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for the ground-state energy are plotted as a function
of the strength X of the Yukawa potential. For lXl) 2.0
F ', the ground-state values of Osborn are lower than
even the lower bounds of our calculation. This indicates
clearly that Osborn's results are not accurate and the
collapse is a spurious phenomenon. For X= —1.0 and
—1.4 F ', however, our upper bounds are only about
1% different from the results of Osborn's calculation,
indicating that his approximations are reasonably valid
when the potential depth is relatively small.

From Fig. 2, we see that the values of Q( EU) lie-
very nearly on a straight line, while for Q(—EL), there
is a deviation from a straight line at large values of l

X
l
.

This deviation is a consequence of the fact that we have
used for Et in Eq. (2) the energy of the 6rst excited
state as reported by Osborn. This value of E& is very
likely too low, since Osborn's 6rst excited state also
shows a collapse behavior for lhl &2 F ', which is
probably spurious. In fact, if we assume a linear rela-
tionship between Q(—Et) and )t, then for X= —3.0 F ',
the value of E1would be —62.2 MeV instead of —156.0
MeV, which was used to obtain the lower bound in
Table I. This new value of E1 gives a slightly better
lower bound of about —210 MeV, which does lie nearly
on a straight line drawn through the values of Q(—EL)
«r l~l &2.0 F-~.

IV. CONCLUSION

The purpose of this investigation is to compare
the results obtained for a three-body system with a local

Yukawa potential using the Faddeev method and a
variational technique. The result of this comparison
shows that with the type of trial function used here,
the variational method yields upper and lower bounds
that are close to each other and bracket nicely the
ground-state energy obtained by Ball and Kong. In
particular, the value of the upper bound is nearly the
same as Ball and Kong's result when the potential
strength is not exceedingly small. On the other hand,
our variational study does rule out de6nitely Osborn's
claim of a ground-state collapse phenomenon, since his
ground-state energy is even lower than the lower bound
of our calculation. "

In concluding, it should be mentioned that the
variational method, used in conjunction with the Monte
Carlo technique, can be straightforwardly extended to
four-body problems. This has already been done not
only for purely attractive potentials, " but also for
potentials with a repulsive component. "As is the
case here, the variational bounds obtained in most of
these four-body calculations are close to each other.
This is satisfying, since it means that these bounds can
be used to check the results of future calculations when
an exact and numerically feasible method for the four-
body system becomes available.

'~ After this manuscript was completed, it was brought to our
attention that very recently, Humberston ei al. Q. W. Humber-
ston, R. L. Hall, and T. A. Osborn, Phys. Letters 27B, 195
(1968)j, using a variational method, have reached the same
conclusion regarding Osborn's results for large values of

~ X l.
'4 Y. C. Tang and R. C. Herndon, Nucl. Phys. A98, 692 (1967).
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The resonating-group method, which employs a completely antisymmetric wave function, has been used to
consider the problem of elastic scattering of He' and H' by He4. The nucleon-nucleon potential used in the
calculation is purely central, but 6ts the low-energy scattering data satisfactorily. The calculated phase
shifts are compared with those which have been obtained from an analysis of experimental data, and rather
good agreement is found. In particular, the calculated l =3 phase shift for both systems exhibits a resonance
behavior which indicates the presence of a 'F level lying between the 'Fyg2 and 'Fsf2 levels found experi-
mentally. Effective, local, l-dependent potentials between the He4 cluster and the He' or H' cluster have also
been derived. They are approximately energy-independent and contain features which have been found in
phenomenological analyses of elastic scattering in light systems. EBects due to speci6c distortion of the He'
or H' cluster have also been examined in an approximate fashion. Here it is found that the sects on the 'F
excitation energy and on the nonresonant phase shifts are only of minor importance.

I. INTRODUCTION

HK present work is an extension of a previous
investigation made by Tang, Schmid, and

Wildermuth' (hereafter referred to as TSW), which was
1' Work supported in part by the U. S, Atomic Energy

Qommisgign,

concerned with a study of the scattering of He' by He4,

and which employed the resonating-group method in
the one-channel approximation. This extension is con-

~ Y. C. Tang, E. Schmid, and K. &ildcrmuth, Phys. Rcv. 131,
2681 (1963).
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sidered desirable because extensive experimental data' —'
on the elastic scattering of He4 by both He' and H' have
now become available, and these data have been care-
fully analyzed to yield phase-shift solutions for a
number of partial waves. Thus a detailed comparison
between theory and experiment should provide a rather
critical test of the accuracy of the simplified version of
the resonating-group method used in the present
calculation.

In a study of the simpler case of He4+He4 scattering,
Okai and Park have found-that the values of the phase
shifts obtained with the resonating-group method agree
quite well with those determined experimentally. In the
present calculation we also find a large measure of agree-
ment with experiment. The fact that such agreement is
obtained for both of these cases strengthens one's con-
fidence that phase shifts calculated with the resonating-
group method can be used as starting values for
analyses of elastic-scattering data for more complicated
systems, such as He'+H'. Such a use of the calculated
phase shifts will help to alleviate ambiguities inherent
in any attempt to extract phase shifts from a limited
amount of experimental information. v For example, in
his analysis of P+He' scattering, Tombrellos has used.

this procedure to obtain a phase-shift set which cor-
rectly predicts the existence of resonance levels in the
nucleus Li4.

In this study we shall also make a careful examination
of the behavior of the scattering wave functions. The
purpose here is to find effective, local potentials
between the He4 and the He' or H' clusters which will

yield the same scattering phase shifts as does the reso-
nating-group calculation. The result is that a number
of such potentials can indeed be found, and these have
the properties of being angular-momentum-dependent
and only moderately energy-dependent. They also
contain the important features discovered by a number
of authors' ' " from phenomenological, local-potential
analyses of elastic-scattering data for systems involving
light nuclei.

The effective potentials obtained here should be very
useful in studies of more complicated systems, where a

2 R. J. Spiger and T. A. Tombrello, Phys. Rev. 163, 964 (1967);
R. J. Spiger, Ph. D. thesis, California Institute of Technology,
1967 (unpublished).' J. S. Vincent, E. T. Boschitz, and R. E. Warner, Bull. Am.
Phys. Soc. 12, 17 (1967). We wish to thank Professor B. F.
Bayman for giving us a copy of this contributed paper.

M. Ivanovich, P. G. Young, and G. G. Ohlsen, Nucl. Phys.
A110, 441 (1968).' F. Dunnill, T. J. Gray, H. T. Fortune, and ¹ R. Fletcher,
Nucl. Phys. A93, 201 (1967).

' S. Okai and S. C. Park, Phys. Rev. 145, 787 (1966).
7 In the case of d'+o. scattering, the phase-shift set obtained by

L. S. Senhouse, Jr., and T. A. Tombrello, Xucl. Phys. 57, 624
(1964), using mostly diGerentia1 cross-section data, was indeed
later found to be incorrect by L. C. McIntyre and W. Haeberli,
Nucl. Phys. A91, 382 (1967), and by D. R. Thompson and Y. C.
Tang, Phys. Letters 26B, 194 (1968).' T. A. Tombrello, Phys. Rev. 138, 840 (1965).

9 S. Ali and A. R. Bodmer, Nucl. Phys. 80, 99 (1966)."J.L. Gammel and R. M. Thaler, Phys. Rev. 109, 2041 (1958).

straightforward application of the resonating-group
method would be impractical because of mathematical
complexity and a need for lengthy computing time. For
instance, in an analysis" of the A-hypernuclear system
zC", an effective n-n potential was employed, a pro-
cedure which reduced this complicated 13-body problem
to a more amenable four-body problem.

The present calculation is made under the assumption
that distortion of the clusters is properly accounted for
by the use of a totally antisymmetrized wave function.
This should be a fairly valid approximation for scatter-
ing at most energies, since the requirements of the Pauli
principle tend to keep the two clusters apart throughout
the collision. "When bound and resonant states having
predominantly He'+He' (or Hs) structure are con-
sidered, however, it may be necessary to allow more
adequately for the distortion of the He' or H' cluster.
In this calculation we briefly examine the inQuence of
this extra distortion by using a procedure previously
employed in studying the energy levels of light nuclei, '3

namely, by giving a certain degree of freedom to the
internal motion of the He' or H' cluster. '4 As has been
discussed before, " this procedure is relatively crude;
nevertheless, we believe that it gives a fair estimate of
the effect of such distortion on the energies of the bound
and resonant levels.

In Sec.II we give a brief discussion of the formulation
of this problem. In Sec. III the results of this calculation
are presented. Here the calculated phase shifts and dif-
ferential cross sections are compared with those deter-
mined experimentally; a study of the behavior of the
scattering function and the effective potentials is also
made. Section IV is a short discussion of the effect of
distortion of the He' or H' cluster over and above that
already implicitly given by the Pauli exclusion princi-
ple. Finally, in Sec. V we surrnnarize the results of the
present investigation and discuss several improvements
which can be made in future calculations.

Q. FORMULATION

The formulation of this problem follows closely that
of TSW. For completeness, however, a brief description
of the calculation will be given here. Basically, the
method uses a variational technique in which is em-
ployed a cluster-type scattering wave function and a
seven-particIe Hamiltonian operator of the form

where 3f is the nucleon mass and V;; is the potential

"R.C. Herndon and Y. C. Tang, Phys. Rev. 149, 735 (1966)."p. G. Burke and F. A. Haas, Proc. Roy. Soc. (London) A252,
177 (1959);H. S. W. Massey and B.L. Moiseiwitsch, ibiX A205,
483 (1951).

'3 Y. C. Tang, K. Wildermuth, and L. D. Pearlstein, Phys. Rev.
123, 548 (1961).

'4 Such a precaution need not be applied to the 0. cluster because
of its low compressibility (see Ref. 13).
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energy of the nucleon pair (i,j) T. his two-nucleon po-
tential is assumed to be purely central with exchange
terms and has the form

V;;= —Vs exp( —sr;P) (w+mPg"
+bPe' —hPe')+e;;e'/r;;, (2)

where the quantities I';; are the space, spin, and isospin
exchange operators, respectively, and e;;=1 if both i
and j represent protons (e;;=0, otherwise). The ex-
change constants are taken to satisfy the normalization
condition

0.=0.362 F ', a=0.514 F ' (9)

which yield u3=1.66 F and @4=1.48 F.
The function F(r) which appears in Eq. (6) describes

the relative motion of the two clusters and is obtained
from the variational principle

b %*(H—E')4 dr=0, (10)

We use standard methods' "to extract these rms radii
from the measured" "charge form factors. Thus we are
led to choose

w+te+b+h= 1, (3)

and the ratio x of the s-wave singlet-to-triplet potential
is given by

x=w+rN —b—h.

For the parameters Vo, e, and x, we shall use the same
values as did TSW for their potential I.These parame-
ters are given by

VQ —'l2.98 MeV, x=0.46 F, g=0.63. (5)

With these values the potential V;, gives a reasonable
fit to the low-energy, nucleon-nucleon scattering data.
Thus in this formulation, with the exception of the
exact nature of the exchange mixture, the Hamiltonian
operator is completely specified by Eqs. (1), (2),
and (5).

In the one-channel approximation, the scattering
state will be represented by a completely antisym-
metrized, seven-particle function 4 of the form

+= OL~s~&(r) I(~,r)3, (6)

where 8 is an antisymmetrization operator, $ is a spin-
isospin function, and the vector r= R4—Rs connects the
c.m. positions of the mass-3 and mass-4 clusters. The
functions q3 and y4 are the internal spatial functions
of the two clusters and are taken to have the following
Gaussian forms:

7

ps ——exp( ——,'n P (r;—Rs)'),
i=5

@4=exp( ——,'n P (r;—R4)').

In the above equations, the values of the width parame-
ters u and n are not the same as those used in TSW, but
are chosen by using information from the most recent
electron-scattering measurements. "' The rms radii a3
and a4 of the nucleon distribution in the clusters are re-
lated to the width parameters by the equations

as ——(1/u)'I', u4 ——(9/Sn)'~'. (g)

"H. Collard, R. Hofstadter, E.B.Hughes, A. Johansson, M. R.
Yearian, R. B. Day, and R. T. Wagner, Phys. Rev. 138, B57
(&965).

'6 R. F. Frosch, J. S. McCarthy, R. E. Rand, and M. R.
Yeariaa, Phys. Rev. 160, 874 (1967).

and the integrodifferential equation for F (r), one finds
the following equation satisfied by the radial scattering
function f~(r):

h' d' t(1+1))
I+~—V.(r)—Vi*(r) f~(r) =o (12)

2p dr' r' i
IIere p is the reduced mass of the two-cluster system,
E is the incident energy in the c.m. system, V, (r) is the
Coulomb interaction energy of the two clusters, and
V&*(r) is the effective potential, which is given by

Vg*(r) = Ug)(r)+
~(r)

hg(r, r') f$(r') dr'. (13)

Expressions for V~(r), h~(r, r'), and V, (r) are given in
TSW. In the determination of the Coulomb inter-
action, the antisymmetrization operator 6, which

appears in Eq. (6) is set equal to unity. "The introduc-
tion of the effective potential Vq*(r) at this point does
not aid in the actual solution of Eq. (12) for the scat-
tering function f~(r), because Vg*(r) itself contains

f&(r). Rather, Eqs. (12) and (13) are combined and
solved, under the usual boundary conditions, for f&(r)
and for either phase shifts 8g or bound-state eigen-
energies E, whichever are desired. The introduction of
Vg*(r) simply makes transparent the fact that, once

f&(r) has been obtained, Eq. (13) can be used to calcu-
late a local potential which will yield the same scattering
phase shifts as the actual nonlocal interaction. It should
be noted that our Vg*(r) and b~ are real because reaction
channels are neglected, and that only the orbital angu-
lar momentum l enters the problem because a purely
central nucleon-nucleon potential has been used.

"L.I. Schi&, Phys. Rev. 133, 8802 (1964).
'8 K. Okamoto and C. Lucas, Nucl. Phys. B2, 347 (1967).
1~ For a discussion of the validity of this approximation see

Ref. 6.

where E' is the total energy of the system. From this
equation one derives an integrodiGerential equation for
F(r), which shows that the interaction between the
clusters is nonlocal. By use of the expansion

F(r) =g r—'f~(r)P~(cos8)
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TABLE I. Calculated phase shifts, in degrees, for the He'+He4
system. The parameters used are those of Eqs. (9) and (18).The
c.m. energy E is in MeV.

B l=0 1
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4.65 l/2- 4.57 7/2-

5.608
Li~+p

2.467
H/+HI

0.478 iia- 0.43.I I/2-

f587
He~+ He4

Fio. 1.Energy-level diagram for lour-lying levels of Li' and Be~.
The information is taken from Ref. 2.

The dependence of ft(r) on the exchange constants
, ~, 5, and h occurs only through the combination

p.S —1.51
1.0 —9.21

—22.31
2.5 —35.35
3.p —42.24
3.5 —48.31
4,0 —53.73
4.5 —58.60
5.0 -63,04
5.5 -67.13
6.0 —70.94
6.5
7.p —77.90
8.p —84.20

10.0 —95.40
12.0 —105.21
14.0 —113.94
16.0 —121.78
18.0 —128.88
20.0 —135.35
22.0 -141.27

—0.67
-5.03

—14.04
—24.26
-30.08
-35.44
-40.39
—44.99
-49.29
—53.32
—57.12
—60.72
—64.14
-70.49
—81.68
-91.33
—99.85

—107.50
—114.47
—120.87
—126.79

—0.01
-0.15
—0.83
—2.25
-3.32
—4.44
-5.53
—6.56
-7.49
—8.30
—9.01
—9.62

—10.13
—10.93
-12.10

13%23
—14.61
—16.24
—18.07
—20.02
-22.03

0
0.03
0.32
1.84
4.42

10.35
27.16
83.63

132.76
147.13
152.77
155.62
157.30
159.13
160.64
161,20
161.35
161.20
160.78
160.12
159.25

0
0

-0.01
—0.04
—0.08
-0.15
—0.25
—0.37
-0.52
—0.69
—0.88
—1.07
—1.26
-1.60
—1.91
-1.42

0.03
2.50
5.93

10.27
15.36

Q

0
Q

0
0.01
0.03
0.06
0.11
0.17
0.27
0.40
0.57
0.78
1.34
3.07
S.70
9.24

13.70
19.02
25.08
31,62

0
0
0
0
0
0
0

—0.01
—0.01
—0.02
—0.03
—0,05
—0.07
—0.13
—0.33
—0.59
—0.86
—1.04
—1.07
—0.91
-0.54

A =4w —m+2b —2h, (14)

Here Vs and Vn are given by Eq. (2) and

Serber: m=m, b=h,
Rosenfeld: m=25, k=2m.

(16)

Under the assumption that both VB and Vg have the
same singlet-to-triplet ratio x, A and y are uniquely re-
lated by the expression

(17)

which serves to define A. This quantity is proportional
to the strength of the spin-isospin-independent part of
the nucleon-nucleon potential V;;, and is the only ad-
justable parameter occurring in the present calculation.
As is commonly done, we introduce a related parameter

y in the following manner. %e write the nucleon-nucleon
potential V as a linear combination of a Serber potential
V8 and a Rosenfeld potential Vg, thus,

V =yVs+ (1—y) Vn. (15)

A =1.258 (18)

Gts the averaged binding energy of both nuclei to
within 60 keV. From Kqs. (17), (18), and (5), we then
6nd that y= 1.03. It is satisfying that this value of y is

TmLE IX. Calculated phase shifts, in degrees, for the H3+He4
system. The parameters used are those of Eqs. (9) and (18). The
c.m. energy 8 is in MeV.

B l=0 1

bound 'I' state (actually, the spin-orbit-split ground
and 6rst excited states —see Fig. 1) of Li' and Be'.
Because the nucleon-nucleon potential of Eq. (2) can
produce no spin-orbit splitting, we average the experi-
mental energies of the 'P'3~~ ground state and 'P 1~2 first
excited state, weighted according to the expectation
value of L S. This procedure gives an average experi-
mental 'P binding energy of 1.44 MeV for Be7 and 2.31
MeV for Li'. A calculation of these binding energies as
a function of A for both Be' and Li' shows that a value
forA of

This relation between A and y is useful because, from
nucleon-nucleon scattering analyses, one expects y to be
close to unity. In our calculation, however, we shall
treat A as an adjustable parameter. Ke choose to do
this because, as was mentioned in Sec. I, the eBect of
cluster distortion other than that given implicitly by the
Pauli principle may not be insignificant. For example,
it is known in the related problem of He4+He4 elastic
scattering" that this extra distortion eGect gives rise to
a weakly attractive potential between the clusters, and,
therefore, it is felt that an adjustment in A may
crudely compensate for the omission of such a polariza-
tion potential in our calculation.

Following TSW we adjust A (or, equivalently, y) so
that our calculation yields the correct energy for the

"A, Herzenberg and A. S. Roberts, Nucl. Phys. 3, 314 (f937).

0.5 -9.45 -2.86
1.0 —23.06 —10.23
1.7 —37.49 -20.95
2,5 —49.46 —31.68
3.0 —55.40 —37.57
3.S -60.54 -42.94
4.0 -65.08 —47.88
4.5 -69.17 -52.45
5.0 —72.93 —56.71
5.5 -76.43 —60.71
6.0 —79.73 —64.47
6.5 -82.86 —68.03
7.0 -85.85 -71.41

8.0 —91.50 —77.69
10.0 —101.75 -88.72
12.0 -110.87 —98.22
14.0 -119.06 -106.60
16.0 -126.48 —114.12
18.0 —133.26 -120.96
20.0 —139.47 —127.24
22.0 -145.20 —133.04

-0.05
—0.37
—1.36
—2.91
—3.91
-4.84
—5.64
-6.30
—6.81
—7.18
—7.43
—7.57
-7.64
—7.65
-7.67
—8.20
-9.35

—10.96
-12.90
-15.02
-17.24

0
0.09
0.81
4.38

11.88
40.73

120.55
146.71
154.05
157.18
158,81
159.77
160.38
161.07
161.54
161.53
161.26
160.76
160.05
159.15
158.08

0
0

—0.01
—0.06
—0.12
—0.20
—0.31
-0,45
—0.61
—0.77
—0.94
—1.10
-1.25
—1.45
—1.28
—0.05

2.38
6.04

10.84
16.63
23.12

0
0
0
0,01
0.02
0.05
0.09
0.15
0.24
0.36
0.52
0.72
0.97
1.61
3.55
6.39

10.16
14.84
20.38
26.61
33.23

0
0
0
0
0
0

—0.01
-0.01
—0.02
—0.03
—0.04
—0.06
—0.09
—0.16
-0.36
—0.61
—0.83
—0.94
—0.86
—0.57
—0.05
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so close to unity. This result indicates that the present
one-channel calculation may be reasonably good. The
value of A found here diGers from that found in TSW
because the cluster sizes used here are not the same as
in TSW. It should be emphasized that, once A is Gxed
in this manner, there are no adjustable parameters in
the calculation, and the phase shifts, differential cross
sections, and eGective potentials may be computed in a
straightforward fashion.

I I s I
I

I ~ I ~
I

I I I I
I

I ~ ~ I0
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-100
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s i a I ~ I s i I s g i I I ~ s s
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sP

III. RESULTS AND DISCUSSION

A. Phase Shifts

s I

U.
x
(0

0 5
X

-100

~ ~ I I
I

I I ~ f
I

I I I I
I

~ ~ I ~ 6
-0
--IO

-50 —200

m -00 —150

~ I ~ I I I ~ ~ ~ I I I I I I I ~ ~ ~0
—IOO

-50
—50

-IOO

I s I I I ~ ~ ~ ~ I i ~ I I I ~ ~ ~ ~ I I I

0 5 10 15 0
C.M. ENERGY

I ~ ~ I a I ~ s I ~ I ~ i ~ I 0
gag -lo

~ I i ~ ~ I I ~ I I ~

5 IO 15 20
(MeV)

FIG. 2. Comparison of the calculated phase shifts for He'+He'
scattering with the experimental phase shifts of Ref. 2. The crosses
represent the experimental values for j=l—$, and the circles
represent those for j=l+~.

The phase shifts up to l=6 for both He'+He' and
H'+He' elastic scattering at c.m. energies 0.5-22.0
MeV have been calculated and are listed in Tables I
and II. A comparison up to l=4 of these calculated
phase shifts with the real part of experimentally deter-
mined phase shifts is shown in Figs. 2 and 3. The ex-
perimental phase shifts in Fig. 2 are those of Spiger and
Tombrello, ' while those in Fig. 3 include some phase
shifts determined by Ivanovich, Young, and Ohlsen, 4

as well.
The agreement between theory and experiment for

l=0, 1, and 2 below 7-MeV c.m. energy is good. Evi-
dently the effect of reaction channels on the real part
of the phase shifts is small up to 7 MeV, even though
reactions become possible at as low an energy as &.0
MeV (proton emission) for the Hes+Hes system and 4.8
MeV (neutron emission) for the H'+He' system. The
calculated 1=3 phase shift shows a resonance behavior

LLJ
V)

I:
LL -50

-50

-100

~ I ~ I I ~ I I ~ I ~ 0 I I ~

~ I I ~ ! I I I I I ~ I ~ I ~ I

J &4

~ i ~ I I & ~ a s I ~ ~ s ~ I s & a

10
0

0 5 IO 15 0 5 10 15 20

C.M. ENERGY (MGV)

FIG. 3. Comparison of the calculated phase shifts for H'+He
scattering with the experimental phase shifts of Refs. 2 and 4, The
crosses and circles represent the experimental values of Ref. 2 forj=l—q and j=l+~~ respectively, and the triangles and squares
represent those of Ref. 4 forj= l—~ and j=l+ ~, respectively.

very similar to that of the experimental points. In fact,
it goes through resonance at an energy which lies
between the energies at which the experimental 'F7/2
and 'F5~2 phase shifts go through resonance. This is just
the type of behavior that one would expect from a cal-
culation which omits spin-orbit sects, but which is
otherwise correct. We can estimate from the experi-
mental data the energy at which the calculated reso-
nance should occur. To do this we average the experi-
mental 'F energies, weighted according to the expec-
tation values of L S, and obtain average c.m. resonance
energies of 3.91 MeV for Be' and 3.03 MeV for I.i',
whereas the calculation gives 4.5 and 3.7 MeV, re-
spectively, for these two resonances.

We believe that this discrepancy of about 0.6 MeV
can be understood by invoking recently determined2
properties of low-lying states in the mass-7 system. In
the following discussion we will consider, for de6nite-
ness, the nucleus Se7'. The 'P splitting is 0,431 MeV,
and, on the basis of the L S weighting procedure, the
'F splitting should be 7/3 of this, or 1.01 MeV. How-
ever, the actual splitting is 2.16 MeV, and, furthermore,
this large discrepancy exists even when theoretical cal-
culations of the 'F splitting are made" using a more
accurate procedure than simple L S weighting. Let us
assume tentatively that the part of the 'F splitting due
only to spin-orbit forces is the theoretically expected
value of 1 MeV and see where this assumption leads.
Since the resonating-group calculation gives the energy
of an unsplit 'F level as 6.1-MeV excitation in Be7, we
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would expect, on the basis of a total splitting of 1 MeV,
that the 'F5/~ level would occur at 6.7 MeV, and that
the 'F7~/2 level would occur at 5.7 MeV. An inspection
of Fig. 1 shows that the expected position of the 'F5/2
level agrees with that found experimentally, whereas
the expected position of the 'F7/Q level is 1.1 MeV higher
than that found experimentally. The agreement found
for the 'F5/2 level position may be fortuitous; however,
to proceed with our argument we will assume that the
agreement is significant. Under this assumption, ex-
planation for the further lowering in energy of the 'F7/2

level must be sought in effects other than those pro-
duced by spin-orbit interactions alone. We argue, in
fact, that the inclusion in the calculation of an addi-
tional channel having ari explicit p+LiI* structure
could explain the occurrence of the 'F7/2 level at 4.6
MeV rather than at 5.7 MeV. This expectation is based
on the fact' that the 2

—level at 9.3 MeV has both a
large reduced width for breakup into a proton and Li'
in its first excited state (LiI*) and a significant reduced
width for n-particle emission. The implication then is
that the 'F7/Q level at 4.6 MeV also contains a signihcant
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FIG. 5. Comparison of the calculated diGerential cross section
for H3+He4 scattering with experimental data at 5.6 and 8.3 MeV.
The data are those of Ref. 22.

amount of p+Li'* structure, and that, therefore, its
coupling to the 9.3-MeV level of the same J but dif-
ferent I (caused, for example, by spin-orbit inter-
actions) might be sufficient to account for its observed
further lowering in energy. The position of the 6.7-
MeV, 'F5/~ level would not be expected to have been
appreciably affected by the presence of channels other
than that included in the present calculation. This is
because, 'the nearby ~~ level at 7.2 MeV has an n-particle
reduced width which is less than 1% of that for the
'Fs/2 level, and hence the coupling between these two
levels should be small.

B. Cross Sections

I
0 2D 4' 60 80 IOO IRO. 149 I60 I80

C.M. ANSLE tdetI. )

Fn. 4. Comparison of the calculated differential cross section
for He3+He4 scattering with experimental data at 1.7 and 18.0
MeV. The data at 1.7 MeV are those of Ref. 21, and the data at
18.0 MeV are those of Ref. 3.

ln Figs. 4 and 5 the calculated c.m. differential cross
sections for He'+HeI and H'+He' elastic scattering are
compared with those from experimental measurements
at several illustrative energies. As indicated by the
phase-shift calculation (Sec. III A and Figs. 2 and 3),
one expects good agreement between calculated and
experimental diGerential cross sections at low energies
where reactions are nonexistent or of weak. intensity,
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and where one is still below the inRuence of the 'IiV~2

resonance. Such agreement is shown in Fig. 4 for the 1.7-
MeV data of Miller and Phillips s' In this 6gure is also
shown a comparison with the 18-MeV data of Vincent,
Boschitz, and Warner. 3 At this latter energy it is
probably a good assumption that the energy splitting
of the 'F states has a moderately small effect on the
scattering cross section, and that reaction channel
effects should be the principal cause of differences
between the calculated and experimental differential
cross sections. Figure 4 shows that, indeed, the most
signihcant difference between theory and experiment is
the noticeably larger magnitude of the calculated cross
section, whereas the calculated positions of the maxima
and minima agree well with the experimental positions.
It is to be expected that the omission of reaction
channels in the calculation would cause such a differ-
ence in the magnitude of the cross section; however, the
effect of reaction channels on the positions of the
maxima and minima in the present type of fully anti-
synunetrized calculation is not obvious. It is known,
however, that when a standard optical model, which
employs a local imaginary potential to describe reaction
effects, is used to analyze elastic-scattering data, the
positions of the maxima and minima are rather insensi-
tive to the strength of this imaginary potential.

Figure 5 shows a comparison with the present calcu-
lation of the data of Flynn, I eland, and Rosen" for
H'+He' elastic scattering at 5.6 and 8.3 MeV. Here the
calculation reproduces the experimental shape only
moderately well at 5.6 MeV and rather poorly at 8.3
MeV. It is believed that the major difference between
calculation and experiment at 8.3 MeV is due to the
proximity in energy of a broad resonance in the neu-
tron-emitting channel caused by the 9.7-MeV level in
I.i', which has significant widths for both neutron and
n-particle emission. In fact, Wildermuth and McClure, "
in their comprehensive discussion of cluster calcula-
tions, have pointed out that resonances in individual
reaction channels can have a marked inQuence on the
elastic-scattering cross section. At 5.6 MeV it is possible
that the 9.7-MeV level has some effect on the experi-
mental cross section, even though these data occur 0.5
MeV farther from the 9.7-MeV level than do the 8.3-
MeV data. The inhuence of the 7.47-MeV level, how-

ever, can be ignored here, since it has a very small n-

particle width. 2 In addition, the 5.6-MeV data may
show some small effect of the spin-orbit splitting of the
1=3 phase shifts (see Fig. 3), which effect is not in-
cluded in our calculation.

"P.D. Miller and G. C. Phillips, Phys. Rev. 112, 2048 (1958).
ss E. R. Flynn, W. T. Leland, and L. Rosen (private communi-

cation).
~ Karl Wildermuth and %alter Mcclure, in Springer Tracts in

Modern Physics, edited by G. Hohler (Springer-Terlag, Berlin,
1966), Vol. 41.

FIG. 6. The radial bound-state function for the 'P ground state
of the He'+He4 system. The curve represents the function fr as
calculated from Eq. (12), while the solid dots represent the func-
tion gr as calculated from Eq. (19).

C. Radial Wave Functions and Effective Potentials

Figure 6 shows the radial function ft(y) for the /= 1
bound state of Her as determined from Eq. (12). For
comparison we have also shown the values of a function
g&(y) given by

gr(y)=Cys(1 —24o. ys/35) exp( 6n, —ys/7) (19)

with o., =0.44 F ', which is a weighted average of the
values of n and a in Eq. (9). With this expression for
gr(y), the function

+= O,Lp '
q

' y 'g (y)P, (coso)g(, )], (20)

with ps' and pp» given by Eq. (7), except that both
0, and n are replaced by 0, , is the usual shell-model
wave function describing the lowest conhguration
(is)4(1p)s in an oscillator well of width parameter a, .
Further, to facilitate comparison, the constant C is
chosen such that the functions fr and gt have the same
value at r=1.1 F, the position of the 6rst maximum.
From Fig. 6 it is seen that for y) 2.5 F, gr(y), which
according to Eq. (19) has an improper asymptotic be-
havior, differs markedly from f&(y), whereas at smaller
radii fr and gq are nearly identical. This indicates that
in situations where relatively small radii would domi-
nate a calculation, the employment of g&(y) would be a
useful simplification, since it is easier to calculate with
the function gr(y) than with the function fr(y). How-
ever, to obtain quantitative results, the value for the
constant C in Eq. (19) would certainly have to be cor-
rectly determined.

The function fr(y) shown in Fig. 6 has a rather large
peak at r= 1.1 F, a value much smaller than the sum of
the rms radii of He' and He4. This, however, cannot
mean that the two clusters have a large probability to
be close to each other, because such a situation would
violate the Pauli exclusion principle. Rather, one must
realize that the function fr(y) occurs under the anti-
symmetrization operator, and thus has no clear inter-
pretation in terms of cluster separation when the
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FIG. '7. The radial scattering function fr(r) of Eq. (12) for I=0,
1, 2. The curves shown are those at c.m. energies of 1.7 and 18.0
MeV for the He'+He4 system.

where r; is the distance of the ith nucleon from the c.m.
of Be', and e(t) is the unit step function given by

e(t) = 1 for t)0
=0 for 5&0. (22)

The computation of E(R) is quite difficult; however,
we believe that it can be performed by using a Monte
Carlo technique which has recently been devised for
few-body problems. '4

The radial scattering functions fr, (r) for He'+He4
scattering with /=0, 1, and 2 at 1.7 and 18 MeV are
shown in Fig. 7. Similar curves (not shown) are ob-
tained for H'+He' scattering. Each of the functions in
Fig. 7 has one of its zeros not far from r=E, „where
E, , is the rms radius of the folded-matter distribution
and is given by

E, ,= (ass+a4')'Is = 2.25 F. (23)

The positions of these zeros are seen to be only weakly
energy-dependent —a change of less than 0.2 F in these
positions occurs when the energy is changed by almost
20 MeV. These positions, however, are more strongly
/-dependent —a change of 0.6 F occurs when / is changed
from 0 to 1.

The effective potentials Vr*(r), as defined in Eq. (13),
are shown in Fig. 8 for /=0 at 1.7 and 18 MeV and for

'4R. C. Herndon and Y. C. Tang, Methods in Computational
Physics (Academic Press Inc., ¹wYork, 1966), Vol. 6, p. 153.

clusters overlap strongly. In fact, to examine the
probability for close packing of all seven nucleons
within a sphere of radius E., one must calculate, with
the properly normalized wave function 4, the value of
the expression

(21)

-IOO-

FIG. 8. The effective potential Vr~(r) of Eq. (13) for l=0 and
1 in the He'+He' system. The potential VP (r) is shown for c.m.
energies of 1.7 and 18.0 MeV, and the potential V~*(r) is shown
for a c.m. energy of 1.7 MeV. Except for the positions of narrow
singularities, the curve for V~*(r) at 18.0 MeV is very close to the
one shown at 1.7 MeV.

/= 1 at 1.7 MeV. Because of the nonlocal nature of the
interaction between the clusters, singularities occur in
the effective potentials at values of r for which fr(r) =0.
%e should mention, however, that such singularities
occur only because a one-channel approximation has
been used in our calculation. If reaction channels had
been included, then the function f~(r) occurring in
Eq. (13) would be complex, and, in general, one would
not expect the real and imaginary parts to vanish
simultaneously. Therefore, the singularities in V~*(r)
would be absent; nevertheless, for small reaction
probabilities, relatively rapid changes in V&*(r) would
still occur, and these changes would be increasingly
damped for increasing reaction probabilities. Also, it
should be noted that a singularity in the potential will
have little eGect on the scattering whenever the spatial
extent of the singularity is small compared to the wave-
length K of relative motion of the two clusters. Thus,
since large reaction cross sections will occur at rela-
tively high energies, and large wavelength X will occur
at relatively low energies, in the region of surface inter-
action where the potential depth is small, one expects
that in most cases" the potential Vg*(r) can be repre-
sented by a smoothed potential which closely resembles
Vqe(r) but is free from narrow singularities. Such a po-
tential is illustrated in Fig. 9 for /=0, 1, 2, and 3 at
8.3 MeV.

The above consideration of effective potentials also
leads to the conclusion that the standard optical model,
which employs smoothly varying local potentials,
should attain its greatest validity at energies for which
the scattering system of interest has relatively large
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reaction probabilities. Indeed, this is the usual domain
of application of the optical model.

From a semiquantitative viewpoint, the smoothed
potentials of Fig. 9 are quite similar to the real parts of
optical potentials found by other authorsi' in their
phenomenological analyses of He'+He' scattering data.
For instance, our calculated central potential depth is
around 90 MeV,"which is about equal to the value ob-
tained by Dunnill, Gray, Fortune, and Fletcher. ' On
the other hand, it is to be noted from Fig. 9 that our
calculated potential has one interesting feature which
is not contained in the usual optical potential. This is
the odd-even eRect, wherein the potentials in the odd-
orbital-angular-momentum states are quite diferent
from those in the even-orbital-angular-momentum
states, and we see that this eRect is particularly promi-
nent in the important surface region. The lack of such
a feature in the optical potential of Dunnill eI, ul. ' might
explain why their 6ts to the experimental data are
rather poor. In the optical-model analysis of Vincent
et ul. ' at j.8 MeV, a good fit to the experimental dif-
ferential cross section was obtained; however, to ac-
complish this they had to use an imaginary potential
with an unrealistically long range. It is our belief that,
had they included the odd-even eGect in their analysis,
a 6t of similar quality could have been obtained with,
however, a more reasonable imaginary potential.

The odd-even eRect found here has also been noted

by Gammel and Thaler" in their phenomenological
analysis of p+He4 scattering. There it was found that
to obtain good quality 6ts to experimental data, such a
feature had to be contained in the potential. In par-
ticular these authors found that in the region 2—6 F the
odd-l potentials are deeper than the even-/ potentials,

"V/hen the reaction cross section is small, the averaging effect
of K may not be sufBcient to smooth the rapidly varying part of
V~* which occurs at small values of r.

"Note that the central depth of 90 MeV is about equal to
paV/M, where V is the nucleon optical-potential depth of about
$0 MeV.

FIG. 10. The effective potential V&(r) of Eq. (24) for /=0 nad.
I in the Hes+He4 system. The curves shown are those at c.m.
energies of 1.7 and 8.3 MeV.

a property which is also present in the smoothed po-
tentials of our calculation. "

Next we discuss the construction of another eRective,
local, /-dependent potential V&(r), which yields the
same phase shifts as those obtained with our resonating-
group calculation. This construction is motivated by
the fact that in our antisyrrunetrized calculation the
function ft(r), and, consequently V&*(r), has no clear
interpretation in terms of cluster separation in the region
r&E, „where the clusters overlap strongly. Thus,
in the construction of an eRective potential it is appro-
priate to de-emphasize this region. For Vg(r) we shall
therefore take a hard-core potential of the form

V~(r) = Do for r(r~s
= V~*(r) for r&r~s, (24)

where r~p is the value of r at which the zero near r=R, ,
of f~(r) occurs."For example, at 1.7 MeV the values of

r~p are equal to 2.33, 1.83, and 2.20 F for l= 0, 1, and 2,
respectively. For /&3 we set r)p equal to zero, because,
for values of E of interest here, the only zero of f&(r)
occuring inside R, , is at the origin. In addition, it
should be mentioned that the centrifugal barrier
becomes increasingly important as the orbital angular
momentum l increases. This prevents the associated

27 Note that this is not a general property of the odd-even effect.
In JE+a scattering, for example, the even-l potentials will be deeper
than the odd-/ potentials.' It is appropriate to mention here that this particular way of
constructing the hard-core potential has also been proposed by
Okai and Park (Ref. 6) in their paper on o.-o scattering. We should
further point out that the features of the local potentials found in
phenomenological analyses by other authors LRef. 9; and O. Endo,
X. Schimodaya, and J. Hiura, Progr. Theoret. Phys. (Kyoto) gl,
157 (1964)g of u~ scattering data are entirely consistent with
those of our constructed potential. From the point of view of our
present discussion, the use of a hard core in the phenomenological
approach is merely an arti6ce which avoids the construction of a
potential inside the region of r&E~.
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tortion for the He~ cluster which can be most easily
investigated is a radial compression. For the bound 'P
state the optimum value of o., for a given value of A or
y, is found as follows. One evaluates the total energy
E& of the system given by'9

Es (a) =E(rr)+E +Es(4»), (25)

Fro. 11. The e/fective potential V&(r) of Kq. (24) for l=0, 1, 2,
3, and 4 in the Hee+He' system at a c.m. energy of 1.7 MeV.

potential at small values of r from having much effect
on the scattering.

The effective potentials V~(r) in the range 2—6 F for
various values of l and E are shown in Figs. 10 and 11.
Figure 10 shows the energy dependence of Uo and V&

and indicates that this dependence is only moderate.
The potential V& has a singularity near r=4 F, but, as
has already been discussed, this singularity will have
little inhuence on the scattering cross section. Figure 11
shows the potentials at a fixed energy of 1.7 MeV for
l=0 to 4. Here the most interesting point is that the
shapes of the calculated even-l potentials are very sirni-
lar to those obtained by Ali and Bodmer in their
analysis of e-e scattering data using a phenomenologi-
cal, l-dependent, energy-independent potential. For
example, our calculated l=4 potential has no repulsive
core, and indeed Ali and Bodmer have found that no
repulsive core is needed in their /=4 potential.

To summarize, we have found a number of effective,
local potentials which can yield the phase shifts of the
resonating-group calculation. These potentials have the
properties of being 1-dependent and only moderately
energy-dependent. Furthermore, they possess the
feature of an odd-even effect, which has been pre-
viously noted in the optical-model analysis of p+He4
scattering, "but has not otherwise been widely used in
analyses of scattering data with phenomenological
potentials.

IV. SPECIFIC DISTORTION EFFECT

As mentioned in Sec. I, the effect of distortion of the
He' or H' cluster over that already implicity given by
the Pauli principle might be expected to be important
when bound and resonant states are considered. In the
present section we report on a brief study of such an
effect in the He'+He4 system. With our assumption of
Eq. (6) for the total wave function, the mode of dis-

where E is the experimental energy of the n particle
(—28.30 MeV), and Ea is the energy of the He' cluster.
The normal procedure would then be to use for Eq the
expression

4/2 2~) 1/s

—3 (w+m) V, +e' —~, (26)
2M n+ 2» ~)
35 o!

which is the expectation value of the He' Hamiltonian
with the Gaussian function of Eq. (7). A variation of
the parameter o. until Ez attains its minimum value
would then yield the optimum values of a and Ez as a
function of A or y. Unfortunately this straightforward
procedure will lead to an inaccurate estimate of the im-
portance of the distortion effect. This is because a
nonsaturating nucleon-nucleon potential is used in our
calculation, and hence the value of o. which minimizes
Ea of Eq. (26) corresponds to a value of the rms radius
for He' which is much smaller than the experimental
value. Thus, in order to obtain a more realistic est&mate
of the radial distortion effect, we shall adopt a method
which has been used in previous cluster-model calcula-
tions. "This method consists in replacing Es of Eq. (26)
with the relation

E» —7.72+~~X(1———0.362/rr)' MeV, (27)

which involves a quantity E, the rigidity of the He'
cluster. For the estimation of E we use the result of a
calculation" on the ground-state properties of He3 with
a potential having a hard core of radius 0.45 F. This
yields

E=80 MeV, (28)

which should be a reasonably good estimate since the
energy, rms radius, and charge form factor of He' cal-
culated with this particular potential agree very well
with the corresponding experimental values. The result

"The quantity E& here is not the same as the quantity E' of
Eq. (10). The expectation value of the o.-particle Hamiltonian
with the Gaussian function of Eq. (7) is used in the expression for
E', while the experimental value of the a-particle energy is used
in the expression for Ez."V.C. Tang and R. C. Herndon, Phys. Letters 18, 42 (1965).
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of the variation of u in Eqs. (25), (2/), and (28) for
three values of A is given in Table III. From this table
and the fact that the experimental value of Ep is
—3'1.46 MeV we find, with the radial distortion effect
taken into account, that the quantities A, cx, and ue

take on the following values:

A =1.194, u=0.454 F ', aa ——1.48 F. (29)

The changes from the values of 1.258, 0.362 F—', and
1.66 F, respectively, for the calculation without distor-
tion are not large. Consequently the indication is that
the Hea cluster is suKciently rigid so that the amount of
radial distortion is small in the ground state of Be'.

With 3=1.194 we have also considered the 'Il

resonant state with the e6ect of distortion of the He'
cluster taken into account. It is found that the optimum
value of cx is 0.391 F ' and that the 'Il excitation energy
is 6.5 MeV. This latter value is only 0.4 MeV larger
than the value when distortion is neglected, thus indi-
cating that the distortion effect is also not important
for the 'P resonant state in Be'.

The value of A is changed when distortion of the He'
cluster is considered. We have therefore calculated the
nonresonant phase shifts with 2 =1.194 and o.=0.362
F—' and have compared them with those of the no-
distortion calcu1ation. The comparison shows that the
differences are quite small. Ke conclude, therefore, that
no significant rnodihcations of the results presented in
Sec. III are made necessary by the existence of the

specific distortion eGect.

V. CONCLUSIONS

This investigation shows that, for incident energies
at which reaction cross sections are relatively small, the
resonating-group method in the one-channel approxi-
mation can be used quite successfully to explain the
elastic scattering of He' or H' by He'. With a near-
Serber mixture for the nucleon-nucleon potential, it is
found that, when the c.m. energy is less than about 7

MeV, the phase shifts calculated with this method agree
very well with those determined from phenomenologi-
cal phase-shift analyses of experimental data.

In the energy region where there exist individual
levels of the compound system which have signihcant
amounts of both He'+He4 (or H'+He') and other
cluster structures, our one-channel approximation leads,
as expected, to less favorable comparison with experi-
ment. Here we have found, for example, that the angu-
lar dependence of the differential cross section is not
reproduced satisfactorily by the calculation. To

remedy this, it appears that one would have to include

other channels. For instance, if the I+Li'* channel had

been included in the calculation of H'+He' scattering
at 8.3 MeV, the resultant agreement with experiment

might have been greatly improved.
At energies where there are a large number of open

reaction channels, such as at the 18-MeU comparison
of Fig. 4, we note that the major difference between

theory and experiment is the larger magnitude of the
calculated. cross section, whereas the calculated posi-
tions of the maxima and minima agree well with the
experimental positions. This suggests that, at such

energies, the simplest way to improve the calculation
would be to include a phenomenological imaginary po-
tential in the formulation. The more desirable approach
of explicitly performing a many-channel calculation is

presently impractical.
For simplicity, spin-orbit interactions have not been

included in our calculation. This is not a serious defect,
but does prevent us from making a detailed comparison
between calculated and experimental differential cross
sections in energy regions where resonant levels of
He'+He' or H'+He' structure exist. Thus, in these par-
ticular energy regions, it would be desirable to include

a spin-orbit component in the nucleon-nucleon po-
tential. As has been shown in corresponding bound-

state calculations, " this inclusion will make the com-

putation more involved but not prohibitive.
In addition, we have used our calculated radial scat-

tering functions to 6nd a number of effective local po-
tentials between the He' and the He' or H' clusters.
These potentials allow one to obtain some insight into
the scattering calculation by means of replacing the
complicated antisymmetrized problem by a concep-
tually simpler unantisymmetrized problem akin to that
of the standard optical model. Moreover, such poten-
tials wiH. be useful in making approximate calculations
on the properties of heavier nuclei for which a descrip-
tion as a system of clusters is appropriate. We have
also noted that, besides their l dependence, these eBec-
tive potentials possess an odd-even feature. This latter
feature has previously been observed in a phenomeno-
logical analysis of p+He4 scattering data, but has not
been used. in usual optical-model analyses of nucleon-
nucleus scattering.
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