
PHYSICAL BEVIE% VOLUME 176, NUMBER 1 5 DECEM3ER 1968

Photo-Ionization of Lithium: A Many-Body Calculation
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The photo-ionization cross section a& of lithium has been calculated to second order in
Brueckner-Goldstone perturbation theory with Hartree-Fock as zero order, for ejected
electron energies in the range 0~02~0. 36 Hy. Other Hartree-Fock calculations of apare analyzed using certain new theorems relating alternative forms of the matrix element.
The final second-order perturbed values of a& in the length and velocity formulations are
in good agreement with experiment throughout the energy range studied.

I. INTRODUCTION

Recent experimental work' ' appears to have
established accurate values for the photo-
ionization cross section of atomic lithium from
threshold to quite short wavelengths. The theo-
retical position is not so satisfactory. The most
elaborate published calculation' is in poor agree-
ment with experiment, while simpler Hartree-
Fock calculations, 4~' one of which (in one formu-
lation) is in close agreement with experiment,
disagree among themselves.

In this paper, we present some calculations of
the photo-ionization cross section using a Brueck-
ner-Goldstone many-body approach' with the
Hartree- Fock model as the zero-order approxi-
mation. The theory is outlined in Sec. II. We
re-investigate the Hartree- Fock model in Sec. III,
obtaining certain new theorems which enable us to
analyze the previous calculations'' and clarify the
relationship between the standard length, velocity,
and acceleration formulations. In Sec. IV we
investigate the effects of certain short-range
correlations in initial and final states. Long-
range (polarization) correlations are considered
in Sec. V, and a pseudopotential method developed
for evaluating these. Finally, in Sec. VI we
compare our results with other calculations and
with experiment.

where hv =I +k', I is the ionization potential of
the system, and A' is the energy of the ejected
electron, in rydbergs. From this point on, we
shall take S=c =a =1, yn= 2, and e'=2. Here z
is the statistical weight of the initial atomic state,
and 8 is given by

$= 4+(j@*(N)V 4. (N) (',

N
where VN= g V. ,"j=1'
the sum being over initial and final states. Here
%~(N) and 4j'(N) are N-electron wave functions of
such initial and final states, respectively, and
Vj

——iP
For alkali atoms in their ground '$»2 state

/$~=4~ a~', a =f4 (N) VN4'. (N)d7N,

and Ot/ is theN-electron velocity form of the
matrix element.

This matrix element may be put in alternate
forms by application of the N-electron commuta-
tor relation

II. THFORY where + (N) and 4'.(N) satisfy

The photo-ionization cross section at frequency
v for an atomic system is given by'

II@ (N) =E 4 (N), A%. (A') =E, .%.(N). (4)

a = (2''k'/m'c )fd A ~Q. fd.7'N
P V

(N)exp(ik r .)p. @,. (N) (',f j j
where p is the momentum of the j th electron,
and R„is the momentum of the photon. The other
symbols have their usual meaning. In the visible
light region R~ r is of the order 10 ' over the
dimensions of the atom, and exp(ik„'r) can be
replaced by unity. Taking the values of the
various constants from Bethe and Salpeter, '

g =6.56 &&10 '9$/(I+k~)&u cm

Thus the well-known N-electron "length" matrix
element is given by

a~(N) = f% (N)re. .(N)d7N

= [ 2/(Et. —E,) j a PN),
(5)

$/~= (I + k ~) 2
~
aL (6)

Since'4; (N) and 4p(N) are not known exactly,
they must be approximated in some way. In this

where Ei —Ef= —(I+k') Ry, provided (4) is satis-
fied exactly. Hence
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paper, we choose to make a perturbation theory
expansion of these functions in terms of a zero-
order Hamiltonian which corresponds to the fixed-
core Hartree-Fock (H. F. ) model (cf. Sec. III
below). The perturbation theory is chosen so that
the normalization of +& is preserved to the first
order. The normalization factor(4t ] 4;) has been
previously calculated' to be 1.0028 and is taken
as unity in the present calculation. The require-
ment on 4f is.that

f4f *(k) 4' (k')dr =6(k'-k'') .

(a)

2s

/
kp Ii ~~ ls

(b) (c)

HF
(@ i@@ )

where the photon operator 0 is given by V~ in the
velocity formulation (2) and by r~ in the length
formulation (6), and 4 k is the final unperturbed
state. The l 4k), 140) are constructed (as single
Slater determinants) from one-electron fixed-core
Hartree-Fock orbitals Qf, defined in Sec. III be-
low. In general these two approximations

S = &v(I +i ) io (ga)

and

S HF
4 (

HF(2 (6b)

are not equivalent.
The initial and final states correspond to the

configurations ~1s,1s,2s) and ~ls, ls, kp), respec

i. e. , that 4y(k) represents unit outgoing flux and
is further discussed below. Furthermore since
the photon operator has odd parity 4 and 42 fare of opposite parity, and necessarily orthogonal.

The application of the Brueckner-Goldstone
techniciue to the ground of lithium' (&) has been
described in detail elsewhere, 'and it may readily
be extended to the final state 4f (N). In this work,
we express ol, or 0 p as a sum of diagrams where
the wiggly line represents the photon operator
(in the appropriate formulation) acting between
the one-electron states. These states, defined
in Sec. III below, are members of a complete set
of Hartree-Fock bound and continuum states. In
the initial unperturbed state 4o (the "vacuum"
state), only the lowest three one-electron states
(ls &, ls p, 2s o.') are occupied. These are
called unexcited 'states, and all others- are called
excited states. Following previous workers, we
define a "hole" as an unoccupied unexcited state
shown in the diagrams by a downward-directed
solid line, and a "particle" as an occupied excit-
ed state is indicated by an upward directed solid
line (cf. Fig. 1). As usual the interelectron
interaction rz&

-' is represented by a horizontal
dotted line and the Hartree-Fock potential ~~~
is indicated by a horizontal dotted line ending in
a cross (cf. Fig. 3).

For example, the zero-order diagram [1(a)]
corresponds to the fixed-core Hartree-Fock
approximation

(e)

mls

I ls

FIG. 1. Diagrams corresponding to zero-, first-,
and second-order contribution to the initial and final
wave functions. The states are labeled as in the text.
A means a photon operator aud a dashed
horizontal line represents v.

tzvely. The first-order initial state diagrams
[1(b) and 1(c)] correspond to certain correlations
in 4; (N) involving the configurations hs, np, kp),
( Is,k'p, kp) [Fig. 1(b)] or [Is, kp, np), (Is, kp,
'P) [Fig. 1(c)]. The dominant contributions

come from 4'»k, and therefore may be inter-
preted as a short-range correlation effect. Sim-
i ar effects arise in the final state and are repre-
sented by Figs. 1(d) and 1(e). They correspond
to the configurations ~is,k'p, 2s) and [1s, 2s, k'p).

each case the notation 4' l for the intermediate

I 2
excited states implies a summation over b dver oun

states (k' ' & 0) and an integration over the co-
inuum. In practice we sum over the 'lowest

eight bound l states and use an n ' rule' to esti-
mate the contribution from the remainder. In
all the first-order diagrams evaluated in this
paper, the bound intermediate state contribution
(n c 6) was less than

10%%up

the total and the con-
tribution from n& 8 was negligible.

There are many second-order diagrams. We

bu '
show only those which give the dominant conton ri-

ution to the (1s') core polarization [ Figs. 1(f)—
1(i»&i&~, and represent long-range correlations. The
second-order diagrams corresponding to short-
range correlations have been discussed else-
where, ' and may be neglected in comparison
with Figs. 1(b) -1(e), as may contributions to S
arising from transitions between the short-range
correlation parts of 4'f and 4y . The second-
order corrections to 4 which we conside

ose given by Figs. 1(f) and 1(g). They corres-
pond to configurations ( Is, ls, k' I + 1) I I or
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~ 1s,k' I + 1,1s& I 1, respectively. The final-
state second-order corrections [Figs. 1(h) and
1(i)] correspondto configurations ~ls, ],s, np&,
~ls,nP, 1s& (where n runs over all bound and
continuum orbitals) .

Rules for evaluating the contribution from a
given diagram may be found in previous papers.
Examples will be given in Secs. IV and V. For
now it suffices to say that a diagram specifies
the appropriate matrix elements and energy
denominators involved, with an over-all sign to
be determined by (-1)"+I ++ where h is the

number of internal hole lines, l the number of
closed loops, and &the number of times VHF
appears in the diagram. Note that the energy
denominators are given by subtracting the energy
of the perturbed state from the unperturbed
state. In the initial state (below the photon line),
the energy of the unperturbed state is 2~1s+ ~2s,
but in the final state (above the photon line), the
energy of the unperturbed state is 2&1~ +A'.

In the next three sections we consider, in more
detail, the contributions from each order in
turn.

III. HARTREE-FOCK APPROMMATION

For lithium-like systems, the restricted Hartree-Fock approximation takes a particularly simple form.
In particular if Qiz~" is the Hartree-Fock solution' for the Is orbital (in the Is'2s 'S», configuration) then
the one- electron Schrodinger equation

[z(f) ~,]y, (f) = Q

with h(z) = —&.' —(2Z/r )+ 2(. p
'" (j) ~ (1/r")(2 —P") I )I '" (j)&,

where P f(i, j) =f (j,i). It has been shown' that h(i) has a complete orthogonal set of solutions yf, which
are the fixed core Hartree-Fock orbitals. Some authors'»' replace /is '" by the corresponding (Is' 'S,)
Li+ orbital. The differences are of order one percent, and are not significant in our work.

From Sec. II, the Hartree-Fock length (ogHF) and velocity (oyHF) matrix elements are given by Eqs.
(8a) and (8b) above. The corresponding one-electron matrix elements are

=
oQ ~

= v3 (p~p(f) Ir, I 42, (~)&

and o HF=oQ =vS(y~ (i)l&. ly2 (i)&.

(11a)

(11b)

We now derive a theorem relating these. We note first that the one-electron Hamiltonian h(i) does not
satisfy the commutator relation (3). Rather, since

[ —~.' —(2Z/r. ),r. ] = —2&.

we have [h(i),r.] = -2&.+2[&HF, r,.],

(12)

(13)

where V = (P '" (j) I (1/r. )(2-P")III '" (j)& ~ (14)

Now the direct term of V does commute with r. but the exchange term (involving P .) does not. Th. usi' U
by Eq. (9)

(p (i) ([h(i), r. ] (p (i)& = (&' —& )(4I (f)lr; I%2 (f)& = +' —~2 )oQ

but from (11) to (14)

(y (i)[[h(i),r,.] Ip2 (i)& = —2oQ &-2(g&(f)I[(pl '"(j)r, 'Pp I's"(j.-)&,r,.] I42s(&)& ~ (16)

We define radial functions by

(r) = (1/r)P I(r) YI (r),

f P,(r)P, , (r)dr=6

f P~ (r)P~, I(r)dr =6(k' —k'),

(17)

so that P (r) -k '" sin[ f(r) 5]+
kl

(18)



176 PHOTO-IONIZATION QF LITHIUM: A MANY- BODY CALCULATIQN

and f (r) is defined by Burgess. 9~'o Then using (17) in (16) and integrating over angles

fO P~ (r)rP2 (r)dr=[2/(k —e2 )](fO P~ (r)[l/r d/-dr]P2 (r)dr+ 'Il-I-2j,

where

Il= fo dr2P1 {r2)P~ (r2)[(l/r2') fo 'drlP1 (rl)P2 (rl)rl'+r2f drlP1 (rl)(l/rl)P2 (rl)],

'2= jo "2P1.'2 up'2[" '2'fo'"1 1.'1' 2.'1 1' j "1 1.{rlP2.{rl)].

That is o =[2/(p2-q )] (o ~-,'I —I )
O,J 2s OV ' 1 2

and by Koopmans' theorem'"' we may write this as

'oI.=[ j ' ' j 'o v''1
Similarly, since

[v. ,I (I)] = v, (- 2Z/r. + 2V„),
we have

(u2-~„)f P (r)(l/r d/dr)P—
2

(r)dr=2[ Zf P&-(r)(l/r')P2 (r)dr+2I3-I4 —I5+~I5],

where

I = f dr P (r )P2 (r2)(l/r2') J 'drlP1 '(rl),

I = f dr P~ (r )P. l (r2){l/r2') f 'drlP1 (rl)P2 (rl),

=f ( )[,'( )-,( )/ ][( / )f ', ( ),( )+f,",„(,) „(,)/, ],

I5= fo dr2Py (r2)P1 (r2)/(1/r2 )f drl Pl (rl)[P2 (rl) —P2 (rl)/rl]rl

+r f dr [P (r )/r '][P (r ) P'(r —)/r ]},

(20')

(22)

(23)

and the prime on a function indicates its derivative. That is, defining the acceleration form of the
Hartr ee- Fock one-electron matrix element as

a& =v3Z(g& (r)( cos6/r [p2 (r)) =Zfo P& (r)(l/r )P2 (r)dr,

we have the theorem

o = [2/{I+0 )] [o —2I3+I4+I ——'I5].HF 2 HF
(25)

These results may be extended readily to other atomic systems.
Stewart' and Sewell' have each reported fixed core Hartree-Fock calculations of a~ for Li. Stewart

and Sewell choose the 1s-ion core. Their results and ours are shown in Fig. 2. Our calculation of
o yHF gives identical results to Stewart's, but itis in marked disagreement with Sewell' s work. Stewart's
length result is not strictly Hartree-Fock, as he was forced to fit his tabulated" P2s (r) to a Bates-
Damgaard function'3 at x = 5a„and it lies between his velocity result and our length result. Again we
disagree markedly with Sewell's calculation of oi HF.

Fortunately our first theorem [ Eq. (20')] enables us to test our calculations unambiguously. Our
calculated values of or, and &VHF [defined by Eqs. (lla) and (lib), respectively] satisfy {20') to
one part in 10'.

Stewart gave results fol gp in the acceleration formulation as w'ell. His threshold values using
gAHF were a factor of approximately 20 high. He was aware of the possible existence of a result of
the type given by our second theorem (25) but did not obtain it. We note that our calculated values of
o&HF agree with Stewart 's, and are related to our calculated values of o VHF by (25), again toanaccuracy
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1.8 "

E 1.6 "

1.4-

r

A FIG. 2. Hartree-Fock calculations of the photo-
ionization cross section of Li. A, Sewell (1967) lengt;h;
B, Sewell (1967) velocity; C, Stewart (1954) length;
D, Stewart (1954) velocity; E, this paper, length;
F, this paper, velocity.

1.2 .

8
1.0

0.0 0.1 0.2 0.3

k= 'I 6 (Ry )

0.5 0.6

of 1 in 10'. The resultant large value of a~ obtained using o~ arises because the gradient of the
potential — &/r in (24) is essentially replaced by

Q(rl) = (Z/rl') —(2/rl') f0 'PI '(r2)dr2

in (25). At the small values of r, important in calculating a this potential is very nearly 1/r, , thus
a~ is approximately a factor of Z' lower than the Hartree-Fock acceleration value.

In our formulation vP is the fundamental form of the zero-order matrix element, and the corre-
sponding results a (HF V) are in poor agreement with experiment, lying 25/0 below the most probable
experimental values and outside reasonable (10% systematic, 10% random) error bars on these. '

We therefore consider higher-order effects in the next two sections.

IV. FIRST-ORDER CORRECTIONS

The diagrams corresponding to first-order correlation corrections to the ground state are shown in
Figs. 1(b) and 1(c). A dashed horizontal line represents a correlation via the two-electron operator
v=1/r». The tota. l Hamiltonian operator is

2 2ZH= g h(i)+H'= g [- V. — +2V (i)]+H'
~

1
o

1
i f e HF

(25)

1so that ~ =2 g —-2 g p' (i).
i &j ij i=1

(27)

However, QF does not appear in the perturbation diagrams because it is canceled by certain terms
involving v. In diagrammatic notation, the cancellation occurs as shown in Fig. 3 and is

II'HFIk ) =2&k, 1s IvIu, 1s) —&u, ls Iv I1s,ap.

The matrix element represented by Fig. 1, (b) is

(1b)=2(4/n) f 0 dk (1s IOI~ P) (&@~&P Iv lls, 2s)/(e + e -0 ' —0').

(28)

(29)

FIG. 3. Cancellation of the Hartree-Fock perturba-
tion (- —-X) by certain other diagrams involving v,
shown by only the appropriate sub-diagram.



176 PHOTO-IONIZATION OF LITHIUM: A MANY-BODY CALCULATION

Here, the external factor of 2 arises because there are two (iso. , lsp) possible 1s "holes, " while the
over-all sign. of the matrix element is positive, since in addition to the internal hole line, there is
one closed loop. The energy denominator is found as the difference in energies of the perturbed and
unperturbed states as (E, —E') where E,=2»ls+»2s. , E'=»ls+»ks+»kp= »ls+ks'+k', so that (Eo —E')

+»2 —k ' —O' The corresponding exchange diagram Fig. 1(c)has no closed loops, and only the (1so)
hole contributes; hence it gives

(1c)= (4-/w) f0 k dk (1s )0[kg) (kp,kg (v ~ 1s,2s) /(»I +»2 —k ' —k'). (30)

Similarly, Figs. 1(d) and 1(e) give the direct and exchange first-order final-state correlation contribu-
tions, the energy denominator now being (Ek -E') =(2»is+A') —(»Is+ks'+»2s); hence

(Id)=2(4/vr) fk dk (kg(O(ls)(k, kP(v)k P, 2s)/(» —» +k'-k ')
and

(I )e=-(4/w)fk dk (kgio(ls)(1s, kpivi2s, kg)/(» —» +k'-k ').

(31)

(32)

The two-electron matrix elements had been previously calculated, while the remaining matrix element
is just the Hartree-Fock length or velocity matrix element from an initial 1s orbital. The integrands
contain no singularities, and were evaluated by a Simpson s rule. The intermediate set of states
denoted by (ksp) includes all bound p states together with an integration (2/m) fksdks over continuum
P states. The calculations were performed for both length and velocity operators, 5 =~and Vp,
respectively, and th'e results are shown in Table I. The corresponding first-order corrected length
and velocity cross sections, together with the zero-order results and experiment, are shown in Fig. 4.
The first-order velocity correction is appreciably larger than the first-order length correction so that
the length and velocity results are now in better accord. However, they are still about 15/0 below the
most probable experimental values.

In both length and velocity formulations the dominant contributions come from intermediate state
momenta ks in the range 1.0 &k's & 2. 0 so they correspond to short-range correlation. In both cases
this type of correlation is approximately twice as large in the final 1s'kP configuration a.s in the initial
Is 2s configuration. However, while in the length form both are additive with respect to the zero-order
effect, in the velocity formulation the initial-state first-order contribution is of opposite sign to the
zero-order matrix element.

V. SECOND-ORDER CORRECTIONS

The dominant second-order correction is due to the polarization of the is Li core. Consider the
direct diagrams labeled 1(f) and 1(h). The sub-diagram shown in Fig. 5 represents the dominant
contribution to the polarization. » It yields a contribution of 0.174 to the theoretical polarizability of
0.19 (I ahiri and Mukherjee") which is in good agreement with the measured value. " We note that
singularities will occur in the integrand for some second-order diagrams for 4y. For example,
Fig. 1(h) contains an energy denominator (»kp —» ) which vanishes when k ' = k2. In principle,

Q Q

TAHI. E l. Calculated contributions to the lithium photo-ionization matrix element, OT or OV» functions of ejected
electron momentum k. L indicates length forxnulation and the Vvelocity formulation, wTiile the first subscript
indicates the order of perturbation theory considered, and a second subscript (i or 0 indicates whether in initial or
final state. It t and V are our final results.tot tot

Qyi/2)
0 L] 8 V0 V2.

0.05 l. 963 0.0138 0.0232
0. 10 1.966 0.0136 0.0231
0. 15 1.965 0.0133 0.0228
0.20 1.955 0, 0129 0.0226
0.25 1.931 0.0124 0.0222
0.30 1.889 0.0118 0.0217
0.35 1.830 0.0112 0.0212
0.40 1.754 0.0105 0.0206
0.45 1.665 0.0095 0.0200
0. 50 l. 567 0.0090 0.0194
0. 55 1.464 0.0083 0.0187
0.60 1.358 0.0075 0.0181

-0.041
-0.040
-0.037
-0.034
-0.030
-0.026
-0.022
-0.018
-0.014
-0.0 ll
-0.008
-0.005

0.279
0. 266
0.250
0. 233
0.211
Q. 190
0. 165
0. 146
0. 125
0. 108
0.093
0.078

2. 232
2. 229
2. 214
2. 190
2. 156
2. 087
2.005
1.913
1.806
l.692
1.576
1.457

-0.3670
-0.3749
-0.3870
-0.4019
-0.4183
-0.4347
-G. 4500
—0.4631
-0.4738
—0.4816
-0.4866
-0.4888

+Q. 0476
+0.v478
+0.0482
+0.0486
+0.0490
+0.0498
+0.0504
+0.0512
+0.0518
+0.0526
+0.0534
+0.0542

-0.0714
—0.0757
-0.0723
-0, 0729
-0.0735
-0.0747
-0.0756
-0.0768
-0.0777
—0.0789
-0.0801
—0.0813

+0.0027
+0.0026
+0.0025
+0.0021
+0.0018
+0.0014
+0.0010
+0.0006
+0.0001
-0.0003
-0.0006
-0.0010

-0.0450
-0.0441
-0.0427
-0.0410
-0.0389
-0.0368
-0.0340
-0.0319
-0.0289
-0.0268
-0.0244
-0.0242

-0.4331
-0.4403
-0.4513
-0.4651
-0.4799
—0.4950
-0.5082
-0. 5200
-0.5285
—0. 5350
-0.5383
-0.5411
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1.4

1.2

0.0 0.1 0.2 0.3
k= ]C(Ry )
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FIG. 4. Corrections to the Hartree-Pock calculations
of the photo-ionization cross section of Li; I0, L1, andI2 are length formulation with zero-, first-, and
second-order contributions included, respectively, Vo,
V1, and V2 are the corresponding velocity results, and
the dashed curve (EXP) shows the quoted experimental
results of Hudson and Carter (1967).

FIG. 5. Core polarization sub-diagram involving a
single core excitation.

it is possible to evaluate the integral by a principal value technique, but the loss of numerical accuracy
is not easy to assess. We now show that the contribution of these diagrams to the photo-ionization
matrix element may instead be calculated by a pseudopotential technique. The potential contains all
multipole contributions, and its direct part corresponds to 1(f) [or 1(h)] while it has an exchange-
polarization part corresponding to 1(g) [or 1(i)]. Several authors have shown" "~"that the calculated
solutions are but little affected if only the dipole term of the direct polarization potential is retained,
all other multipoles and exchange polarization being neglected. We have confirmed this in detail in one
case, discussed in the Appendix.

Consider diagram 1(f). Its contribution to the photo-ionization matrix element is

(lf& = 4(2/&)'fe d& (&p lo lu, s&

&ls,u s lvla l,g l &&~ t,k f Ivlls, 2s&
x kdk, kdk

1 1'2 2 (e +e —P '-P ')(e —y 2)ls 2s l 2 2s s
(33)

The second matrix element is sharply peaked at k2=ks . We replace 0, by ss in the denominator (which
in any case is dominated over the range of 0, of importance by mls) and can then perform the closure
over lk, l, &

states. (The procedure is given in detail for part of Fig. 1(h) in the Appendix. ) The result
may be written as

1, —
(2i' (k s l3t'j2s&

(1f)=4l —
~

ft du &upl5lu & fi dI

Now define a pseudopotential

~t'P = (4/&) f&td&t ~, ~, , g (1)=(ls(2) l(1/rl ) lt(2)&
1s 2s t s

(35)

and consider the perturbation by it. The relevant Schrodinger. equation is

[h(t)+V+V ] g(r)= 0,

where &2 is the required eigenvalue. This may be put in integral equation form

y(rl)= l2s, rl)+ fdr2G(rl, r, e )~(r )y(r ),

(36)



(37)

and to first order in U the iterated solution is formally

X(rl) = (2s, r1& + jdr2G(rl, r2, e2 )v(r ) [2s,r2&.1 2 28

Thus the additional contribution to the matrix element is

(If) = &&p IOtx& —(ep IO 12s& = &&p to[ j«2G(ri, r, , ~2s)7'(r2) l2s, r2& l&

=(4/r)yikdk [&up[0(k s&(~2 —~ ))(0 (&(2s&

(38)

which is Eq. (34). Second-order final diagrams [for example, Fig. 1(h)] which involve singular energy
denominators are evaluated by the same technique, except that (36) ls now a scattering equation for an
electron in the field of the polarized ion core N.ote that the pseudopotential technique ensures that +f
is correctly normalized to unit flux. In practice we approximate 'V by an adiabatic potential

lad = (4/v) fkfdkf 7t/(e1
—kf').

The potential Vad is asymptotic to -a, /r with ct, =0.174, but it cannot be expressed in closed analytic
form. It differs little (cf. Appendix) from the Bethe potential" "(with x =s,r, s,'= 9/n, ),

V I(I)(g)= (9/K )[1-3(1+2K+ K + 6 qK + ~5K )e —(1yg)~s ],
which is the dipole component of

(4o)

V, =2 Is[~( g q =4 fu,d~, f,, ~, =(is(~(f.&. (41)
(q (v (1s&

pol (0) & (o)
& (0) & (o)

18 q 18
Here the states ( l ) are a complete set of hydrogenic states with nuclear charge Z, = (9/n, )'~4 chosen to
describe two hydrogenic electrons with the diagram ~larizability o.„andhaving eigenvalues &t '".

Our calculations were therefore performed with Vpoi (r) rather than with'P(r). A similar treatment
applies to the final-state second-order correlation diagrams l(h) and 1(i), except that rather than solving
an eigenvalue equation for &2z, a scattering equation must be solved for the l =1 phase shift. These
have been reported elsewhere" and are in good agreement near threshold with the corresponding quantum-
defeet values

The resultant polarized 2s orbital is a little different from the Hartree-Fock 2s orbital, and conse-
quently the second-order initial-state corrections are small (Qf and V2 of Table I) and in general of
opposite sign to the zero-order matrix element. The effects on the free-electron function are larger,
the P-wave phase shift at threshoM increasing from 0.110 to 0.164 (whereas the quantum-defect value
is 0.188). The correction to both length and velocity matrix elements is additive and about 10jo of the
zero-order matrix element. The over-all effect is to flatten the shape of the calculated cross section
near threshold and increase its slope for energies higher than that at which the maximum occurs. The
agreement with experiment (for both length and velocity) is satisfactory.

The contribution of third- and higher-order diagrams maybe estimated by noting thateachhigh order in-
volves an additional factor of a matrix element (-10-')divided by an energy denominator (-2els ——2 48).

The contribution from an nth-order diagram (n& 2) is therefore estimated to be approximately 10~k of
that of the (n- 1) order diagram. Second-order final state is a special case, since itis thelowestorder in
which a vanishing energy denominator occurs. Higher-order diagrams involving one or more vanishing
energy denominators can be reduced to modifications of 1(h) or 1(i), and since we have not approximated
the solution of (37) by (38), but solved (36), they are to some extent included implicitlyin that solution.

VI. CONCLUSIONS

Our final results (L, tot and Vt t of Table I) give length and velocity value for the cross section in
better agreement with each other than the zero-order values, but less good than the first-order cor-
rected values. A uniform convergence of the length to the velocity results with increasing order of
approximation is not to be expected since it is known that if the exchange terms are omitted in zero
order, the two results are then identical. However, the difference between our final length and velocity
results is only half of the uncertainty of the experimental values, and any reasonable average of our two
results differs (in the range of the calculation 0~@~0.6) fromthe mean experimental result by less than
10%.

Tait (in 1964) has calculated the cross section in the length and the velocity formulations using a
Hylleraas-type ground-state wave function, and a final-state wave function consisting of a Slater-type
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core and a Hartree-Pock continuum orbital. His ground-state function includes primarily short-range
correlation effects, which we have seen are small. However, his final-state function is so inadequate
that it almost certainly is responsible for his poor results (Fig. 6), his length and velocity values
differing by 60%%uo,

We believe our final answers to be reliable to + 10/0. The most important additional corrections would
be the other contributing second-order diagrams which are of short-range type, '' and are estimated to
provide a 10%%uo correction to (Io-L) and (Vo- V); and, secondly, higher-order polarization diagrams which
correct the polarizability of the Li core from O. 474 to 0.19. Our method of evaluating polarization dia-
grams is equivalent to an adiabatic approximation in electron scattering. Nonadiabatic effects"y" could
change our second-order correction by about 10%, as could the inclusion of intermediate ~ksd) states
[in the notation of Eq. (33)] in these diagrams. The kp (O~ksd) free-free matrix elements for the iso-
electronic system He are less than 10/~ of the (kP [0 kss),"and have consequently been neglected in
our calculations for Li. The contribution to the matrix element from first-order correlation in both
initial and final states simultaneously has been neglected because of the large energy denominators in-
volved.

Thus our final values lie within the 10% random error of the experimental numbers throughout the
energy range considered.

APPENDIX. REDUCTION OF THE SECOND-ORDER SUMS

We consider in detail those contributions from diagrams 1(h) and 1(i) in which the photon first raises the
2s electron into a polarized 2P orbital in order to justify our use of Vad in Sec. 5. The relevant diagrams
are given in Figs. 1(h) and l(i), where the state q is specifically the 2P state.

Now consider the direct diagram 1(h). For each ls hole this gives

(ls,kp [v [k lt, k l ) (k f,k l iv mls, 2p)
(1")=—,. (2plai2s&fk dk f

2p 18 s

where the integrals over complete sets at this stage imply sums over intermediate angular momenta
(l,m ) and (lf,m& ). These sums may be written as

ls

$ m), ltd)t
(1s,kp [v ik&lt, k l ) (k l,k l [v [1s,2p).

Now expanding

v= 1/~„=P I'4~/(2~+1)]y (12)F „(r,)F„(e,), (A3)

we have (in the notation of Edmonds2')

3(», + 1) (1 f X ) ' ( 1 f

(2m+1) I00 Oj (0-Vuj
(A4)

2.0 &-

T.L.

E
O

1.6"
FIG. 6. Photo-ionization cross section of Li. T. L. ,

T. V. , Tait (1964) length and velocity; L, V, this
paper, length and velocity; EXP, experiment of Hudson
and Carter.

1.2"
—T.V.

0.3

g=]E (Ry )
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where ~$ ~= f f,P1 {1)P2 {2)y~(12)Py I (1)Py I {2)«1«2

&& f f Pl (3)P2 (4)y&(34)P& I (3)P~ I (4)dr3dr4. (A5)

Noir by definition of the Hartree-Pock states

(2/~) fy u P, (2)P~, (4)=&(~2-~4).
S8 Ss

Using this closure and replacing 0 by k in the denominator, (1h) becomes

(lh) = (3/&)&2p [O~2s) fI,dI,Z~C~T~g)/[(&. '- ~2 )(~1 -&t')]

(A6)

(A7)

3(2I +1) I' ll &l (1 I ~'I2c=~&=,~„(2„,) &0 o 0J (0-&i j

T (u, )= f P (r)P (r)I ~'(r)d~
(AB)

ith I (~) = JP (y')y (r,r')P~ ~(r')dr'.

Evaluating the 3-j coefficients,

{A9)

Thus we can write (dropping a kt subscript on the I
&

integrals)
g

f0 2 {I0'+r~I1'+g~g2' ~ )P~ (r)P2 (x)dr
2x(lh)=-'{2P ~O~2.) fu,du,

' (A10)

Inusing closure to reduce Eq. (A4) we have included the occupied 1s and 2s states, which now must be
consistently subtracted out. The radial integral in (A10) requires to be reduced by

&[2f P2 Pl Ildh'f P P I dr+ f P P I dy'f P P I d&] (A11)

A similar analysis may be carried out for the exchange diagram (lj).. The result for (l.i) may be ex-
pressed in the form (A10) except that the radial integral is now

3 f Pl (r)P~ (r)(I081+J1I0+aI1J2+ II281'+ ' ~ ~ )dy, (A12)

where Z (r') = f P {~')y (~p')P~ ~(r')dr' (A13)

and the appropriate subtraction is

1 2
—g f P ()I ()Z()d f P ( )P ( )I ( )d . (A14)

The initial state second-order correlation may be handledsimilarly. We tabulate the results below(Table
li) for the final-state contribution. lt is clear that the sum of the direct monopole and quadrapole con-
ti lblltions 18 effectively cRDceled by the totRl exchRDge contribution Rs ln the cRse fol heliUIQ.
Consequently Vad (r) is closely equivalent to Vpol"' (r ).
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TABLE II. The 2P contribution to the second-order
final-state correction in the length formulation, as a
function of ejected electron momentum k.

a y.y«g 0. 2 0.4 0.6

A=O, direct
A, =1, direct
A. =2, direct
Eq. (A. 10)
Direct subtraction
(A. 10)-(A. 11)= (a)
Total exchange
(A12) -(A14) = (b)
Total = (a) —(b)

0.0142
0.1417
0.0102
0. 1661
0.0252
0. 1409

+0, 0305
0. 1104

0.0100
0.0990
0.0073
0. 1163
0.0177
0.0986

0.0068
0.0647
0.0049
0.0764
0.0117
0.0647

0.0221 0.0153
0.0765 0.0494

*National Academy of Sciences-National Research
Council Post-Doctoral Resident Research Associates.

)On leave of absence 1967-1968 from University of
Durham, England.

'R. D. Hudson and V. I. Carter, Phys. Rev. 137,
A1648 (1965).

2R. D. Hudson and V. I. Carter, J. Opt. . Soc. Am.
57, 651 (1967).~J. H. Tait, Atomic Collision Process, edited by
M. R. C. McDowell (North-Holland Publishing Co. ,
Amsterdam, 1964), p. 586.

A. L. Stewart, Proc. Phys. Soc. (London) 67, 917
(1954) .

5K. G. Sewell, J. Opt. Soc. Am. 57, 1058 (1967).
6E. S. Chang, R. T. Pu, and T. P. Das, Phys. Rev.

174, 1, 16 (1968); K. A. Brueckner, Phys. Rev. 100,
36 (1955); J. Goldstone, Proc. Phys. Soc. (London)
A239, 267 (1957); H. P. Kelly, Phys. Bev. 136, B896
(1964) .

~H. A. Bethe and E. E. Salpeter, Quantum Mechanics
of One and Two Electron Atoms (Academic Press, Inc. ,
New York, 1957), pp. 299ff.

C. C. J. Roothaan, L. M. Sachs, and A. %. Weiss,
Rev. Mod. Phys. 32, 186 (1960).

~B. Stromgren and M. Rudkjobing, Publ. Kbn. Obs.
18, 1 (1941).
~A. Burgess, Proc. Phys. Soc. 81, 442 (1963).
"T. Koopmans, Physica 1, 104 (1933).
'2V. Pock and M. J. Petrashen, Physik. Z. Sowjet-

union 8, 547 (1935).
D. R. Bates and A. Damgaard, Phil. Trans. Roy.

Soc. (London) A242, 101 (1949).
'4We are indebted to Dr. Hudson and Dr. Carter for a

discussion of their random and systematic errors.
'~R. T. Pu and E. S. Chang, Phys. Rev. 151, 31(1966)~

' J. Lahiri and A. Mukherji, J. Phys. Soc. (Japan) 21,
1128 (1966).

~~K. Bockaston, Arkiv Fysik 10, 867 (1956).
R. W. LaBahn and J. Callaway, Phys. Rev. 135,

A1339 (1964), and 147., 28 (1966).
'~J. H. Williamson and M. R. C. McDowell, Proc.

Phys. Soc. 85, 719 (1964).
2oH. A. Bethe, Handbuch der Physik (Edward Brothers,

Ann Arbor, Michigan, 1943), Vol. 24, Pt. 1, pp, 339
ff, .

J. Callaway, Phys. Rev. 106, 868 (1957). Our
potential Vad is much closer to that given by Eq. (19)
of Callaway's paper than that given by his Eq. (17}.

M. R. C. McDowell, Phys. Rev. 175, 189 (1968).

23A. Burgess and M. J. Seaton, Monthly Notices Roy.
Astron. Soc. 120, 121 (1960).

4M. R. C. McDowell, V. P. Myerscough, and J. H.
Williamson, Astrophys. J. 144, 82 (1966).

5A. R. Edmonds, Angular Momentum in Quantum
Mechanics (Princeton University Press, Princeton,
New Jersey, 1957), pp. 46 ff.


