
P 8 YSI GAL REV I E W VOLUME i 76, NUMBER 4 20 DECEM B ER 1968

Low-Energy Properties of Realistic N-N One-Boson-Exchange
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We examine the low-energy features of the E-E interaction, as described by three realistic one-boson-
exchange potential models. These models are the Green-Sawada two-parameter model, the Bryan-Scott III
model, and the Ueda-Green I model. We calculate the deuteron binding energy, wave functions, magnetic
and quadrupole moments, eRective range, and electromagnetic form factors. Where possible, these quantities
are compared with the experimental data.

1. INTRODUCTION

ERY recently, one-boson-exchange potentials
(OBEP) have been developed which describe all

phenomenological S-S phase shifts quite accurately,
including S waves. ' ' It is therefore possible to examine
in detail the low-energy properties of such realistic
OBEP with the objective of furthering our understand-
ing of the X-X interaction, which is of such fundamental
importance to nuclear physics. We shall confine our dis-
cussions to the models of Green and Sawada, particu-
larly their simple two-parameter model, ' which is fairly
representative of their more precise seven-parameter
models, ' the Bryan-Scott (BS) III model, e and the
IJeda-Green (IJG) I models The last model, which has
been adjusted to the most recent E-."V phase shifts, "
will be given the greatest attention.

These models are based upon the exchange of pseudo-
scalar (P), vector (V), and scalar (5) mesons and all
lead to a total potential U&.& of the form given by Eq.
(16) and Table I of Ref. 5. All of these studies use gen-
eralized Yukawa potentials which are special cases of
the "well-regulated" potential of Green and Sawada
Lsee Eq. (3.15) of Ref. 3j with the regulators A and U.
In the Green-Sawada two-parameter model, U=—20M„,
A —=M„, and for all other regulators A.= 1500 MeV*. In
the Bryan-Scott model, U =—~, and a11 A.= 1500 MeV*.
In the (UG) I model, A = U = 2532 MeV* and for all
other mesons A.= U= 1185 MeV* (the constants with
asterisks denote adjusted parameters). The parameters
of those models are summarized in Table I. Elsewhere, '
several general features of realistic OBEP have been
examined. Here we concentrate on low-energy features
and our calculations give the following deuteron quanti-

*Supported in part by the U. S. Air Force Once of Scientific
Research.' A. E. S. Green and T. Sawada, Nucl. Phys. B2, 2/6 (1967).

~A. E. S. Green and T. Sawada, Rev. Mod. Phys. 39, 594
(196/).

3 A. E. S. Green and T. Sawada, Contributions to International
Conference on Nuclear Structure, Tokyo, Japan, 1967, Sec. 3.5
(unpublished).' R. A. Bryan and R. L. Scott (unpublished).' T. Ueda and A. E. S. Green, Phys. Rev. 174, 1304 (1968).' G. Breit et al. , Phys. Rev. 165, 1579 (1968).

7 M. H. MacGregor et al., University of California Laboratory
Report No. UCRL-70073 (Part IX), 1968 (unpublished).' T. Sawada, A. Dainis, and A. E S. Green, Phy. s. Rev. (to be
published).

ties: wave functions, binding energy, magnetic and
quadrupole moments, effective-range parameters, and
electromagnetic form factors. Ke hope that these calcu-
lations will give a further check on the validity of these
OBEP, will guide further development of OBEP, and
will furnish additional information of importance to
studies of nuclear physics.

Mass (MeV)
Meson T,J& GS1 BS III UGI

Couphng constants
GS2 BS IIIa UG I.

1,0
0,0

eu 01
p 1~1
fig
o 0,0+
e1 1,0+
cr, 0,0+

138.7 138.7 138.7
548.7 548.7 548.7
782.8 782.8 782.8
763 763 763

782 550b 1070
763 600b &O&e
416 416

14.7
~ ~ e

23.0b
0.65
(3.73)
14.7
0.65
2.35

12.658b
3.002b

23.72
2.442b

(1.13)s
9.462
1.964b

14.10
4 430b

25.24b
2.272b

(4.76)
133.1b
58.57b

2 551b

To compare the various models eve refer to pks/(hs-m&)ggs as the cou-
pling constant for the BS III model and I.A~/(As -A&8) ging~ as the coupling
constant for the UG I model.

b Denotes adjustable constants.

2. DEUTERON GROUND STATE

Our task is to 6nd the ground-state solution to the
Schrodinger equation

(|7s—ys —vt.t)4=0,
where

v...=NV.../h', y'=Me/h',

where Vt, ~ is the nucleon-nucleon potential, e is the bind-
ing energy, and 3f is the nucleon mass. We assume that
the deuteron wave function is combined from wave func-
tions of the 'Sj. and 'D& states in the usual way, i.e.,

4= LN(r) Vvvt +to(r) Vstt j/r, (2)

where I'L, aq is the normalized eigenfunction of the J'
operator obtained by coupling the eigenfunctions of theI' and S' operators and m is the magnetic number.

All of the realistic OBEP have velocity-dependent
terms of the form Vv(r)p'+p'Vv(r). To eliminate the
first-derivative terms in the coupled differential equa-
tion we substitute in (2) and (1)

N(r) =3(r)L1+4(r)] "',
~(r) =s(r)L1+4(r)l '", (3)

TABLE I. Mesons and coupling constants.
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TABLE II. Deuteron wave functions of the UG model. We normalize our wave function according to

r (F) n(r)

0.2 0.0274
0.4 0.1056
0.6 0.2073
0.8 0.3113
1.0 0.3980
1.2 0.4583
1.4 0.4936
1.6 0.5097
1.8 0.5128
2.0 0.5074
2.2 0.4967
2.4 0.4830
2.6 0.4674
2.8 0.4509
3.0 0.4340
3.2 0.4171
3.4 0.4004
3.6 0.3840
3.8 0.3681
4.0 0.3526

2O(r)

0.0147
0.0588
0.0984
0.1261
0.1447
0.1552
0.1584
0.1558
0.1493
0.1406
0.1309
0.1208
0.1110
0.1017
0.0930
0.0849
0.0776
0.0709
0.0648
0.0593

r (F) n(r)

4.2 0.3377
4.4 0.3234
4.6 0.3095
4.8 0.2962
5.0 0.2835
5.2 0.2712
5.4 0.2595
5.6 0.2483
5.8 0.2375
6.0 0.2272
6.2 0.2173
6.4 0.2078
6.6 0.1988
6.8 0.1901
7.0 0.1818
7.2 0.1739
7.4 0.1663
7.6 0.1591
7.8 0.1521
8.0 0.1455

7o(r)

0.0543
0.0497
0.0456
0.0419
0.0386
0.0355
0.0327
0.0302
0.0279
0.0258
0.0239
0.0221
0.0205
0.0191
0.0177
0.0165
0.0154
0.0143
0.0133
0.0124

00 ~ y2+s2
(u'+ w') dr = dr= 1.

pi o 1+4
(10)

%e use the numerical solution for y and s between r= 0
and R and evaluate the integral numerically. For r&E,
we can neglect @ against 1 and assume that y(r) =u(r)
and s(r)=w(r), and that they are given by Eq. (8).
Under these assumptions the contributions to the nor-
malization integral for r)E. may be evaluated analytic-
ally in terms of the exponential integral E (s).' We
also shall use the alternative normalization

2(u2+w2)~e —2yr

It is easy to show, using Eq. (8), that Los= 1/L(1+A2)
&&1V']. The usual D-state probability is given by

where P(r) = 2V p(r)/a and tt = ts/Mc. Then Eq. (2) trans-
forms into the coupled equations

'
(4)

y"( )-b'+"( )]y( )=48"()(1+~)-"-(),
s"(r) —t.ps+« '+e2(r)]s(r) =+8er(r) (1+&) 'y(r),

where

"()=51+~()]-'
&&Le (r)+v, (r)—7 P+(V'@) /4(1+4b)] (5)

and
$2(r) = ne —13er,a(r)+2V (r)]/(1+4l) . (6)

We look for a solution to (4) satisfying

y(o)=y( )= (o)=s( )=o.
Under these conditions, the asymptotic behavior of the
solutions to (4) is given by

u(r) y(r) 1Ve &",

w(r) s(r) ft'fAe 2"$1+3/yr+3/(yr)2],
(8)

where E is a normalization constant and the asymptotic
solutions are chosen to correspond to exact solutions
when g(r), ss(r), and sr(r)=0, since these functions
vanish exponentially. The constant A is introduced
here because the two solutions are not independent of
each other. We start to solve Eq. (4) numerically from
radius r=E for which we can neglect the potential. In
the neighborhood of this radius, we assume that y(r)
and s(r) have the values given by Eq. (8). Next we solve

(4), using the extrapolation difference approximation of
Milne' beginning from r=E. towards r=0. If we use an
extrapolation scheme, we get 6nite values for y(0) and

s(0) which depend on the values of y and A assumed for
Eq. (8). We solve

(12)

TABLE III. Effective-range parameters in F.

Quantity

p( eF e)
+s
Clg

~o8

~otl

CQ22

toy
+02

Toy

GS 2 BS III UG I
1.71—13.5
4.68
2.85
1.72—6.90
2.75
6.92
2.75

1.70
220 7
5.39
2.60
1.69-8.58
2.51—8.54
2.50

1.82—23.8
5.69
2.68
1.82—9.08
2.59—9.12
2.58

1.82~0.05—23.68~0.028
5.399&0.011
2.46+0.12

—7.80
2.65—7.80
2.65

The numerical solutions of the wave functions for
UG I are given in Table II. The values of the binding
energy, y, A, E„and I'n for Green-Sawada (GS) 2,
BS III, and UG I are given in Table III.

The UG wave functions are graphed in Fig. 1. For
comparison, we show the Hamada-Johnston wave func-
tions. "Note that they are very similar except in the
core region. The BS III model (not shown) is quite
close to UG I. The GS 2 model (not shown), however,
departs more appreciably primarily because its binding
energy is too large and hence its so-called deuteron
radius y ' is too small.

The m wave functions of UG I and BS III are quite
close to each other. They are smaller than the m wave
function of Hamada and Johnston, which leads to the
D-state probability of 6.9'f%.

In Fig. 2 we give the radial dependence of the deu-
teron density Lu(r)]2+fw(r)]2 and the quadrupole
density Luw —(w2/+8)]r2.

y(0: y,A) = 0, s(0: y,A) = 0

by Newton's iteration method.

' W. E Milne, Am. Math Monthly 40, .322 (1933).

(9)
Reference 13.

o For the methods of computation of E„(s}see M. Abramowitz
and I. A. Stegun, Handbook of Natkernatjcat Fnncttons (Dover
Publications, Inc. , New York, 1956).

n T. Hamada and I. D. Johnston, NucL Phys. 34, 382 (1962) ~



E-N ONE —BOSON —EXC HANGE POTENTIALS

U

and
W

0.6
0.5—

OA

0.2

0.2

0
6

r inF
l2

0.I

FIG. 1. Normalized deuteron wave functions u(r) and r.o(r) of
the UG I models compared with the Hamada-Johnston wave
functions.

0 0 4
rin F

1 7'
v= —+ p(0, —e).

cg 2 coseg
(13)

Knowing the deuteron wave functions, we can compute

3. EFFECTIVE-RANGE EXPANSIONS

It has been shown by Sawada et al.' that the usual
effective-range theory can be applied to velocity-
dependent OBEP provided that regularized potentials
(regular at the origin) are used. To determine the effec-
tive range and scattering lengths, phase shifts were
evaluated" at several low energies and the 6rst two
terms in the expansion of k cotb in k' were evaluated
numerically. For the most part the notation is stand-
ard" and the theory is similar to that described by
Hulthen and Sugawara. '4

For the 'S& phase shift we may relate the effective-
range parameters to the deuteron binding energy and
mixing parameter e, in the usual way, i.e.,

FXG. 2. Deuteron density and quadrupole density (denoted in the
graph as Q density) obtained from the UG I model.

4. DEUTERON MAGNETIC MOMENT

In the absence of the spin-orbit term Vr.e(r) and
the velocity-dependent potential Vo(r), the magnetic
moment of the deuteron is equal (in nucleon magnetons)
to

(15)us= (1-&n)u.+s(s-u'O'D,

3f
&ur.e= r'(u' —2-'t'uw ——w') Vr.s(r) dr (16)

6

where p, is the magnetic moment for a pure 'S~ state:
u, =u„+pal=0.87960 u~. Here lr„and p„are the mag-
netic moments of the neutron and proton, respectively.

In the presence of V~8 and V~ in the total potential
new terms appear in addition to (15) and. the deuteron
magnetic moment has the approximate form pq=p, o

+micr, s+6u„, where" —"

In the case of p-p scattering, in addition to the 1V-X
interaction, the Coulomb interaction e'/r is added and
the p-p elf ective-range representation of the calculations
is obtained. "The parameters are given in Table III.
We have also computed the p-p effective-range param-
eters, assuming electrostatic potential of the form"
e'(1—e "")/r, where co is the inverse Compton wave-
length of the co meson, which is characteristic for the
nucleon electromagnetic form factor. We found that the
subtractive term hardly affects the effective-range
parameters.

"T. Sawada and A. E. S. Green, A Fortran Program for the
Computation of iver-E Phase Shifts, N-M-15, 1968 (unpublished)."R. Wilson, The nucleon Nucleon Interacleon -(Interscience
Publishers, Inc. , New York, 2963).

'4 L. Hulthen and M. Sugawara, in Hundblch der Ehysik, edited
by S. Flugge (Springer-Verlag, Berlin, 2957), Vol. 39, p. 2."G. Breit, E. U. Condon, and R. D. Present, Phys. Rev. 50,
825 (2936).

'e B. Podolsky, Phys. Rev. 62, 68 (1942).

V r (r)w' dr = ss P(r) ws dr . (17)

Here A= c= 1 and all integrals go from 0 to .
In Table IV we see that the state probabilities I'~

are very close to each other (about 5.5'Po) in all three
realistic OBEP. The magnetic moment po, calculated
without the spin-orbit and velocity-dependent correc-

TABLE IV. Deuteron parameters.

Model

GS2
BS III
UG I
Expt.'

6B

3.36
2.20
2.07
2.2245

3.52
4.35
4.48
4.316

0.0340
0.0236
0.0236

1.108
0.758
0.753

5.59+
5.49','
5.52/o

b Reference 13.

"M. Sugawara, Phys. Rev. 117, 614 (1950).' H. Feshbach, Phys. Rev. 107, 1626 (2957)."R.Tamagaki and W. Watari, Progr. Theoret. Phys. (Kyoto)
Suppl. 59, 25 (1967).
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TABLE V. ~+. Magnetic moments in nuclear ma neton Vgr)
in F'

0.4—
Model

GS2
BS III
UG I
Expt.'

0.8484
0.8478
0.8482

—0.0150—0.0051
0.0068

b,p,„
0.0010
0.0012
0.0007

0
0.8338 0.242
0.8445 0.259
0.8556 0.280
0.8574 0.282

0.2—

VEDA-GREEN
BRYAN-SCOTT

& Reference 13.

-0.2-

l

0.5
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MOMENT

tions are

0
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t Th th h
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at t e correction 6 i
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InF1. 3w'g. e show the values of r
OBEP. W th t th 1

-OA—

a t evaluesof r d' e appreciabl
o e s, ut the value

~%

Tbl V lh h positive, remains sm
b t lf o t th e value of the ma

"0.60
l

Thus a correct ma n
magnetic moment.

I.O

g etic moment can b

r InF
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L,g r potential for T==0 states, for th BS,
II, and UG I models.

r o t e integral comes from the r
'
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potential has this pro ertroperty. 13 '
Q

—g
dfi d' S 2 Th

gives =3 V2

pe corn uted
en are given in Table V.

Knowing the deuteron wave function
late the electric qu d la rupole moment"

Q (SP)
—1/3 („w I

6. DEUTERON FORM FACTORS

Hi h-'g -energy elastic scatterin of elgo

d
s transforms of the

t. ' 'fo. o o
P ~ Dy ~ P

The value of the ue quadrupole moment d depen s sensi-

20

f(r )

I.(q) = (u'+w') js(x)dr-+ 1,

Io(q) = 2w u 8"'w-w) js(x)dr -+ gsQ&/3v2, (2P)

l5—

I~ 4)= ( ws)
I

I'——ljo(*)

IO—
+w(2 —1/2N -1+w w) js(x) dr-+1 —~P&, (21)

I 31st, q =4 w'Ljs(a)+js(x)jdr-+4PD. (22)

00 0.5 1.0 I.S
rinF

Fro. 3. Function $(r) for 7=0 states t eGS 7

"V.Z. Jankus Ph s

rickson, Stanford Universit y Hg -En gy
65 (unpublished).

ar ice
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Gtt' ——Gtt"+Gtt", Gst'= Gsr+Gtt", (25)

where G~'=G~& and G~& are charge and magnetic
proton form factors, and Gg" and G~" are the similar
form factors of the neutron.

There are various 6ttings" " to the nucleon electro-
magnetic (E.M.) form factors Gtr' and Gtt'. In our com-
putations we will use"

2Gtr'= 2.50/(1+ q'/15. 7)
—1.60/(1+qs/26. 7)+0.10, (26)

2Gtr' ——0.88|3.33/(1+q'/15. 7)
—2.77/(1+q'/26 7)+0.44j, (27)

where q is given in F . The quantities fz(rt) and f„(rt)
as well as certain relativistic corrections to G„Gq, and
G differ in various theoretical treatments. " '4 How-
ever, the diBerences and the corrections themselves are

TABLE VI. Electromagnetic form-factor integrals I„Iq, I ~, and
I ~ of the UG I model.

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

0.6019
0.4144
0.3070
0.2389
0.1907
0.1538
0.1245
0.1009
0.0821

0.0381
0.0556
0.0632
0.0663
0.0673
0.0672
0.0665
0.0653
0.0638

I,
0.5531
0.3853
0.2905
0.2311
0.1892
0.1571
0.1314
0.1106
0.0939

0.0357
0.0316
0.0283
0.0256
0.0233
0.0223
0.0196
0.0181
0.0167

"D. J. Drickey and L. N. Hund, Phys. Rev. Letters 9, 521
(1962).

~6 D. Benaksas et a/. , Phys. Rev. 148, 1327 (1966)."T.Jansens et at. , Phys. Rev. 142, 992 (1966).
's L. H. Chan et st. , Phys. Rev. 141, 1248 (1966).

Here x= ~~q,r, where g, is close to q, the three-dimen-
sional momentum transfer, for low q values (the arrows
denote the limits as q ~ 0) but departs from q at high
values in diferent ways according to the theoretical
treatment. Values of these integrals for the UG I wave
function are given in Table VI.

The deuteron form factor can be written'~"' =f.(.)«. +G")+Z-(.)(8/3).G-
)& $1+2(1+rt) tans —'(lj. (23)

Here rt= —t/4Md, ', where t is—the four-momentum
transfer squared and Mq is the mass of the deuteron,
8 is the laboratory scattering angle of the electron, G„
Gq, G~ are the charge, quadrupole, and magnetic form
factors of the deuteron, and ft, (rt) and ftt(rt) are quan-
tities close to unity.

These form factors are connected with the deuteron
wave-function transforms and the nucleon form
factors"

G.=Gtt'I„Gq=Gtt'Iq, Gst=G sIrs+rG tIt„st(24)
and

go&@
0.8

0.4

0.2

O. I0
I f I

2 4
quoin F ~

FIG. 5. Electromagnetic form factor LG,'(p)+Gq'(p))" of the
deuteron as a function of the momentum transfer, calculated from
the BS, GS, and UG potentials. The experimental data are those
of D. J. Drickey and L. N. Hund (Ref. 25) (solid circles) and of
D. Benaksas et al. (Ref. 26) (solid squares).

small for q&2 F. In this region rl=q'/4Md', where
iVd'=90. 3 F '.

The calculated values of the deuteron electric form
factor (G,s+Gqs)'ts for the GS 2& BS III, and UG I
models are shown in Fig. 5.

V. SUMMARY AND DISCUSSION

We have seen that realistic OBEP describe quite
well the low-energy properties of the X-S interaction.
This is rather satisfying since the parameters of these
models had primarily been adjusted to fj.t the 10&8
&350 Mev phenomenological phase shifts. The UG I
and BS III models give rather good 6ts to the e6ective-
range expansion parameters, the binding energy of the
deuteron, and the electromagnetic form factors of the
deuteron. The difhculty with GS 2 largely relates to the
rather high deuteron binding energy and in part refiects
the compromises made in adjusting only two param-
eters. It should be noted that the GS seven-parameter
models are more comparable to UG I (seven parameters)
a,nd BS III (10 parameters).

Only the UG model gives a good fit to the measured
magnetic moment. This improvement apparently comes
from the sign of the Vr, s(r), suggesting that in the T=O
state VJ.B must be positive. The main differences in
three OBEP models that aRect the behavior of the
V1,8 for T=O are two effects due to the p meson: (i) It
increases the value of Vr, a(r) and (ii) it decreases the
value of ttt(r) for T=O. From Table I of Ref. 5, we see
that the contribution to Vl, s(r) is proportional to
g'(1+ ,'f/g)', which —is about 23 for the GS model, 39 for
the BS model, and about 123 for the UG model.

The quadrupole moment is quite sensitive to the po-
tential model as long as the binding energy has a correct
value. In turn, the binding energy is very sensitive to
the parameters of the model. We expect that a small
change in the parameters of the UG I model will lead
to a correct value of the binding energy, from 2.07 to
2.22 MeV, without significantly affecting the ftt to the
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phase shifts. For binding energy 2.22 MeV our calcu-
lations indicate the UG model would give Q= 0.276 F'.

In closing, it must be remarked that we have come
amazingly far with OBEP. When the OBE model was
initially developed in 1961,5 waves could not be treated
and the various unitarization schemes were of dubious
validity even for the P and D waves. Kith the use of
regularization techniques and the incorporation of
velocity-dependent terms, the OBE model in the form
of the potential-model approach has taken on very
realistic features. The fact that with 5—10 adjustable
parameters one can now do well in accounting for 25
phase-shif t functions over a broad energy region (10—350
MeV) and at the same time account for about four low-
energy parameters is quite satisfying. It is quite likely
that further progress on the E-S interaction can be
made by further testing and adjustments of the model

to additional types and ranges of experimental data.
Were the objective of such efforts viewed from the
standpoint of particle physics where the E-E interac-
tion is but one of many possible baryon-baryon interac-
tions, such tedious endeavors might not be worth while.
However, when viewed from the standpoint of nuclear
physics for which the E-S interaction plays such a
fundamental role, we believe that such painstaking en-
deavors will bring commensurate increases in our under-
standing of the entire field of nuclear physics.
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Alpha-Particle Yields and Angular Distributions in the 0"(Lis, n,)F"
Reaction from 4.8 to 13.8 Mev*

M. WAYNE GRZENEt

Department of Physics and Astronomy, Iowa City, Iowa 5ZZ40

(Received 81 January 1968; revised manuscript received 21 June 1968)

The yield and angular distributions of n particles from the 0"(Li', as) F's reaction were measured for the
bombarding range 4.8 to 13.8 MeV. Nine distinct peaks were observed in the yield curve measured at 0'
and had peak-to-valley ratios varying from 1.3 to 6.0. A fluctuation analysis of the yield curve gives a
corrected coherence width 2 =0.49&0.40 MeV (c.m. system) in the excitation energy range of Na" of 18.0
to 24.6 MeV for the sample size n =5.3. This analysis predicts a direct reaction contribution to the diGeren-
tial cross section of 0 to 60%. Angular distributions were measured at seven energies: 5.50, 5.70, 6.22, 11.60,
12.20, 12.80, and 13.30 MeV, which correspond to peak and valley energies observed in the yield curve.
At the three lowest bombarding energies, the angular distributions have little structure, while at the four
higher energies they oscillate rapidly.

I. DTTRODUCTION

~ VEDENCE for both compound nucleus and direct
~ interaction has been observed in lithium-induced

reactions, ' particularly in the C"+Li' investigations, ' '
in the Ljs,r+B&o,u jnvestjgatjons s,s snd jn the Lj +Be
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investigations. ' A summary of these results has been
given recently by Carlson. "

A fluctuation study of several reaction particle groups
from the Li'+C" reaction' over the bombarding range
2.4 to 8.5 MeV suggested that more than 40%%uq of the
interaction cross section was due to compound-nucleus
formation. The average energy level width was found
to be 250 keV at 17-MeV excitation in the compound
nucleus F". Fluctuation analyses have also been
applied by Scale' to the Lj'+Be'~ p+C' and Li'
+BI~a+C" reactions. Little structure was observed
in the yieM curve for the erst reaction over the bom-
barding range 3.8 to 6.4 MeV. In the second reaction,
the bombarding range was much larger (3.2 to 13.6
MeV), and even over this large range, the sample
size was small: e 2.5. In the latter reaction, the average
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