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Distribution of Blackbody Cavity Radiation in a Moving
Frame of Reference*

G. R. HENRY, R. B. FEDUNIAK, J. E. SIIvER, t AND M. A. PETERsoN$

Institute of Theoretica/ Physs'cs, Department of Physics, Stanford University, Stanford, California 94305
(Received 16 August 1968)

Blackbody cavity radiation is considered from the point of view of an observer in arbitrary uniform motion
with respect to the c.m. of the radiation. It is found that the only eBect of the motion is to introduce an
angle-dependent effective temperature, which replaces the rest-frame temperature of the cavity. The results
are applied to the question of the earth's motion through the 3'I cosmic radiation.

I. INTRODUCTION

HE discovery that the universe is apparently
filled with 3'K blackbody cavity radiation' leads

to the interesting possibility of detecting motion vrith
respect to the c.m. of this radiation. ' In order to discuss
this question we compute the blackbody distribution
as seen by an observer in arbitrary uniform motion with
respect to the radiation. ' General results are obtained,
which are then easily specialized to the situation of
primary interest for the 3'K cosmic radiation, where
the observer's speed is much less than that of light.

In Sec. II the notation is established. A derivation of
the photon distribution in a moving reference frame is
presented in Sec. III. In Sec. IV the stress-energy tensor
is discussed, and the results of Sec. III are shown to be
consistent with the transformation properties of the
stress-energy tensor. Some condiments on temperature
are made in Sec. V. Specialization to the 3'K cosmic
radiation is carried out in Sec. VI, and concluding
remarks are made in Sec. VII.

II. NOTATION

We will be concerned with two frames of reference,
s and s', shown in Fig. 1.The frame s' is taken to be at
rest with respect to the blackbody radiation, and the
frame s moves in the direction of the positive z' axis
with speed4 Pc. We wish to describe the blackbody
radiation in the frame s.

In the rest frame s' the radiation may be specified
by the photon distribution'

d'E'= Aa)'d'E'. (2.2)

We wish to determine the distributions corresponding to
Eqs. (2.1) and (2.2) in the moving frame s.

III. BLACKBODY DISTRIBUTION IN A
MOVING FRAME OF REFERENCE

In this section, a derivation of the d'E distribution in
s is given. It is useful first to derive various transforma-
tion rules for a single photon.

du)'dQ'd V'
d'E'=

4sr'c' exp(hu)'ih T') —1

where standard definitions are used, i.e., k is Planck's
constant divided by 2m., P is the temperature of cavity,
k is Boltzmann's constant, co' is the circular frequency of
photon, dQ' is the element of solid angle, and dV' is
the element of volume.

The primes of course refer to the rest system s'.
Physically, d'Ã' represents the number of photons in
the frame s' within the volume dV', the frequency
range de', and the solid angle dQ', at one instant of time
t' in s'. The corresponding energy is simply
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FzG. 1. The two frames of
reference considered. s' is the
rest frame of the radiation;
s moves along +z' in s', with
speed Pc.

A. Lorentz Transformations fox a Single Photon

We consider a photon of frequency co', with its
velocity at an angle 8' with respect to the z' axis, as
shown in Fig. 1. Any four- vector A„'in s' is given in
sby

A„=L„Q„', (3.1)

that 'See, e.g., Max Born, Atomic Physics (Hafner Publishing
Company, New York, 1962},7th ed.
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with

0
~+v 0

.0

0 0 0
0 0

0 y ipse
0 iPy—

(3.2)

By considering the photon four-momentum, the fre-
quency and polar angle of the photon in s are easily
specified:

(3.3)

swept over is counted. This process is easily described
in s: From the Lorentz transformation, the plane is
seen to start at z=ya at t= —pea/c and to finish at
s=0, I,=O. Thus the plane sweeps over a volume yaA
with a speed c/p, in the negative z direction. Since the
speed is not infinite in the system s, the volume swept
over with respect to the photons depends on the velocity
direction of the photog. s. The s compog. ent of the rela-
tive photon-plane velocity in s is given by

tan8= sin8'/fy (cos8' —P)$ . (3.4)
(V„i)g= c cos8+c/P (3.10)

dQ d cos8
= Lv(1—P cos8')3 '.

dQ' d cose'
(3.6)

Trigonometric identities yield a more useful relation
between the angles:

cos8= (cos8'—P)/(1 —P cos8') . (3.5)

The solid angle transformation is now easily derived
from Eq. (3.5):

d'N =d'N'/tty'(1 jP cos8)g. (3.12)

and the volume of photons counted is then

vol. =A(V„i),(Pya/c) =ada(1+P cos8). (3.11)

This is the result desired: It means that d'E' correspond
to those photons in s which are in der, dQ and occupy a
volume y(1+P cos8)aA at an instant of time t. We now
de6ne d% to be those photons in s which at an instant
of time t occupy a volume d V =d V'/y =aA/y

Finally, Eqs. (3.3)—(3.6) remain valid when primed
and unprimed quantities are interchanged and the sign
of P is reversed. This leads to a particularly useful
identity:

Combining Eqs. (3.12) and (3.8), we have

d'S=
47r'c' exp (h(o/k T,)—1

(3.13)

y(1+P cos8) = Ly(1—P cos8')g—'. (3 7)

daN'= y'(1+P cos8)
4m'c'

d(od VdQ
X (3 8)

expghcoy (1+P cos8)/k T'j—1

where we have also used

d V = d V'/7. (3.9)

Despite our use of mathematical identities to introduce
quantities in s, the physical significance of d'E' remains
as it was in Eq. (2.1) i.e., d'N' is the number of photons
in the frequency range der', the solid angle dQ', and the
volume d V' at an instant of time t' in s'. By virtue of the
transformation equations, these very photons are within
the frequency range dko and the solid angle dQ in s. They
are not, however, within the volume of d V at any instant
of time in s.

To make this more precise, we take dV' to be a
cylinder of cross section A, lying parallel to the s' axis,
between s'= 0 and s'= u. The d'E' photons may now be
said to be counted by an imaginary plane (perpendicu-
lar to s') which sweeps from s'=a to z'=0 instan-
taneously, at t'=0. Every photon in des', dQ' which is

B. Direct Transformation of Blackbody Distribution

We start with Eq. (2,1), but we use Eqs. (3.3)—(3.7)
to express all quantities (except d'N' itself) in s. We
obtain

where an angle-dependent "effective temperature" T,
has been de6ned as

T,= T'/p(1+P cos8) . (3.14)

This striking result implies that the owly effect of
uniform motion through blackbody radiation is to
alter the effective temperature, which is then dependent
on the angle at which observations are made relative to
the direction of motion. ' In particular, the form of the
distribution is identical to that of the rest frame, and
the magnitude is precisely that associated with black-
body radiation of temperature T,. Thus in all directions
the radiation appears perfectly "black" (rather than
"grey" or "hyperblack"). Observation of blackbody
radiation in one direction is therefore not suQicient to
determine whether the observer is in motion relative to
the c.m. of the radiation.

Note added iN proof Two other d.erivations of these
results have recently been given: C. V. Heer and R. H.
Kohl, Phys. Rev. 174, 1611 (1968);P. J.E.Peebles and
D. T. Wilkinson, Phys. Rev. 174, 2168 (1968).

Iv. STRESS-ENERGY TENSOR

In this section it is shown that Eqs. (3.13) and (3.14)
lead to energy density, momentum density, and mo-
mentum Qux with the transformation properties re-
quired by the synunetric stress-energy tensor T„„.In

6 A derivation which does not invoke photons at all has been
given by R. N. Bracewe11 and E. K. Conklin, Nature 219, 1343
(1968).



176 CA V I T Y RA D I A T I ON I N MOVING F RAM E

the rest frame s' it is easily shown that T„„'is given by'

I 0T„„=U0
.0

0 0 0
0 0

0 ~~ 0
0 0—j..

(4 1)

where the energy density in s' is denoted by U'. From
the Lorentz transformation,

Tpv =LppLv~Tp~'

3

UI 0
0

i0

0 0
3 0
0 ~'(l+P')
0 i ',Py'—-

0
0

&sp—V'
+2(1+1Ps)

~ (4 2)

In s, the energy density U, the momentum density I'&,
and the momentum flux (3,3 component) Pi may be
read off from Eq. (4.2), yielding

rather than all, of the photons; the expected transforma-
tion law relating T„„to T„„'was again obtained from
Eqs. (3.13) and (3.14).

V. TEMPERATURE

The conclusions of Sec. III in no way depend on the
transformation properties of temperature. For our
purposes, the temperature T', in s', is merely a param-
eter involved in the description of the photon distribu-
tion in energy, solid angle, and volume. Once the
distribution is specified in s', the transformation of
that photon distribution to s is completely unambigu-
ous. It was found convenient in Sec. III to characterize
the distribution in s with an effective temperature
T,(8), defined in Eq. (3.14). It is, however, possible to
dehne other, perhaps more meaningful, temperatures.
The exponential factor in Eq. (3.13) is

U = U y (1+ P )

Pg) —-',Py'U——'/c,

P r U'y'(-s, +p') ——.
(4.3b)

(4.3c)

exp Lho&y (1+P cos8)/k T'j,
which may be written as

expL(e —P V)y/kT'j,

(5.1)

(5.2)

U'= o (T'4) .

In s, then we must have

(4 4)

It should also be possible to obtain these quantities
from Eqs. (3.13) and (3.14). In s', the energy density
is proportional to (T')4

where e is the photon energy, P is its momentum, and
V is the velocity of the c.m. of the radiation with
respect to the observer. From statistical mechanics it is
known that for a slowly moving Quid the Boltzmann
factor is given by

expL(s PV)—/k Tj, (5.3)

U= — dQ a PT, (8)]4
4x

U~ I

d(cos8)
2y' i (1+P cos8)'

(4.5a)
which reduces to the normal exp (s/k T) for flu jd
velocity V= 0. If we take expression (5.3) as the defini
fiors of T, then T= T'/y in (5.2), in agreement with a,

recent conclusion of Mgller. '
It is, however, perhaps even more tempting to write

expression (5.2) as

=7'(1+lp') U, (4.5c) exp (—P„V„/kT), (5.4)

in agreement with Eq. (4.3a). The other quantities are
similarly computed, with

and

U' ' (cos8)d(cos8)

2cy4 i (1+Pcos8)'

= —4''U'/c
U' ' cos'8d(cos8)I p—
2y4 i (1+P cos8)'

=y'(-'s+P') U',

(4.6a)

(4.6b)

(4.7a)

(4.7b)

again in agreement with Eqs. (4.3).
More detailed checks with the stress-energy tensor

were carried out by constructing T„„'for a subset,

where I'„denotes the photon four-momentum and V„is
the four-velocity of the radiation c.m. with respect to
the observer (yV,inc) Expressio. n (5.4) then is inter-
preted as the relativistic generalization of expression
(5.3). Adopting (5.4) as the definition of temperature
makes T= T', a relativistic scalar. Indeed, with these
definitions the photon distribution in any inertial
frame is given by a very appealing formula,

dPdx) 1
dsN=2

ks )exp( P„V„/kT) 1— —(5.5)

where T is the same in any system; T is therefore the
temperature in the rest frame of the radiation. We
have set dV=—dx. The three factors in Eq. (5.5) are

Fritz London, in Sizpergljds (Dover Publications, Inc., New
York, 1964), Vol. II, pp. 95—96. We are indebted to Professor
A. L. Fetter for helpful discussions on this point.

~ C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.
No. 36, j. (1967).

7 Denoting an index running from 1 to 3 by a Latin letter, we
use the following conventions: ( T44) =energy density, (—T,4/6)'
=density of momentum P;; and T;,=Aux of momentum P;
across a surface normal to the jth axis.
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Fro. 2. The signal (in units
of p8) and the noise (in units
of B) of the asymmetry of
blackbody radiation seen by a
moving observer, as a function
of x= tuu/kT. —
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d'U x' -
t

e*
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~
~

(ee* -ss—1) (6 6)
dxdQ e —1 he' —1l

The somewhat cumbersome Eq. (6.6) is exact, with no
approximations in angle or observer velocity. For the
cosmic radiation it is in.teresting to specialize to P«1,
for which Eq. (6.6) becomes"

Z 2
V) =8-

dxd0 e*—1

( e*
1—

i iPx cos8
ke*—11

(6.7)

0
0 2 4 6 8 IO I2

now interpreted, respectively, as the number of internal
degrees of freedom of the photon, the number of
quantum-mechanical states in phase space, and a
relativistically invariant Boltzmann factor appropriate
to bosons (particles with synunetric wave functions)
which are not conserved.

The preceding discussion makes clear that the deriva-
tion of the blackbody-radiation distribution in a moving
frame in no way depends on the transformation proper-
ties of temperature. Thus, Eqs. (3.13) and (3.14) Pand,
for that matter, Eq. (5.5)j give the photon distribution
in a moving frame iu terms of tke temperature il the

rest frame, T'. Therefore, given any definition of a
transformed temperature T= f(P, T'), we can express
our results in terms of this T.

VI. COSMIC 3'K RADIATION

Rewriting Eq. (3.13), we have

kdxdQ) ., (dxdQ);,

pd'U pdsU
X=/ +/

Edxds ., (chdn);,

(6.8)

(6.9)

the content of Eq. (6.7) is displayed graphically" in
Figs. 2 and 3. The signal is seen to reach a maximum in
absolute magnitude at x=4, somewhat above the maxi-
mum in noise at x=3. The signal-to-noise ratio" con-
tinues to rise indefinitely as x increases, becoming

keeping only terms of zeroth and first order in P.
(Thus we assume not only that P«1, but that Px«1;
to first order in P, of course, T= T'.) From Kq. (6.7)
it is clear that d'U/dxdQ is a maximum (or minimum)
for cos8= —1 (or +1). This is expected, since the
observer is moving directly toward those photons for
which cos8= —1.The angle-dependent part of d'U/dxdQ
has a simple cos8 form.

Dehning a signal S and noise E by"

d'S=— (6.1)
4s'c' expLho& (1+P cos8)/k T]—1

with the convenient definition T~ T'/y. We will work
in terms of the energy density U, since the product of
energy density with the speed of light yields the
intensity of radiation, power per unit area, which is of
direct experimental interest. From Eq. (6.1) we"obtain

S/E=Px for x)&1. (6.10)

x4

5=PB = 2PB
coshx —1 (e*—1)'

(6.11)

(It must be remembered of course that this approxima-
tion requires Px«1.) Explicitly,

d'U= ~ (6.2)
4s scs exp L~(1+P cos8)/k Tj—1

It is convenient to de6ne the dimensionless quantity

E=2$
(e'—1

spar p~ ). =t' x

&1—e

(6.12)

(6.13)

x= hu&/k T=y~/k T', —

so that the energy density is given by

(6.3)
If, at the radial position of the solar system, the

rotational velocity of our galaxy is taken to be roughly
300 km/sec, then it is reasonable to set P= 10—'. Thus

where

d'U/dxdQ= Bxs/(exp)x(1+P cos8)g —1), (6.4)

B= 2 (k T)'/(27rhc)'. (6.5)

The angular dependence may be separated in a multi-

' This result, specialized to cos8= +1, agrees with the corrected
version of london and Harwit (Ref. 2).

~'The "signal" and "noise" dined here refer only to the
3'K radiation, and take no account of formidable sources of
noise with which the experimenter must cope, such as the galactic
background, the sun's radiation, and the earth's atmosphere.
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at the maximum in the absolute signal strength,
S/X=0.4%. Wide-band detectors would certainly be
worthwhile, particularly in the x&4 region. Integrating
over all frequencies (all st') for P«1, we 6nd IO

dU x4
B(—1 4P c—os') .

dQ 15
(6.14) 8

0
Deining a frequency-integrated signal-to-noise ratio
in analogy to S/E of Eq. (6.13), we have

Sr/Zz= 4P (6.15)

Finally, in view of Partridge and Wilkinson s observ-
ation' of what appears to be a cos2|I effect, we can ask
under what conditions such a term would be seen.
From the exact Eq. (6.6), we see that expansion of
the term in square brackets will involve all powers of
cos"8; a term in cos"8 may be rewritten, yielding a
cosn8 term, among others. It is also clear, however,
that any cos"0 term also involves a P" factor. For the
example discussed here (P=10 ') the cos20 term is
expected to be three orders of magnitude smaller than
the cos8 term. Alternatively, if a cos20 signal were seen
with S(cos20)/E= 8, we would expect a cosg signal with
S(cos0)/cV= 5'I', provided that P((1.

VII. CONCLUSIONS

The sole eBect of uniform motion through blackbody
cavity radiation is to introduce an eRective temperature
which replaces the rest-frame cavity temperature T'.
An observer is said to be in motion with respect to the
cavity radiation if, in the observer s frame, the c.m.
of the radiation has a nonzero velocity V. The effective
temperature is found to be angle-dependent, being
given by

T.= T'(1—e'/c')'"/Ll+ (u/c) cos8$, (7.1)

where 8 denotes the angle between —V and the velocity
of the detected photons in the observer's frame.
Equation (7.1) is exact, with no approximations in
the observer's speed or the photon angle.

ERorts made to detect our possible motion through
the 3'K cosmic radiation depend critically on the
signal-to-noise ratio of the angle-dependent radiation
intensity. Assuming e/c =P«1, the signal-to-noise ratio
with a wide-band detector is 4P. This ratio may be
improved by observing radiation at high frequencies,
such that her&4kT'. Unfortunately, the absolute signal
strength decreases rapidly with increasing frequency in
this region. Finally, any asymmetry of the type cos20
should be smaller than a cose asymmetry by roughly a
factor P.

I I I I

2 4 6 8 12

Fxo. 3. The signal-to-noise ratio of the radiation asymmetry
as a function of a= hou/kT. This curve does not take into account
any source of noise other than the blackbody radiation itself.

0 10

An interesting feature of the 3'I cosmic radiation,
although it may have no cosmological implications, is
the damping eRect on rapidly moving bodies. Consider a
black sphere of radius y, low heat capacity, and high
heat conductivity (so that there is essentially no
temperature gradient in the sphere). Such a sphere,
moving through the cosmic radiation, has more radia-
tion incident on the front face than on the back face,
leaving a radiation pressure imbalance. The emitted
radiation is isotropic in the frame of the sphere, so
that it does not contribute to the net force on the
sphere. The net force'. is easily computed from", the"results
of Sec. III; we Gnd

(7.2)
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The factor in large parentheses is the energy density in
the rest frame of a cavity of temperature T'. Taking
/=0.001, the acceleration of the sun due to the 3'I
cosmic radiation is 6.2 X10 "cm/sec'. This would imply
a relaxation time of 1.5&(10's yr for galactic rotation.
While this is entirely negligible, we note that the
temperature was presumably higher at earlier times and
that the "viscosity" of the blackbody "Quid" is propor-
tional to T'4.


