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negligible, and we may write the Hamiltanian in the terms due to spin-orbit e6ects may be described by a
forI11 combination of k y and spin-orbit perturbations and

not by means of the k-dependent spin-orbit interaction. "

Equation (4.10) has the form of the working Hamil-
tonian customarily employed in k y calculations"'s but
without the appearance of a k-dependent spin-orbit
interaction term. It is therefore clear that any linear k
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Axially symmetric static solutions of Einstein's equations with singularities on the s axis are considered.
The structure of the singularities is more general than that considered previously by Bergmann, since higher
mu]tjpole moments are now allowed. The equilibrium conditions for such multipole singularities in an ex-
ternal Geld are derived. It is shown that solutions having two or more such singularities on the axis may be
found in abundance, independently of the signs of the masses of the particles.

av/or = r (),s ).s), —
c)v/Bs= 2r) „),. (3)

Equation (2) is in fact the integrability condition for

Eqs. (3).Hence, given any axially symmetric harmonic
function X, it is always possible, at least locally, to Gnd

a function v that satisfies (3). The global condition for
a solution is more severe. It is equivalent to the require-
ment that, for any closed circuit C in a region where P

is regular,

0= v„dr+ v,ds = r (),s—X,')dr+2'„X,ds. (4)
C

Furthermore, it is essential that v=0 on the s axis in
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r. INTRODUCTIOÃ

HE general static axially symmetric vacuum solu-
tion of Einstein s Geld equations is given by the

metric of %eyP and of Levi-Civita~:

dss —es(v-x) (dr2+dss)+rse —sx@s esxdts (g)

where X=X(r,s) and v= v(r, s) satisfy

PA=X,„+X„+r9.,=0
and

order to ensure the regularity of the metric there. '
These conditions have been used in some attempts at
proving the impossibility of a static two-body solution
in general relativity.

Bergmann' has studied the case of two singularities
on the s axis, and has shown that the function v must
change its value on going around one of the singularities.
Hence the condition v=0 cannot be imposed on all
regions of the axis which exclude the singularities. This
is borne out by direct inspection of the exp1icit solution
of Silberstein representing two such mass singulari-
ties.4' The problem with more than two singularities on
the axis has been treated by HoGmann, ' who Gnds that
if masses of both signs are permitted, static conGgura-
tions with three or Gve singularities are always possible.

However, these results deal exclusively with the case
of "monopo1e" singularities, i.e., singularities of the
form &= —M/R (R'=r'+s'). Now the most commonly
accepted solution representing a particle, the Schwarzs-
child solution, is not of this form but appears as a rod
singularity in the cylindrical coordinates. ' Thus even
a spherically symmetric par ticle will have higher
multipole moments in %ey1's coordinates. Clearly then
it would be desirable to treat the case of particles having

e p. G. llergmann, Introdnction to the Theory of relativity
(Prentice-Hall, Inc. , Englewood Clips, N. J., 1942), p, 206.

4 L. Silberstein, Phys. Rev. 49, 268 (1936).
5 A. Einstein and N. Rosen, Phys. Rev. 49, 404 (1936).
3. HoGmann, in I.es 7'heories Relativistes de lu |"ruvitution

(Centre National de la Recherche Scienti6que, Paris, 1962),
p. 237.
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a general multipole structure

X= g —M„R ~"+"P„(cos8).
n~0

That we might expect static situations with two such
multipole particles is clear from the result of Housman,
since we might now coalesce monopoles, while main-
taining equilibrium between them, until two particles
with higher multipole moments are formed. Hoffmann
comes to the conclusion that such structures could not
be formed. , but his argument is purely heuristic and is
apparently wrong in view of the present results. In this
paper the general condition of equilibrium between
such multipole particles will be derived. It will be shown
that static situations can arise even if the masses of the
particles (as represented by the monopole moments)
are of the same sign. An explicit solution with a mono-
pole in equilibrium with a monopole-dipole is given.

The use of singularities to represent particles may,
with good reason, be objected to. It may bc argued
that only solutions that are regular everywhere, and in
which matter is represented by nonvanishing Einstein
tensor, are physically acceptable. Under such conditions
Sondi~ has shown that if X is nonsingular and corre-
sponds in the vacuum regions to the potential arising
in a Newtonian multibody problem, then the global
condition (4) is satis6ed if and only if there is no net
Newtonian force on any of the bodies. However, it is
not easy to see how far this goes towards a solution of
the relativistic problem, for, while we have managed
to replace our problem with a corresponding Newtonian
one in the vacuum regions, the correspondence breaks
down completely inside the regions of matter. In these
regions it will be necessary to give not just the mass
density (as in the Newtonian case) but also an equation
of state. In general relativity the static two-body
problem should be posed, then, in the following way:
Given a static vacuum solution which is the exterior
solution to two nonintersecting regions of matter, can
the metric (assumed to be C' everywhere to satisfy the
Lichnerowicz conditions') be extended into these regions
in such a way that (a) the mass density (given, for
example, by —G«) is everywhere &0 and (b) a reason-
able equation of state holds throughout the regions?
Unfortunately, there is no universal agreement as to
what constitutes a "reasonable" equation of state, and
to this extent a more precise formulation of the problem
must be left up to individual taste. It is now that we
can see the advantages of treating singularities. Since
these are limiting cases, one may approach arbitrarily
close to the singular points without anywhere being
hampered by awkward junction conditions. This turns

r H. Bondi, Rev. Mod. Phys. 29, 423 (1957).
H. Sondi, in Lectlres on Geeeal Relativity, Brmdeis, 1964

(Prentice-Hall, Inc., Englewood ClifFs, ¹ J., 1965).
A. Lichnerovricz, Thdorks Relativutes de la Gravitation et de

l'Electrostugttetleste (Masson, Paris, 1955).

out to be of considerable help in handling the path
integrals that arise in Eq. (4). We can then 6nd very
explicit conditions for the existence of solutions with
two (or more) singularities. These solutions will be
valid everywhere but will be incomplete" at a 6nite
number of "points" which it is now required to cover
up with regions of matter satisfying conditions (a)
and (b) above.

2. COMPLEX-VAMABLE FORMALlSM

It will be useful to introduce a pair of conjugate
complex variables i and i' in place of r and z

f= r+i», 3 =r—i»

Treating f' and f as independent variables, we have

8 ('8 i8) 8 (8 i8)
cia' Ear azl cia bar a»J

Hence the two equations (3) may be replaced with a
single complex equation

Bv/g'= (f+f') (8X/8 f)'
The advantage of this approach is that, if we are given
X as a function of f and j, then v may be obtained
immediately from (6) by a simple integration. As an
example, we derive the Acyl metric that corresponds
to a dipole potential,

X=—DR 'cos8=-,'Dig' —f)(g) '".
Then

(i+0) (3i i)'—
& D2

VP

A straightforward integration now gives

f'1 5 1 9 ~v= —'sD'I =— +=+ I+f(f).
&i.i' 2i'f' Vi= 4i'&

The condition of reality for ~ immediately gives

An= —:.D (9i4B,
and we And that

v =D'r'(r' —Sz')/4Rs.

Now suppose that v is given at a point fs rs+izo-—
Let C be a curve beginning at fs and ending at a point
ft. Then

v(i() = v(is)+ (vgr+v. dz).

The integrand on the right may be written

2

Re)(av/af)ding,

~ See, for examp1e, R. Geroch, Ph.D. thesis, Princeton Univer-
sity, 1967 (unpublished).
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and we have on the z axis. This equilibrium condition is
(BX)s

~0 ) =~(fo)+2 «(1+i)l —
I df

c kaf)
(7)

lim 2Re gsi (e
—2 is 1)

If f's and t t are both on the z axis and X is regular on
that portion of the axis lying between f'0 and 1&, then
we see immediately from (7) that & g't)=»(fs), since
f+f=2r=0 on the z axis. Thus by a trivial addition
of a constant it is always possible to make v=0 on
any stretch of the z axis which is free of singularities.
Suppose now that X has a singularity at a point between
ps and t't. We take this point to be s= 0 for convenience.
Then C cannot be chosen to be along the s axis in (7),
and we must deform the path about the singular point,
for example, by means of a small semicircle of radius
a. Introducing "polar" coordinates E, such that

r=Rsin8, s=Rcos8, f=iRe 's,

we have that the contribution from the semicircle in

(7) is
(w)'

2 Re a'i(e "'—1)~ —
~

d8.
(a)i

This gives the change that v must experience on crossing
a singularity. U X has the form of Eq. (5), then there is
just one singularity, and that at r= z=0. We can show
then that the integral (9) vanishes. This could be done

by direct computation, but there is a simpler way of
seeing this result. We may replace the small semicircle
with a semicircle of large radius, since the two semi-
circles may be connected by nonsingular stretches of
the z axis on which there is no contribution to the
integral. Now BX/8t'=0(1/Rs) as R~ &e; hence the
integral (9) vanishes as a ~ ao, and therefore as a —+ 0.
Thus a Weyl solution regular everywhere except at
the origin will exist for any X having the form (5). Such
a solution will be called, for the purposes of this paper,
a "multipole particle. "Ms will be called the monopole
moment or mass of the particle, Mt the dipole moment,
Ms the quadrupole moment, etc. These moments are
not to be taken too literally, since they are very much
tied down to the Weyl coordinate system and, as
mentioned above, the spherically symmetric Schwarzs-
child solution will have quadrupole and higher moments
in these coordinates.

3. EQUILIBRIUM CONDITION FOR A
MVLTIPOLE PARTICLE

Let X„be the potential of a pure 2"-pole particle, i.e.,

X„=—M R '"+'&P„(cos8).

Let X' be any other potential which is regular at
r=z=0. We shall say that X„ is in equilibrium in X if
the integral (9) with X= X +V vanishes as u-+ 0. This
means that a 2"-pole particle could be.placed at the
origin without aGceting the regularity condition v=0

(BX ' 8X BX' jrBX')s
X ] +2 +/ f

d8=0.
-5 8$ Bt Bf E8f' j

Of the three terms in the square brackets the 6rst
gives no contribution, as shown in Sec. 2, while the
third gives no contribution, since ) ' is regular at the
origin. Hence the equilibrium condition reduces to

lim Re
BA, 8A.

'
a'i(e-"' —1) d8= 0.

0 at af
(10)

X'= g S~~P„(cos8).
m=0

We may now apply 8/Bf to X„and X' directly, since8818)—=-,'e*' —i +——I,
8$ 8R R 88)

(12)

and the equilibrium condition (10) becomes, after some
computation,

0= 2M„S~t(v+1) . (13)

For a general multipole particle (5) it is immediately
seen that the equilibrium condition is

Q M„(rs+1)5„+,=0.
n-0

This condition may be expressed directly in terms of
derivatives of X' as follows. From (11) and (12), by
induction, we have

gng~
—P g~m-nQ (a) (8)

ts ~0

where

Q "&(8)=P (cos8)
and

Q &"&(8)= sre'sf —i(r&s—m+1)Q t" &(8)+dQ " &/d8j.

Now, since Y is regular at f=0, it must be true that all

Q &"&(8) will vanish for m(e and. that Q &"&(8) is a
constant. This may be proved directly by writing the
Legendre polynomial P (cos8) in the form"

P~(cos8) = g A „,„e*'&-~+'"&s

» E. Whittater and G. Watson, A Cogrse of j/Iodere Agalysjs
(Cambridge University Press, New York, 1965), p. 303.

Since P' is harmonic and regular at R=O, we may
expand it in a power series in positive powers of R
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where

(2r)!! (244 —2r)!!

(2r—1)!!(2n —2r—1)!!
i.e.,

M t m+r4~
(—1)""I

am+n+1 E I ) (20)

Thus from (15) and (16) we have
(2r—1)!!—=1XBX5 X (2r—1) 2r!!—=2X4 ~ ~ X2r.

By induction it may now be shown that M 2N —1!!(m+I)
(21)

amen+& 2n ( I j
(8"!( )
5 al." )»;.

and

Q„' '= (i/2) (—2m)( —2m+2) ~ ~ (—2)A, O

(15)= (—i/2) (2m —1)!! Similarly, replacing a with —a and putting 0=z,8,=s, R=R +a, we have

Hence
Q (m+~)=0 for k)0.

(8ny~/8gn) Q (n)s (16)

(m) ( a) —( 1)m+ns (m) (a)
(8ng /8t n)» . —( 1)m+n(8n!( /8l. n)

Consider two multipole particles at z= &a,
and the equilibrium condition (13) can be replaced with
the condition

(8"& '/8l ")»=0=o. (17)

monopole:

dipole:

quadrupole:

octupole:

X' =0
X'„—) '„„=0;
3X'„„—P'„,=0;
~izzzz+I& zzzz —6X zzzz=0& etc.

4. CONDITIONS OF EQUILIBRIUM FOR TWO OR
MORE MULTIPOLE PARTICLES

Consider a pure 2"-pole situated at the origin,

X„=—M„R—("+'&P„(cos8). (18)

If we expand X about the point r=0, z= u, then, since
it is regular at this point, we have

Although this a complex condition that should give
rise to two real conditions, it in fact gives rise to only
one. This comes about because S„ is real and Q„("& is
real or pure imaginary depending on whether n is
even or odd. Hence for n even the imaginary part of
(8"X'/8$")» 0 automatically vanishes, while for I odd
the real part vanishes. This is equivalent to the state-
ment that, for I( regular on the axis, (82"+'&(/Bt "+'), 0=
vanishes. The condition of stability for a monopole is
just the familiar one, 4 BX/Bs=0. The conditions for
the Grst few multipoles are

!("'= Q M ('&R —( +'&P„(cos8.) = Q X„&'),
m=o

X ' = pM (2)R (m+')P (cos8,) = pP, (2).
m=0

The equilibrium condition (14) at s= a reads

r4+1 m (8"+9. ('&

0= QM ('&

Q (+1) p ( z(+I )
(1)M (2)

)
2a

~

(m+n+2) ( 1)n~

~m+n~

7L z Ns k 44 ]
X (m+)s+1) . (22)

The equilibrium condition at z= —a is identical to this
(the law of action and reaction); hence (22) is the neces-
sary and su%.cient condition for two multipole particles
to be in equilibrium. For example, if at z= —a we have
a pure monopole, M„")=0 for n&0, and at s=a we
have a monopole-dipole, M„&')=0 for n&1, then the
equilibrium condition (22) reduces to

By the method described in Sec. 2 an exact solution
may now be written that corresponds to this situation.
The result is, putting Mo&')=M2, Moo)=M~, M~&'~=D,

where

g„= P 5„("&R,"P (cos8,),
nM

(19)
M~ D cosa M2

E. E.' E .'

v =—M)2r'/2Rn4+ D'r'jr' —8 (s—a)'j/4R '
R,= Lr'+(s —a)'J" cos8o= (s—a)/Ro.

To Gnd the coeKcientsS & ) it is only necessary to put
8=0, R)a. Then 8,=0, R=R,+a, and Eqs. (18) and
(19) give

(R +a)—(m+1) —Q S (m)R n

—M22r2//2R, '—2MgDr'(s —a)/R '

+MF2�(R'—a')/2a'R~ +M2D (a4—2sa' —2r'a'

+2sR'a —R4)/2a'R, 'R, .
On the s axis we find v = &M4(Mqa —D)/2a', depending
on whether )s) )a or (a. Thus it is only possible to
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make v=0 uniformly on the s axis if M jr= D, which is
just the condition found above.

Finally, the conditions of equilibrium for more than
two particles on the s axis may be obtained. I.et there
be E particles with s coordinates si arranged in descend-
ing order, s~&s~& ~ .&sN. If the ith particle has
multipole moments 3f„&'~, put

The singularities have the appearance of point particles
endowed with a multipole mass structure. "The ques-
tion that must be answered is whether these singular
points can or cannot be covered up with a realistic mass
distribution.

Suppose, for example, that we wish to fill in the
solution representing a monopole-quadrupole at s=u
balancing a monopole at s= —a. The condition, by
(22), is that

= —3f;i, for g&z.

&& (iis+I+1)(—1)", for s)j

Then the equilibrium conditions are

These E conditions are not independent, since

N

QM; = —QM;=0.

Hence only S—1 of these conditions are independent.
We can specify —,'(&V —1)(1V—2) of the M;; arbitrarily
and solve for the remaining E—1. For example,
M p (n,P=1, ,S—1) could be specified arbitrarily
and we may solve explicitly for M&p.

Now the largest negative quadrupole moment that
can be achieved is that of a uniform ring of matter.
The quadrupole moment for a ring of radius b is
M2= ——,'b'3l p. Thus to achieve the desired quadrupole
moment it seems that the matter must be spread out
at least to a radius b= ag(8/3). In any case, since this
discussion is purely Newtonian in character, we can
apply Bondi's theorem to tell us that no Newtonian
mass distribution with everywhere-positive density can
be found that will fill in the singularities of this solution.
There are, of course, static two-body situations in
Newtonian mechanics, but they are all of a rather
artificial kind (such as the case of a ball in equilibrium
at the center of a ring). The equilibrium in these cases
is obtained by virtue of some additional symmetry (such
as a reflection about the plane s= 0). One would expect
that for physically reasonable mass distributions only
the corresponding special static solutions could occur
in general relativity.

Finally, if we can find M &", si to generate these 3f;;,
we shall have a static lV-body situation, provided that
3f &') do not all vanish for each i=1, ,E.

5. CONCLUSION

We have shown that it is possible to find axially
symmetric vacuum solutions of Einstein's field equa-
tions which have two or more singularities on the s axis.
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