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The schematic model proposed by Brown and Bolsterli, and applied to the giant dipole resonance, is
extended to the p and 7 transitions of heavy nuclei. Special emphasis is placed on the extent to which for-
bidden p decays of heavy nuclei are hindered because of possible giant resonances corresponding to those
found in the electromagnetic transitions. A new method of calculating hindered forbidden nuclear matrix
elements is proposed on the basis of the schematic model. It is shown that the hindrance factor due to the
giant resonance eGect is roughly 4 for the first-forbidden p transitions. Systematics of unique erst-forbidden
transitions are examined from this viewpoint.

I. INTRODUCTION
' 'T is customary' to classify P transitions into allowed,
~ - first-forbidden, second-forbidden, etc. , according to
the spin and parity changes between initial and final
nuclear states. The ft values of P transitions have proved
to be useful in determining forbiddenness of the transi-
tions and, accordingly, spins and parities of relevant
nuclear states. However, discrimination in ft values
between different forbiddennesses is sometimes ob-
scured by the fact that a number of allowed transitions
have ft values comparable to those of first forbidden
transitions and similarly for higher forbidden ones. The
purpose of this paper is to discuss the origin of such
hindrance (retardation) phenomena and also to point
out a characteristic difference between allowed and for-
bidden transitions. In this section the present status of
the hindrance phenomena is briefly reviewed.

A. Allowed Transitions

It has long been known that the "normal allowed" p
transitions are much hindered in comparison with the
so-called "super-allowed" transitions, for the latter of
which nuclear matrix elements have the order of magni-
tude predicted by the single-particle shell model.
Several ways to explain such hindrance phenomena have
been tried.

1. "Core Overlap" Effect-

The oldest idea is that hindrance arises from small
"core overlap" between the parent and daughter
nuclei. "If this effect is due to a difference of deforma-
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tion between the initial and 6nal cores, it is expected
to be most clearly manifested by p decays in the transi-
tion regions. Though the existence of such an effect4
has been indicated by the study of transition regions, it
seems to be improbable' that the origin of the hindrance
phenomena can always be attributed to lack of core
overlap.

Z. Pairing Correlation Effects

Several years ago the pairing model was applied to
the study of p-decay systematics, and it was shown' that
for a number of normal allowed transitions the isotope
dependence of ft values can be well reproduced if the
coupling constant is phenornenologically renormalized
for each type of transition (i.e. , gg/s ~g7/I etc.). The
renormalized coupling constant was found to have
about the same magnitude for both spherical and de-
formed nuclei. The most recent study7 of deformed
nuclei showed that the experimental transition rates
are typically 20 times lower than predicted by the pure
Nilsson model, and eight times lower than predicted by
the Nilsson model with pairing corrections.

3. Gantoto Teller Gian-t Resonance Effects

In 1961 isobaric analog states were experimentally
discovered' in the study of (p,n) reactions. The state
T ~i), isobaric to the initial state )i), was shown to be a
well-de6ned state with a narrow width having the order
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origin of the hindrance factors requires taking into
account the existence of such collective modes, namely,
the inclusion of many higher configurations in the con-
ventional configuration mixing treatments. Each of the
contributions is known to be small, but the total effect
becomes important when they contribute coherently. ' "
However, if the existence of giant resonance effects can
be assumed, a much simpler treatment is possible. "It
can be shown that even if the supermultiplet symmetry
is significantly broken in actual heavy nuclei, the 1+np
collective state plays an important role in hindering
Gamow-Teller P transitions.
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Fra. 1. P transitions on the collective states of (a) Fermi t e
J'1, (b) Gamow-Teller type J'o, and (c) first forbidden r.
Two peaks in (c), J'r, correspond to the collective states
~coll. pTp —1(Te—1)) and ~coll. &Te 1(Te 1))—(see —Sec. III).

of 100 keV or less for medium and heavy nuclei. This
fact explains' why Fermi transition matrix elements are
generally so small for heavy nuclei. The discovery of
isobaric analog states led to the conjecture' "that the
Gamow-Teller transition strength might also be con-
centrated in the several MeV energy region near the
isobaric analog resonance, to which P transitions are
energetically forbidden. This idea, the possible exis-
tence of Gamow-Teller giant resonance effects, seem to
be in agreement with a variety of experimental evi-
dence. " 'r (See Fig. 1.)

It should be mentioned here that the isobaric analog
state can be regarded as the state" in which np (neutron-
hole, proton) states with the spin (parity) J =0+ are
coherently superposed; the Gamow-Teller giant reso-
nance corresponds to the nP states with J =1+. The
long life of the 0+ state follows from isospin symmetry,
and the life of the 1+ state is closely related to the
validity of supermultiplet symmetry. "To discuss the
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(1964).
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Battercherjee, S. K. Mitra, and H. C. Padhi, ibid. 72, 145 (1965)."H. Ejiri, J. Phys. Soc. Japan 22, 360 (1967).
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(Kyoto) 38, 107 (1967).' J. A. Halbleib and R. A. Sorensen, Nucl. Phys. A98, 542
(1967)."J.I. Fujita, Y. Futami, and K. Ikeda, in Proceedings of the
Internateonal Conference on Nnclear Strttctttre, Tokyo (Physics
Society of Japan, Tokyo, 1967)."Y. Ishizaki, Y. Saji, H. Yamaguchi, K. Yuasa, B. Saeki,
K. Okano, and Y. Fujiwara, Nuclear Structure Study mth Neutrons
(North-Holland Publishing Co., Amsterdam, 1966), p. 59.

's K. Ikeda, S. Fujii, and J. I. Fujita, Phys. Letters 2, 169
(1962).

ts E. P. Wigner, Phys. Rev, 51, 106 (1937); 56, 519$(1939).

B. Forbidden Transitions

It is already known' ""that phenomenological re-
normalized coupling constants are necessarily intro-
duced also in the cases of 6rst-forbidden transitions.
Since many higher configurations must be taken into
account in calculating the transition matrix ele-
ments, ""it will be of interest to see whether giant
resonance effects exist in forbidden P transitions. In
contrast with the cases of allowed transitions for which
the 0+np states have no corresponding partners in the
7tp or nrt states and similarly true for the main part of
the 1+ np states, in the case of J = 1 the correspond-
ing pP and nrt states are responsible for the E'1 giant
resonance. ' Therefore, if the knowledge of electro-
magnetic transitions is fed in, a fairly reliable estimate
should be obtained for the problem of how much
hindrance in forbidden P decays is to be expected,
owing to giant resonance effects.

As the first step in answering this question, extensions
of the schematic model of Brown and Bolsterli'4 are
proposed and discussed in Secs. II and III. The isospin
formalism is used, since the important role of isospin"
in the photonuclear effects of heavy nuclei has already
been pointed out. " In Sec. IV, ways of carrying out
more realistic calculations are surveyed and a new
method is proposed. Numerical estimates are obtained
in Sec. V.

II. SCHEMATIC MODELS

First, we reformulate the model proposed by Brown
and Bolsterli'4 and then extend it to heavy nuclei.

"I.Hamamoto, Nucl. Phys. 62, 49 (1965)."J.I. Fujita and K. Ikeda, Progr. Theoret. Phys. (Kyoto) 36,
288 (1966)."J.I. Fujita, Phys. Rev. 126, 202 {1962)."R.M. Spector, Nucl. Phys. 40, 338 (1963)."G. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472
(1959); G. E. Brown, L. Castillejo, and J. A. Evans, Nucl. Phys.
22, 1 (1966).

"A. M. Lane and J. M. Soper, Phys. Rev. Letters 7, 420
(1961); Nucl. Phys. 37, 506 (1962); 37, 663 (1962); L. A. Sliv
and Yu I. Kharitonov, Phys. Letters 16, 176 (1965)."H. Moringa, Z. Physik 188, 182 (1965); S. Fallieros, B.
Goulard, and R. H. Venter, Phys. Letters 19, 398 (1965); B.
Goulard and S. Fallieros, Can. J. Phys. 45, 3221 (1967); D. F.
Peterson and C. J. Veje, in Proceedings of the International Con-
ference on Nuclear Structure, Tokyo (Physics Society of Japan,
Tokyo, 1967); P. Axel, D. M. Drake, S. Whetsone, apd S, $,
IIanna, Phys, Rev. Letters 19, 1343 (1967),
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A. Light Nuclei

We consider the system in which all the unperturbed
particle-hole states are degenerate with an energy AEp
for the unperturbed Hamiltonian Hp, and the inter-
action Hz having a constant value of matrix elements G
is switched on among the particle-hole states. The
charge-independent model Hamiltonian" is given by
using a creation (annihilation) operator At(hv)(A(hv))
of a particle-hole pair ()b,v) as follows:

Fxo. 3. Schematic diagram
of P and f transitions and the
associated collective states in
light nuclei.

(To TZ) (l l ) (I.O)

m

I

o!
(T, T~ )= (O,O)

N=Z

H= Ho+ Hr,

with the unperturbed part Bp,

Hp= 26Ep g At()iv) A(Xv),

and the interaction Hamiltonian

Hr=2GAt A

=2G(AotAo+A+itAyt+A itA i),
where the isovector A= (A p,A+i, A i) is defined by

A=+ A(Xv).

(1)

(3a)

(3b)

Ap() v)=-', (b„'bg— 'aa),), (Sa)

A —i(Xv) = -',ALT A p(Xv)]= rs~2a„tb„, (5b)

A+i() v) = ——,'42)T+,A p() v)]= —-,'v2b„'a),. (Sc)

The model Hamiltonian in (1) has the following
properties:

a io) = Hollo) =o (6)

for the wave function ~0) in the ground state (N=Z),

HgAJ()~v) ~0)= DEpAt()~v)
~
0) P)

FIG. 2. Schematic picture of particle-
hole excitations in a light nucleus
(E Z)—

The suKx X(v) stands for an unoccupied (occupied)
state in the ground state (see Fig. 2), and we assume
that for each value of v only one value of X contributes,
and vice versa. Therefore the sums on a single v in Eqs.
(2) and (4) represent the sums over all possible pairs
(Xv). The components of A(Xv) can be written in terms
of the creation (annihilation) operators at(a) for a
photon and bt(b) for a neutron as follows:

f 2Ni„y'"t 1
I
a,t(~„.o — a,') 1

o).
EÃi, —1)

Now let us introduce an idealized isovector transition
operator as

m= A'+A, (12)

of which the qth components represent the P inter-
action for q=&1 and the electromagnetic interaction
for q=0, except for the coupling constants. It can be
proved that the transition between ~0) and At ~0) ex-
hausts the sum rule of the transition strength due to the
operator m, and all the other transitions from ~0) are
forbidden, as seen from (11).The relationship between

P and y processes is obvious as shown in Fig. 3.

B. Heavy Nuclei (N&S)

We extend the above argument to a heavy nucleus
(N)Z). It must be assumed ' ' that total isospin is
an approximately good quantum number also in the
pertinent states of heavy nuclei.

As in Eq. (1) let us write the total Hamiltonian as

for the particle-hole states A"(Xv)~0)(T=1),

Lao T+3= Ear T+3=0 (8)

LH„Atj~0)=N„gAt~o), (9)

where Eg„represents the number of degenerate un-

perturbed states Ao(hv) for q=o, &1. From (9) we
obtain

HAt
i 0)= (aEp+N), Q)At

i 0). (10)

The eigenstate, Apt~0)=Q„Apt()hv) ~0), is referred
to as a collective state; if G is positive, the energy of the
collective state is higher than the original one. It can
also be shown that all the noncollective states, after
Hz is switched on, remain at the original energy AEp
and have the form

H=Hp+Hr, (13)

"Note that only the particle-hole states At(xv) ~0) with T=1
are taken into account in (2) and (3). We may include the con-
tributions of the states Ao't(Xv) ~0) with T=O, for which Ao'P v)
=$(bitL+axta, ), into (2) and (3). Then we obtain another
type of collective state, Ao't~O)=P. Ao't(Xv) ~0), which exhausts
the sum rule for the isoscalar transition operator 3fo' ——Ao'1+A&'.
An example of the isoscalar collective state R 0)= (1/A)Q"x; ~0)
is well known to be a spurious state because the c.m. of a nucleus
s at rest.

where the unperturbed Hamiltonian Hp and the inter-
action Hamiltonian Hz are assumed to satisfy the
relations

H, io)=a. io&=0, («)
in which )0) satisfies T, jo)= To[0);

LTg, ar]=0
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Fzc. 4. Schematic picture of particle-
hole excitation in heavy nucleus
(B'av'-Z)

in which (8'8) represents (Xv) for T= Tp+1; (Xv), (X,ii),
and (iiv) for T=Tp, (Xv), ()is), (1iv), and (is,'Is,) for
T= To—1. The collective energies are written

Ecoll.(T,Tp 1)=—AEp(T, Tp—1)+As&(T), (22)
with

where
as'(&) =N(T)Gr, (23a)

LHp, Tp]= WA, T~. (16)
The A, in Eq. (16) represents the single-particle
Coulomb displacement energy, which can be directly
measured by the existence of an isobaric analog state.
From Eqs. (15) and (16) it is clear that every eigenstate
of H in (13) has a definite isospin T. In other words,
the isospin projection operator" I'&&~') satisfies

PPr &™,H]= 0, (17)
where I'&(~) is the projection operator projecting the
state with a definite isospin T out of an isospin mixture
with fixed T,.

A model Hamiltonian H satisfying the conditions
(14)-(16) is given by

H, = g ~E,(A; T(T,)) t
b'b; T(T.))

and
&«bb;T(T, )t (1S)

H, = P G,(b'b, 'e)tb'b; T(T,))(.",T(T,)t, (19)
b, e, T

where
t
8'8; T(T,)) stands for a particle-hole state as in

Sec. II A. Assuming T,= Tp sr (1V—Z) for t0——), we can
denote a normalized unperturbed eigenstate" with
total isospin T and T,

to'b; T(Tp—1))=PNr(b'o)$ "Ps&rP '&avt—bpt0). (-20)

The normalization coeflicient Nr(B'8) depends on the
labels X, p, , v associated with the pair (8'8), where the
labels for states P, p, and v are shown in Fig. 4. The
explicit forms are given by Eqs. (A7) and (AS). For
each value of 8 only one value of 8' is assumed to con-
tribute, and vice versa. The numbers of pairs (b'b) are
denoted as Ni„,1V„„,and so on. The states

t
b'8; T(T,))

for T,= Tp and Tp+1 can be obtained by multiplying
T+ and T+' by t

8'8; T(Tp 1)) in Eq. (20), resp—ectively.
If we assume that all the unperturbed states are

degenerate, AEp(8'8; T(T,))=AEp(T, T,), the —problem
can be solved in exactly the same way as in Sec. II A.
The collective states

t
coll. T(Tp —1)) for negatron

decays of
t 0) (T,= Tp) are given by"

t
coll.T(T,—1))=P

t
(5'b); T(To 1)), (21)—

and

N(Tp+ 1)= 1Vi,„,
N(T p) =N),„+Ni„+N„„=Np',—

(23b)

(23c)

T+ t
coll. T(Tp—1))~ t coll. T(Tp))

and
(24)

E„ii(T,Tp) = AEp(T, Tp)+As&(T)
=E„ii(T,Tp—1)—A, (25)

for T= Tp oi Tp+1 (see Appendix 3).
In order to discuss the correspondence of levels in

neighboring nuclei, it is convenient to assume that

H p
—Hpe+ Hc+ Hss—, (26)

where the Coulomb potential part including the
neutron-proton mass difference is

Hc= (Tp Tz) A. , — (27)

and the T dependence of Ep(5'8; T(T,)) is assumed to
be given by the symmetry energy part"

H, = (I/2T, )(T —Tp(T,+1)}A,',
so that the first term Hp' in Eq. (26) satisfies

LHpP, Tp7=0.

(ZS)

(29)

The constant terms in these equations are chosen in

To+o {Coll To+I (To I

Tp+I
IColl To+lHo)&

To
icosi.r,(r, )&t

h,y
Tp

I To(Tp)&

To —-i (Coll. To(Tp l)

s T I
Nj'GT0

0 --g lColLTp l (Tp"l)&
0

O& ) GV-I

To-

1V(Tp 1)=N)„—+—N),„+N„„+N„.„=Np. (23d)

We can easily derive the following relations between
the collective states responsible for P and y transitions
of t0)(T,=Tp):

"J.I. Fujita and K. Ikeda, Progr. Theoret. Phys. (Kyoto) BS,
622 (1966).

'~ It should also be mentioned that in this paper no Clebsch-
Gordan coeKcients appear explicitly, unlike the previous treat-
ments (Refs. 9 and 10). However, it is an easy task to rewrite
the discussion here to the case of eigenstates of angular momen-
tum, because it can be done by a unitary transformation.

'p The sum on 8 in Eq. (21) is the one over-all possible pair of
(8'8) as in Eq (2). .

o
lo&

To I

Fxo. 5. Level scheme of P and y transitions and the associated
collective states in heavy nuclei.

"In Ref. 18 the symmetry energy part of the Hamiltonian
Hg was treated as an idealized residual interaction producing
isobaric analog states.
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order to satisfy the relation

H. io)=H, io)=0. (30)

T IQ& Tas To-I
Y IQ&

The relationship between 68' and the observed sym-
metry energy is given in Appendix B.

1. Fermi end Gamom-Teller Cases

To-I
I N„-I

o„b

(pap) 0+

FERMI- TYPE

IQ&

To-I
fN -I

0'„'b„

(p' pc) I+

G-T TYPE

The schematic level scheme for the total Hamil-
tonian H is shown in Fig. 5. The quantity 6&& can
be determined from the knowledge of electromagnetic
transitions due to the transition operator Eq. (12),
ms=Apt+As. It is interesting to compare the above
general forbidden cases with those of allowed transi-
tions. For Fermi transitions, we have (o't&) = (pt&); for
Gamow-Teller transitions predominant components are
(8'8) = (&u'&u). Schematic figures for allowed transitions
are shown in Fig. 6."

Z. Electric Dipole Ca-se

The relationship between P and y processes is clearly
indicated in Eqs. (22) and (24) in the present model.
For instance, let us examine the case of J'r The p.eak
energy of the famous Fi giant resonance state

pZ E
Pro ' P I

bp'tbp —ap'tap ~10) cc
I
coll. Tp(Tp)) (31)

is AEp(Tp, Tp)+Ar"(Tp) provided that particle-hole
pair states (i&'b) with J~= 1 are suitably chosen. The
isobaric analog state of ~coll. Tp(Tp))'is expressed as

&rZ
(-', T;i)Tmrpt'p& p I bp'bp ap—'ap

~

~0—)—
p IA

=Frp&r~'& P ap tbpIO), (32)

FIG. 6. Collective states corresponding to Fermi transition (left-
hand side) and Gamow-Teller transition (right-hand side).

e=E& AEp+—b=—
E&+b—AEp

E&+AEp+G1V .— (35)

The hindrance factor, which agrees with the transition
matrix element itself in our model, is given by

Suppose that we have

Hpli'i; Tp 1(Tp—1—))
= (AEp —b) ~i'i; Tp 1(Tp—1—)) (33a)

fori= i, 2, , n~ and

Hp~j j'; Tp —1(Tp—1))
= AEpIj 'j; Tp—1(Tp—1)) (33b)

for j=ni+1, ni+2, , ni+ns(=1V), where AEp
represents the quantity BEpI o'o; T(T,)) appearing in
(18). In this model we obtain two types of collective
states Icoll. &t&», Tp 1(Tp—1)) with the energy
eigenvalues

E&&=AEp+s( —b+1VG

&P(t&+ (ns ni)G) +4ninsG $'Is) (34)

respectively, for which we have the relations

F '"=(f)nt ji), —
(36a)

which agrees with
~
coll. Tp(Tp —1)).On the other hand. ,

the resonance related to the hindrance in P decays due
to J'r is given by )coll. Tp—1(Tp—1)) since low-lying
states of the nucleus have isospin T=TO—i.

IIL HINDRANCE FACTORS FOR g DECAYS

The solutions ~coll. T(T,)) in (21) are obtained on
the assumption that all the unperturbed. levels are de-
generate and all the interaction matrix elements are a
constant. It can be extended without difhculty to cases
where the levels consist of two groups of degenerate
levels. The hindrance factors F in these models can be
calculated as follows. (Details are given in Appendix C.)

"The Fermi transition is a special case, where collective states
with T=To—j are spurious because of

Prp gizmo
'& p„„bo„t)I=OPz p

&&r'&T IO)=0.
This is in contrast with the previous treatment in Ref. 18, where
Hs in Zq. (28) is not taken out explicitly. In the Gamow-Teller
case F I0) includes small components with T= Tp, having analog
excited states of the nucleus T,=To.

where

i/2
F&-'~' ——(gn, )(1—r)~ iy—Fs

~

n, ) (36c)

I= F=
G1V+ 8—e nsG+5 —s

respectively. It is shown that the sum rule is exhausted
by these two collective states:

(O~ns nt~O)=ni+ns ——F& '+F&—'. (3'7)

As an extreme case of 1VG«b, we have X=F=O,
F&-'=e2 and F& '=a~, while in case of XG&&b we
have X=V= i and F& '=E, F& '=0. In this model,
the P transitions from ~0) to the other noncollective

which becomes, corresponding to the above two collec-
tive states,

( ni ) f ni
F& 'is=(gns)j 1+—X ii 1+—X'

i (36b)
n, ) & n, i

and
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final states having energy eigenvalues AEp —8 or AEp
are completely forbidden;

p.-s/2 p.-i/2 p

for i=1, 2, , na —1 and j=nq+I, nq+2,
ng+np —1.

In actual nuclei, 8 is of the same order of 1VG=e26
as shown in Sec. V, whereas e2))n~. Therefore, the
transition to the lower collective state is given by

F( '"=(&ni)(1—I")=(&n )
EG+ "p

F —1 J )2

ng KG+82

(39)

(40)

The hindrance factor (6/(lVG+5) j' is attributed to
the giant resonance (E&,F&) effect.

As a special case for e~= 1, the hindrance factor in

Eq. (39) becomes

F —'I'= 8/(SG+ 8)

for e~))1. If 8 goes to zero, F& '/' also tends to zero as

expected from the completely degenerate case in

Sec. II B.
It should be remarked here that if the transition

strength given by Eq. (39) is equally distributed among

n& levels, it agrees with the one given by (41).
In Sec. IV it is shown that more realistic treatment

also leads to the expression quite similar to Eq. (41).

&f!Le,mj —m~! 0)
(f!m! 0)=

Elf Ep
(42)

which is valid for any value of ~ except d =Ef—Ep. If
we insert the model wave functions !0)p and !f)p in

place of !0) and !f), generally the two sides of Eq.
(42) are not equal. If we choose the value of 6 to be

(0!mtLa, mg! 0)

(0!mtm! 0)

"J.I. Fujita and K. Ikeda, Progr. Theoret. Phys. (Kyoto) 36,
288 (1966).

~4 P, Ikeda, Progr, Theoret. Phys. (Kyoto) 38, 832 (1967).

IV. MORE REALISTIC METHOD

A. Hindrance Factor in Commutator Method

A method using the commutator of the nuclear

Hamiltonian and the transition operator has been

developed earlier, ' " and applied to the Fermi'4 and
Gamow-Teller P transitions of spherical'4 and deformed'P

nuclei. In this section the physical meaning of this

method is reexamined on the basis of above arguments

on the schematic models.
First, let us briefly recapitulate an outline of the

method. "We start from the identity

then we can expect that a better estimate for a hindered
matrix element is obtained from the right-hand side of
Eq. (42), for various reasons. (a) The right-hand side
corresponds to a sort of perturbation approach starting
from a collective model. """(b) It is the deviation
from the random-phase approximation (RPA) that
gives the m a finite value, as clearly seen from the
numerator in Eq. (42); and the effective transition
operator LH, mj —mA generally has no sharp selection
rules, ' unlike m itself.

Now, let us examine the relationship between this
method and the schematic model, especially its pre-
diction, Eq. (41). The latter model is quite simple but
explains the essential feature of hindrance phenomena
due to the eAect of collective states. Suppose that II
in Eq. (42) is given by Eq. (13) and the true wave func-
tions in Eq. (42), !0& and ! f), are replaced by zeroth-
order model wave functions !0&p as schematically shown
in Fig. 5 and! f)p=!5p8p' Tp 1(Tp 1)& in Eq. (33a).
Then the left-hand side of Eq. (42) becomes

&flmlo) =o&fl Z~,'b I0&o=V'~ (qo'qo), (44

where i%~(8p'bp) given by Eq. (A11) is close to 1 when

Tp))1. On the other hand it can be proved that the
right-hand side of Eq. (42) becomes

S/(A-G+ S), (45)

agreeing with Eq. (41).
We can thus conclude here that the left-hand side of

Eq. (42) gives a value of O(1), the value of the nuclear
matrix element for superallowed transitions, whereas

the same model wave functions give the appropriate
hindrance factor, Eq. (41).

B.More Realistic Method for Forbidden Transitions

In Sec. III we obtained two diferent estimates on
the hindrance factor for the ground-ground P transi-

tion, F '"=0 in Eq. (38) and F '"=5/(EG+p) in

Eq. (41). The preceding argument suggests a means for
evaluating hindrance factors more realistically as im-

provements on the schematic model. LThe mathematical

meaning of (42) is discussed in Ref. 36.$
The basic idea is to insert H of (13) into the numera-

tor of (42) and replace F~, Fp, and A in the denominator
of (42) by phenomenological values. Inserting (13)
into (42) leads to

&f I L&p,m j—mAp I 0&+&fI L&r,m3 —m~.
I o&

(46)
Ef—Ep—6

35 M. Ichimura, Progr. Theoret. Phys. (Kyoto) 36, - 853(L)
(1966)."J.I. I'ujita, Phys. Rev. U2, 1047 (1968).
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where
(Olmt[H„mjl0&

hp=
(0lmtml 0&

(Olmt[H„m]lo)

(0lmtml 0)

~= &o+~r

The Ap defined by (47a) can be rewritten as

from Eq. (Sib), although such experimental data are
not available at present. Therefore, Zs is estimated on
the basis of the schematic model described in Sec. II,

Zs= As+ (Xs'—1)Gz,—(.'Vs —1)Gr~i, (52)
(47b)

for which 1Vs and Es' are defined by Eqs. (23).
On the basis of these two assumptions, we obtain

(47c) the approximate formula from Eq. (46).

(ylm 10)= pVlm. „lO&„(53a)
where

~r'- (~i'&&o= ~'+~s+~c,
(53b)

according to Eq. (26), in which

(Olmt[H„mjl 0)

(0lmtml0)

(0l mt[Hop, mg l 0)
+0

(0 l
m'ml 0)

H pi f)p=PP If), (54a)

o(0 l
mtHpm l0&p

(~P& (54b)
,(Olmtml0&.

The choice of model wave functions is not unique. "
(a) The simplest one is to choose

l f&p as a particIe-
hole state of l0)p. Then the transition is hindered by
the factor appearing in Eq. (53b), or essentially the
hindrance iactor given by Eq. (41) for the case ni ——1.

(b) As shown in Sec. V, the actual forbidden transi-
tions are rather close to Eq. (38). If the transition
strength is equally distributed among the n& states, the
hindrance factor agrees with Eq. (41) as already re-
marked in Sec. III. However, it is conceivable that the
group of n~ levels by themselves constitute a sort of
giant resonance, as shown in Fig. 1, because of the
repulsive interacting among neutron holes and protons.
In this case transitions should be hindered more than
expected from Eqs. (53b) or (41). The latter effect re-
mains to be investigated in future quantitative studies
of individual hindrance factors for the forbidden
transitions.

(49b)

(Olm'[Hs, mjl 0)

(0lm'ml 0)
(49c)

It is assumed that all wave functions in the numerator
of (46) are replaced by the model wave functions,
lo)p» If&p.

Now instead of calculating 4 by Eqs. (49) the energy
shift 6 in the denominator of Eq. (46) can be expressed
in terms of the peak energy A~ of a giant resonance in
the corresponding y process; making use of the relations

m„~[T+,mj (Soa)
and

T, lo&=O, (SOb)
we obtain

(0l m, t[H, m~ jl 0) (0lm„tPr,~r'i[H, m„gl0)

(0l m„tm,
l 0) (0 l

m„tPr,&r'&m„l0)
=~+~s—~c, (5»)

where
V. COMpmraom Wn'H zXPERIMZmS

5$eff~ m.
Ey—Eo—(~p+ ~c—~s)

In (53b), Erp and (Erp) are defined to satisfy the
(49a& relations

(Ol mtHPr &ro-'im
l 0)

~s=
(0 l

mtPz &ro
imam

l 0&

(OlmtHP»i —iml 0)
(5ib)

(0 l
m'Pr~, &ro-'&m

l 0)

In order to compare our results with experimental
data in Sec. V, several simplifying assumptions are
made. (i) Validity of the RPA for Hz. Then the con-
tribution of Hr to the numerator of (46) can be omitted.
This approximation does not presume that the total
e6ect of Hz is negligible but, on the contrary, its con-
tribution to 61 is essentially important for our method
as seen from the derivation of Eq. (45). (ii) The quantity
Dz is an experimentally measurable quantity as the
energy difference between two peaks of giant resonances
with total isospins Tp and T0—1, respectively, as seen

First-forbidden P-transition rates are generally
hindered to some extent compared with single-particle
values. It is very interesting to discuss the general
trends of the hindrance in terms of the present theory.
The first forbidden P-transition has six transition opera-
tors of J'r, J'aXr, J'a r, fop, fn, and J'8;;, among
which fe is related to J'r on the basis of conserved
vector current theory. o"P The component J'r is re-
lated to the E1 y radiation, whose giant resonance
energy is known experimentally. In the present theory
the hindrance factor Ii, due to the giant resonance
effect [Eq. (41), single-particle transition in closed shell

"As discussed in detail in Ref. 36, the quantity 6 is not ex-
actly independent of the choice of the model space, but such an
efkct is neglected in this paper.

'8 J. I. Fujita, Phys. Letters 24$, 123 (196/); Y. Fujii and J. I.
Fujita, Phys. Rev. 140, B239 (19653.
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TABLE I. Hindrance factors of 8;„ptransitions.

Region of
mass No.

72—86
88-112

122-138
200-204

0.7 -1.2
0.6 -1.4
0.95—1.65
0.85-1.15

1.06
0.81
1.25
0.99

0.61
0.38
0.66
0.56

log/ot„(expt) (logqoto(expt))~ logiot(theoret) n (MeV)

24.2
21.9
23.1
24.6

Main transition
process

(2ggn) ~ (2 fsj2) &
(2ds/s) ~ (2pg/s)

„

(Ittu/s)a ~ (Igr/s)o
(3ps/2)n ~ (3$1/2)o

a Average values of log10&2 (expt)
b Ro h estimates obtained for mean values of A and N —Z in each region of mass number and transition process. We neglected the contribution of Qvalues (By —Bo) in Eq. (54), which gives small fluctuations.

region) is given from Eq. (53b):

Q 0 g 0( f)

&f—&o—Ap —&a+&s
p —i/2

f7

In the above expression we neglected the second term of
Eq. (46), which is considered to give small fluctuations.
For medium and heavy nuclei, we know experimentally
thatd ~=363 '"MeV7" ~g= 1.44' '"—1.1—2.5m.c'
MeU, ' and As=50(N —Z)A ' Mev. " Assuming

G&,——G&, t for simplicity, we get, from Eqs. (23) and

(52),

where
As= As —Neo Gz,=As —a(A, —/tto),

a= (N„„)t//(Ny.+1Vy„+N„,)set~. (56)

The mean value of transition energy (Er)o in the
numerator of Eq. (55) can be assumed to be (Ef)'
=Ig~=41A '~' MeV since most of the possible transi-
tion processes with parity change are associated with
one IEco jump. On the other hand, the Ef' for the ground-
state transitions have negative values since the Fermi
surface of protons is lower than that of neutrons. The
quantity a in Eq. (56) and Efo can be obtained from
the level schemes4' of the simple j-j coupling shell
model. The hindrance factor given by Eq. (55) shows
no marked dependence on any quantities such as A, Z,
and Dg, since As cancels a considerable part of Dg and
1'tco/A„ is proportional to 2 '/'. This fact agrees with
experiment. "A numerical estimate for the transition
2'03i —+ ' Po gives a hindrance factor of 4. Generally,
the uniform hindrance factor F=3 4 for the Jrcom-'
ponent of DJ= 0, &I P decay may be attributed to the
eGect of the giant resonance.

The experimental data on the component J'r are
scanty because some additional measurement, such as

's M. Goldhaber and E Teller, Phy.s. Rev. 74, 1046 (1948); in
Hartdbuci't der Physs7t, edited by S. Fliigge (Springer-Verlag,
Berlin, 1957), Vol. 42, pp. 309 and 336.

4o J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev.
138, B615 (1965);D. D. Long, P. Richard, C. F. Moore, and J.
D. Fox, sbul 149, 906 (1966.).

4' J. Janecke, Nucl. Phys. 73, 97 (1965).
4'C. M. Ledere, J. M. Hollander, and I. Perlman, Tables of

Isotopes Qohn Wiley tk Sons, Inc. , New York, 1967); in Nuclear
Data Sheets, compiled by K. Way et al. (Printing and Publishing
Ofhce, National Academy of Science—National Research Council,
Washington, D. C., 1963).

4'P. Lipnik and J. W. Sunier, Nucl. Phys. 56, 241 (2964);
R. W. King and D. C. Peaslee, Phys. Rev. 94, 1284 (1954); M. E.
Rose and R. K. Osborn, iNd. 93, 1326 (1954); M. Delabaye and
P. Lipnik, Nucl. Phys. 86, 668 (1966).

circular polarizations, is necessary to extract J'r from
the other components. Furthermore, most of the known
J'r are hindered due to spin (j,E) selection rules. An
experimental value J'r is available for the transition
'"La(3 ) —+ '"Ce(2+) in the closed shell region. "It is
hindered by a factor of 3.8 corn.pared with the estimate
based on the pairing plus Q-Q force model. ' This is
close to the theoretical hindrance F,=3 due to the
giant resonance for this transition.

In view of the existence of many experimental data on
f'B,s let us extend our argument to the case of the
unique first-forbidden transition. 4' Although the M2
y transition corresponding to the 8;; P transition has
not been well investigated yet, we know that M2
transitions are generally hindered in nuclei with
A )30.4' The A~ for 8;; whose collective state also con-
sists of configurations with one Ace jumped states may
be conjectured to be not quite different from that for
r.47 Assuming the E1 giant resonance energy for h~
corresponding to the 8;;,we obtain theoretical hindrance
factors for each mass region.

Figure 8 shows experimental transition probabilities
and the hindrance factors of f'8;; for medium and
heavy nuclei in spherical mass regions. The numerical
values are presented in Appendix D. Hindrance factors
Fs and F„areobtained as

~S(y) '= ~sj.
expg S(u)

~h~~~ I,fJ3cs f s and
f f8;, f

„arethe values based on
the simple j-j coupling shell model" and the pairing
model, ' respectively. The

~

f'8;;
~ s corresponds to the

~

f'8;;
~
„obtained by assuming the associated Vs

and U'= 1. The Ps and F„showno marked dependence
on A. They are larger than 4 and distributed around
the values Iis=40 and J „=10.Table I summarizes
the theoretical and experimental hindrance factors.
The theoretical hindrance factor (giant resonance eRect)

44I. V. Estulin and A. A. Petushkov, Nucl. Phys. 36, 334
(1962).

4' Most of the unique transitions are free from eGects of can-
cellation among matrix elements and angular momentum (j,l,k)
selection rules, in contrast with the case of nonunique transitions
with ranks 1 and 0.

4' D. Kurath and R. D. Lawson, Phys. Rev. 161, 915 (1967).
4s H. Uberall, Phys. Rev. 137, B502 (1965); 139, B1239 (1965);

A. E. Glassgold, W. Heckrotte, and K. M. Watson, Ann. Phys.
(N. Y.) 6, 1 (1959).
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FIG. 7. Schematic level structures in the models in Sec. III
for gl) 1 and sI = 1.
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based on Eq. (55) is approximately F,=4(logipFp=0. 6).
It is interesting to see that the transition of one particle
outside a closed shell has hindrance factors close to the
predictions in Eq. (55) (see Fig. 8).

The strength function of J'8;; for nonclosed shell
nuclei is expected to be close to Eq. (38) (see Fig. 7),
where transitions to the noncollective states are more
hindered. For actual nuclei it is conceivable that the
transition strength of the j coll. &Tp—1(Tp—1)) is more
or less distributed on the other low-lying states because
of the coupling and the nondegeneracy of the unper-
turbed levels (rti). The model of the equal strength dis-
tribution over the m~ levels, which we mentioned before
and for which hindrance factor is given by

F '=F( '/ei=F

seems to give the lower limit of experimental ft values
as shown in Fig. 8. The mean values of the hindrance
factors J „arelarger than the Ii,=4 by a factor of 2.5,
which can be attributed to the eBect due to the mixing
among nearby lying levels.

In Fig. 9 we compare the general trend of the hin-
drance of the first-forbidden J"8,; with that of the
Gamow-Teller frr. The values F~ are plotted against
the energy difference between T j0) and j0), namely,
Z=ho&Qtt~&m, c' (the upper and lower signs refer
to the P and P+ decays with Qp~). The F„for
Gamow-Teller transitions increase with the increase of
6 as a function of 6', as is consistent with the arguments
in Refs. 9 and 13. However, the F„for J'J3;; remains
constant, as expected from the preceding argument.
This characteristic diGerence arises from the fact that
the hindrance for an allowed transition is essentially
the phenomenon within one harmonic-oscillator shell,
but for a forbidden transition it is the one between two
harmonic oscillator shells.

In the present analysis based on Eq. (55) we assumed
that the deviation from the RPA is less important for
Hi than for Ho, at least for the purpose of the studying
of the systematic behavior of ft values. The contribu-
tion due to IIr in Eq. (55) should be examined in the
next step.

VI. CONCLUSION

Our work started from the study of collective levels
which absorb a large portion of the sum rule limit for

7

8-
Q
C&

--ge-m- — a LOG ft ns

ft
- IO'

- IO'
8.4

- IO

I

80
I I I

IZO I60 200
MASS NUMBER ~ A

Fro. 8. Experimental logft values (C), hindrance factors F.
based on the shell model (B), and those F„based on the pairing
model (A) for the unique first-forbidden transitions. The values
of the ground-state ground-state transitions of 2 -+ 0+ and
J;—+ Jf——J;+2 in the spherical mass region are plotted. Points
accompanying satellites indicate transitions of one nucleon out-
side a closed shell.

the transition strength. The sum rule can be written as

g j(fjmj0)j'=(0jmmj0)= j(Cjmj0)j ', (57)

O
+t+

f a -l—

-2—

cf. (I+

+
O 0—
t

I
cu -I-

2
C9
O

fBp (2 -0+)

~ yAD ~~ ~ ~ ~ y ~ t~y '~

l

I.O
I

2,0
I

3.0
~LOG 6

FIG. 9. Hindrance factors E„ofunique 6rst-forbidden 2 -+ 0+
and Gamow-Teller 1+—+ 0+ transitions versus log3', where
3 =&,&Qp+&m, c~. The upper and lower signs correspond to nega-
tron and positron decays with Qp- and Qp+.

where
jC)=mj0)/((Ojmtmj0)) 'ts. (58)

If j C) belongs to the complete set j f), the sum rule is
exhausted by one transition, j0) ~+

j C). Then even if
jC) is not an exact eigenstate and has a finite width,
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existence of such a virtual state can cause the hindrance
phenomena.

In Secs. II and III hindrance phenomena were
studied on the basis of schematic models, which are
simple extensions of the one proposed by Brown and
Bolsterli. '4 It was suggested that knowledge of the Ei
giant resonance can be applied to the calculation of
hindrance factors for the P-decay matrix element J'r.
As discussed in Sec. II, the collective motions which
have no analogs in the electromagnetic transitions play
important roles for allowed P transitions, whereas for
the forbidden P transitions the responsible collective
modes are closely related to the familiar ones known in
the study of y-ray processes. The hindrance factor due
to the giant resonance e6ect is roughly estimated to be
7=4 for the first-forbidden P decays.

Since little is known of J'r in P decays, we examined
in Sec. V also the empirical systematics of J'8;;. A
characteristic difference between the hindrance ex-
pected for allowed and forbidden P transitions was noted
and discussed in terms of the semiempirical systematics.

In Sec. IV a new method of calculation was proposed
for the treatment of nuclear matrix elements for for-
bidden P decays, which makes use of knowledge of the
corresponding electromagnetic transitions. The physical
meaning of this method is clearly seen from the sche-
matic models in Sec. II. The merit of this method is
that we can easily estimate the core-polarization effect"
leading to a giant resonance.

Although whole arguments in this paper are semi-
quantitative, it will be worthwhile to search, by future
precise experiments using nuclear reactions, for the
possible existence of the giant resonances corresponding
to forbidden P transitions.
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r r+
2TO

T 'T+' A1a
4To(2To+1)

p& (&o—&)—
2 TO

and

T-'T+'
2To(2To+ 2)

(A1b)

Pr~&&~o '&= T 'T+' . , (AIc)
2(2To+1)(2To+2)

in which

and
T, I0)= ToIO&=-'(sV —Z) IO),

T+ TQ~ 2 Tp ~

(A2a, )

(A2b)

The components of an isopin operator are expressed
in the second quantized form:

T,= o Q (botbo aotao), —

(A3b)

and
T =Q aotbo. (A3c)

In the above expressions at(a) and bt(b) are the creation
(annihilation) operators for a proton and a neutron.

By straightforward but tedious calculations assuming
T+ I 0)=0 we obtain

APPENDIX A: EIGENSTATES OF ISOSPIN

Explicit expressions of the projection operators
P~(~' are given in Ref. 28. The first few terms are
written as

P &r'—'&a tb I0)—— (A4a){ag~b„+(bp,~b„a),~a.)T ) IO)+ —— by~a„T 'IO), -

(T,+1)(2To+1) 2(To—1)(2To+1)

2 0+2 To+3
Pr." "a~'&.

I
o&= a"b.

l o)+ (h,~b„a,~a.) IO)—— —b,ta T oIO&,
To(To+1) 2To(To+1) 2To(To+1)

(A4b)

2TO' —To—2
P &rona„~y

I 0)
To(2To+ 1)

2TO+3
(A4c)a.tb„I0& (Sdf,—a 'a.)T Io&+ &~'a.T-'

I
o)-, -

2T,(2T,+1) 2To(2To+1)

1
Pro&ro '&a) ~b„I0)= — (a~'&,+4'4T )I o&, -

2TO
(A5a)
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2TQ 1
Pr~~'" "u&'bo10) =

2TQ 2TQ
(A5b)

Pro&r~'&a 'b„~0)= (a„tb„a„'—a,T ) ~0),
2TQ

2 rp 1
Pr~~&" »au'b.

I o) = a'b
I o)+

2TQ 2TQ

(A6a)

(A6b)

The sufi'. xes X, p, and v are given in Fig. 4. If we note
that

a&,tb„~O), -,'Tp—'&'(b&,tb„—a„ta,)T ~0),
k{2Tp(To—1)} '"b~'a.T-'Io) u~'u. Io)
(2To—1) '"b"b.T-I 0), u'b. I o)

and (2Tp—1) "a„tb„T~0) are normalized states in
Eqs. (A4)-(A6), then we can easily normalize the
states.

The normalized states are expressed as

~
&; T= To+1,T*=To—1)=L(2To+1)(To+1)j'"

ip», T=To, T.=To 1)=(v—'2To)Pr 'ro "
Xa„tb,

~
0), (A9a)

2T
(y&; T= To 1,T,=—To 1)= (

—
[

Pr
&2T,—1i

Xa„tb,~0). (A9b)

Note that orthogonality conditions are clearly satis6ed;

(b'b; T(T,= Tp 1) i
o'o; T—(T,= Tp 1))—

= bo, bo„(A10)
and, if T'Q)&i, we have

XPr~q&ro '&a&tb„&0), (A7a)

(V'To+1)To
& i T= To, T*=To—1)=

V'To'+STo+4

Pr, &&ro '& o'uo(0)-=u, ta, jO).

APPENDIX 3
Equation (24) is proved as follows:

(A11)

( )
i &&v,

' T= Tp 1,T = To —1)=-
+4Tp'+7Tpo+12To+4

T+P &ro-'& P a '-bo~o)
QEr

X r.'"-"a.'b. Io), ( 7b) T ~coll. T(T,=Tp-1))
To 2Tp+1

XPrp &&ro '&ugtb„~0), (A7c)

~ Xp, T= To,T.= To 1)= (v'2T—o)Pr, &r~»

Xa,tb„(0), (ASa)

) 1/2

~&&p, T=Tp —1,T,=To—1)= —

~

Pr~g&r' "
2T, 1]-

Xa,tb„~O), (ASb)

-Pr'"' 2 LT+,uo'boy
I o)

P,&r & P (bp. tbo —ao.tap) IO)
r

for T= Tp and Tp+1 as collective states of ~0) with
T = Tp, which agrees with Eq. (24).

Also the following relations are useful:

hp'(T)—= (0~ P (botbo. aotao )HzPr&» P—(bo.tbo ao.tao) )0)/—(0( P (botbo uotuo )Pr& " P—(bo.tbo ao tao) (0)—
=(0~ Q bptuo. HzT T~Pr&ro '& Q ap. tbp[0)/(0~ Q— botap. T T+Pr& p '& Q uo. tbo(&0)-

=(0) p botuo. HzPr& ' "Q uptbp(0)/(0) p bptapPr& o '& Q ao ho[0)=—Az&(T) (82)

for T= To ol Tp+1.

Note that the symmetry energy hz to be compared with experiments is de6ned by

(0&&botao HPr, &ro-'&ao tbo
I 0) (0[botuo HPr~~&ro '&ao tbo( 0)

~s=—
(0 )

botao. Pro&ro-'&ao. tbo
~
0) (0( botao Pr~g&ro '&ao tbo

( 0)

=68'+Gr, (b'8; b'8) Gr~g(b'8; b'b), —
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S2

E AE—p+ o E AEp—GAPPENDIX C

as seen from Eqs. (19) and (28). If Grs= Gr~z for every and the dispersion relation
(8'8), we get As=As' H. owever, if Gz, WGr r, large
effects arise on the Ar&(T) in Eq. (B2).

(C3)

for 6=G~o 1, and the normalization conditionsIn this Appendix the equations given by Eq. (33)
are solved.

Let us assume the form of solutions, which correspond
to the collective s

(c4)njC'+nsD'=1.

Cg ~Fi; Tp —1(Tp—1))

tates
~

coll. &~&~, p 1(Tp 1)), as
Solving (C3), we obtain the energy eigenvalues of

the collective states, E& and E&, given by Eq. (34).
In order to obtain the results (36) and (37), the following

+D g ~
g'g; Tp —1(Tp—1))~ (Cl) relations are useful:

Prom (13), (18), (19), (C1), and (33) we obtain the
relations

(c2)
E AEp E—EEp+ o—

—2AEp+ E&+E& A'G —8, ——

(E&—AEp) (E&—AEp) = npG—8,

—AEp+E&= —p+EG.

(Csa)

(CSb)

(C5c)

APPENDIX D

Ter.E II. Log ft values of the unique first-forbidden transitions and the hindrance factors of
non-well-deformed nuclei in medium and heavy mass regions.

Parent Daughter Decay mode Qs-(Q„) Iogssf™Iogspt, 10glPF~o

83As3972

88As4174

83As4174

33As437'

88As4578

Rb4zs4

37Rb4986

87Rb5188

39&5190

39&53"
47Ag65'»

51Sb71122

58I71

53I73126

53I73

59PI 83

81Tl110

SIT1121

81Tl128

SITl128

86Kr49 '
8sSr5189

8sSr58"
89&5291

Tc 95@a

50Sn7 128

5oSn75125

51Sb74»5

51Sb76127

55Css2"7

32Ge4p"
82Ge4274

84Se4o'4

34Se4276

84Se4478

36K148

8sSe4886

8sSr5o

40Zr50

4pZ52

4sCd64'"

52Tevo

52Te72»4

52 I e74126

54xe 72126

60Nds2142

80Hgl20

80Hgl22

80Hg124

82Pb122

87Rb48

39+5089

39&52"

4pZr51

42Mo 539'

51Sb72»3

51Sb74"'
52Te73125

52Te75127

568asl'"

2-~ 0+
2-~0+
2 —+0+
2 -+0+
2 —+0+
2 ~0+
2-~ 0+
2 —+0+
2 ~0+
2 ~0+
2 —+0+
2 ~0+
2 ~0+
2 —&0+

2 —+0+
2 —+0+
2 ~0+
2 —+0+
2-~ 0+
2-~ 0+
9+~ 5

5+~ I—
2 2
6+~ 1—
2 2
1—~ 5+
2 24-~ 5+
2

—s s~+

7+
2 2
7+~ ~—
2 2
7+~ ~—
2 2
7+~ ~—

2

4.3
2.5
1.4
3.0

2.7
1.8
5.2
2.3
3.6
4.0
2.0
3.2
2.2
1.2
2.2
2.5
1.2
0.3
0.8
0.7
1.5
2.7
1.5
0.7
1.4
2.3
0.8

0.5

8.8
8.5
8.3
8.3

8.7
8.5
8.2
8.0
8.1
8.7
8.5
8.2
8.1
8.6
7.8
8.7
8.4
8.5
9.0
9.1
8.6
8.3
8.5
8.4
8.8
8.8
8.5
8.5
8.5

2.0
1.7
1.5
1.5
1.6
1.9
1.7
1.0
0.8
0.9
1.5
2.0
1.7
1.6
2.1
0.65
1.55
1.25
1.35
1.85
2.0
1.3
1.0
1.7
1.6
1.9
1.9
1.8
1.8
1.8

1.05
1.05
1.15
1.10
1.10
1.20
0.95
0.60
0.65
0.70
0.60
0.95
1.30
1.25
1.30
0.60
1.15
0.90
1.05
0.85
0.70
1.15
0.75
0.90
1.40
1.65
f.50
0.90
0.95
f.40

1g9/2

1g9/2

1g9/2

1g9/2

1g9/2

1g9/2

1g9/2

2d5/ 2

2d 5/2

2d5/2

2d5/2

1hll/2

1hll/2

1hll/2

1hll/2

2 fns
3P3/2

3P3/2

3P3/2

3P8/2

1g9/2

2d 5/2

2~5/2

245/2

2d 5/2

1hl1/2

1hll/2

1hl1/2

1hl1/2

1hll/2

~I fis(s~ Ifsis
1 f5/2

~tfs(s
I fsgs
I fsis
1f5/2~ 2PI/2~ 2PI/2~ 2PI/2~ 2PI/2~ 1g7/2~ 1g7/2~ fg7/2

E-+ 1g7/2~ 2d5/2
+-+ 3$1/2
~ 3$1/2~ 3$1/2~ 3$1/2~ Ifsis~ 2PI/2~ 2PI/2~ 2PI/2~ 2PI/2~ 1g7/2~ fg7/2~ 1g7/2

1g7/2~ fg7/2

a Experimental log ft values corrected for shape factor (Ref. 42).
b Logarithmic hindrance factors obtained on the basis of the simple j-j coupling shell model (Ref. 43) in which use was made of the radial part of the wave

function obtained from the harmonic-oscillator potential.
o Logarithmic hindrance factors calculated in terms of the pairing model. The U2 and V3 factors obtained in Ref. 6 were used.
d Main components of shell-model states assumed for transition process.


