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A model for odd-odd nuclei is described in which the odd neutron and proton are coupled to a symmetric,
rotating core. The Hamiltonian consists of four parts: Bg, the Hamiltonian for a rotating core of 6xed shape;
II„and II„, the Hamiltonians for a proton and a neutron moving in a symmetric oscillator potential with
1 s and 1 terms; and V„„,the residual neutron-proton interaction. This latter was taken to have a Gaussian
radial dependence with a Serber exchange mixture with parameters picked to reproduce the low-energy
singlet and triplet scattering lengths. The energy eigenvalues were obtained by an exact diagonalization of
the total Hamiltonian using a core-particle basis to which a truncation procedure is applied to account for
the 6lling of the shells. The model has been applied to ' Al, ' P, '~P, and ~6Cl, determining the core-strength
parameter P, the deformation parameter P, and the well-depth parameter ) by Qtting to the known energy-
level sequence. The state functions so obtained were used to calculate static magnetic dipole and electric
quadrupole moments, and for' P the mixing ratio B~ for two 2+ to ground transitions. The Gt to the measured
energy levels is quite successful; however, only in "Al and "P is the residual neutron-proton interaction
needed. The values obtained for the static moments are rather poor. The results are compared, where pos-
sible, to a shell-model calculation.

I. INTRODUCTION'

S OME time ago Chi and Davidson' showed in a
detailed investigation that an asymmetric core

collective model can explain quite successfully the
low-lying level structure of odd-A nuclei in the 2s-1d
shell. This model was a logical extension of the asym-
metric core collective model of even-even nuclei erst
discussed in detail by Davydov and Filippov' which
can be applied with some success to the even-even 2s-1d
nuclei "Mg "Si, and "S.Application of this model to
odd-odd nuclei in this shell was immediately suggested;
however, the then available experimental information
was not sufhcient to warrant such an investigation
because of the computational di6icu1ties involved.
Currently, even though these nuclei are most in need
of experimental study, there are several with a suQicient
number of known levels to permit 6xing the model
parameters. Furthermore, since the appearance of the
odd-A paper' this phenomenological collective model
has been given a great deal of theoretical support by
the microscopic calculations of Bar-Touv and Kelson. 3 4

In their 6rst paper on even-even nuclei they solved the
Hartree-Fock problem in this shell without imposing
the condition of axial symmetry on the intrinsic states 3

The results of the calculation showed that the 2s-1d
shell contains two regions of significant asyrrunetry near
'4Mg and "S.In terms of the usual asymlnetry param-
eter y they found y('4Mg) =25' and p("S)=32' which

was quite consistent with what was found by Chi and
Davidson, ' y(»Mg) =28', y("P)=31 . In their second

paper they extended their earlier calculation to the
odd-A nuclei 'Mg and "P and obtained results similar
to the earlier phenomenological calculation.

As a resu1t of these investigations, we felt that a
calculation of the odd-odd nuclei would not only give a
better understanding of the model, since logically it
would contain explicitly the residual neutron-proton
force, but also might provide structure predictions
useful to further experimental investigation of these
nuclei. The regions of significant asymmetry (opera-
tionally defined as y&20') being where they are, the
most useful nuclei to investigate were thought to be
"Al, "Al, "P, "P, ~C1, and "Cl. Of these only "Cl has
an insufhcient number of levels with assigned spins and
parities to 6t the model parameters. ' The size of the
basis, the desire to calculate the positions of levels up
to I=4, and the nature of the diagonalization routines
(which required double precision arithmetic) restricted
the calculation to axially symmetric shapes. Even so,
machine core size prevented us from including "Al
(which has an I=5 ground state) in our investigation.

In Sec. II we discuss the model Hamiltonian and the
basis that we have used to diagonalize it. In Sec. III
we obtain the model parameters for the given odd-odd
nuclei by fitting to their known level structure, and
6nally in Sec. IV we present certain conclusions
concerning this model.

II. FORMULATIOH OF MODEL

The basic assumption of the model is that one has
two particles outside of a deformed core. The core is
assumed to be inert to vibrations and its only contribu-
tion to the total energy of the system is through
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3 J. Bar-Touv and I. Kelson, Phys. Rev. 138, 81035 (1965 .
' J. Bar-Touv and I. Kelson, Phys. Rev. 142, 599 (1966).
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rotation. The total Hamiltonian is then with

A'
H = P—+H„(r„l~,s„)+H„(r„,l„,s„)

l
+V,„(r„r.,e„n.), (1)

where I.I, are the components of the core's angular
momentum on the body fixed axis system; SI, are the
corresponding moments of inertia about these axes;
Ho(ro, lo, so) and H„(r„,l„,s„) are the Hamiltonians for
the proton and neutron, respectively, and V„„(r„,r„,
tro, n„) is the residual p-rt interaction.

We now assume the core has an axis of symmetry
which we shall choose as the 3 axis so that 8~——d2 ——80
Q 83. One also replaces the core's angular momentum by

where I is the total angular momentum of the nucleus

(a constant of the motion), and j„and j„are the angular
momenta of the extra core proton and neutron. The
condition of axial symmetry requires no rotation about
this axis, and hence Eq. (1) becomes

Q f(J~' 21',s 2I—Ij s+j„—a'+j.p'
2~0 tlt; 1

+ 2i.„j„,))+H, (r„,l„,s,)
+H„(r„,l„,s„)+V„„(r,r„,e,e„). (2)

Both H„(r„,l„,s„) and H„(r„,l„,s„) have been chosen as
the Nilsson' Hamiltonian for a particle moving in a
spheroidally deformed, harmonic oscillator well subject
to an I s interaction. This Hamiltonian is given by

H;(r;, 1;,s;)=P, / s2~t+t-,'( 'ttco)p[ —1 P&pp(t);, q;)]
+CI; s;+Dli' (3)

where P is the deformation parameter introduced by
Bohr, ~ p; is the reduced particle mass, and C and D are
parameters introduced by Nilsson. '

The unsymmetrized basis is taken to be the product
representation DPI~ *;,g„;„g„,where D~J; * are the
(2I+1)-dimensional representation of the rotation
group dered by Rose' and X;,&„and X;„&. are the
particle solutions to the spherically symmetric potential
in a coupled representation. If we now demand our
solution to be symmetric under rotations through 180'
about an axis perpendicular to the symmetry axis, the
state function corresponding to Eq. (2) becomes

A r(j„,Q„,j„,Q )
fDjelr ~to "ops'n nn

K2

+ ( 1)' 'o '"Dst x'*Xs„—, n„Xs.,-n.), (4)-
6S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys.

Medd. 29, No. 16 (1955).
~ A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.

26, No. 14 (1952).
s M. E. Rose, Elemerstory Theory of Angular 3f'omerstlm (John

Wiley R Sons, inc. , New York, 1957}.

The quantities E, 0„,and O„are the projections of the
total angular momentum, and the angular momenta of
the proton and neutron on the axis of symmetry.
Except for "Al the d5~~ shell is truncated from the basic
states X;g, and thus considered to be part of the core.

The remaining term to be discussed is the residual
p-rt interaction. For initial quick scans of the parameter
space we used

V„„(r„r„,o„,tr„)=Xp5(r„r.)(—1 n+n—n, tr.), (5)

which being of zero range has the nice analytic property
that the derived level order is independent of the
harmonic-oscillator parameter keno. The parameter o.

was fixed by the zero-range Rosenfeld mixture. ' Since
only two nuclei were found to require the use of this
interaction the final 6tting was done using the interac-
tion potential used by Newby" in his study of the
odd-even shift in rare-earth nuclei. This potential has a
Gaussian radial dependence with a Serber exchange
mixture. It has the advantage of reproducing the low-

energy singlet and triplet scattering lengths.
The entire Hamiltonian matrix was diagonalized for

each nucleus. The parameter set is given by

8=5'/2dpdtco p,

8= K)

X= Xp/KAtop.

Here I' is the core strength parameter which is, apart
from a factor of 4 identical to that used before' and
Ic is the parameter introduced by Nilsson, ' It = —C/2Acop.
The quantity I(,keno is simply a scale factor and does not
aGect the level order. Wherever possible the results
obtained were compared with the shell-model results
of Glaudemans, et al'." In the latter calculation, all
nuclei beyond "Si in the 2s-j.d shell have been fit with
the same set of parameters. The basic physical notion
that one has of the collective model leads us to believe
that the associated parameters should vary from nucleus
to nucleus.

III. APPLICATION OF MODEL TO SOME
NUCLEI IN 2s-1d SHELL

A. Energy Levels

We have applied the model discussed above to several
nuclei in the latter half of the %=2 oscillator shell.
Here the odd-nucleon numbers, in the notation of Ref. 1,
have the range 9&i;&19. In this subsection we shall
discuss the energy eigenvalues and the eigenfunctions

' L. Rosenfeld, Nuclear Forces (North-Holland Publishing Co.,
Amsterdam, 1948).

"N. D. Newby, Jr., Phys. Rev. 125, 2063 (1962)."P. W. M. Glaudemans, G. Wiechers, and P. J. Brussaard,
Nucl. Phys. 56, 529 (1964); 56, 548 (1964).
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while in the next subsection we shall be concerned with
the static electric quadrupole and magnetic dipole
moments as well as the M1 and E2 transition probabil-
ities calculated from these eigenfunctions.

As stated before, we have restricted ourselves to the
latter half of the shell simply because of memory size
in the available computer. This also restricted the
calculation to cores with axial symmetry. Within this
set we have fit the model to those odd-odd nuclei with
at least three low-lying, positive-parity levels whose
spins were well known. In Figs. 1—3 we show a compar-
ison of the experimental' and calculated energy-level
structures of these nuclei. In these figures we also
compare, where possible, our calculation with the sheB-
model calculation of Glaudemans et at."In Table I we
list the values of the parameters for each nucleus fitted.
Here we have taken z= 0.05, the usually accepted value.

We consider in turn the details of each of the fitted
nuclei in the shell.

MeY

2.0-
EXPT. THY.

3t

(2, 3) +

4+
3+(2, 3) +

— I, 2) w
1.0-

0.5

1. t t=13 l s 15 s—s—A/ ssP

These nuclei consist of a 1d5~2 hole and a 2s~~2 particle.
For ' Al all of the lds~s states were truncated from the
neutron basis, whereas no particle states were truncated
from the proton basis. The most obvious feature of the
observed level structure is the pair of close doublets
separated by almost 1 MeV. In order to obtain the
correct spacing and sequence in the lowest doublet
the extra core particles were taken to be rather weakly
interacting. However, this interaction was absolutely
necessary for when it was turned o8 the spin sequence
was 2+, 3+ and no values of the other parameters could
invert it. The spins of the second doublet are not
known, but the parameter fit gives the order as 3+, 4+
with the fourth excited state as 1+ as is observed. These

2+
30

AI
l3

Fio. 1. A comparison of the experimental measured energy
levels arith the values given by the model for the odd-odd nucleus
"Al. The model parameters are given in Table I.

results are shown in Fig. i. Our previous experience'
leads us to believe that the 2'P system will be fit with
very simi1.ar parameter values.

Z. t t =ps =15; "P
This self-conjugate nucleus is perhaps the most inter-

esting of the ones studied and we shall consider the re-

(c)(a) fb)(a) (c)(b)
MeV

3.0— 2+(t-l)
2+

(1)
(2+, T 1)

L&3+)3+(2)

3+

1+
1+2+

3+FIG. 2. A comparison of the ex-
perimental measured energy levels
(a) with the values given by the
model (b) and with the values
given by the shell-model calcula-
tion of Ref. 11 (c) for the odd-odd
nuclei ' P and»P. The model
parameters are given in Table I.
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MeV

215

2. 0-

(a}

(1, 2)+
3-

2-
2+

t1, 2)+

(c) both neutron and proton. In the limit of noninteracting
particles, the diagonal contributions to the Hamiltonian
matrix are given by

E(I)K)= (iss/2&o)LI(I+1) —E'+ (—1)r+'u a„b& oj
+e„+e„. (6)

The first two terms in the brackets come from the
rotational part of the Hamiltonian while the third
term is due to the Coriolis force. The quantities e~
and e„are the single-particle energies and e„and a„
the corresponding decoupling parameters. ' Since the
two extra core particles are assumed to occupy the same
Nilsson orbital we may write these as

1.0-

0.5-

2+

2+
1+

In this case the odd nucleons can couple to form E=0
and E=1 bands. From Eq. (6) it can be seen that the
level sequence is I(E)=0(0), 1(1), 1(0). One cannot
account for the experimental level sequence by allowing
E-band mixing between the two I=1 levels (although
this is important), since this leads to the conclusion
that (as—1)s be negative.

Clearly the residual p-os interaction will be important
here. Indeed Newby" has shown that this interaction
plays a central role in the odd-even shift in the E=O
bands in the rare-earth deformed nuclei. The correction
to the total energy of Eq. (6) resulting from this interac-
tion is given by

Ci1?'

Fn. 3. A comparison of the experimental measured energy
levels (a) with the values given by the model (b) and with values
given by the shell-model calculation of Ref. 11 (c) for the odd-odd
nucleus 3'Cl. The model parameters are given in Table I.

2p olts o1po JrS

C;„u„*C,„u„*C;„u,C;„u„

TasLE I. The values of the model parameters: P, the core
strength parameter, P the deformation parameter, ) 0 the residual
P-e vrelI-depth parameter, and Aco0 the over-all scale parameter for
odd-odd nuclei in the second half of the 2s-1d shell. The quantity
Po is the inverse oscillator length defined by Poo = ooocoo/lt.

Nucleus

ASSAI 13
~P 15
"P 15
36cl 17

0.12
0.19
0.17
0.56

—0.10
0.15
0.10
0.72

&oPoo/4or ilooo (MeV)

—2.54—4.46
0
0

32.0
28.6
32.0
6.8

suits in somewhat greater detail. The ground and first
excited state spins, 1+ and 0+, respectively, were the
controlling factors in the choice of parameter values.
In fact, only by including the residual p-oo interaction
were we able to obtain this proper order. Again, when
it was turned oB the order was reversed and no values
of the other parameters could reinvert it. One can
understand this by considering the simplified problem of
each particle occupying a single deformed Nilsson
orbital which in this case is the —s+L2,1,1$ state for

X(j,'f), ',jn'llo j &yn~ /year Jof)n)'
and the deformed orbital expansion coeKcients C,g are
taken in the coupled representation.

If we require the 0+ and j.+members of the E=Oband
to have an inverted order then the following inequality
must hold:

(Q~'o0„'| V„„i—Q„o—0„)((—fos/2 do) (1+as) . (8)

One can get a rough idea of how sensitive the con-
6guration (sr+[2,1,1])s wiH be to a particle-particle
interaction by determining the matrix elements in

Eq. (7). These are shown in Table II evaluated for
different values of the deformation parameter P. The
form of the potential used was that of Newby" and the
inertial parameter was determined from the erst excited
state of 'Ssi. It is clear from this table that in general the
fitting will be very sensitive to the residual interaction.

The parameters obtained from the fit are given in
Table I and the results of this fit are shown in Fig. 2,
where they are compared not only with experiment but
with a recent shell-model calculation. " %e have
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TAnzz Il. Matrix elements for the residual p »-interaction as a function of the deformation parameter S=s (5/4&r)'I&p. Both extra core
nucleons are assumed to be in the )+[2, 1, 1$ ¹ilsson orbital. The level sequence so generated is shown in the last column. The form of
the potential is identical to that of Ref. 10. These correspond to the self-conjugate nucleus "P.All matrix elements are in MeV.

—0.2—0.1
0.1
0.2

—2.902—2.989—2.880—2.798

—2.194
g' —2.550—2.481—2.090

&k,xsll'v. lk, k) &k,
—sly'v. lk, -4) &4, -kl~v I

—xs 4)
—0.676—0.782—0.739—0.641

(1+a')
240

-0.722—0.876—0.485—0.302

Level sequence
1(E)

1(1) 0(0) 1(0)
1(1),0(0), 1(0)
1(0), 1(1) 0(o)
1(0), 1(1),0(0)

truncated the 1d5~2 states from both the proton and
neutron bases which assumes an inert 2'Si core. The
shell-model calculation of Ref. 11 also assumes this.

One 6nal comment is that one should expect that near
ssSi the value of (xhcos)P should correspond roughly to
the inertial parameter determined from the 6rst excited
state in "Si.For s'Si this parameter is 295 keV, whereas
for ~P it is 272 keV.

3. i't=15& is=17; ssI' "Cl

For this system, the residual p-e interaction was not
needed to yield the correct level order for the ground
and 6rst excited state doublet. Including this interaction
has little effect on the erst few levels and its effects can
be absorbed into the scale factor. The id~~2 states were
truncated from the proton bases and the (ides, 2sr~s)
states from the neutron basis. The latter restriction must
be viewed with skepticism since (d,p) reactions on "P
seem to indicate 2s~~2-state mixtures available to the
captured neutron. "A possible remedy for such situa-
tions will be discussed in the conclusions. The param-
eters are given in Table I and the results are displayed
in Fig. 2, where they are compared with experiment and
a recent shell model calculation. " It should also be
mentioned that for a somewhat diQerent set of param-
eters the level sequence (1+, 2+, 0+, 1+, 2+, 3+) can be
obtained; however, the second 1+ level does not 6t quite
as well. For ~Cl only the ground-state spin is known
(I= 2+) and apparently it has no near neighbor to form
a close doublet. '

4. it=17, is=19; ssCl, "K

For this system we have assumed the level sequence to
be 2+, 3+, 1+, ~ ~, which order does not require the
residual p-I interaction. In ssK only the ground-state
spin is known. ' The parameters are shown in Table I
and the 6t compared with experiment and a recent
shell-model calculation" in Fig. 3. Thus, near the end
of the shell one should not expect the model to work
well, which is born out by the unrealistic parameters P
and Acro in Table I.A s&m&lar situation was found earlier'
in»{"1and this Gt has been included for completeness.

&s W. C. Parkinson, Phys. Rev. 110,485 (1958).

B. Magnetic Dipole and Electric Quadrupole
Matrix Elements

The previously described 6tting procedure not only
determines the eigenvalues e, but the components 8„
of the eigenvectors which in turn may be used to
calculate transition probabilities between states and
the static moments for the various states.

We have calculated the ground-state magnetic
dipole and electric quadrupole moments as well as the
M1-E2 mixing ratio, de6ned as"

T(E2:I—& I 1)—
5'(I-+ I 1)=-

T(M1 I + I—1)—(9)

These calculations, and indeed the results, are much
the same as the earlier odd-A calculation' except that
two nucleons are now involved. As usual we make use
of the de6nition for the transition probability per
unit time for emission of a photon of energy hv and
multipolarity X;

8&r()&.+1) f'hv '"+'
T(Z) = B()), (10)

XkL (2) +1)!!)'k bc

where B(X) is the usual reduced transition matrix
element. "For Mi transitions we 6nd

3 2

B(~1)=—
l ~~ Z 2 Sfv'S*~(j'IIG ljls)IvI '3' (ll)

where

0'IIGlli)=(g. —a) (i'lie llj)+(a —g.) (i'lli lli), (»)
M, , '=C(I1I'; KAK)C(j slj v,', Qs, AQs)be Jr, an„bn, , n„

+( 1)r '& '"C(111';—K,ZK)—
XC(js'1js', —Q,ZQ )bn„. n,biz, xns- (13)

For E2 transitions,

B(E2)=Le g Sg;S;,(aQ;,

where

If&&I~&vv=C(I21'; K&DK)Cj(r&2jr& & Qr»AQr&)barr, ao„
+ (—1)' '«'"C(I21'& K,ZK)—

XC(js&2js& ', —Qs&,ZQv)bxo„, xrc, (15)

"J.P. Davidson, Rev. Mod. Phys. 87, 105 (1965).
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'gAsLE ZZZ. Comparison of the calculated values with experimental values of the ground-state magnetic dipole and electric quadrupole
moments For 32p and 'Cl values of I' and p which best Gt the calculated and measured values are also given.

Nucleus

"Al
30P
32P
86cl

expt
(p) 6 ar)

~ ~ ~

—0.2523
1.284

theoret

9.584
1.865
0.5732
2.'f14

expt

~ ~ ~

—0.0168

&Q)(b)
theoret

—0.1159
0.0124—0.0245
0.5872

~ ~ ~

0.55
0.27

~ ~ ~

0.03
0.05

6t ted&a), &Ql

& )(iN)

~ ~ ~

—0.2523
1.314

~ ~ ~

—0.0013—0.0168

A „„=8;;,;,8,„,;„Pn„,n„on„.n„C(I2I', K ~E)parr. p

+ ( 1)—' '~ '"5n„n„,&n„n„,
&(C(I2I'; —K& E)b rz, p] (16)

and as before
a.=3Z&p'P/4s,

G&=A/mtpp,

Z, being the charge of the core. The C(IrIpI; mimp) are
the usual Clebsch-Gordan coeflicients defined in Ref. 8.
From the above expressions 5 follows ixnmediately. The
static moments are just

) 1/2

(~)=g.I+I
l 2 Z ~.r~, r(I+11 s-i r.v'

t 16sI(2I—1) ~"'
Z s„s„.

k(I+1)(2I+3)) pr'

X (& ~»++.(J'lip'I'pili. )~ ") (13)
In the above we have used the abbreviations ZE=E
+E', DE=K' K, and g.=—Z/A.

The results of these calculations are shown in Table
III and are quite similar to the odd-A case. ' In Table
III we also show the values obtained for P and P by
fitting to the magnetic dipole and elect.ric quadrupole
moments for "P and "Cl.We have also calculated 8 for
the two 2+ -+ 1+ ground-state transitions and find
them several orders of magnitude smaller than the
values obtained by Harris et u/. "in the nucleus "P.

IV. CONCLUSIOÃ

%e have seen that by exact calculation using a very
simple nuclear model, which is in every respect a
logical extension of one used to study odd-A nuclei in
this shell, that the energy levels for odd-odd nuclei in
the last half of the 2s-1d shell compare quite favorably
with those observed. That is, the Hamiltonian of Ref. 1
is extended to the case of two extra core nucleons, and
it is diagona1ized exactly with respect to a similar core-
particle basis. However, the Gt is achieved at 7=0'
(axial symmetry) here, whereas in Ref. 1 it was found
that the best fit for the nuclei "Si,"P, "P, and 3'Cl was
near p=30'. This does not mean that better 6ts may
not be found at other values of y, nor does it support a

"G. I. Harris, A. K. Hyder, and J. Walinga (private com-
munication).

recent microscopic calculation which indicates that
nuclei in this shell may be symxiietric" since only the
value y=oo was used here. Only in two cases was the
residual p-n interaction at all necessary to obtain the
level sequence and then it was vital. The results for
"Cl very near the end of the shell are simiIar to those
obtained for 3'Cl earlier' and have been included only
for completeness since such a collective model is doubt-
lessly not suitable so near the spherical nucleus "Ca.
%e note that not only are the model parameters not
reasonable (E and P too large, fsppp too small) but that
the sign of the quadrupole moment is wrong. However,
the results for "Al 'oP and 3'P are a].1 quite good with
reasonable model parameters.

This calculation has the same deficiencies observed
in the odd-A case for the electric quadrupole matrix
elements which are too small by far to account for the
strengths of the E2 transitions measured recently in "P.
This would seem to be a characteristic of the model.
In "P the fact that the magnetic moment has the wrong
sign may indicate that the ground-state wave function
sho'uld have a contribution from the d5/2 orbitals.

We should also expect the model not to work too
we11 in predicting spectroscopic factors for single- and
two-nucleon transfer reactions because of the truncation
of the shell-model states. Since in these models one
usually takes the Pauli principle into account by
removing filled states from the available basis, a method
which does not remove complete shell-model states
might produce more consistent results. In the present
method one simply is not taking full advantage of the
configuration mixing introduced by the collective
potential. Possibly a more suitable procedure would be
to choose a basis of particle states composed of deformed
Nilsson orbitals. This would also remove ambiguities in
truncation which arise in the present method and would
make available to the basis components from the d5~~
subshell.
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