
time intervals is imposed by the requirement that
retardation can be neglected. Time intervals shorter
than L/c, where L is a typical dimension of the sys™,
are not to be considered.

The initial state decays exponentially. According to
(5.5O),

I-o'(~) I'= IPo(~) I'=exp( —2rocyg), (8.2)

with 2I'o the single-atom width. The initial state is
destroyed by the decay of any one atom. No photons
are initially present, and there are no unexcited atoms
present to give rise to radiation trapping, so this decay
occurs as if the atoms were independent.

The probability of finding the system at time t in
the state with 3II photons of momenta ki ~ k~ present
and the M atoms A, , - A,~ de-excited is given by

h "j.
(g) Is

but for the present it is enough to consider the corre-
sponding smooth function

I-~-.s-""' (~) I'=~~ - ~~IPs, "s (~) I' (g.3)
as in (5.4) together with (2.22). Even for 3II much less
than N, Ek,...~~ has a sharp maximum of value M t for
parallel photons, so that an intermediate ray of 3f
photons is found early in the decay process. The direc-
tion of this intermediate ray is determined by the set of

» D. A. Kleinman, Bell System Tech. J. 4B, 1505 (1964).
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~ atoms A, , - .A;~ which are de-excited. The state of
the system when M photons are present is linear combi-
nation of the

P,(M, t) ~ ~ ~ ~ d&~)Pp, p(t) )'-

with

( " e-'"'pl —2 cos(~ k)ts "')~— —

dIp

(~—k)'+ r'

t 1—e Pr~)jr
(8.5)r

p = p,L1+q(2M —E—1)j. (8.6)

This has a maximum when

E+yM(M 1)—
2r,t,(M) = 1n

1+y(2M N 1) (%+M—)(1—+yM)

s3P g'+ /
ln (8 &)

1+s(23II/E 1) (1 M/S) (1+sM—/N—)

The inversion of this gives M, (t). The result is shown
in Fig. 1, along with its derivative r, (t), for several
values of s.

For s=0, the low-density limit, we have

states with 3f de-excited atoms. The overwhelming
majority of these states correspond to a macroscopically
uniform distribution of the de-excited atoms over the
volume 'U of the system, so that the direction and shape
of the intermediate ray are those of the anal ray. A
determination of which atoms have decayed at time $

would destroy the state and eliminate the ray.
The probability P.(M, t) of 6nding M photons present

is zero for both 1=0 and t= ~ when 0(M&X. lt
reaches a maximum at time t= t„(M) which depends on
the parameter s=y Z of (7.3) and on M. Inverting
this equation gives a measure of the number of photons
present at time t, which we write as 3II,(t). The rate of
photon emission r, (t) is then taken to be

r, (t) = aM, (t)/at. (8 4)

From (8.3) it is seen that the only time dependence
comes from the p(t). Then according to (5.30)

s&i it has a maximum which appears when SI is
about ~~X and whose height increases rapidly with
increasing s. For large s the entire process of light
emission takes place in a time short compared to the
single-atom mean lifetime. As was mentioned above,
this is reminiscent of the behavior of a Q-switched laser.

The fact that the maximum of the emission rate
occurs at the time when about half of the atoms are
de-excited suggests a connection with Dicke's super-
radiant states. Dicke' showed that a system of atoms
excited by an appropriate pulse of light so that half the
atoms are excited radiates very rapidly with the emis-
sion of a ray in the direction of the exciting pulse. We
can think of the early part of the radiation process
described in the present paper as playing a role analo-
gous to that of Dicke's exciting pulse, leaving the system
in a state to emit the rest of the radiation rapidly in the
same direction.

gm'(q) = 1/M+ it'(q) . (9.1)

IX. MEANING OF "STIMULATED EMISSION"

The laser is supposed to operate on the principle of
"stimulated emission, " the very name incorporating
this supposition. In this section, we try to 6nd out what
role stimulated emission plays in the model treated
here. There are several features which make this a
nontrivial matter: (i) There is a continuum of inodes
present which makes the concept of occupation number
of a mode distinct from that when discrete modes are
involved. (ii) The focusing of the ray depends primarily
on the geometry of the system and is not enhanced
when the number of atoms K, is increased beyond a
certain lower limit. (iii) The rate of emission does
increase with increasing number of atoms for a fixed
geometry.

Point (i) is closely related to the discussion of Einstein
factors given in Sec. III. When a continuum of modes is
present, it can be represented by discrete modes with
arbitrary accuracy by taking enough discrete modes
appropriately distributed in k space. The occupation
number of such a discrete mode is directly proportional
to the range of k per mode, but this is irrelevant for
physical results as long as the division is one enough to
describe the experimental resolution contemplated.
Thus, there can be no essential dependence on the
occupation numbers of the separate modes.

Point (ii) is seen explicitly in (6.9), which we may
write as

Mp(t) =E(i—e 'r"),
rp(t) =2I'p¹—2r (8.8)

which is just the rate for the decay of independent
atoms. It is noteworthy that the ray is still formed at
low density, even though the rate of emission does not
show a cooperative eGect. For all s& 1 the rate of emis-
sion is monotomically decreasing with time, but for

The quantity z'(q) defined in (6.10) describes the proba-
bility for finding a photon with momentum k,+q if
kp is the central wave vector of the ray, and ~prp(q) is
the corresponding intermediate quantity when only
M ())1) photons are present. Since for small q, q'(q)
has values greatly exceeding unity, the term 1/M in
(9.1) plays only a negligible part in determining the
focusing of the ray. For very small M it merely makes
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the visibility of the interference pattern given by rt'(q)
slightly less than unity.

Point (iii) does show some effect which can be inter-
preted as stimulated emission. The rate of emission is
determined by (8.7). A rough estimate of the maximum
rate for large s can be obtained by putting M = ~Ã and
treating 1/s as a small quantity. Then

r,t, (,'N) =-1/s, s»1 (9.2)

s.o [2r,n)-

I 5-

I.Q

Peak Height 15

S = IO

so that the time required for the de-excitation of half
the atoms is inversely proportional to the density for
large density. If the radiation emitted were conlned
in an optical cavity for a time long compared with
1/sPo, the density of photons would be proportional to
s and then (9.2) would indeed correspond to stimulated
emission, provided, of course, that under these circum-
stances the relation (9.2) still holds. The results achieved
here may, then, be regarded as a generalization of the
usual concept of stimulated emission as formulated by
Dirac' and Heitler, "being relevant when the number
of photons associated with any one plane-wave mode is
not a relevant quantity. This generalized concept of
stimulated emission has the usual one as a limiting case
when an optical cavity de6nes a discrete set of modes, as
will be shown in a future publication.

It appears, then, that the formation of the ray in
space is not a consequence of stimulated emission in the
usual sense but the time dependence of the emission at
high atomic density is describable in terms of stimulated
emission. If, as appears in a preliminary investigation,
the effect of an optical cavity is to increase s greatly,
the large-s approximation is good. This will be treated
in another paper.

Note added inproof It has b, ee. n suggested that a more
detailed comparison be made of the present calculations
with earlier work on laser "spiking. " It appears to us
that most of the la, tter Lwith the exception of Dicke's
results on "optical bombing" (Ref. 2)j is based on rate
equations of the type Grst used by H. Statz and G.
deMars [e g , in QNar. ttl. rrt Etectrortics, edited by C. H.
Townes (Columbia University Press, New York, 1960)].
The application of rate equations imp/ies the assump-
tion that one deals with statistically independelt processes
(in the present case, creation processes of single light
quanta usually of only one mode) which are only subject
to some macroscopic conservation law (energy). The
latter might be sufhcient for such problems as the
power supply of the laser, but it is not slff'tcielt to
determine the inherent properties of the emitted light:
If laser spikes were governed only by the requirements

"P. A. M. Dirac, Principles of Qnantnrn 3fechanics (Oxford
University Press, ¹wYork, 1958), 4th ed. , Chap. X.

"W. Heitler, The Qnantnnt Theory of Radiation (Oxford
University Press, New York, 1954), 3rd ed. , Chap. V.
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Pro. 1. Plots of the rate of emission, r, (t), and the number 3f, (t)
of photons present at time t, as functions of time for several values
of the densrty parameter s de6ned by (7.3).

of energy conservation, it would be impossible, by the
entropy law, to obtain interference eGects between two
spikes of two different lasers LR. L. Magyar and L.
Mandel, Nature 198, 255 (1963); R. L. Pfleegor and
L. Mandel, Phys. Rev. 159, 1084 (1967)1.Furthermore,
the many forms in which spiking occurs (there are
damped and undamped regular spikes, and, mostly,
spikes irregular in time and peak intensity) suggest that
steady-state laser operation is rather an exception than
the rule, bit so1Ntiorts of realistic rate equations aheays
approach a steady state Therefore w. e see no conunon
base for a reasonable comparison of results from rate
equations with those obtained here by the consideration
of ore quantum-mechanical creation process for macy
photons. The present theory adds an additional dy-
ttamical elerrtertt (not a complete explanation) to the
fundamental instability at least of solid-state lasers,
which is usually ascribed solely to the interaction with
one or more cavity modes. Because of our initial condi-
tion and other inherent limitations (retardation) the
present theory cannot be applied to the recently ob-
served picosecomd sstbstrstcture of certain giant pulses,
though a solution to that problem, too, most probably
will be found on the base of many-photon coherence.


