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The applicability of the eikonal approximation to high-energy nucleon-nucleus and hadron-hadron
collisions is limited to small angles of scattering. However, experimental results have in some cases been
interpreted by applying this theory beyond its angular range of validity. In the present paper, an expression
for the scattering amplitude is obtained that has much of the simplicity of the eikonal approximation, but
a much greater angular range of application. It provides a natural explanation for the disagreement between
the Brookhaven and Virginia data on high-energy proton-He* elastic scattering in the neighborhood of the

first minimum.

I. INTRODUCTION

EVERAL recent papers have discussed the theory
of high-energy nucleon-nucleus!? and hadron-had-
ron?? collisions from the point of view of the Glauber*
multiple scattering formalism, which is based on the
eikonal approximation. However, it has been known
for more than a decade® that the eikonal approximation
is expected to be valid only when the angle of scattering
6 in the center-of-momentum (c.m.) system is small in
comparison with the angle 6.= (kR)~'/2, where %k is
the momentum of each of the colliding objects in the
c.m. system, and R is a typical linear dimension of these
objects. Ross® has recently shown through numerical
examples that this expectation is confirmed.

The results obtained in the papers cited in Refs. 1-3
have been applied to the interpretation of experiments
in which the angular range is such that 6 is not always
small in comparison with 6,. It is therefore desirable that
the Glauber formalism be extended to larger angles.
We shall refer in this paper to an angle as being dy-
namically small or large according to its smallness or
largeness in comparison with .. In contrast, an angle
will be said to be geometrically small if it is small in
comparison with 1 rad. Since 2R>>1 in the situations
considered in these papers, an interesting new range
of angles is opened to theoretical investigation if 6 is
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only required to be geometrically small, not dynamically
small. It is the purpose of the present paper to effect
this extension of the theory in a rather simple way.

II. DYNAMICALLY LARGE AND SMALL ANGLES

We consider the collision of two objects in the c.m.
system, where the objects may be nuclei, nucleons, or
other lumps of hadronic matter. Only spatial coordi-
nates are considered, and all others such as spin or
isospin are ignored. We assume that the relative motion
of the centers of mass of the two objects can be de-
scribed in the stationary case by a wave function y(r),
where r is the relative coordinate, such that in the
absence of interaction

(VP+E%)y=0. ¢y

Within the range of interaction, we assume that Eq. (1)
is modified by replacement of k£ by k+«(r), and that
then describes elastic scattering. It is always assumed*-
that |x(r)| <<%, and that (r) is so slowly varying that
it changes by a small fraction of itself in a wavelength
2w/k. The effect of inelastic processes on the elastic
scattering can be taken into account approximately by
making «(r) complex, and unitarity then requires that
Imk(r)=0. «(r) evidently depends on the structure of
the colliding objects; it may depend on k, and may also
be expressible in terms of the properties of the compo-
nent parts of the objects. The spatial extent of «(r) is
found by taking the Lorentz contraction into account
in the relativistic case.

The elastic scattering amplitude has been calculated
in Sec. IT of Ref. 5, where U(r) can be replaced by
—2kk(r). The results for dynamically large angles are’

fullrke) = (k/2) f (e) expila-T--80(6) 4+, (1) 1,
] ] @
60(r)=/ k(r—Fos)ds, Bf(r)=/ k(r4-Eys)ds.

7 For a numerical test of the accuracy of Eq. (2), see J. J.
Tiemann, Phys. Rev. 109, 183 (1958).
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Here, 7ko and %k, are the initial and final momentum
vectors, q=ko—ky, and £ is a unit vector parallel to k.

The amplitude for dynamically small angles is that
obtained in the eikonal approximation. This can be
derived in several ways; it is convenient for what
follows to make use of the treatment of Ref. 5, and
write it at first in one of the forms

fually ko) = (k/2) f () expila r-+ao (0 Jr, 3

Fuallrko) = (t/27) / «(®) expila-+8, )1 @)

Equations (3) and (4) are not identical, but become so
when 6 is so small that the component of q along £ or
ks can be neglected. Now q-£o=—q-k;=k(1—cosb)
=1k62, and this is negligible when (q-£o)R<1, where R
is a typical (Lorentz-contracted) linear dimension of
the colliding objects. This condition is evidently satisfied
when 6<0,, that is, when the angle is dynamically
small. We now choose the z axis to lie along ko, and
denote by b the two-dimensional impact parameter
vector (x,y). Then Egs. (3) and (4) become

Foa g ko) (b/27) / / (b2)

X expi(q b+ « (b,z’)dz’)d%dz , (5

—0

Sao (ks ko)=2(k/2) / / x(b,2)

Xexpi(q-b-i— / x(b,z’)dz')d%dz. ©)

The z integrations are easily carried out, and Egs. (5)
and (6) both lead to the usual eikonal expression

©

fo(kyko)= (ik/21r)/e‘q'b|:1—exp<i/ x(b,z)dz>:ldzb.
@)
The physical picture underlying Egs. (2)-(4) is as
follows: Since k(r) is small and slowly varying, its three-
dimensional Fourier transform with respect to q is small
for large ¢. Then the principal effect of x(r) on the
incident wave is to act as a complex refractive index

which shifts its phase and decreases its amplitude. This
may be thought of as the resultant of a very large
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number of very small angle scatterings that occur as the
colliding objects move through each other. Each of
these scatterings produces a spherical wave which can
interfere with the original plane wave over an angular
region such that the path difference between sphere
and plane is of the order of a wavelength or less; at a
distance p from the scattering point, this angle is of
order (kp)~2. Thus associated with each scattering is
a paraboloidal volume with vertex at the scattering
point and axis of opening along the direction of in-
cidence. So long as one wishes to calculate only the
scattering at dynamically small angles, that is, well
within the paraboloid, the usual T-matrix formal-
ism can be used with the modified incident wave
expi[ko-r+80(r)] or the modified outgoing wave
expi[ ky-r—d;(r)]. These lead immediately to Eqgs. (3)
and (4), respectively.

When the scattering angle is dynamically large, there
must be at least one large-angle scattering; in the case
considered here there will be only one since such scatter-
ings are very improbable. This means that the modified
incident wave consists of two parts:® the phase-shifted
incident wave expi[ko-r+do(r)], and a wave already
scattered through the angle 6. Both of these give con-
tributions of the same order to the T-matrix element,
since the first still requires a large-angle scattering and
the second does not. It is shown in Sec. IV of Ref. 5
that the two contributions add to give Eq. (2); quali-
tatively, 6o and &7 are both expected to appear since their
paraboloids are distinct from each other when 2>6,.

III. MODERATELY LARGE ANGLES

An expression for the scattering amplitude is avail-
able that has the same accuracy at all angles that Egs.
(2) and (7) have at dynamically large and small angles.8
It is rather complicated, and will not be used here since
our primary objective is simplicity. Instead, we follow
Ross® and interpolate between (2) and either (3) or (4):

Fllss o) = (/2m) / «(®)
X expila-t-+50@)+7 (05 1, (©)
fallrko)= (&/21) / (@)

Xexpil - r+v(6)d0(r)+6,(x) Jd*r. (9)

8 D. S. Saxon and L. I. Schiff, Nuovo Cimento 6, 614 (1957),
Eq. (25).
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Here, v(6) is a smooth, not necessarily real, function of
the scattering angle that is zero for <0, and unity for
6>>0,. Neither (8) nor (9) satisfies the reciprocity? rela-
tion f(ksko)=f(—ko, —k;), but their average does
and can be used for interpolation between dynamically
small and large angles.

We now approximate to Egs. (8) and (9) under the
assumption that the scattering angle is geometrically
small, i.e., 6<1. This means that 8, and §; are calcu-
lated with the approximation that the ko that appears
in 8 and the &; that appears in 8, are each perpendicular
to g, instead of departing from perpendicularity by the
angle 6. In order to estimate the error involved in this
approximation, it is convenient to rotate the earlier
coordinates by 36 so that the new x axis lies along q,
and £, and Iéf lie in the xz plane. We can then expand

ol = o/2) [ [s(b) expi(:b+

ullrled = /20) [ / «(b) expi( a:b++(0)

As with Egs. (5) and (6), the z integrations are easily
carried out, and (11) and (12) both lead to

eiq~b (ei'y @) x(b) — e'ix (b))dzb ,

(13)

ke ik
fulbk = f

X(b)= f " (b)ds.

Equation (13) is our approximation for the scattering
amplitude at moderately large angles, i.e., angles that
are geometrically small although they may be dy-
namically small, intermediate, or large. It reduces to the
eikonal expression (7) when v(6)=0 or 6<0,, and to

(k/2m) / e 17X (b)ex ™2 (14)
when v(8)=1 or 8>0.. It is interesting to note that Eq.
(14) is essentially an expression that has been con-
jectured as a description of pion-nucleon charge-
exchange scattering.!®

The neglect of the 6-dependent terms in the expansion
(10) is considered from a different point of view in the
Appendix. This consideration is important in recon-
ciling an apparent conflict with one of Ross’s numerical
examples.®

IV. CONCLUDING REMARKS
In the eikonal approximation, e*® is simply the
transmission factor or S matrix element S(b) that cor-

9 R. Glauber and V. Schomaker, Phys. Rev. 89, 667 (1953).
10 N, Byers and C. N. Yang, Phys. Rev. 142, 976 (1966).
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the integrands of 8, and §; about the z axis; for example,

do(r)= f k(x—s sin6, y, 2—s cosif)ds
0

/ k(x, v, 3—s)ds
0

0

—%0/ 5(8/0x)k (x, y, 2—s)ds+0(6%). (10)

The order of magnitude of the term proportional to
6 is 6kR, so that the contributions of this term to the
phase can be neglected if 6<<1/xR. Since in typical cases
kR is not large in comparison with unity, the neglect of
all except the first term on the right side of Eq. (10) is
justified if @ is geometrically small.

With this approximation, Egs. (8) and (9) become

z

«(b,2')dz' 7 (0) / K(b,z’)dz')dzbdz, (11)

k(b,z")dz'+ ] x(b,z’)dz’)dedz. (12)

responds to the impact parameter b or (with spherical
symmetry) the orbital-angular-momentum quantum
number J=>bk—3. It is often assumed!—2 that S(b) can
be written as a product of matrix elements S.s, each
of which describes the scattering of a component part «
of one of the colliding objects on a component part
of the other. The eikonal approximation expresses the
elementary scattering amplitude as the two-dimensional
Fourier transform of @qg=1—S4s. The total amplitude
is then the Fourier transform of

a=1=8=1—]] Sap=1—J1(1—ass), (15)
a,B a,p

and the number of ¢.4’s multiplied together in any term

on the right side of Eq. (15) cannot exceed the number

of interacting ‘pairs of component parts of,the two

objects. Physically, this limitation occurs because the

over-all scattering angle is very small in the eikonal

approximation.

. When Eq. (13) is used, however, the total scattering

amplitude is the Fourier transform of

(51=8)/ (A=) =e—hy@—hy 2—)ai— -+, (16)

where ¢ is given by Eq. (15) if the elementary scatter-
ings can be described by the eikonal approximation.
Thus, as would be expected physically, multiple scatter-
ings of the component parts of arbitrarily high order
occur when the over-all scattering angle is not dy-
namically small, that is, when () >0.

It should also be noted that, as has been done with
the eikonal approximation,’—® the S.s can be regarded
as operators. Then matrix elements of (13) can be
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taken between initial and final states of the colliding
objects that differ through rearrangement of the com-
ponent parts of each. This corresponds to inelastic
scattering in the nuclear case, and to the diffractive
excitation process of Chou and Yang® in the had-
ronic case.

Finally, it is interesting to compare the two available
sets of high-energy proton-He?* scattering data in the
context of Eq. (13). The Brookhaven group has pub-
lished elastic cross sections at 1000 MeV," and the
Virginia group at 600 MeV,? with angular ranges such
that values of invariant momentum transfer squared
up to 0.7 (BeV/c)? appear in both experiments. The
nucleon-nucleon amplitude used in analyzing these data
is of the form kg(g?). This means that «(r) is independent
of % so that the earlier work!? based on the eikonal ex-
pression (7) predicts that the differential cross section
in the c.m. system is proportional to 2% In actuality,
for momentum transfer squared less than 0.5 (BeV/c)?,
the cross section is proportional to %2 everywhere
except in the neighborhood of the minimum (see Fig. 1).

This behavior is to be expected when Eq. (13) is
used. For dynamically small angles, y=<0 in both sets
of experiments, and for dynamically large angles, y=21
in both cases. Thus in each of these situations, v is
fixed in going from 600 to 1000 MeV, and the cross
section is expected to scale in proportion to 42, as indeed
it does. In the dynamically intermediate region, how-
ever, where the angle might still be regarded as geo-
metrically small, v(#) is changing rapidly, and not in
the same way for the two sets of experiments since their
0, values are somewhat different. Since the two minima
occur in the neighborhood of the two values of 6,
(20° to 30° in the c.m. system), the two sets of data
should not scale in proportion to k* near this first
minimum. In fact they do not: The minimum cross
section in the 600-MeV data is relatively higher and
occurs at a larger momentum transfer than in the 1000-
MeV data. This observation provides support for the
superiority of (13) with respect to (7) at moderately
large angles.

APPENDIX

There appears to be no reason why the expansion in
Eqg. (10), and the subsequent neglect of the §-dependent
terms, cannot be applied to Eq. (3). If this were done,
it would be equivalent to the neglect of the component
of q parallel to k¢ in the exponent of the integrand,
which, as shown in Sec. II, leads to the eikonal ex-
pression (7). However, Ross showed, by means of a
numerical example in Sec. IT of his paper,® that neglect
of this longitudinal component of q seriously overesti-
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F16. 1. Elastic proton-Het differential cross sections in the c.m.
system from Brookhaven at 1000 MeV laboratory energy (Ref.
11) and from Virginia at 600 MeV (Ref. 12). The Brookhaven
data are scaled down by the square of the ratio of the proton
momenta in the c.m. system: (0.878/1.170)2=0.56.

mates the amplitude even for quite moderate scattering
angles. Another numerical result, quoted in Sec. IV of
his paper, shows that at §=90°, inclusion of the &
term in Eq. (2) increases the amplitude by a factor 30
as compared with its omission. It is the purpose of this
Appendix to show that these results make plausible the
expansion procedure of Eq. (10) when applied to (8)
with 4 appreciably different from zero, but not when
applied to (3).
We write Eq. (8) in the form

fulles ko) = (&/2) f S (P ()P,
Fi(t)=x(t)ePo® = (2r)‘3/2f¢1(k)e“fk"d3k , (7N

Fa(r) = eiv®3® = (2r)-302 / o ()%
It follows at once that
ko) = (k/2m) / o ®ea(a—R)F.  (18)

If we suppose for simplicity that x(r) is spherically
symmetric, then ¢:(q) has axial symmetry about the
vector ko through the origin of k space, and falls off
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anisotropically with a scale factor of order 1/R as k
moves away from the origin. ¢:(k) has a similar be-
havior with £ substituted for ko, but in addition has a
d-function smgulanty at the origin and a 1/ singu-
larity at the origin along the ==£, directions. The latter
singularity and the ¢;-like behavior both decrease as
v — 0, and only the § function remains when y=0.

If now we apply the Fourier transforms in Eq. (17)
to (3), we see that fs;, which is f; with y=0, is equal to
(k/2m)¢1(q). Then, the first of Ross’s numerical ex-
amples quoted above shows that ¢:(q) falls off rapidly
as g acquires a longitudinal component, that is, as it
departs significantly from the plane through the origin
perpendicular to ko. On the other hand, if we consider
Eq. (8) from the same point of view when v is appre-
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ciably different from zero, we see that there is a sub-
stantial overlap of b1 and ¢; in the integrand of (18).
This occurs when k is roughly equal to 3q and in the
plane through the orlgm perpendlcula.r to £, and q—k
is roughly equal to 3q and in the plane through the
origin perpendicular to . This overlap accounts for
the second of Ross’s examples.

The conclusion is that when y=0, inclusion of q- o,
the longitudinal component of q, causes (3) to be con-
siderably smaller than (7). But when v is appreciably
different from zero, inclusion of the ¥§; term in (8)
compensates for this decrease. Since v(6) and q-& in-
crease together as 6 increases from zero, it is then per-
missible to make use of the expansion (10) in going
from (8) to (11).
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Nuclear-Matter Sizes in the Tin Isotopic Sequence*}
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Differential cross sections and polarizations have been measured for 39.6-MeV protons elastically scattered
from 116Sn, 118Sn, 120Sn, 1228n, and #Sn. These data were analyzed with the optical model of Greenlees, Pyle,
and Tang to extract nuclear-matter rms radii. These radii are significantly greater than the corresponding
proton radii, and indicate that the neutrons added between successive even isotopes are added to the surface
of the neutron distribution, with the exception of the isotope pair 118Sn-12Sn, in which case an anomaly

occurs which suggests a structural rearrangement.

I. INTRODUCTION

HE optical model has been used extensively in the
analysis of proton elastic-scattering data in the
energy region below 50 MeV*'? and has been remarkably
successful in representing such data. However, am-
biguities exist in the parametrization, making it im-
possible to quote a unique set of parameters even for the
scattering from one isotope at one energy. It is, there-
fore, difficult to extract any physically significant
information from such analyses.
Recently, Greenlees, Pyle, and Tang?® have produced
a reformulation of the model which derives the form
factors of the real-central and spin-orbit parts of the
potential from the nuclear-matter distribution and
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appropriate components of the nucleon-nucleon poten-
tial. It has proved possible in this formulation to
extract, from proton elastic-scattering data, the nuclear
matter rms radius to an accuracy of 2-39%, and the
volume integral of the real-central potential to about
5%. Reference 3 analyzed a range of elements with 4
from 58 to 208 at incident proton energies of 14.5, 30,
and 40 MeV. The nuclear-matter rms radii obtained
were independent of energy for a given 4 and signifi-
cantly greater than the corresponding nuclear proton
rms radii obtained from electron scattering and u-
mesonic x-ray studies. The volume integrals of the real-
central potential were simply related for various mass
numbers at a given energy, but the results suggested a
gradual decrease in these integrals with increasing
incident proton energy.

For analyses using the model of Ref. 3 it is desirable
to have both elastic differential cross-section and
polarization data. The present experiment involved the
measurement of such data for protons with an average
incident energy of 39.6 MeV scattered from a range of
tin isotopes. The primary motivation was the analysis
of the data, using the model of Ref. 3, to study the
variation of nuclear-matter rms radii within an isotopic
sequence.



