PHYSICAL REVIEW

VOLUME 176,

NUMBER 4 20 DECEMBER 1968

Hindrance Factors for Beta Decays of Heavy Nuclei*

Hirovasu Epirif
Department of Physics, University of Washington, Seattle, W ashington 98105

AND

Kivomr IKEDA

Department of Physics,

University of Tokyo, Tokyo, Japan

AND

Jon-Icur Fujirat
Depariment of Physics, Indiana University, Bloomington, Indiana
(Received 26 March 1968)

The schematic model proposed by Brown and Bolsterli, and applied to the giant dipole resonance, is
extended to the 8 and v transitions of heavy nuclei. Special emphasis is placed on the extent to which for-
bidden B decays of heavy nuclei are hindered because of possible giant resonances corresponding to those
found in the electromagnetic transitions. A new method of calculating hindered forbidden nuclear matrix
elements is proposed on the basis of the schematic model. It is shown that the hindrance factor due to the
giant resonance effect is roughly 4 for the first-forbidden 8 transitions. Systematics of unique first-forbidden

transitions are examined from this viewpoint.

I. INTRODUCTION

T is customary? to classify 3 transitions into allowed,
first-forbidden, second-forbidden, etc., according to
the spin and parity changes between initial and final
nuclear states. The ft values of 8 transitions have proved
to be useful in determining forbiddenness of the transi-
tions and, accordingly, spins and parities of relevant
nuclear states. However, discrimination in f¢ values
between different forbiddennesses is sometimes ob-
scured by the fact that a number of allowed transitions
have ft values comparable to those of first forbidden
transitions and similarly for higher forbidden ones. The
purpose of this paper is to discuss the origin of such
hindrance (retardation) phenomena and also to point
out a characteristic difference between allowed and for-
bidden transitions. In this section the present status of
the hindrance phenomena is briefly reviewed.

A. Allowed Transitions

It has long been known that the “normal allowed” 8
transitions are much hindered in comparison with the
so-called “‘super-allowed” transitions, for the latter of
which nuclear matrix elements have the order of magni-
tude predicted by the single-particle shell model.
Several ways to explain such hindrance phenomena have
been tried.

1. “Core-Overlap” Effect

The oldest idea is that hindrance arises from small
“core overlap” between the parent and daughter
nuclei.?3 If this effect is due to a difference of deforma-
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tion between the initial and final cores, it is expected
to be most clearly manifested by 8 decays in the transi-
tion regions. Though the existence of such an effect?
has been indicated by the study of transition regions, it
seems to be improbable® that the origin of the hindrance
phenomena can always be attributed to lack of core
overlap.
2. Pairing Correlation Effects

Several years ago the pairing model was applied to
the study of B-decay systematics, and it was shown® that
for a number of normal allowed transitions the isotope
dependence of f¢ values can be well reproduced if the
coupling constant is phenomenologically renormalized
for each type of transition (i.e., go2 <> g2, etc.). The
renormalized coupling constant was found to have
about the same magnitude for both spherical and de-
formed nuclei. The most recent study’? of deformed
nuclei showed that the experimental transition rates
are typically 20 times lower than predicted by the pure
Nilsson model, and eight times lower than predicted by
the Nilsson model with pairing corrections.

3. Gamow-Teller Giant Resonance Effects

In 1961 isobaric analog states were experimentally
discovered?® in the study of (p,n) reactions. The state
T_|1), isobaric to the initial state |4), was shown to be a
well-defined state with a narrow width having the order
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F16. 1. B transitions on the collective states of (a) Fermi type
S1, (b) Gamow-Teller type J'@, and (c) first forbidden ?;P
Two peaks in (c), JSr, correspond to the collective states
| coll. >To—1(To—1)) and |coll..To—1(To—1)) (see Sec. III).

of 100 keV or less for medium and heavy nuclei. This
fact explains® why Fermi transition matrix elements are
generally so small for heavy nuclei. The discovery of
isobaric analog states led to the conjecture®!! that the
Gamow-Teller transition strength might also be con-
centrated in the several MeV energy region near the
isobaric analog resonance, to which 8 transitions are
energetically forbidden. This idea, the possible exis-
tence of Gamow-Teller giant resonance effects, seem to
be in agreement with a variety of experimental evi-
dence.’>'7 (See Fig. 1.)

It should be mentioned here that the isobaric analog
state can be regarded as the state!® in which 7ip (neutron-
hole, proton) states with the spin (parity) J==0% are
coherently superposed; the Gamow-Teller giant reso-
nance corresponds to the 7p states with J*= 1+ The
long life of the O* state follows from isospin symmetry,
and the life of the 1t state is closely related to the
validity of supermultiplet symmetry.!® To discuss the
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origin of the hindrance factors requires taking into
account the existence of such collective modes, namely,
the inclusion of many higher configurations in the con-
ventional configuration mixing treatments. Each of the
contributions is known to be small, but the total effect
becomes important when they contribute coherently.?:20
However, if the existence of giant resonance effects can
be assumed, a much simpler treatment is possible.?! It
can be shown that even if the supermultiplet symmetry
is significantly broken in actual heavy nuclei, the 1*7p
collective state plays an important role in hindering
Gamow-Teller 8 transitions.

B. Forbidden Transitions

It is already known?®2223 that phenomenological re-
normalized coupling constants are necessarily intro-
duced also in the cases of first-forbidden transitions.
Since many higher configurations must be taken into
account in calculating the transition matrix ele-
ments,??2% it will be of interest to see whether giant
resonance effects exist in forbidden 8 transitions. In
contrast with the cases of allowed transitions for which
the O*np states have no corresponding partners in the
Pp or fin states and similarly true for the main part of
the 1 72p states, in the case of J7= 1~ the correspond-
ing pp and 7n states are responsible for the E1 giant
resonance.?® Therefore, if the knowledge of electro-
magnetic transitions is fed in, a fairly reliable estimate
should be obtained for the problem of how much
hindrance in forbidden B decays is to be expected,
owing to giant resonance effects.

As the first step in answering this question, extensions
of the schematic model of Brown and Bolsterli?* are
proposed and discussed in Secs. IT and ITI. The isospin
formalism is used, since the important role of isospin?®
in the photonuclear effects of heavy nuclei has already
been pointed out.?® In Sec. IV, ways of carrying out
more realistic calculations are surveyed and a new
method is proposed. Numerical estimates are obtained
in Sec. V.

II. SCHEMATIC MODELS

First, we reformulate the model proposed by Brown
and Bolsterli* and then extend it to heavy nuclei.
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217, I. Fuyjita and K. Ikeda, Progr Theoret. Phys. (Kyoto) 36,
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(1959); G. E. Brown, L. Castillejo, and] A. Evans, Nucl. Phys.
22,1 (1966)
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Goulard, and R. H. Venter, Phys Letters 19 398 (1965), .
Goulard and S Fallieros, Can. J. Phys. 45, 3221 (1967); D. F.
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Tokyo, 1967); P. Axel, D. M. Drake, S. Whetsone, and S, S,
Hanna, Phys, Rev. Letfers 19, 1343 (1967),
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A. Light Nuclei

We consider the system in which all the unperturbed
particle-hole states are degenerate with an energy AE,
for the unperturbed Hamiltonian H,, and the inter-
action Hr having a constant value of matrix elements G
is switched on among the particle-hole states. The
charge-independent model Hamiltonian? is given by
using a creation (annihilation) operator AT(Av)(4(\))
of a particle-hole pair (\») as follows:

H=H+H;, (1)
with the unperturbed part H,,
Hy=2AE;Y. AT(Ww)-A(W), 2)
and the interaction Hamiltonian
Hr=2GAT-A (3a)
=2G(A 4o+ A fAn+4414_4), (3b)

where the isovector A= (4,4.11,4_1) is defined by
A=Y A(vw). (4)

The suffix A(v) stands for an unoccupied (occupied)
state in the ground state (see Fig. 2), and we assume
that for each value of » only one value of A contributes,
and vice versa. Therefore the sums on a single » in Egs.
(2) and (4) represent the sums over all possible pairs
(Av). The components of A(\v) can be written in terms
of the creation (annihilation) operators af(a) for a
photon and 4%(8) for a neutron as follows:

Ao(Ww) =30 or—a,tay), (5a)
Aa(Ww)=32[T_,Ao(Ww)]=%V2a,'8y, (5b)
A (W)= —IVI[Ty,do(w)]= —23bJar.  (50)

The model Hamiltonian in (1) has the following

properties:
H|[0)=Ho|0)=0 (6)
for the wave function |0) in the ground state (N=2),
HAT(w)|0)=AEAt(\v) |0) @)

F16. 2. Schematic picture of particle-
hole excitations in a light nucleus
N-2).

P>

W

27 Note that only the particle-hole states AT(\»)|0) with T'=1
are taken into account in (2) and (3). We may include the con-
tributions of the states A¢'T(\»)|0) with T=0, for which 4’ (\r)
=3(b'b,+arta,), into (2) and (3). Then we obtain another
type of collective state, Ao'1|0)=3_, Ao’t(A»)|0), which exhausts
the sum rule for the isoscalar transition operator M’ =A4.'t+ 4, .
An example of the isoscalar collective state R|0)=(1/4)3"“x;|0)
is well known to be a spurious state because the c.m. of a nucleus
s at rest.
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(T,Ty)= 0,0
N=Z
for the particle-hole states At(\W)|0)(T'=1),
[HOxT:E:l:[HI:T:l:]:Oy (8)
[HI;AT] ] 0>= N)\VGAT 10> ’ (9)

where N, represents the number of degenerate un-
perturbed states A4,(\v) for ¢=0, 1. From (9) we
obtain

HA'|0)= (AEc+N\G)At|0). (10)

The eigenstate, 4,7[0)=>", 4,/(\»)|0), is referred
to as a collective state; if G is positive, the energy of the
collective state is higher than the original one. It can
also be shown that all the noncollective states, after
Hjy is switched on, remain at the original energy AE,
and have the form

2N, \172 1
( )(Aqf<xo,»o>———Aqf)|o>. (11)
NM"'I N)\v

Now let us introduce an idealized isovector transition
operator as

m=AT+A, (12)

of which the ¢th components represent the 8 inter-
action for ¢g===1 and the electromagnetic interaction
for ¢=0, except for the coupling constants. It can be
proved that the transition between |0) and Af|0) ex-
hausts the sum rule of the transition strength due to the
operator m, and all the other transitions from |0) are
forbidden, as seen from (11). The relationship between
B and v processes is obvious as shown in Fig. 3.

B. Heavy Nuclei (N> 2)

We extend the above argument to a heavy nucleus
(N>2Z). It must be assumed?-26 that total isospin is
an approximately good quantum number also in the
pertinent states of heavy nuclei.

As in Eq. (1) let us write the total Hamiltonian as

H=H,+Hi, (13)

where the unperturbed Hamiltonian H, and the inter-
action Hamiltonian H; are assumed to satisfy the
relations

H;|0)=H,|0)=0, (14)
in which |0) satisfies 7°,|0)=T|0);
[T4,Hr]=0 )
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F1c. 4. Schematic picture of particle-

hole excitation in heavy nucleus
V=2).

and
[Ho,T1+]=TFATy. (16)

The A, in Eq. (16) represents the single-particle
Coulomb displacement energy, which can be directly
measured by the existence of an isobaric analog state.
From Egs. (15) and (16) it is clear that every eigenstate
of H in (13) has a definite isospin 7. In other words,
the isospin projection operator?® P72 satisfies

[PT(T'):H:I:O’ (17)

where P72 is the projection operator projecting the
state with a definite isospin 7" out of an isospin mixture
with fixed 7.

A model Hamiltonian H satisfying the conditions
(14)-(16) is given by

Hoy= 3. AE(¥'; T(TZ))I &'6; T(T2)>

8,7,T2
X8, T(T2)|  (18)

and
Hi= 3 Gr(8'6,6'¢)|8'8; T(T))Ne'e; T(T2)|, (19)
8,¢,7

where |8'8; T(T.)) stands for a particle-hole state as in
Sec. IT A. Assuming T,= Ty=3(N—Z) for |0), we can
denote a normalized unperturbed eigenstate? with
total isospin 7" and T,

|8'6; T(To—1))=[N2(5'8) V2P T ay1h,]0). (20)

The normalization coefficient N7(8'8) depends on the
labels A, u, v associated with the pair (§'5), where the
labels for states A, u, and » are shown in Fig. 4. The
explicit forms are given by Eqs. (A7) and (A8). For
each value of 6 only one value of ¢ is assumed to con-
tribute, and vice versa. The numbers of pairs (§'8) are
denoted as Ny,, N, and so on. The states |8'8; 7(T.))
for T.=T¢ and To+1 can be obtained by multiplying
Ty and T,2by |8'6; T(To—1)) in Eq. (20), respectively.

If we assume that all the unperturbed states are
degenerate, AE(8'6; T'(T,))=AE|(T,T.), the problem
can be solved in exactly the same way as in Sec. IT A.
The collective states [coll.7(T9—1)) for negatron
decays of |0) (T,=T,) are given by®

[coll. T(To— 1))=Y | (8'8); T(To—1)),  (21)
8

28 J, 1. Fujita and K. Ikeda, Progr. Theoret. Phys. (Kyoto) 35,
622 (1966).

29 It should also be mentioned that in this paper no Clebsch-
Gordan coefficients appear explicitly, unlike the previous treat-
ments (Refs. 9 and 10). However, it is an easy task to rewrite
the discussion here to the case of eigenstates of angular momen-
tum, because it can be done by a unitary transformation.

30 The sum on § in Eq. (21) is the one over-all possible pair of
(8’6) as in Eq. (2).
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in which (§'8) represents () for T'=To+1; (W), (\,u),
and (w) for T=To; (W), (), (w), and (u'w) for
T=T,—1. The collective energies are written

Eeon.(T,To—1)=AE|(T,To— 1)+ AA(T), (22)
with
AA(T)=N(T)Gr, (23a)
where
N(TO+ 1) = N)\v ) (23b)
]V(TO) = N)\V+NRM+N;‘WEN§/ ) (23C)
and
N(To—1)=Ny+Ny+Npw+Nw=Ng. (23d)

We can easily derive the following relations between
the collective states responsible for 8 and v transitions
of |O)(T,=TY):

Ty|col. T(To—1))« [coll. T(Tq)) (24)
and
Eou (T, To)=AE|(T,To)+Ar7(T)
= coll.(T,TO_ 1)_Ac (25)

for T="T, or To+1 (see Appendix B).
In order to discuss the. correspondence of levels in
neighboring nuclei, it is convenient to assume that
Hy=H+Hc+Hg, (26)

where the Coulomb potential part including the
neutron-proton mass difference is

He=(To—T2)A., (27

and the T dependence of Eo(8'8; T'(7,)) is assumed to
be given by the symmetry energy part3!

Hg=1/2T){T*—To(To+1)}As, (28)
so that the first term H,° in Eq. (26) satisfies
[H,T.]=0. (29)

The constant terms in these equations are chosen in

--=+{Coll. Ty#1 (Ty-0>

2} (Coll.To (Tor 11>
As NaG:
)
S 1IC0ILT°-I(T°-I))
IOl T+ () = ]
&
.10 NeCret
iColl. ToTo =
A =i
1 TolTo) "
Tyl
-4

10> A

F16. 5. Level scheme of 8 and « transitions and the associated
collective states in heavy nuclei.

s1In Ref. 18 the symmetry energy part of the Hamiltonian
Hg was treated as an idealized residual interaction producing
isobaric analog states.
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order to satisfy the relation
H.|0)=H,|0)=0. (30)

The relationship between Ag’ and the observed sym-
metry energy is given in Appendix B.

1. Fermi and Gamow-Teller Cases

The schematic level scheme for the total Hamil-
tonian H is shown in Fig. 5. The quantity Az” can
be determined from the knowledge of electromagnetic
transitions due to the transition operator Eq. (12),
mo= Ao+ Ao It is interesting to compare the above
general forbidden cases with those of allowed transi-
tions: For Fermi transitions, we have (§'8)= (uu); for
Gamow-Teller transitions predominant components are
(8’6)= (u'w). Schematic figures for allowed transitions
are shown in Fig. 6.3

2. Electric-Dipole Case

The relationship between 8 and v processes is clearly
indicated in Egs. (22) and (24) in the present model.
For instance, let us examine the case of /7. The peak
energy of the famous E1 giant resonance state

VA N
Py (T 3 (stlfba—;l—asﬂaa) l 0)05 |COH.To(To)) (31)
8

is AEy(To,To)+Ar*(To) provided that particle-hole
pair states (6’6) with J*=1— are suitably chosen. The
isobaric analog state of |coll.7¢(7,)) is expressed as

VA N
(%To_l) T_PTO(T") Z (-—bal*ba'——dyfaa) I O)
8§ \4 A

=Pr, ™ ¥ ay'b;]0), (32)
b

which agrees with |coll. 7o(7— 1)). On the other hand,
the resonance related to the hindrance in 8 decays due
to S'r is given by |coll. To— 1(Te— 1)) since low-lying
states of the nucleus have isospin 7'=T,—1.

III. HINDRANCE FACTORS FOR ($ DECAYS

The solutions |coll.7(7,)) in (21) are obtained on
the assumption that all the unperturbed levels are de-
generate and all the interaction matrix elements are a
constant. It can be extended without difficulty to cases
where the levels consist of two groups of degenerate
levels. The hindrance factors F in these models can be
calculated as follows. (Details are given in Appendix C.)

3 The Fermi transition is a special case, where collective states
with 7'=T,—1 are spurious because of

Proa T 3, 0,75,]0) = PpoToDT_|0)=0.
This is in contrast with the previous treatment in Ref. 18, where
Hgin Eq. (28) is not taken out explicitly. In the Gamow-Teller

case ¥_|0) includes small components with 7= T, having analog
excited states of the nucleus 7', =T.
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F16. 6. Collective states corresponding to Fermi transition (left-
hand side) and Gamow-Teller transition (right-hand side).

Suppose that we have
=(AEy—8)|i'i; To—1(To—1)) (33a)
fori=1,2, -+, n; and
Ho|j'j; To—1(To—1))
=AEo|j'j; To—1(To—1))  (33b)

for j=m+1, m+2, -, m+n(=N), where AE,
represents the quantity AE,|8'8; T(T,)) appearing in
(18). In this model we obtain two types of collective

states |coll.>«y; To—1(To—1)) with the energy
eigenvalues

Es «=AE¢+3{—6+NG
L[+ (n2—11)G)2+ 4nin.G21 2}, (34)
respectively, for which we have the relations
Gnyd
Es+6—AE,
=—E-+AEGN.

€= E<—' AEO+6=

(35)

The hindrance factor, which agrees with the transition
matrix element itself in our model, is given by

Ft=(f|m]|d), (36a)

which becomes, corresponding to the above two collec-
tive states,

o 7y —1/2
Fs12=(y/ny) ( 1+-—X)(1+-X2> (36b)
2 2]

and
ny \~12
F<‘1’2=(\/n1)(1—Y)<1+—Y2) , (36¢)
n
where ?
GN—e¢ 7:G
X=—— , = . ,
GN+6—e neG-+8—e

respectively. It is shown that the sum rule is exhausted
by these two collective states:

O|m'm|0y=n1+ne=Fs1+F . 37

As an extreme case of NGK§, we have X=V=0,
Fyl=ny, and F<'=u,;, while in case of NG>é we
have X=Y=1 and Fs"'=N, F1=0. In:this model,
the 8 transitions from |0) to the other noncollective
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final states having energy eigenvalues AEy—d or AE,
are completely forbidden;

Fiil=F12=( (38)

for =1, 2, -+, my—1 and j=m+1, ma+2, ---,
n1+n.—1.

In actual nuclei, § is of the same order of NG=n.G
as shown in Sec. V, whereas #o>n1. Therefore, the

transition to the lower collective state is given by

Fotnm (V) (=P)= (Vm)——,  (39)
NG+é
F<_1 ) 2
z< ) . (40)
n1 NG+ )

The hindrance factor [§/(NGH6)]* is attributed to
the giant resonance (Es,Fs) effect.

As a special case for #1=1, the hindrance factor in
Eq. (39) becomes

F12=5/(NG+3) (41)

for n>>1. If & goes to zero, F<~!/2 also tends to zero as
expected from the completely degenerate case in
Sec. II B.

It should be remarked here that if the transition
strength given by Eq. (39) is equally distributed among
n1 levels, it agrees with the one given by (41).

In Sec. IV it is shown that more realistic treatment
also leads to the expression quite similar to Eq. (41).

IV. MORE REALISTIC METHOD
A. Hindrance Factor in Commutator Method

A method using the commutator of the nuclear
Hamiltonian and the transition operator has been
developed earlier,* and applied to the Fermi® and
Gamow-Teller 8 transitions of spherical'* and deformed?*¢
nuclei. In this section the physical meaning of this
method is reexamined on the basis of above arguments
on the schematic models.

First, let us briefly recapitulate an outline of the
method.33 We start from the identity

(f|[H,m]—mA|0)
Ej—Eq—A

(42)

(flm|0)=

which is valid for any value of A except A= E;— E,. If
we insert the model wave functions |0) and |f)o in
place of |0) and |f), generally the two sides of Eq.
(42) are not equal. If we choose the value of A to be

(Ol m'[Hm]|0)

(0] mtm|0) #3)

)

33 J. I. Fujita and K. Ikeda, Progr. Theoret. Phys. (Kyoto) 36,

288 (1966).
# A, Ikeda, Progr, Theoret. Phys. (Kyoto) 38, 832 (1967).

IKEDA, AND FUJITA

176

then we can expect that a better estimate for a hindered
matrix element is obtained from the right-hand side of
Eq. (42), for various reasons. (a) The right-hand side
corresponds to a sort of perturbation approach starting
from a collective model.14:35:3¢ (b) It is the deviation
from the random-phase approximation (RPA) that
gives the m a finite value, as clearly seen from the
numerator in Eq. (42); and the effective transition
operator [H,m]—mA generally has no sharp selection
rules,® unlike m itself.

Now, let us examine the relationship between this
method and the schematic model, especially its pre-
diction, Eq. (41). The latter model is quite simple but
explains the essential feature of hindrance phenomena
due to the effect of collective states. Suppose that H
in Eq. (42) is given by Eq. (13) and the true wave func-
tions in Eq. (42), |0) and | f), are replaced by zeroth-
order model wave functions |0)o as schematically shown
in Fig. 5 and | f)o=|8¢'80; To— 1(T0o—1)) in Eq. (33a).
Then the left-hand side of Eq. (42) becomes

ol flm]0)o=o(f| Zs as'b5| 0)o=~/Nr(8¢'00), (44)

where N¢(8¢'8q) given by Eq. (A11) is close to 1 when
Ty>1. On the other hand it can be proved that the
right-hand side of Eq. (42) becomes

8/(NG+36), (45)

agreeing with Eq. (41).

We can thus conclude here that the left-hand side of
Eq. (42) gives a value of O(1), the value of the nuclear
matrix element for superallowed transitions, whereas
the same model wave functions give the appropriate
hindrance factor, Eq. (41).

B. More Realistic Method for Forbidden Transitions

In Sec. ITI we obtained two different estimates on
the hindrance factor for the ground-ground g transi-
tion, F~1/2=0 in Eq. (38) and F12=§/(NG-3¢) in
Eq. (41). The preceding argument suggests a means for
evaluating hindrance factors more realistically as im-
provements on the schematic model. [The mathematical
meaning of (42) is discussed in Ref. 36.]

The basic idea is to insert H of (13) into the numera-
tor of (42) and replace E;, Eo, and A in the denominator
of (42) by phenomenological values. Inserting (13)
into (42) leads to

(flm|0)
_ (f| CHoym]—mbo| 0)+(f| [Hr,m]—mAr|0) s
E;—E;—A
(19356 g. Tchimura, Progr. Theoret. Phys. (Kyoto) 36, 853(L)

3 J, I. Fujita, Phys. Rev. 172, 1047 (1968).
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where OlmiH 0
_ m Oam:H ) (473,)
(0| m'm|0)
+
_ (O|m'[H1,m]|0) (47b)
(0| m'm|0)
and
A= A0+AI . (470)
The Aq defined by (47a) can be rewritten as
A= A%As+Ac, (48)
according to Eq. (26), in which
t
pg Ol LHemlI0) (49a)
(0 mtm|0)
0
_ OlmTa]0) o
(0| m'm|0)
. 0| mCHsm1[0)
_OmTHsm0) (99
(0| m'm|0)

It is assumed that all wave functions in the numerator
of (46) are replaced by the model wave functions,
[0)o or | fo.

Now instead of calculating A by Egs. (49) the energy
shift A in the denominator of Eq. (46) can be expressed
in terms of the peak energy A, of a giant resonance in
the corresponding v process; making use of the relations

My [Ty,m] (50a)
and
T,]0)=0, (50b)

we obtain

A (0] m,'[H,m,]|0) _ (O]} Py O H o ] [0)

i

(0[mfm7|0> <0|m7TPTo(T°)m7IO>
=A+ZS_AC'y (513‘)
where
_ (O|mtHP £, #m]|0)
Ag= <0|mTPTo(To—l)mIO>
To—1
_ <OlmTHPT0_1( = )mlO) (Slb)

(0| m' Pry1TDm|0)

In order to compare our results with experimental
data in Sec. V, several simplifying assumptions are
made. (i) Validity of the RPA for H;. Then the con-
tribution of H; to the numerator of (46) can be omitted.
This approximation does not presume that the total
effect of H; is negligible but, on the contrary, its con-
tribution to As is essentially important for our method
as seen from the derivation of Eq. (45). (ii) The quantity
Ag is an experimentally measurable quantity as the
energy difference between two peaks of giant resonances
with total isospins Ty and T'o— 1, respectively, as seen
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from Eq. (51b), although such experimental data are
not available at present. Therefore, As is estimated on
the basis of the schematic model described in Sec. II,

As=As+ (V' = 1)Gry— (Vg—1)Gre1, (52)

for which Ny and Ny are defined by Egs. (23).
On the basis of these two assumptions, we obtain
the approximate formula from Eq. (46).

(flm|0)y= o(f| mets| 0)o,
EN—(E/")

Mett =~ ——m.
E/—Eo—— (A1+ Ac— As)

In (53b), E;* and (E;°) are defined to satisfy the
relations
Ho| flo=EL|f),
0<0!mTHom|0>o
Ep=r
o<Olm m|0>o

The choice of model wave functions is not unique.?¥

(53a)
where

(53b)

(54a)

(54b)

(a) The simplest one is to choose | f)o as a particle-
hole state of |0)o. Then the transition is hindered by
the factor appearing in Eq. (53b), or essentially the
hindrance factor given by Eq. (41) for the case n;=1.

(b) As shown in Sec. V, the actual forbidden transi-
tions are rather close to Eq. (38). If the transition
strength is equally distributed among the #; states, the
hindrance factor agrees with Eq. (41) as already re-
marked in Sec. ITI. However, it is conceivable that the
group of n; levels by themselves constitute a sort of
giant resonance, as shown in Fig. 1, because of the
repulsive interacting among neutron holes and protons.
In this case transitions should be hindered more than
expected from Egs. (53b) or (41). The latter effect re-
mains to be investigated in future quantitative studies
of individual hindrance factors for the forbidden
transitions.

V. COMPARISON WITH EXPERIMENTS

First-forbidden QB-transition rates are generally
hindered to some extent compared with single-particle
values. It is very interesting to discuss the general
trends of the hindrance in terms of the present theory.
The first forbidden 8-transition has six transition opera-
tors of 1, S'oXr, fe 1, [v;5, So, and S B;;, among
which fe is related to /'r on the basis of conserved
vector current theory.??3 The component ['r is re-
lated to the E1 v radiation, whose giant resonance
energy is known experimentally. In the present theory
the hindrance factor F, due to the giant resonance
effect [Eq. (41), single-particle transition in closed shell

37 As discussed in detail in Ref. 36, the quantity A is not ex-
actly independent of the choice of the model space, but such an
effect is neglected in this paper.

38 J. 1. Fujita, Phys. Letters 24B, 123 (1967); Y. Fujii and J. I.
Fujita, Phys. Rev. 140, B239 (1965).



1284 EJIRI, IKEDA, AND FUJITA 176
TasiE I. Hindrance factors of B;; 8 transitions.
Region of Main transition
mass No. logioF »(expt) (log1oF p(expt) av®  logioF (theoret)b A (MeV) process
72-86 0.7 -1.2 1.06 0.61 24.2 (1gos2)n <> (1 f5r2)p
88-112 0.6 -1.4 0.81 0.38 21.9 (2ds2)n <> 2prs2)p
122-138 0.95-1.65 1.25 0.66 23.1 (A h11/9)n > (Lg1s2)p
200-204 0.85-1.15 0.99 0.56 24.6 (Bpss2)n <> (3s1/2)p

a Average values of logiFp(expt).

b Rough estimates obtained for mean values of A and N —Z in each region of mass number and transition process. We neglected the contribution of Q

values (Es —Eo) in Eq. (54), which gives small fluctuations.

region] is given from Eq. (53b):
Ep—(E;)°

Ej—Eg—Ay—Ac+Bs
In the above expression we neglected the second term of
Eq. (46), which is considered to give small fluctuations.
For medium and heavy nuclei, we know experimentally
that A,=364"1MeV,® Ac=1.44ZA713—1.1—2.5m c?
MeV,® and Ag=50(N—2Z)4~' MeV.%* Assuming
Gr,=Gr,1 for simplicity, we get, from Egs. (23) and
(52),

Pyt~ (55)

Zsz AS— NMM'GTO:':: AS_ G(A,y— hw) ,
where
a= (N )/ (Nt Nawt+Nw) g1y - (56)

The mean value of transition energy (E;)* in the
numerator of Eq. (55) can be assumed to be (E;)°
=hw=41471/3 MeV since most of the possible transi-
tion processes with parity change are associated with
one i jump. On the other hand, the E/° for the ground-
state transitions have negative values since the Fermi
surface of protons is lower than that of neutrons. The
quantity e in Eq. (56) and E,® can be obtained from
the level schemes?? of the simple j-j coupling shell
model. The hindrance factor given by Eq. (55) shows
no marked dependence on any quantities such as 4, Z,
and Ag, since Ag cancels a considerable part of A¢ and
hw/A, is proportional to A~1/6, This fact agrees with
experiment.*® A numerical estimate for the transition
210Bj — 219P¢ gives a hindrance factor of 4. Generally,
the uniform hindrance factor F=3~4 for the /'r com-
ponent of AJ=0, 41 8 decay may be attributed to the
effect of the giant resonance.

The experimental data on the component /r are
scanty because some additional measurement, such as

3 M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948); in
Handbiich der Physik, edited by S. Fliigge {Sprmger—Verlag,
Berlin, 1957), Vol. 42, pp. 309 and 336.

47, D. Anderson, C. Wong, and J. W. McClure, Phys. Rev.
138, B615 (1965); D. D. Long, P. Richard, C. F. Moore, and J.
D. Fox, ibid. 149, 906 (1966).

417, Jdnecke, Nucl. Phys. 73, 97 (1965).

42C, M. Ledere, J. M. Hollander, and I. Perlman, Tables of
Isotopes (John Wiley & Sons, Inc., New York, 1967); in Nuclear
Data Sheets, compiled by K. Way et al. (Printing and Publishing
Office, National Academy of Science-National Research Council,
Washington, D. C., 1963).

43P, Lipnik and J. W. Sunier, Nucl. Phys. 56, 241 (1964);
R. W. King and D. C. Peaslee, Phys. Rev. 94, 1284 (1954); M. E.
Rose and R. K. Osborn, zbid. 93, 1326 (1954); M. Delabaye and
P. Lipnik, Nucl. Phys. 86, 668 (1966).

circular polarizations, is necessary to extract /'r from
the other components. Furthermore, most of the known
J'r are hindered due to spin (4,K) selection rules. An
experimental value /'r is available for the transition
140La(37) — 14Ce(2*) in the closed shell region. It is
hindered by a factor of 3.8 compared with the estimate
based on the pairing plus Q-Q force model.® This is
close to the theoretical hindrance F,=3 due to the
giant resonance for this transition.

In view of the existence of many experimental data on
J Bg; let us extend our argument to the case of the
unique first-forbidden transition.#s Although the M2
v transition corresponding to the Bj; 8 transition has
not been well investigated yet, we know that M2
transitions are generally hindered in nuclei with
A>30.%6 The A, for B;; whose collective state also con-
sists of configurations with one 7w jumped states may
be conjectured to be not quite different from that for
r.¥ Assuming the E1 giant resonance energy for A,
corresponding to the B;;, we obtain theoretical hindrance
factors for each mass region.

Figure 8 shows experimental transition probabilities
and the hindrance factors of J'B;; for medium and
heavy nuclei in spherical mass regions. The numerical
values are presented in Appendix D. Hindrance factors
Fg and F, are obtained as

2
[ /|fr
expt

where | /'B;j| s and | S'Bi|, are the values based on
the simple j-j coupling shell model®® and the pairing
model,® respectively. The | /°By;| s corresponds to the
| S Bij|» obtained by assuming the associated V2
and U?=1. The F g and F;, show no marked dependence
on A. They are larger than 4 and distributed around
the values Fg=40 and F,=10. Table I summarizes
the theoretical and experimental hindrance factors.
The theoretical hindrance factor (giant resonance effect)

Fspy =

b

2
S(»)

( u“ Ij V. Estulin and A. A. Petushkov, Nucl. Phys. 36, 334
1962).

45 Most of the unique transitions are free from effects of can-
cellation among matrix elements and angular momentum (j,7,k)
selection rules, in contrast with the case of nonunique transitions
with ranks 1 and 0.

46 D. Kurath and R. D. Lawson, Phys. Rev. 161, 915 (1967).

4 H. Uberall, Phys. Rev. 137, B302 (1965); 139, B1239 (1965);
A. E. Glassgold, W. Heckrotte, and K. M. Watson, Ann. Phys.
(N.Y.) 6,1 (1959).
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F1G. 7. Schematic level structures in the models in Sec. III
for n;>1 and n;=1.

based on Eq. (55) is approximately F,=~4(log1cF;=0.6).
It is interesting to see that the transition of one particle
outside a closed shell has hindrance factors close to the
predictions in Eq. (55) (see Fig. 8).

The strength function of /'B;; for nonclosed shell
nuclei is expected to be close to Eq. (38) (see Fig. 7),
where transitions to the noncollective states are more
hindered. For actual nuclei it is conceivable that the
transition strength of the |coll.«7T¢— 1(Tv—1)) is more
or less distributed on the other low-lying states because
of the coupling and the nondegeneracy of the unper-
turbed levels (#1). The model of the equal strength dis-
tribution over the #; levels, which we mentioned before
and for which hindrance factor is given by

FA=FPm=F,,

seems to give the lower limit of experimental f¢ values
as shown in Fig. 8. The mean values of the hindrance
factors F, are larger than the F,=4 by a factor of 2.5,
which can be attributed to the effect due to the mixing
among nearby lying levels.

In Fig. 9 we compare the general trend of the hin-
drance of the first-forbidden °B,; with that of the
Gamow-Teller f'¢. The values 7, are plotted against
the energy difference between 7_|0) and |0), namely,
A=Ac+Qprtme? (the upper and lower signs refer
to the B~ and B+ decays with Qgs). The F, for
Gamow-Teller transitions increase with the increase of
A as a function of A? as is consistent with the arguments
in Refs. 9 and 13. However, the F, for f B;; remains
constant, as expected from the preceding argument.
This characteristic difference arises from the fact that
the hindrance for an allowed transition is essentially
the phenomenon within one harmonic-oscillator shell,
but for a forbidden transition it is the one between two
harmonic oscillator shells.

In the present analysis based on Eq. (55) we assumed
that the deviation from the RPA is less important for
Hj than for H,, at least for the purpose of the studying
of the systematic behavior of ft values. The contribu-
tion due to Hr in Eq. (55) should be examined in the
next step.

VI. CONCLUSION

Our work started from the study of collective levels
which absorb a large portion of the sum rule limit for
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Fic. 8. Experimental log f¢ values (C), hindrance factors F,
based on the shell model (B), and those F, based on the pairing
model (A) for the unique first-forbidden transitions. The values
of the ground-state ground-state transitions of 2~— 0% and
Ji— Jy=J;=2 in the spherical mass region are plotted. Points
accompanying satellites indicate transitions of one nucleon out-
side a closed shell.

the transition strength. The sum rule can be written as

;I(fIMI0>Ig=(0]m*mIO)=I(CIMI0>I2, (57)
where

|C)=m|0)/({0| mtm|0))=*/2. (58)

If |C) belongs to the complete set | f), the sum rule is
exhausted by one transition, |0) & |C). Then even if
|C) is not an exact eigenstate and has a finite width,

T T T T
“
o
J
= of Jo t=0% ]
L - = e 1
gLl :
3

-4 2

s ol J8y (2=0%
|' ® o%e0 o
N Bl ud ° ° . PR T XA -
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9) 20 2
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F16. 9. Hindrance factors E, of unique first-forbidden 2~ — 0%
and Gamow-Teller 1*— 0% transitions versus logA?, where
A=A,+(Qgztme? The upper and lower signs correspond to nega-
tron and positron decays with Qg and Qg+.
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existence of such a virtual state can cause the hindrance
phenomena.

In Secs. II and IIT hindrance phenomena were
studied on the basis of schematic models, which are
simple extensions of the one proposed by Brown and
Bolsterli.?* It was suggested that knowledge of the E1
giant resonance can be applied to the calculation of
hindrance factors for the 8-decay matrix element /r.
As discussed in Sec. II, the collective motions which
have no analogs in the electromagnetic transitions play
important roles for allowed 8 transitions, whereas for
the forbidden @ transitions the responsible collective
modes are closely related to the familiar ones known in
the study of y-ray processes. The hindrance factor due
to the giant resonance effect is roughly estimated to be
F=4 for the first-forbidden 8 decays.

Since little is known of /r in B decays, we examined
in Sec. V also the empirical systematics of /By A
characteristic difference between the hindrance ex-
pected for allowed and forbidden 3 transitions was noted
and discussed in terms of the semiempirical systematics.

In Sec. IV a new method of calculation was proposed
for the treatment of nuclear matrix elements for for-
bidden B decays, which makes use of knowledge of the
corresponding electromagnetic transitions. The physical
meaning of this method is clearly seen from the sche-
matic models in Sec. II. The merit of this method is
that we can easily estimate the core-polarization effect!®
leading to a giant resonance.

Although whole arguments in this paper are semi-
quantitative, it will be worthwhile to search, by future
precise experiments using nuclear reactions, for the
possible existence of the giant resonances corresponding
to forbidden 8 transitions.
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APPENDIX A: EIGENSTATES OF ISOSPIN

Explicit expressions of the projection operators
PpT2 are given in Ref. 28. The first few terms are
written as

1
Proy T D=1——T_T,

2T
1
—_— T2 (Ala
ATo(2To+1)  © (Ala)
PryTeV=—T_T,
2T
1
S — Y I N Alb
2T(2Tet2) (A1)
and
1
PT0+1(T0—1)~_— __2T+2. e (AlC)
‘ ) 2(2T6+1)(2T6+2)
in which
T.10)="To|0)=3(N—2)|0), (A2a)
and
Ty=T,+iT,. (A2b)

The components of an isopin operator are expressed
in the second quantized form:

T.=3 2 (bs'bs—as'as), (A3a)
s
Ty=% bs'as, (A3b)
5
and
T_ =3 a;'bs. (A30)
5

In the above expressions af(a) and 5%(b) are the creation
(annihilation) operators for a proton and a neutron.

By straightforward but tedious calculations assuming
T |0)=0 we obtain

Proa ™ 0ay18,]0) = —————————{ab,+ (Blb,— ara,) T_} | O+ ———————p,ta, T 2| 0) Ada
(To+1)(2Tot1) AT 10 (M
PryTDg, 15, | 0)= axtd, | 0)+ (Bato,—anta,) | 0)——————hy'a, 72| 0), A4b
° To(To+1) 2To(To+1) 2T(Tot1) 0 (A40)
PresTDa,18,]0) 2To*—To—2 5,0 2Tot3 (Bt ta,)7_| 0)

11T D818, | 0) =318, | 0)— —————— (b1, — ar @) T_| O}k ————— b, 70, T_2[0),  (Adc
" To(2To 1) 2To(2T o 1) 2To(2To 1) 10, (ad9

1
Pr,TVg,1p,| 0)= E(a)‘fb"+ b5, T_)|0), (A5a)

0



176 BETA DECAYS OF HEAVY NUCLEI 1287

- 1
Pro1TDay'b, | 0)= ax'b,|0)——515,T_|0), (ASD)
0 2T,
1
P TO(To_l)a#TbVI()) =—(a,'b,—a,'a,T_)|0), (A6a)
2T,
—_ 1
Pry 1T Dg,%h,|0)= a,'0,|0)+—a,'a,T_|0). (A6b)
0 2T,
The suffixes A, u, and » are given in Fig. 4. If we note |w; T=To,T,=To—1)= (/2T ) PpyTo—1
that t
Xa,'b,|0 A9
atd, |0y, AT 12(b\'b,~a,ta,)T_|0), o7 al”/z [0), (A9a)
3{2To(To— 1)} %510, T-2[0), arla,|0), |up; T'=To—1,T,=To—1)= ( i > Py (ToD
(2To— 1)~1120,\18,T_|0), a,i5,]0), 2To—1
and (2T—1)""/%,'5,7_]|0) are normalized states in Xa,'5,10). (A9b)

Eqgs. (A4)-(A6), then we can easily normalize the Note that orthogonality conditions are clearly satisfied;
states.

The normalized states are expressed as (§'6; T(To=To—1)|ée; T(To=To—1))
X = 56’5’865’ (Alo)
l )\V} T= T0+1,T¢= To— 1>= [(2T0+ 1)(To+ 1)]1/2 a’nd, lf T0>>1, we have
X Pro1TDa,15,|0), (A7a) Pro1TDayta;|0)=asta,]0). (A11)
VTot+1)T
W3 T=To L= To— 1)=—— i i APPENDIX B
VTo+8T+4 Equation (24) is proved as follows:
D gyt
XPr ™ 0ax8,10), (ATD) 1 1ol 7(T,= Ty— 1))
I\ T=To—1,T,=To—1) Lo2Tet 1) i
v; IT'=T—1,T.=Ty—1)= = T P p(To=1) 15:10
Y AT¢ T 12T 4 T e 10
X Pro_1'TDa,15,|0), (ATc 1
rea7halh10), (A7) =——P;T0 5 [T4,05';]|0)
[Na; T=To,Ts=To—1)= (/2T ) P, T+ V Ny ;

Xa\',|0), (A8a)

Pr 3 (bs'bo—as'as)|0)  (B1)
2T, \!/2 T 5
2T __1) Py o7V for T=Ty and To+1 as collective states of |0) with
0 T,= T, which agrees with Eq. (24).
Xaxtb,|0), (A8Db) Also the following relations are useful:

I\e; T=To—1,T,= To—1)=<

Af'(T)E (OI Z (bsTbar'-d'sfaar)HIPT(TO) z (ba:V)g—(l;ﬁd;)lO)/(Ol Z (bsTb51—05Tdar)PT(T°) Z (b'yfb‘;—aafraa) | O)
8 ) 8 )
= (0| S bilay HiT T Pr@ Y 05185 0%/(0] X b5l aw T_To P Y a5t,]0)
8 ) ) é
= (0' Z bzfdalHIPT(To‘l) Z a,;rfb‘;IO)/(OI Z bsTas:PT(T‘r—D Z a;:*b;lO)E Arﬁ(T) (BZ)
) ) 8 )

for T=To or To+1.
Note that the symmetry energy Ag to be compared with experiments is defined by
0|65t ay HP 1y Toagtb5|0)  (0|bstas HPry1TVasths| 0)
= 0]bs'ap ProTmPasths|0)  (0]dsTas Proa @ Pastbs|0)
=Ag'+Gr,(8'8; 88)—Gr,1(8"6; 8'5), (B3)
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as seen from Egs. (19) and (28). If Gr,=Gr,1 for every
(6’9), we get Ag=Ag". However, if Gr,#Gr1, large
effects arise on the A;#(T) in Eq. (B2).

APPENDIX C

In this Appendix the equations given by Egq. (33)
are solved.

Let us assume the form of solutions, which correspond
to the collective states |coll.s(<y; To—1(To—1)), as

CX |#i; To—1(To—1))
+D X |/j; To—1(To—1)). (CD)
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and the dispersion relation
7y V2 1
p e (c3)
E—AE¢+6 E—AE, G
for G=Gr,-1, and the normalization conditions
%1C2+7I,2D2= 1. (C4)

Solving (C3), we obtain the energy eigenvalues of
the collective states, Es and E, given by Eq. (34).
In order to obtain the results (36) and (37), the following
relations are useful:

— =N,
From (13), (18), (19), (C1), and (33) we obtain the 2AEptE>+Ec=NG—4, (C5a)
relations c D (E>s—AEg)(E<—AEog)= —nsG3, (Csb)
= : (c2) @nd
E—AEy, E—AEs+-6 —AEgt+Es=—et+NG. (C5¢)
APPENDIX D
TaBLE II. Log f values of the unique first-forbidden transitions and the hindrance factors of
non-well-deformed nuclei in medium and heavy mass regions.

Parent Daughter Decay mode 05 (Qce) logroftr  logioFs® logioFp° Jne Jpd
33./5153972 32G34072 2-— 0t + 4.3 8.8 2.0 1.05 lgg/g 1 f5/2
s3Asq”™ 32Ges™ 2= — 0% + 2.5 8.5 1.7 1.05 1gor2 <> 1fss2
33Asy™ 345eqo™ 2-— 0t - 14 8.3 1.5 1.15 1ga;2 < 1f50
33As43"8 34864276 2-—0* - 3.0 8.3 1.5 1.10 lgglg g 1f5/2
33As45"8 345€44"8 2-— 0t - 4.3 8.4 1.6 1.10 1ge/2 & lfalz
asrRbar® 36Kras® 2-— 0t + 2.7 8.7 1.9 1.20 1gaszs < 1f52
37Rb4g86 385€4g36 2-—0* - 1.8 8.5 1.7 0.95 1g02 <> 1f52
37Rb5:% 3851508 2-—0* - 5.2 8.2 1.0 0.60 2ds12 <> 2p1s2
39 Y 5% 10Z150°° 2= — 0* - 23 8.0 0.8 0.65 2ds;2 < 2p12
39Y 53" 00Z52% 2-— 0t - 3.6 8.1 0.9 0.70 2dsi2 <> 212
47Ag65“2 43Cds4nz 2-— 0t - 40 8.7 1.5 0.60 st/z «> 2171/2
515b7,122 s2Ler?? 2-— 0t - 20 8.5 2.0 0.95 121172 <> 1g72
sal7a! sz el 2-— 0t + 3.2 8.2 1.7 1.30 17112 > 1g2
53113126 52’.[‘6'14“6 2= — 0% + 2.2 8.1 1.6 1.25 1}1]1/2 > 1g7/z
5sL7s26 5eXere!2 2-—0* - 1.2 8.6 21 1.30 1hyse <> 1g1s
sgPl‘galﬂ (;o].\Idszl‘12 2= — 0+ e 2.2 78 0.65 0.60 2f7/2 «> 2d5/z
81T1119% o g120%%° 2-— 0t + 2.5 8.7 1.55 1.15 3pase <> 351/
31T1121202 snglzz2°2 2-— 0t + 1.2 8.4 1.25 0.90 3?3/2 > 331/2
811125204 s0Hg124%0 2-—0* + 0.3 8.5 1.35 1.05 3ps;s & 35172
81T 1125204 s2Pb129204 2-— 0t - 0.8 9.0 1.85 0.85 3parz > 3512
35Kr4985 37Rb4s®0 %+—> ‘%‘ - 0.7 9.1 20 0.70 lgg/z «> 1f5/2
38515:8? 30 Y 50%° §+ - %— - 1.5 8.6 1.3 1.15 2d52 &> 29172
3851539 39 Y522t %"' - %‘ - 2.7 8.3 1.0 0.75 2d52 & 2?1/2
39 Y5091 10215 %f_'—‘) %+ - 1.5 8.5 1.7 0.90 2d5/2 > 2?1/2
13 g™ 42Mo5s®® i-— 5t + 0.7 8.4 1.6 1.40 2ds;2 © 2p1s2
505n73123 515b72128 - IF - 14 8.8 1.9 1.65 11172 > 1g1s2
50Sn75'2 515b74128 Mo 3 - 23 8.8 19 1.50 1170 > 1guse
515b74!25 s2Lers!?® Fr— - - 0.8 8.5 1.8 0.90 11172 > 1g7s2
515b76!¥ soLers!? It — - — 1.6 8.5 1.8 0.95 151172 < 1g12
55C532137 56B331137 %+—> ng" - 0.5 8.5 1.8 1.40 1}111/2 > 1g7/2

a Experimental log f¢ values corrected for shape factor (Ref. 42).

b Logarithmic hindrance factors obtained on the basis of the simple j-j coupling shell model (Ref. 43) in which use was made of the radial part of the wave

function obtained from the harmonic-oscillator potential.

¢ Logarithmic hindrance factors calculated in terms of the pairing model. The U? and V2 factors obtained in Ref. 6 were used.

d Main components of shell-model states assumed for transition process.



