
P H VSICAL REVIEW VOLUM E 176, NUM B ER 4 20 DECEMBER 1968

Analysis of Nuclear Scattering by Regge Poles
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The validity and usefulness of the complex angular-momentum formulation in nuclear scattering are
investigated by studying the elastic scattering of n particles by He', C", and 0" in terms of the Regge
trajectories through suitable Regge-type representations for the S matrix. The trajectories are obtained
from the resonant levels of the compound nuclei, and residues are calculated by imposing unitarity on the
Regge-type representations for the S matrix. The differential cross sections obtained by this method are
compared with those obtained by experiment and by the Ackhiezer-Pomeranchuk-Blair-McIntyre model
with resonant phase shifts. In order to establish the merit of the Regge-pole approach, cross sections are
calculated in terms of the poles of the S matrix in the momentum plane and compared with the results ob-
tained by using the complex angular-momentum formulation. These studies provide an interesting method
for the analysis of nuclear scattering.

I. INTRODUCTION

HIS paper contains an analysis of elastic scattering
of 0. particles by spinless charged target nuclei

based on the complex angular-momentum formulation
of nuclear scattering. Apart from describing a simple
and elegant way to analyze the nuclear scattering data
that we considered, the motivation for the present work
is to establish a formalism for nuclear scattering based
on the analyticity and unitarity of the S matrix, one
simple enough to be suitable for practical applications.
In this connection, one notices the important fact that
in spite of the great success of analytic S matrix theory
in high-energy physics, it has not met with comparable
appeal in nuclear scattering and reactions. The most
important formulation of the analytic S matrix theory
for nuclear reactions is that of Humblet and Rosenfeld. '
Even though the theory is mathematically elegant and
gives the description of the reaction phenomena in
terms of the singularities of the S matrix, it has a num-
ber of limitations as far as practical applicability is
concerned. For example, Rosenfeld's theory assumes
that the S matrix is a meromorphic function of mo-
mentum and therefore represents it in terms of a
Mittag-LefHer expansion containing pole terms and an
analytic background part. Hut it is well known that the
S matrix is meromorphic only for a restricted class of
potentials and this excludes even the Vukawa potential.
For, in the case of Yukawa-type potentials, the S
matrix has cuts in addition to pole terms. Therefore, a
nuclear-reaction theory based only on poles in the mo-
mentum plane is, to some extent, unrealistic. Secondly,
the S matrix has, in general, an infinite number of poles
for a given angular momentum. As a result, one has tp
study the 5 matrix for each partial wave in terms of
a large number of poles and an analytic function which
is dB5cult to determine. Finally, the pole terms in the
representation for the S matrix in the momentum plane
do not have well-known physical properties such as
threshold behavior in momentum and asymptotic be-

~Present address: Louisiana State University, Baton Rouge,
La. 70803.

~ J. Humblet and L. Rosenfeld, Nucl. Phys. 26, 529 (1961).
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havior in angular momentum. Therefore, it is not sur-
prising that such a representation for the S matrix does
not generate correct physical partial-wave amplitudes.
The elegance of the complex angular-momentum ap-
proach' lies in removing most of the above-mentioned
difhculties, thus providing a practically useful method
to analyze nuclear-scattering problems.

In the complex angular-momentum plane (l=X—-', ),
the analytic properties of the S matrix are simpler than
those in the momentum plane. For example, in the case
of Yukawa potential, the S matrix is a meromorphic
function in the X plane, physically meaningful poles
corresponding to bound states and resonances are
always restricted to the right haIf-plane, and the num-
ber of poles is finite for a given positive energy. Sec-
ondly, in the complex angular-momentum approach,
the full scattering amplitude is usually represented in
terms of a few poles in the right half-plane and a back-
ground integral. This should be compared with the fact
that in the momentum-plane approach, the 5 matrix for
each partial wave is represented in terms of poles and
a background term. In contrast to the momentum-plane
approach, the background integral in Regge-pole theory
represents the effect of singularities in the left-half
X plane, and it is possible to modify the Regge-type
representations for poles in such a way that the eGect
of the background integral is reduced. This is perhaps
the most striking achievement of the complex angular-
momentum approach over the momentum-plane ap-
proach. Another very satisfying feature of the complex
angular-momentum theory is the following: It is pos-
sible to formulate Regge-type representations for
partial-w'ave amplitudes such that in addition to keep-
ing the background e6ect small, they exhibit the
physical features of the S matrix'. namely, correct
threshold behavior in momentum, asymptotic behavior
in angular momentum, and unitarity. Thus what one
achieves is a representation of the 5 matrix (in terms of
poles in the complex angular-momentum plane) which
has all the necessary physical features and small back-
ground eGects. These features support the idea that a

' T. Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960).
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nuclear-scattering theory based on Regge poles can be
expected to be useful for practical applications.

The application of Regge-pole theory to nuclear scat-
tering was erst studied by Rebolia and Viano' and by
a series of subsequent investigators. 4 ' In these works
it was shown that by treating Regge poles and residues
as parameters, one can it by the method of least squares
n-C" scattering data in terms of a Regge representation.
In these calculations the background integral was as-
sumed to be zero. Considering the interesting results of
these initial calculations, the formulation of nuclear
scattering based on Regge poles was systematically in-
vestigated. In particular, its applicability to charged
particle scattering, ~ 8 which becomes complicated due
to the presence of Coulomb force in addition to nuclear
interaction, was established. It was found' that the
analytic properties of the Coulomb-nuclear S matrix
are such that one can study the "nuclear amplitude, "
which is the di6erence between the Ml amplitude and
the Coulomb amplitude, by usual Regge-pole tech-
niques. Various Regge-type representations were tested
for the Smatrix both for pure nuclear' "scattering and
Coulomb-nuclear" scattering. It was shown that in the
low-energy region, corresponding to nuclear scattering,
it is possible to formulate very good representations
generating the partial-wave amplitudes almost quanti-
tatively. It should be noted that the pole parameters ob-
tained in the earlier calculations' ' referred to above
may not be reliable, because the background integral
which was neglected as an approximation need not be
small. The present paper deals with the problem along
the lines discussed earlier. In order to do this the levels
of the compound nuclei are categorized in terms of
Regge trajectories, and in doing this we use the well-
known salient features of Regge trajectories. The
residues of the poles are then obtained by imposing
unitarity for the Regge-type representation for the
partial-wave amplitude and, based on these pole param-
eters and suitable representations, diGerential cross
sections are calculated. The resonant states of the com-
pound nuclei and the resonance widths are not taken
as parameters. The only factors used other than the en-

ergy levels and widths of the compound nucleus are the
radius of the compound nucleus and a diffuseness pa-
rameter, which were given some suitable fjxed values
and were not treated as parameters in the calculations.

In Sec. II we give a brief discussion of Regge-type
representations for the partial-wave amplitudes formu-

' L. Rebolia and G. A. Viano, Nuovo Cimento 26, 1426 (1962).' M. Carrassi and G. Passatore, Nuovo Cimento 32, 1337 (1964).
~ M. Bertero, M. Carrassi, and G. Passatore, Nuovo Cimento

36, 954 (1965).
V. V. Grushin and Yu. P. ¹ikitin, Yadern. Fiz. 5, 173 (1967)

/English transl. :Soviet J. Nucl. Phys. 5, 122 (1967)g.
r S. Klarsfeld, Nuovo Cimento, 48, 1059 (1967).
o S. Mukherjee and C. S. Shastry, Nucl. Phys. 83, 1 (1967)

W. J. Abbe, P. Kaus, P. Math, and Y. N. Srivastava, Phys.
Rev. 140, 1595 (1965).

'o W. J. Abbe and G. A. Gary, Phys. Rev. 160, 1510 (1967)."S. Mukherjee and C. S. Shastry, Phys. Rev. 169, 1234 (1968)."C. S.Shastry and R. K. Satpathy, Phys. Rev. 175,1544. (196&)

lated, and the method of calculation is discussed. In
Sec. III the levels of the compound nuclei such as Be',
0", and Ne" are categorized in terms of Regge trajec-
tories for 0,-0,, Q.-C", and n-OI6 systems, respectively,
and discussed. Section IV contains the results of various
calculations and discussions.

A (k, cos8) = (2k) 'L—
o7 csc'sr 8 exp( —2iri ln sinis8)

+i P (2l+1)(e""i—Ui)Pi(cos8) j
l~o

(2.1)

= (2k) 'L—
o7 csc's 8 exp( —2iri ln sinsi8) j

+A„„,(k, cos8) . (2.2)

In this expression, U'i is given by

Ui —e—2oooSi(k) —est(ai oo)8&(k)— (2.3)

where o.
~ is the Coulomb phase shift for the 3th partial

wave. In terms of the charge parameter o7=ZiZse'/ke,
the Coulomb phase shift is

l

ooi=oi —o'o= P tan i—.
m

(24)

The quantities Bi(k) and Si(k) of Eq. (2.3) are the nu-
clear and full S matrix, respectively. For the Vukawa-
type nuclear potentials it can be shown that for k) 0,
the asymptotic behavior of 8(X,k), i.e., the analytically
continued 8i(k) in the X (=1+-'s) plane, is given by

where

)S(X,k) —1[=0(i)—''se-~"&i),

] X )
~oo, Rek~& 0,

$= cosh '(1+ioos/2k'),

(2 3)

(26)

and po ' is the highest value of the range appearing in
a superposition of Yukawa potentials. Using this asymp-
totic property, one may perform a Sommerfeld-Watson
(SW) transform on the function

A(k, cos8) =(2ik)-'

)&P (2l+1)L8(X,k) —1jPi(cos8), (2.7)

i' A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958).

II. REGGE-TYPE REPRESENTATIONS FOR
CHARGED-PARTICLE PARTIAL-WAVE

AMPLITUDE

In the notation of Lane and Thomas, "the scattering
amplitude A(k, cos8) for the scattering of two spinless
charged particles, of charge Z&e and Z2e, is given by
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and obtain the following Regge representation 2

+ '
2)I P/, ~ r/2( —cosg)

A(k, cos8) = (2i)—' dX' tt(),' k)
—%QQ cosmic

the Coulomb threshold factor'5

1'() +-;+i~)r() +-', —i&)
(2.12)

Li'(X+-,')j'
cosmic„

n=1
~X—1//2

F(X',X) =
X+X by~ 2/2

(2.13)where a()I, ,k) = L8(X,k) —1j/2ik H. ere X„denotes the
pole position, X is the total number of poles in the
right-half X plane, and P„ is the residue of a(X,k) at
)I, =X„.Neglecting the background integral in Eq. (2.8),
after partial-wave projection one obtains

corresponding to Regge representation, and

P(X,X) =et"' "i~By 2/2 /Sy~ (2.14)

~~st oF»—&/2( «s~) Thus F()I',)I) has the following forms for the different
representations:

2X„P„
a(X,k)= g

~=&A~—X 2

corresponding to Khuri representation. "For the modi-
(2.9) Ged Regge representation of Ref. 14, we write

Alternatively, one could perform the SW transform
for A „,(k, cos8) of Eq. (2.2) and obtain, in the pole
approximation, the representation

2A.„
S,P.,k)u(X, k) =Q P.S,().,k), (2 10)

o (Xs—X„')

where S,p„k) is the Coulomb S matrix, i.e., e"".
However, calculations performed" on representations

of the type given by Eq. (2.10) show that they are not
better than the representations of the type given by
Eq. (2.9). Therefore, in this paper we restrict ourselves
to the representations for tt(X,k) only.

When one attempts to analyze nuclear scattering in
terms of Regge poles corresponding to the physical
states of the interacting system, it is evident that only
the poles in the right-half X plane are to be considered.
It is then desirable to formulate the Regge-type repre-
sentations for the partial-wave amplitude which are
capable of generating the exact phase shifts in terms of
the poles and residues in the right-half ) plane. In gen-
eral, representations of this kind can be expressed in
the form'4

F(g g) +' P(X X)
o(~,k)=p p.

' + d)', o()',k), (2.»)

( 2X ~/'exp(ie "&)—1) hg—2/2P()',))=~
~ ~, (2.15)

kX+X' (exp(ie "'1)—1/ gg. 2/2

where m is a suitable positive integer. The erst factor in
Eq. (2.15) is expected to make the background integral
small for large X'; the second factor reproduces correct
threshold behavior in k and asymptotic behavior in X.
The last factor introduces correct Coulomb threshold
behavior.

It is well known that the nuclear-scattering potential
has a Saxon-Woods radial dependence with the form

1/'(r) —e—r/oo(e —r/oo+ e—/2/ao) (2.16)

Here E is the radius parameter and ao is the diGuseness
parameter. The radius 8 is of the order

R= (1.452'/2+1. 3) F, (2.17)

which is the form used by Carter et al. ,
' and ao is of the

order of 0.55 F. In our calculations we found that it was
desirable to incorporate the effect of the parameters g
and ao of the nuclear potential in constructing a repre-
sentation for nuclear scattering. For example, in the case
of scattering of two spinless uncharged particles, the
asymptotic behavior of tt(X,k) along the real axis is de-
termined by the integral'

where F(X',X) is such that F(X,X)=1 and F(X',X) is
analytic for ReX&~0, ReX'&~0; furthermore, P(X',X)
&(ap, ',k) is bounded on the right half of the X' plane, so
that the integral in Eq. (2.11) can be evaluated by
closing the contour in that half-plane. Generally,
F(X',X) is constructed such that the pole terms in Eq.
(2.11) have correct threshold behavior in k, asymptotic
behavior in ), and the background integral, which mani-
fests the eBect of all the singularities in the left-half
X plane, is damped. In the Coulomb-nuclear problem,
in addition to the usual threshold properties of the
partial-wave amplitude, it is desirable to incorporate

'& $. Mulrherjee, Phys. Rev. 160, 1546 (1967).

I= r V(r)J/,2(kr)dr.
6

(2.18)

losing Eq. (2.16) for &(r) and since the impact param-
eter X/k lies in the interval LO, oog, we have by mean
value theorem

I~(e " soo+e /t/oo) 1re-f laoJ&—2(kr)gr— (2.19)
0

"P.B.Treacy, Nuci. Phys. A96, 146 (1967).' N. N. Khuri, Phys. Rev. 130, 429 (1963).'~ E. B. Carter, G. E. Mitchell, and R. H. Davis, Phys. Rev.
133, B1420 (1964).

'o V. De Alfaro and T. Regge, Poteltiol Scatteroeg (North-
Holland Publishing Co., Amsterdam, f965).
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1) d
=(e "'k"+e ~") ' ——

~
Qk 1/2

~k& &(ao-')

1
X (1+ l

. (2.20)
2aook'/

From the asymptotic behavior of the second Legendre
function'8 for large ), it follows that

I= (e "/ "o+e "'a') 'Op)lh ~'" exp( —Xp)j, (2.21)

where
$= cosh '(1+1/2ao'k') .

Note that the term e "/k"+e a/" does not change the
dominant asymptotic behavior; it gives only a some-
what more explicit form of the asymptotic behavior, and
the inclusion of this factor was found to be very useful.
Thus the new form is

7 (&
—X'/kao+ &-R/ao) g„

F(V,7,)=e&~'-»~, (2.22)
7'( -"""+— '") b

corresponding to Eq. (2.14), and we shall designate this
representation as NK. The new form of F(X',X) corre-
sponding to Eq. (2.15) is

( 2X ) t/exp(M ~&)—1
FP',~)=(

kl+V/ (exp(~ s"') 1)'—
7 ( x'/kao+ —/o/ao) g„—

(2.23)
y~(& k/kao+ & 8 /-ao) 6&,

—2

and we shall designate this representation as X .
Another modi6cation which was shown to be ex-

tremely useful was to incorporate the unitarity of
8P„,k) at X=X„*.In order to do this we follow the
procedure of Ref. 11 and obtain for the partial-wave
amplitude

F(X„,X) (~—& *)
t ». ~"

a(7,k)= P P.
y—y„g (g„—),„*)k)+x„/

1 N mrna (X—&m*)( 24
P F(X.',&), ,l, l

(224)
g (y„'—z *) kz+z.*)

where the number of terms in the above product de-

pends upon the number of zeros of S(X,k). It is clear
that all the above representations express the partial-
wave amplitudes as sum over the pole terms. There is
another class of representations, namely, Cheng-type
product representations. ' It was found that for
su%ciently weak potentials a modi6ed Cheng repre-
sentation (MC) gives extremely good results but was
found to be not satisfactory for lower partial waves.
Another important drawback in the MC is that it

» H. Cheng, Phys. Rev. 144, 1237 (1966)

presumes the knowledge of the Born term, which means
that in order to construct an MC a detailed knowledge
of the potential is necessary. Considering these facts,
we did not formulate the representation MC corre-
sponding to our problem. In nuclear-scattering prob-
lems, potentials are not known uniquely, and it may
not be possible to derive Born terms corresponding to
these potentials in closed form. As a result, the repre-
sentation MC is not easily applicable to nuclear-scat-
tering problems. Even if the form of the potential is
known, in using the MC we lose the important point
stressed in the present approach, namely, the analysis
of nuclear scattering only in terms of the Regge poles,
without detailed reference to the potential.

From the above discussion it is evident that once we
have knowledge of the poles and residues we may obtain
the differential cross sections of a given nuclear scatter-
ing using appropriate Regge-type representations. In
order to obtain the positions of the poles from the posi-
tions and widths of the resonances of the system we can
use the method adopted by Treacy. " More details of
this with respect to o,-o,, Q.-C", and o.-0" systems are
described in Sec. III. In order to obtain the residues for
the poles we can use unitarity at X=X„*.If we neglect
the background integral in Eq. (2.11) and use the elastic
unitarity of the S matrix,

S(X,k)S*(X*,kk) = 1, (2.25)

we obtain the following set of linear equations in p„:

FP,„,7.*)
= gP, m=1, 2, ~ ~ ., S. (2.26)

2ik

If the representation that we use is good enough at
low energies, the solution of Eq. (2.26) is found to give
fairly accurate values for the residues. In this connection
it should be noted that the imposition of unitarity at
X=X„k in Eq. (2.24) cannot give expressions for P„ in
terms of poles, because in the construction of this
representation, unitarity at X=X k is already built in.

Summarizing, in the formulation of the above scheme
for nuclear scattering we have made use of the fact
that the scattering potential has generally Saxon-Woods
radial dependence. Then we conjectured that the reso-
nant states of the scattering can be catagorized in terms
of Regge trajectories in the right-half X plane. Using
the unitarity of the S matrix, we then obtained the
residues through appropriate Regge-type representa-
tions. The set of poles and residues together with a rep-
resentation depicting all the physical features, and
rendering the background integral small, were then
used to calculate the diBerential cross sections.

III. REGGE TRAJECTORIES FOR os-a, os-C»
AND I-0~6 SYSTEMS

In this section we categorize the excited levels of Be'
0", and Ne" in terms of Regge trajectories for the
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FIG. 1.Regge trajectory for the low-lying levels of Be'.

O.-e, o.-C", and n-0" scattering, respectively. The
method that we use is empirical and similar to the
procedure of Treacy. "In order to do this we take into
account the essential features of Regge trajectories. The
most important trajectories are those which occur in
the right-half X plane connecting the bound states and
resonances. A pole at negative energy and positive half-
integer value of X corresponds to a bound state of angu-
lar momentum l. As the energy becomes positive the
poles move into the right-half) plane. In the case of the
superposition of Yukawa potentials the trajectories turn
back and move towards the left-half X plane. The poles
occurring before this turning point, with a half-integer
value for the real part and the small imaginary part,
correspond to the resonances. In the case of the super-
position of Yukawa potentials, it is found that both the
real and imaginary parts of the trajectories in the right-
half X plane increase steadily as they move from the real
axis towards the turning point. It can be shown that the
width F of a resonant state is related to the Regge pole
corresponding to it in the following manner":

TABr.E II. Level parameters of 0' for the Regge
trajectones of the a-C" system.

Trajec- E Oab)
tory (MeV)

I

IV

V

3.582
11.08
13.9

4.28
8.15'

12.1
18.4
3.24
5.82

11.4
16.13a
18.5

7.04
12.35
15.46a
17.75

3.066'
8.97

15.2
18.7

(MeV)

5.66a
7.1
9.84

15.45
17.55
6.13

10.36
13.27"
16.2
20.9
9.58

11.51
15.1
19.25a
21.0
6.036

12.43
16.41
18.75a
20.44
6.92
9.45a

13.88
18.55
21.2

E (c.m.)
(MeV)

—1.49'—0.05
2.69
8.3

10.4—1.02
3.21
6.12a
9.05

13.75
2.43
4.365
8.53

12.1a
13.85—1.114
5.28
9.26

11.6a
13.29—0.23
2.3a
6.73

11.4
14.05

p+a

1
2+
3
4+
3
4f

6+
7
1
2+
3
4+a

5
0+
1
2+
3 a

4+
2+
3
4+
5
6+

r
(keV)

380
225

36
189'
380
750
860
106
525

1074'
1200

230
60

120a
150

137a
90

190
450

a Tentative assignments.

TABLE III. Level parameters of Ne" for the 6rst set of
Regge trajectories of the a-0' system.

tering system of two spinless particles as follows: The
energy levels forming a trajectory are grouped according
to increasing energy and angular momentum. Knowing
the resonance energies and corresponding angular mo-
mentum values, the real part of the trajectory is drawn,
using a graphical method and assuming a polynomial
expansion for the real part of the trajectory:

Rex„=a i"~+ati"&E+a &"&E'+ue'"~ze. (3.2)

TABLE I, Level parameters of Se' for the Regge
trajectory of the a-n system.

E (lab)
(MeV)

0.190
6.55

22.99

E,
(MeV)

0
3.18

11.4

E (c.m.)
(Mev)

0.095
3.275

11.495

r(c.m. )
0+ 6.8&1.7 eV
2+ 1.5 MeV
4+ 7.0 MeV

Considering the above features of Regge trajectories,
we determine the Regge trajectories of a nuclear scat-

Trajec-
tory

IV

E (lab)
(MeV)

2.46
5.19
7.76a
9.58

10.87
1.3
3.45
7.2

10.546
0.271
3.016
5.403
7.88'

11.483
0.037a
1.125.
2.834
6.934
9.82

11.2
12.137a

Es
(MeV)

6.722
8.905

10.963.
12.39
13.43
5.79
7.434

10.49
13.19
4.97
7.166
9.076

11.063.
13.94
4.783.
5.653.
7.02

10.3
12.58
13.69
14.463

E,(c.m.)
(MeV)

1.969
4.152
6.21a
7.637
8.677
1.037
2.681
5.737
8.437
0.217
2.413
4.323
6.3ia
9.187
0.03a
0.09a
2.267
5.547
7.827
8.937
9.71'

p+
1
2~
3
4+
1
2+
3
4+
2+
3
4+
5~
6+
2w
3 a

4+
5
6+
7
8+a

r
(keV)

19
23

~49a
100
140
~2.5

10'
55a
75

~2.3
10
10
16.5.

125
9a

269a
740'
150
130
400
95 5a

"R.G. Newton, Complex j plane (W. A. Ben-jamin, Inc. , New
York, 1964). Tentg, tive assignments.
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Then, using the known widths of the resonances and
the slope of the trajectory,

(3.3)

in Eq. (3.1), Imh„ is calculated corresponding to each
resonance. Then this set of Im) „corresponding to vari-
ous resonances is connected in a smooth way, using a
graphical method and assuming a smooth polynomial
dependence with respect to energy:

ImÃ„=b &"&+b '"&E+bs&"&E'+b &"1E' (3 4)

This procedure is similar to the one used by Treacy"
and gives an empirical set of Regge trajectories. From
the knowledge of these trajectories and unitarity, the
residues for each pole corresponding to various repre-
sentations can be evaluated, as discussed earlier.

Table I shows the grouping of the three lower levels"
of Be' in order to obtain the Regge trajectory for the

0.8

0.6

4 8

E e( (C.M.) MeV

5
E

0.4

0.2

0 4 8
E„(C.M3 MeV

(b)

l2

4 8 l2

E~ (C.M.) MgV

(a)

.l6

.l2

.04

8 f2

E~ (C.M.) MeV

(b)

l6

Fro. 2. (a) The real part and (b) the imaginary part of &„
versus the bombarding energy in c.m. units for the levels of 0".
Actually observed levels and tentative levels are indicated by
solid and open circles, respectively.

~'T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78, j.
(1966).

Fro. 3. (a) The real part and (b) the imaginary part of X„versus
the bombarding energy in c.m. units for the levels of Ne'~. The
conventions of Fig. 2 are followed.

0.-0. system. This is a system of two identical spinless
particles obeying Bose-Einstein statistics, and there-
fore the resonances of elastic scattering occur only at
even values of the oribtal angular momentum. Figure
1 shows the Regge trajectory of this system, calculated
following the method of Treacy. " From the existing
data on the levels of Be' we obtain only one smooth
trajectory.

Table II shows the grouping of energy levels' '2'
for 0"which mainly decay by n emission, from which
we determine the Regge trajectories for the n-C" sys-
tem. Figure 2 shows these trajectories. The full circles
correspond to actually observed levels and the open
circles refer to tentative levels. Extrapolation of some
of these trajectories in the region where the experi-
mental endings of different resonances and their quan-
tum numbers are inconclusive is interesting. For ex-
ample, extrapolation of trajectory IV Lsee Fig. 2(a)j
indicates a series of narrow resonances at excitation en-
ergies (E,) 21.8, 22.95, 23.95 MeV, etc. Rasmussen et

"R.W. Hill, Phys. Rev. 90, 845 (1953)."C. Miller Jones, G. C. Phillips, R. %. Harris, and E. H.
Bechnen, Nucl. Phys. 37, 1 (1962).
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0
0 4 8

F o( (C.M.) MeV

(a&

I2

0, 8

0.6

0.4

at. '4 observed a resonance at E (tab)=21.85 MeV,
which indicates the existence of an intermediate state of
C's+rr at 23.5 MeV. Extrapolation of trajectory V also
indicates the presence of excited levels at energies 23
and 24.3 MeV of spin and parity 7 and 8+, and ap-
proximate widths 635 and 770 keV, respectively. From
rotational-band systematics, Carter et al. ' also ex-
pected an 8+ level between 24 and 30 MeV of width ap-
proximately equal to 400 keV.

Table III contains the energy levels" " of Ne"
grouped in order to obtain the trajectories for the e-0"
system. Figure 3 shows these trajectories. When ex-
trapolating trajectory I, it is seen to pass through the

~ V. K. Rasmussen, D. W. Miller, and M. B. Sampson, Phys.
Rev. 100, 181 (1955).

~~T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 11, 1
(1959).

26L. C. McDermott, K. W. Jones, H. Smotrich, and R. E.
Benenson, Phys. Rev. i18, i/5 (1960)."J.D. Pearson, E. Almqvist, and J. A. Kuehner, Can. J. Phys.
42, 489 (1964).

'8%'. E. Hunt, M. K. Mehta, and R. H. Davis, Phys. Rev.
160, 782 (1967); M. K. Mehta, O'. E. Hunt, and R. H. Davis,
ibid. 160, 791 (1967).

4 8
E ~(C.M.) MeV

(b)

Fro. 4. (a) and (b) the same as for Fig. 3 and corresponding to
the grouping of levels in Table IV.

TAsx,E IV. Level parameters of Ne" for the second set of
Regge trajectories of the a-0" system.

Trajec-
tory

E(lab)
(MeV)

5.19
7.7a

9.58
10.87
11.837'
12.65'
13.37
1.3
3.45
7.2

10.05
0.271
3.016
5.403
7.94'

11.97
The same

(MeV)

8.905
10.913a
12.39
13.43
14.223.
14.873.
15.43
5.79
7.434

10.49
12.77
4.97
7.166
9.076

11.103'
14.3

as given in

E(c.m. )
(MeV)

4.152
6.16a
7.637
8.677
9.47

10.12.
10.677
1.037
2.681
5.737
8.017
0.217
2.413
4.323
6.35
9.547

Table III

1
2~
3
4+
5—a

6+a
7
1
2+
3
4+
2+
3
4+
5—a

6+

(keV)

23
150
100
140
170'

~287'
470

2.5
10
65'

130
2.5a

10
10
20.6'

300

Tentative assignments.

levels at excitation energies I4.24, 14.43, and I5.52 MeV
of spin and parity 5, 6+, and 7, and approximate
widths 86, 193, and 212 keV, respectively. Inspection of
the results of Mehta et al."shows that there are some
levels of unassigned spin and parity in this region. For
instance, there are energy levels at excitation energies
14.148 and 15.25 MeV of width 150 keV. Trajectory II,
on extrapolation, passes through the levels at excitation
energies 14.668, 15.693, and 16.483 MeV of spin and
parity 5, 6+, and 7, respectively. The latter two may
correspond to the levels at 15.72 and 16.483 MeV ob-
served by Mehta et a/. ,"whose spins and parities were
not determined. Trajectory IV passes through a tenta-
tive 3—level at E =5.653 MeV of width 269 keV. This
may well correspond to the 3 level observed by Pearson
el al. '~ at 5.62-MeV excitation energy. On extrapolation,
trajectory IV passes through an 8+ level at E = I4.463
MeV. In the work of Mehta eI, al.28 a level was observed
at I4.38 MeV whose spin and parity were not assigned.

At this stage we wish to point out that in general it
may not be possible to obtain a unique set of trajectories
for a given scattering system, particularly when the
compound nucleus has many closely packed energy
levels, because, even after restricting ourselves to the
general prescription discussed earlier for the choice of
the trajectories, one may still be able to obtain more
than one set of trajectories. This is, indeed, a limitation
of the present procedure. Therefore, in the absence of
knowledge of the realistic target-nucleus potential which
can generate the actual trajectories, the choice of a par-
ticular set of trajectories should be based on the fits
that it gives for the experimental data. To illustrate this
point we have tabulated in Table IV an alternative
grouping of the levels of Nem which gives a set of tra-
jectories different from the one obtained from Table
III. It was found that the trajectories corresponding to
Table IV generate the differential cross sections satis-
factorily in the incident energy range 7—10 MeV, while
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TanLE V. Residues of 8(X,k) at X=X„corresponding to the
pole representation indicated for He'(n, n)He4 at dilferent incident
energies. B„=2ikP„.

TABLE VI. Residues of 8(X,k) at X=X corresponding to the
pole representation indicated for C"(n,n)C" at different incident
energies. B„=2ikP„.

E (lab)
(MeV)

3.0
6.0
6.96
7.88

12.3
17.8
22.9

ReB„

7.128X10 '
4.05 Xio '
0.449
0.507
0./80
0.986
1.144

0.229
0.495
0.366
0.389
0.383
0.413
0.451

Rep.

RC
RC
NK
NK
NK
NK
NK

those corresponding to Table III give a better 6t to the
experimental cross sections in the incident energy
range 10—14 MeV. The trajectories obtained from
Table IV are shown in Fig. 4. Both these sets of trajec-
tories failed to give a good 6t to the experimental cross
sections at higher energies.

IV. RESULTS AND DISCUSSION

In this section we discuss the results of the calcula-
tions of di6erential cross sections given by

do./dQ=
i A(k, cose) (',

E (lab)
(MeV)

4.0

4.745

11.74

12.1

14.0

18.0

18.5

Trajec-
tory

I
II
I

II
I

II
III
IV
V
I

II
III
IV
V
I

II
III
IV
V
II

III
IV
V
II

III
IV
V

ReB„

2.0 X10 ~

6.4 Xio '
1.2 Xio-6
2.2 X10 5

—7.0 xio-2
/.28X10 g

5.37X10 '
4.5 xio-4

—5.0 X10 4

—5.94X10 ~

7.7 X10 '
4.07X10 '
6.5 xio-4
7.1 X10 '

—3.65X1o '
8.13X10 3

5.39X10 '
3.67X10-g

—5.06X10 '
—1.87X10 ~

—2.69X10 2

5.49X10-2
—4.2 X10 '
—3.27X10 '

2.28X10 '
6.7 Xio '

—5.73X10 '

0.005
0.007
0.012
0.013
0.098
0.118
0.083
0.011
0.007
0.098
0.124
0.097
0.014
0.008
0.104
0.155
0.189
0.030
0'210
0.199
0.600
0.055
0.110
0.200
0.689
0.050
0.127

Rep.

using the Regge-pole parameters through various
Regge-type representations for a(X,k). The results ob-
tained by this method are compared with experimental
data and also with the results obtained by using the
smooth cutoG model or Ackhiezer-Pomeranchuk-Blair-
McIntyre (APBM)' ' model in the case of n-C" and
0,-0" scattering.

RC denotes the Regge representation modified for
Coulomb threshold behavior for which F(X',X) is given
by Eq. (2.13). Since we expect that the potential be-
tween the projectile and target in nuclear scattering has
a Saxon-Woods radial dependence except for very low
energies, we use the representations NK having the
form given by Eq. (2.22), and jV' given by Eq. (2.23).
The results for m= 0 have quantitative agreement with
those of NK. The further modified Regge representation
given by Eq. (2.24), with F(V,X) of the form of Eq.
(2.23), has the correct asymptotic and threshold be-
havior and gives the correct zeros. The smallness of the
background integral is taken care of by the damping
factor $2X/(X+V)$ . The factor E in this representa-
tion is taken to be equal to the number of Regge poles
considered in computing the scattering amplitudes. The
results for this representation are almost quantitatively
similar to those of S at the energies that are studied.
In the case of NK and the modified Regge representa-
tions, the factor $ is calculated from Eq. (2.6) using
ps= a ', the value of R is given by Eq. (2.17), and the
diffuseness parameter co is taken to be equal to 0.55
F

The residues at diferent incident energies for the
n-C»' and n-0'6 systems are given in Tables V—VII,
respectively. These values correspond to the representa-

TABLE VII. Residues of 8(k,k) at X=X„corresponding to the
pole representation indicated for 0"(n,n)O" at different incident
energies. B„=2ikP„.

E(lab) Trajec-
(MeV) tory

6.97 I
II

III
IV

9.92 I
II

III
IV

10,05 I
II

III
IV
I

II
III
IV

13.37 I
II

III

11.97

—79 X10 3

—27 Xio '
1.9 Xio 4

—7.5 X10-4
1.85X10 '

—18 X10-3
32 X10 3

3.99X10 3

1.88X10-3
1.96X10 '
4.9 Xio '
6.4 X10 '
0.117
0.049
0.033
0.393—0.016
0.015
0.003

ImB„

0.084
0.014
0.0054
0.028
0.041
0.027
0.012
0.09i
0.018
0.064
0.015
0.11
0.046
0.008
0.007
0.502
0.164
0.062
0.038

Rep.

RC

~~ T. A. Tombrello and L. S. Senhouse, Phys. Rev. 129, 2252
(1963), and references therein.

ao R. Nilson, W. K. Jentschke, G. R. Briggs, R. O. Kerman, and
J. N. Snyder, Phys. Rev. 109, 850 (1958).

tion that has yielded the best angular distribution at
that energy. Figure 5 shows the angular distributions
for He'(n, n)He4 at different incident laboratory ener-

gies, calculated from experimental phase shifts, ""along
with the best results obtained from the pole representa-
tion. These curves show that at E =3.0 MeV /see Fig.



S ~ ~H@syR&sHA»& "N

the agreernenntd Oj &e 2+ reson
y gg MeV LFjgp

l fair agreem
d ]]y becomemen

h her energies igworse for ig

f262

t is obtained forcriment i
the

5(a)j a',
backboard) g '

96 MeV Ls"jnterrne
tbe fit H sa

t nergjes»

djate range .
tjsiactory oFigs 5(b) an

b; learjy shows tange of angles This (: ea

5
IO. I-

4
IO—

4
IO—

3
IO—

E 3.0 MeV0(

E IO-

4g
ch

IO—

2
IO-

I~

RC

l
IO—

I

IO,
0

I
0

l
0

60 90
e (c.m.)

I
0

I20 I50
I

I80
I o
0

5
IO—

I
0

I
0

90

e (c.m.)
Cb)

I
0

I
0

l50

IO-
4lo—

3~ IO-
5

c/l

E

V)

3
E IO—

?
IO—

2
IO—

I
IO o 60 90

e(c.m, )

(c)

NK

l20 I50 I80

I
IO

0
I

0

I

l

NK

I
0 90

e (c.m.)

(d)

I
1

I
I

I
I
I
I~

l20 150
I

0
l80



4
10

ANAL YSIS 0 NUgLEA R SCA ING BY RF GGF p

10—

1263

3to-

310—

E
lo

io—

I
IO

I
I I
I I
I (
I )
I I

NK

I

lO—

I
I
I

l
I I

V

I I
1
I I

I
I
I
I
t

l

0 30 6Q 90
e (c.m, ~

120 ISQ

(e)

11.74 and

"G. J. Clark D.
A110, 481 (1968I.

"J.S. C ill Et, E. Bleuler, and D. T

. Macq, and J. Steyaert Pheyaert, Phys. Letters 2

rates Trea y s observation that
e on pproximatione one trajectory ap

)
p y

e

~ illustrate the a
s own.

ngular dist b
p y

rom experime

There is f '
aine from ole

i s

hwtt experiment up to 8

prominant resonances at E =12

ex
o uce manymaxi

differential cr t' sharply from 165

t s e tu es fs igs.

h i ofh di6
early constanta n intervals at

c ions were found
angles of abo t

p
curves re rod

. The ole-r

and 79'.
maxima excep

f f
' "'" '"-'"'"""

or instance at E

I

0
I

60
I

9Q l20 I 50 180

)I

lo

3
IO—

E. 2
IO—

b 0

IIo—

1

0 30 60
I

90
I

120 )50
I

leo

xG. 5, He4 n,a e' an lar
ener i . nes correspond to angul d'

and the dashed line
representation. The sp e sym os design t

sc" ' '"S~ IV
g



1264 R. SHANTA AND C. S. SHASTRY

14.0 MeV (see Figs. 6 (c) and 6(e)j, the agreement with
experiment improves for backward angles. At all these
energies considered it is seen that the representation
E2 with exact f yields the best results.

Figure 7 illustrates the angular distributions for
0"(n,n)O" corresponding to experiment, the APBM
model with resonant phase shifts, and pole representa-
tions. The erst set of Regge trajectories (see Table III)
has been used to calculate the angular distributions at
the energies E =9.92, 11.97, and 13.37 MeU. At
E =9.92 MeV the method S& yields tolerable results.
At 11.97 MeV, the angular distribution calculated from

the pole representations reproduces all the maxima and
minima, but the peaks of the maxima are a little dis-
placed. At 13.37 MeV the representation RC yields
fair agreement with experiment. The second set of
trajectories (see Table IV) has been used to calculate
the angular distributions at 6.97 and 10.05 MeV. At
6.97 MeV the pole representations NK and Eo produce
fair agreement with experiment for forward angles, and
the agreement greatly improves for backward angles.
The angular distributions at E = 10.05 MeV calculated
from E2 also shows a satisfactory 6t with experiment
for backward angles.
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In most of these cases the APBM model
'

h
nant ha

mo e wit reso-

p ase shifts gives fairly good agreement with ex-
periment. However in this model th) e cross sections for
e astic scattering are determined b s ecif in
rameters, and a large number of parameter sets have to

e tried in order to obtain a satisfactory 6t to the data.
At this stage, it is informative to discuss briefly

another alternative method for th t d fe s u y o nuclear

lane
scattering, based on the polology f th So e matrix in the

p ane. In order to do this we calculated the poles in
the k plane from the knowledge of the resonance energy

k plane just below the real axis corresponds to a reso-
nance of energy

E„=kg' —k2'
and width

IO

2
lo—

E
l0

b c,'

E.~ ~ l8, 5 lsleV

1

~ I

I
I

I I
I I

I
I

I'„=4kiks, (4.2)

where k„=k —ik 2, k~ and k2 both being positive and
k,«k, .

)

Then we grouped all such poles in the k plane corre-
sponding to each orbital angular momentum d 1um an ca cu-

t e S matrix for each partial wave using the fol-
lowing product representation" ":

rk —k *~ (k+k„)(k—k„)
& k k —ks I ~ (k—k„)(k+k„*)

where R denotes the radius of the scatterer, 8 the
bound-state poles, and e the resonances. %e d h
pro uc representation (KP) in preference to the alter-
native one involving sum over poles, because this does
no

' ' s. n is ca cu ationnot need the evaluation of residues. In thi 1 1

The
or O, ,o. C, all the poles in the Eplane'7 "" d.areuse .

e results of angular distribution obt d baine y using

"R.G. Newton, J. Math. Phys. 1, 319 (1960).
6 H. M. Nussenzveig, in Anal tic Proy z oPertzes of Eon-Eetutzezstic

y J. . ozano and L. Sartori
~ ~

I

l20
I

X) 60 90 l80
0

(C.m.}
(g)

FzG. 6. CI2 nof'n, o.'i~ angular distributions at different incident
~ ~ ~

energies. Conventions similar to those of I' 5 f ll
( )—(g) sohd circles denote experimental results, the solid

line corresponds to the results from the APBM model with reso-
nant phase shifts as given in Ref. 17 the dashed lie s e e dcates the

ion rom -p ane pole representation and the
o e ne in cates the same from k- lan

)
o -p ane pole representation

l50

this procedure (KP) are shown in Figs. 6(c), 6(d), and
6(f) for the case of C"(n, rr) C" at Z =11.74 12
18.0 MeV.

) .1) and

From these results it is clear that the X-plane results
are, in general, better than those of the k-plane ap-
proach, even though exceptions at some energies (see

ig. g) cannot be ruled out. It should be noted, however )
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FIG. 7. 0"(n n)0" angular distributions. The conventions of
Figs. 5 and 6 are followed. In Figs. 7(a) and 7(d) the solid line
corresponds to the results obtained from a phase-shift analysis,
and in Figs. 7(b), 7(c), and 7(e) to the results from the APBM
model with resonant phase shifts as given in Ref. 28.

proaches to nuclear scattering, establish the usefulness
of complex angular-momentum methods.

Before concluding this discussion, we wish to em-

phasize that the present scheme of calculations is
strictly valid when only the elastic channel is open.
When one makes calculations at energies where the con-
tribution of inelastic channels are also significant, im-
position of elastic unitarity on the 5 matrix is valid only
as an approximation. For example, if one takes into
account the inelastic channels by introducing an optical
potential of complex strength Vo, the unitarity relation
obeyed by the corresponding Smatrix S(h,k, Vs) is given
by37

S(X,k, Vs)Se (X*,ks, Vs*)= 1. (4 4)

"S.Muitherjee and C. S.Shastry, Nucl. Phys. (to be published).

Therefore, if X„ is a pole of S(X,k, Vs), then X„*is not
necessarily a zero. Thus when inelastic channels are
open the residues cannot be calculated in terms of poles
by solving Eq. (2.26), which is obtained by using the
property that X„* is a zero of SP,,k). However, the
deviation of

~
S(X,k, Ve)

~
from unity gives a measure of

the inelastic effects; therefore, we can expect that when
1—

~
S(X,k, Vs)

~
is small compared to unity, the imposi-

tion of elastic unitarity may still be a reliable approxi-
mation. In the case of 0.-0.scattering, the inelastic thresh-
old is at 17.25 MeV, and in the case of the n-C'2 system

Fro. 8. C"(o,,a)C" angular distribution. The conventions of Fig.
6 are followed. Here the solid line indicates the angular distribu-
tion from experimental phase shifts (Ref. 31).

the inelastic effects are small $ ~

S(X,k, V,) 1~1j in the
energy range that we have considered. However, in the
case of the n-0" system, it is observed that for Ji & 10
MeV the inelastic cross sections become significant and
can no longer be neglected; therefore, imposition of
elastic unitarity is likely to introduce errors in the
residues. The comparatively worse results for n-0" scat-
tering, particularly at higher energies, may be partly
attributed to this source of error. It should also be noted
that the inelastic effects, if significant, introduce errors
only in our values of the residues, and leave the deter-
mination of the other pole parameters unaRected.

Summarizing, it is found that systematics of com-
pound nuclear levels of an elastic-scattering system can
be used to analyze nuclear scattering through suitable
Regge-type representations without introducing arbi-
trary parameters. One may, perhaps, improve the re-
sults further if E and uo are treated as parameters.
Moreover, a more detailed and reliable set of resonances
and widths can be used to explain the diRerential cross
sections through a Regge representation without intro-
ducing a phenomenlogical potential model. In addition,
it may be possible to predict the quantum number of
certain levels, at least empirically, from an extrapolated
Regge trajectory.
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