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We examine the low-energy features of the N-N interaction, as described by three realistic one-boson-
exchange potential models. These models are the Green-Sawada two-parameter model, the Bryan-Scott IIT
model, and the Ueda-Green I model. We calculate the deuteron binding energy, wave functions, magnetic
and quadrupole moments, effective range, and electromagnetic form factors. Where possible, these quantities

are compared with the experimental data.

1. INTRODUCTION

ERY recently, one-boson-exchange potentials
(OBEP) have been developed which describe all
phenomenological N-N phase shifts quite accurately,
including S waves.’— It is therefore possible to examine
in detail the low-energy properties of such realistic
OBEP with the objective of furthering our understand-
ing of the V-V interaction, which is of such fundamental
importance to nuclear physics. We shall confine our dis-
cussions to the models of Green and Sawada, particu-
larly their simple two-parameter model,® which is fairly
representative of their more precise seven-parameter
models,? the Bryan-Scott (BS) III model,* and the
Ueda-Green (UG) I model.’ The last model, which has
been adjusted to the most recent N-NV phase shifts,®”?
will be given the greatest attention.

These models are based upon the exchange of pseudo-
scalar (P), vector (V), and scalar (S) mesons and all
lead to a total potential Vioy of the form given by Eq.
(16) and Table I of Ref. 5. All of these studies use gen-
eralized Yukawa potentials which are special cases of
the “well-regulated” potential of Green and Sawada
[see Eq. (3.15) of Ref. 37] with the regulators A and U.
In the Green-Sawada two-parameter model, U=20M ,,
Ar=M,, and for all other regulators A= 1500 MeV*. In
the Bryan-Scott model, U= o, and all A= 1500 MeV*.
In the (UG) I model, A,= U ,=2532 MeV* and for all
other mesons A= U= 1185 MeV* (the constants with
asterisks denote adjusted parameters). The parameters
of those models are summarized in Table I. Elsewhere,?
several general features of realistic OBEP have been
examined. Here we concentrate on low-energy features
and our calculations give the following deuteron quanti-

* Supported in part by the U. S. Air Force Office of Scientific
Research.
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ties: wave functions, binding energy, magnetic and
quadrupole moments, effective-range parameters, and
electromagnetic form factors. We hope that these calcu-
lations will give a further check on the validity of these
OBEP, will guide further development of OBEP, and
will furnish additional information of importance to
studies of nuclear physics.

2. DEUTERON GROUND STATE

Our task is to find the ground-state solution to the
Schrodinger equation

(V= 72— 240t) ¥=0, (1)

where
Viot= MVtof,/hz, ’)’2: Mé/h2 y

where Vi is the nucleon-nucleon potential, eis the bind-
ing energy, and M is the nucleon mass. We assume that
the deuteron wave function is combined from wave func-
tions of the 351 and 3Dy states in the usual way, i.e.,

V=[u(r)Y o™ +w(r)Vss™]/7, (2)

where Vg™ is the normalized eigenfunction of the J2
operator obtained by coupling the eigenfunctions of the
L? and S? operators and m is the magnetic number.

All of the realistic OBEP have velocity-dependent
terms of the form V ,(r)p2+p2V »(r). To eliminate the
first-derivative terms in the coupled differential equa-
tion we substitute in (2) and (1)

u(r)=y(N)[1+¢() 72,
w(r)=2(")[1+¢() 172,

Tasre I. Mesons and coupling constants.

3)

Mass (MeV) Coupling constants
Meson 7,J» GS1 BSIIT UGI GS2 BSII* UGIs
T 1,00 138.7 138.7 138.7 14.7 12.658> 14.10
7 0,0~ 548.7 548.7 548.7 --- 3.002> 4430
w 0,1- 7828 782.8 7828 23.0p 23.72 25.24v
p/ 1,1= 763 763 763 (0.(75.;) (2.442" 2272
f 3. 1.13)>  (4.76)
o £ 0,0+ 782 550 1070 14.7 9462 133.1*
a1 1,0+ 763 600 1016 0.65 1.964> 58.57°
T 0,0+ 416 416 2.35 2.551>

» To compare the various models we refer to [A2/(A2—=m?)]g? as the cou-
pling constant for the BS III model and [A?/(A2—m?)]%:? as the coupling
constant for the UG I model.

b Denotes adjustable constants.
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TasLE II. Deuteron wave functions of the UG model.

r(F)  ul) w(r) r(B)  u) w(r)
02 0.0274  0.0147 42 03377  0.0543
04 01056  0.0588 44 03234  0.0497
06 02073  0.0984 46 03095  0.0456
08 03113  0.1261 4.8  0.2962 0.0419
1.0 03980  0.1447 5.0 02835  0.0386
1.2 0.4583 0.1552 5.2 0.2712 0.0355
14 04936  0.1584 54  0.2595 0.0327
1.6  0.5097 0.1558 5.6 0.2483 0.0302
1.8  0.5128 0.1493 58 0.2375  0.0279
20 05074  0.1406 6.0 02272  0.0258
2.2 0.4967 0.1309 6.2 02173  0.0239
24 04830  0.1208 64 02078  0.0221
26 04674  0.1110 6.6  0.1988 0.0205
28 04509  0.1017 6.8  0.1901 0.0191
3.0 04340  0.0930 70 01818  0.0177
3.2 0.4171 0.0849 7.2 0.1739  0.0165
34 04004 0.0776 74 0.1663 0.0154
3.6 0.3840  0.0709 76 0.1591 0.0143
3.8  0.3681 0.0648 7.8  0.1521 0.0133
40 03526  0.0593 8.0  0.1455  0.0124

where ¢(r)= 2V ,(r)/a and a=#/Mc. Then Eq. (2) trans-
forms into the coupled equations
" ()= [v*+v0(r) y(r) = +/8vr(r) (14)7'2()
5 (r)—[v*+6r2402(r) Ja(r) = +/8ur(r) (1+¢) (),
where
vo(r)=[1+¢() 1"
X[ve(r)+oo(r)—7ve+(V)*/4(1+4)] (5)

(4)

and
v3(r) =10~ [3v15(r)+20r(r) 1/ (1+9). (6)
We look for a solution to (4) satisfying
$(0)=y(e0)=2(0)=2(»)=0. (M

Under these conditions, the asymptotic behavior of the
solutions to (4) is given by

u(r)~y(r)~Ne,
w(r)~z(r)~NAe " [1+3/yr+3/(vr)?],

where &V is a normalization constant and the asymptotic
solutions are chosen to correspond to exact solutions
when ¢(r), v2(r), and 27r(»)=0, since these functions
vanish exponentially. The constant 4 is introduced
here because the two solutions are not independent of
each other. We start to solve Eq. (4) numerically from
radius = R for which we can neglect the potential. In
the neighborhood of this radius, we assume that y(r)
and z(7) have the values given by Eq. (8). Next we solve
(4), using the extrapolation difference approximation of
Milne® beginning from =R towards r=0. If we use an
extrapolation scheme, we get finite values for y(0) and
2(0) which depend on the values of v and 4 assumed for
Eq. (8). We solve

y(0:7,4)=0, 2(0:v,4)=0

by Newton’s iteration method.

®)

9

*W. E. Milne, Am. Math. Monthly 40, 322 (1933).
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We normalize our wave function according to

00 L y2+zz
f (u2+w2)dr=f dr=1.
0 0o 149

We use the numerical solution for y and z between =0
and R and evaluate the integral numerically. For >R,
we can neglect ¢ against 1 and assume that y(r)=u(r)
and z(r)=w(r), and that they are given by Eq. (8).
Under these assumptions the contributions to the nor-
malization integral for > R may be evaluated analytic-
ally in terms of the exponential integral E,(z).1® We
also shall use the alternative normalization

N2 (u+w?)~e 2, (11)

1t is easy to show, using Eq. (8), that N,2=1/[(14+42)
X N?Z]. The usual D-state probability is given by

Pp=/ w2dr.
)

The numerical solutions of the wave functions for
UG I are given in Table II. The values of the binding
energy, v, 4, Ny, and Pp for Green-Sawada (GS) 2,
BS III, and UG I are given in Table ITI.

The UG wave functions are graphed in Fig. 1. For
comparison, we show the Hamada-Johnston wave func-
tions.!! Note that they are very similar except in the
core region. The BS IIT model (not shown) is quite
close to UG 1. The GS 2 model (not shown), however,
departs more appreciably primarily because its binding
energy is too large and hence its so-called deuteron
radius ¥~ ! is too small.

The w wave functions of UG I and BS III are quite
close to each other. They are smaller than the w wave
function of Hamada and Johnston, which leads to the
D-state probability of 6.97%,.

In Fig. 2 we give the radial dependence of the deu-
teron density [#(r) ]*+[w(r)]* and the quadrupole
density [#w— (w?/+/8) ]2

(10)

(12)

TaBLE III. Effective-range parameters in F.

Quantity GS 2 BS IIT UGI Expt.»
o(—e¢ —¢€) 1.71 1.70 1.82 1.82:4-0.05
as —13.5 —22.7 —23.8 —23.68+0.028
@ 4.68 5.39 5.69 5.3994:0.011
70s 2.85 2.60 2.68 2.4640.12
7ot 1.72 1.69 1.82

Qop —6.90 —8.58 —9.08 —7.80

Yop 2.75 2.51 2.59 2.65

dop 6.92 —8.54 —9.12 —7.80

Top 2.75 2.50 2.58 2.65

& Reference 13.

10 For the methods of computation of E,(z) see M. Abramowitz
and I. A. Stegun, Handbook of M athematical Functions (Dover
Publications, Inc., New York, 1956).

1T, Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).
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F16. 1. Normalized deuteron wave functions #(r) and w(r) of
the UG I models compared with the Hamada-Johnston wave
functions.

3. EFFECTIVE-RANGE EXPANSIONS

It has been shown by Sawada ef ol.8 that the usual
effective-range theory can be applied to velocity-
dependent OBEP provided that regularized potentials
(regular at the origin) are used. To determine the effec-
tive range and scattering lengths, phase shifts were
evaluated!? at several low energies and the first two
terms in the expansion of & cotd in k% were evaluated
numerically. For the most part the notation is stand-
ard'® and the theory is similar to that described by
Hulthen and Sugawara.*

For the 35: phase shift we may relate the effective-
range parameters to the deuteron binding energy and
mixing parameter ¢, in the usual way, i.e.,

1 y?
y=—*

a: 2 cose,

P(O7 —'6). (13)

Knowing the deuteron wave functions, we can compute
p(—¢ —e)=v"1=2/N.. (14)

In the case of p-p scattering, in addition to the V-V
interaction, the Coulomb interaction e?/r is added and
the p-p effective-range representation of the calculations
is obtained.’> The parameters are given in Table III.
We have also computed the p-p effective-range param-
eters, assuming electrostatic potential of the form!
e2(1—e")/r, where w is the inverse Compton wave-
length of the w meson, which is characteristic for the
nucleon electromagnetic form factor. We found that the
subtractive term hardly affects the effective-range
parameters.

12T. Sawada and A. E. S. Green, A Fortran Program for the
Computation of N-N Phase Shifts, N-M-15, 1968 (unpublished).

13 R. Wilson, The Nucleon-Nucleon Interaction (Interscience
Publishers, Inc., New York, 1963).

14 L. Hulthen and M. Sugawara, in Handbuch der Physik, edited
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 1.

16 G. Breit, E. U. Condon, and R. D. Present, Phys. Rev. 50,
825 (1936).

16 B. Podolsky, Phys. Rev. 62, 68 (1942).
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F16. 2. Deuteron density and quadrupole density (denoted in the
graph as Q density) obtained from the UG I model.

4. DEUTERON MAGNETIC MOMENT

In the absence of the spin-orbit term Viyg(r) and
the velocity-dependent potential V,(r), the magnetic
moment of the deuteron is equal (in nucleon magnetons)

to
po=(1—Pp)us+3(3—u:)Pp, (15)

where u, is the magnetic moment for a pure 35; state:
ts= pn+up=0.87960 uy. Here u, and u, are the mag-
netic moments of the neutron and proton, respectively.

In the presence of Vs and Vp in the total potential
new terms appear in addition to (15) and the deuteron
magnetic moment has the approximate form ug= o
+Aurs+ Aup, where!™ 19

M
AﬂL,g:Z /72(u2— 2—1/21471)—-‘102)VLS(7’) dr (16)

and

3
Bur=—— f Vol dr=3 / syt dr.  (17)

Here #=c=1 and all integrals go from 0 to «.

In Table IV we see that the state probabilities Pp
are very close to each other (about 5.5%) in all three
realistic OBEP. The magnetic moment uo, calculated
without the spin-orbit and velocity-dependent correc-

TasrE IV. Deuteron parameters.

Model s yI@E) A NS Py
GS 2 3.36 352 00340 1108  5.59%
BSII 220 435 00236 0758 5499,
UGI 207 448 00236 0753  5.524
Expt® 22245 4316

b Reference 13.

17 M. Sugawara, Phys. Rev. 117, 614 (1950).

18 H. Feshbach, Phys. Rev. 107, 1626 (1957).

19 R. Tamagaki and W. Watari, Progr. Theoret. Phys. (Kyoto)
Suppl. 39, 23 (1967).
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TaBLE V. Magnetic moments in nuclear magnetons and
the quadrupole moment in F~2,

Model Mo Aprs Ay M Q

GS2 0.8484 —0.0150 0.0010 0.8338 0.242
BS III 0.8478 —0.0051 0.0012 0.8445 0.259
UGI 0.8482 0.0068 0.0007 0.8556 0.280
Expt. 08574 0282

» Reference 13.

tions, are almost the same for the three OBEP and are
too small compared to the experimental magnetic mo-
ment. This means that the correction Auzg+ Aup, must
be positive. In Table V are given the values of uo, Aurs,
Aup, and uo.

In Fig. 3 we show the values of ¢(r) for the three
OBEP. We see that the values of ¢(r) differ appreciably
in the three models, but the value of Au, given in
Table V, although positive, remains small and cannot
by itself correct the value of the magnetic moment.
Thus a correct magnetic moment can be a good test for
the spin-orbit potential V g(r) for isospin 7'=0 state.
This has already been stressed by Tamagaki and
Watari.’® Hence in order to get a correct magnetic
moment, Vz,g(r) for 7=0 must be rather positive. This
potential is plotted in Fig. 4. From the three OBEP,
only the UG potential has this property.

5. DEUTERON ELECTRIC QUADRUPOLE
MOMENT

Knowing the deuteron wave function, we can calcu-
late the electric quadrupole moment!4

Q= (50)—1/2/(uw— 812 2)y? dy . (18)

The value of the quadrupole moment depends sensi-

20 T .
#(r)
15} -
~—— UEDA-GREEN
\ ——-— BRYAN-SCOTT
i GREEN-SAWADA
o} -
\
\
\
5 \ -
\
\,
\.
o e A
9 0.5 1.0 15

rinF

F1c. 3. Function ¢(r) for T'=0 states for the GS 2,
BS II1, and UG I models.

GREEN 176
Vislr) T T <
in F1 \
o4 \ ~
\
L \ ]
\
\
o2f \ -
\
| ——— UEDA-GREEN \\ J
————— BRYAN-SCOTT ~
o | GReEv-sawADA ~—
-0'2 —
-
-04|-
-0

rinfF

Fi1G. 4. V1s(r) potential for 7=0 states, for the BS,
GS 2, BS I11, and UG I models.

tively on the value of the binding energy because a big
part of the integral comes from the region where the
wave functions are close to the asymptotic form. A
rough estimate!® gives Q=4 /v2v? where 4 and vy are
defined in Sec. 2. The computed values of the quad-
rupole moment @ are given in Table V.

6. DEUTERON FORM FACTORS

High-energy elastic scattering of electrons from deu-
terons provide information on various transforms of the
deuteron wave function.?0-%* Specifically, such experi-
ments give information on

1g)= / (W) jo(x)dr — 1, (19)

Iog)= / Do 8-1120) jo(w)dr — P0u/NE,  (20)

o (o2

+w(2‘”2u+w_lzeJ)j2(x)]d’ —1—%Pp, (21)

L) =1 f WL jo()+ ja(x)Jdr — 2P (22)

20V, Z. Jankus, Phys. Rev. 102, 1586 (1956).
% H. F. Jones, Nuovo Cimento 26, 760 (1962).
22 M. Gourdin, Nuovo Cimento 35, 1108 (1965).
i }213 (111) J. Adler, Ph.D. thesis, Stanford University, 1965 (unpub-
shed).
# E. F. Erickson, Stanford University High-Energy Particle
Laboratory Report No. 423, 1965 (unpublished).
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Here x=1q.r, where ¢. is close to ¢, the three-dimen-
sional momentum transfer, for low g values (the arrows
denote the limits as ¢ — 0) but departs from ¢ at high
values in different ways according to the theoretical
treatment. Values of these integrals for the UG I wave
function are given in Table VI.

The deuteron form factor can be written?+2

F?= fu(n)(GS+Go®)+ fu(n)(8/3)1Gu
X[1+2(1+7) tan*36]. (23)

Here n=—1/4M % where —i¢ is the four-momentum
transfer squared and M, is the mass of the deuteron,
0 is the laboratory scattering angle of the electron, G,
G, G are the charge, quadrupole, and magnetic form
factors of the deuteron, and fr(n) and fu(n) are quan-
tities close to unity.

These form factors are connected with the deuteron
wave-function transforms and the nucleon form
factors?

Go=Gz'l,, Go=Gulo, Gu=Gun*Iu;+Gp’lu,, (24)

and

Gg*=Gr*+Gr?, Gu*=Gu+Gu™, (25)

where Gg*=Gg? and Gy? are charge and magnetic
proton form factors, and Gg" and Gu™ are the similar
form factors of the neutron.

There are various fittings?”:?® to the nucleon electro-
magnetic (E.M.) form factors Gz* and Gx*. In our com-
putations we will use?”

2Gg*=2.50/(1+¢%/15.7)

—1.60/(1+42/26.7)4-0.10, (26)
2G*=0.88[3.33/(1+42/15.7)
—2.77/(14¢%/26.7)40.447, (27)

where ¢ is given in F~1. The quantities fz(n) and fum(n)
as well as certain relativistic corrections to G., Gg, and
G, differ in various theoretical treatments.?~2* How-
ever, the differences and the corrections themselves are

TasLE VI. Electromagnetic form-factor integrals I, Ig, I'm;, and
Iny of the UG T model.

¢ I, Iq Imy Iy
1.0 0.6019 0.0381 0.5531 0.0357
2.0 0.4144 0.0556 0.3853 0.0316
3.0 0.3070 0.0632 0.2905 0.0283
4.0 0.2389 0.0663 0.2311 0.0256
5.0 0.1907 0.0673 0.1892 0.0233
6.0 0.1538 0.0672 0.1571 0.0213
7.0 0.1245 0.0665 0.1314 0.0196
8.0 0.1009 0.0653 0.1106 0.0181
9.0 0.0821 0.0638 0.0939 0.0167

( 26 D) J. Drickey and L. N. Hund, Phys. Rev. Letters 9, 521
1962).

26 D. Benaksas ef al., Phys. Rev. 148, 1327 (1966).

21T, Jansens ef al., Phys. Rev. 142, 992 (1966).

2% L. H. Chan et dl., Phys. Rev. 141, 1248 (1966).
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Fic. 5. Electromagnetic form factor [G.2(g) +Ge?(g) J1/? of the
deuteron as a function of the momentum transfer, calculated from
the BS, GS, and UG potentials. The experimental data are those
of D. J. Drickey and L. N. Hund (Ref. 25) (solid circles) and of
D. Benaksas ef al. (Ref. 26) (solid squares).

small for ¢<2 F. In this region n=q2?/4Md?, where
Md?=90.3 F2

The calculated values of the deuteron electric form
factor (G.2+Gg?)/2 for the GS 2, BS III, and UG I
models are shown in Fig. 5.

7. SUMMARY AND DISCUSSION

We have seen that realistic OBEP describe quite
well the low-energy properties of the V-V interaction.
This is rather satisfying since the parameters of these
models had primarily been adjusted to fit the 10<E
<350 MeV phenomenological phase shifts. The UG I
and BS III models give rather good fits to the effective-
range expansion parameters, the binding energy of the
deuteron, and the electromagnetic form factors of the
deuteron. The difficulty with GS 2 largely relates to the
rather high deuteron binding energy and in part reflects
the compromises made in adjusting only two param-
eters. It should be noted that the GS seven-parameter
models are more comparable to UG I (seven parameters)
and BS III (10 parameters).

Only the UG model gives a good fit to the measured
magnetic moment. This improvement apparently comes
from the sign of the V15(r), suggesting that in the 7’=0
state Vs must be positive. The main differences in
three OBEP models that affect the behavior of the
Vs for T=0 are two effects due to the p meson: (i) It
increases the value of V1s(r) and (ii) it decreases the
value of ¢(r) for T=0. From Table I of Ref. 5, we see
that the contribution to Vis(r) is proportional to
2%(14-%//¢)?, which is about 23 for the GS model, 39 for
the BS model, and about 123 for the UG model.

The quadrupole moment is quite sensitive to the po-
tential model as long as the binding energy has a correct
value. In turn, the binding energy is very sensitive to
the parameters of the model. We expect that a small
change in the parameters of the UG I model will lead
to a correct value of the binding energy, from 2.07 to
2.22 MeV, without significantly affecting the fit to the
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phase shifts. For binding energy 2.22 MeV our calcu-
lations indicate the UG model would give Q=0.276 F2

In closing, it must be remarked that we have come
amazingly far with OBEP. When the OBE model was
initially developed in 1961, S waves could not be treated
and the various unitarization schemes were of dubious
validity even for the P and D waves. With the use of
regularization techniques and the incorporation of
velocity-dependent terms, the OBE model in the form
of the potential-model approach has taken on very
realistic features. The fact that with 5-10 adjustable
parameters one can now do well in accounting for 25
phase-shift functions over a broad energy region (10-350
MeV) and at the same time account for about four low-
energy parameters is quite satisfying. It is quite likely
that further progress on the N-N interaction can be
made by further testing and adjustments of the model
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to additional types and ranges of experimental data.
Were the objective of such efforts viewed from the
standpoint of particle physics where the V-V interac-
tion is but one of many possible baryon-baryon interac-
tions, such tedious endeavors might not be worth while,
However, when viewed from the standpoint of nuclear
physics for which the V-V interaction plays such a
fundamental role, we believe that such painstaking en-
deavors will bring commensurate increases in our under-
standing of the entire field of nuclear physics.
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Alpha-Particle Yields and Angular Distributions in the O®(Li®«,)F'8
Reaction from 4.8 to 13.8 MeV*

M. WAYNE GREENET
Department of Physics and Astronomy, Iowa City, Towa 52240
(Received 31 January 1968; revised manuscript received 21 June 1968)

The yield and angular distributions of « particles from the 06 (Li5, ag) F8 reaction were measured for the
bombarding range 4.8 to 13.8 MeV. Nine distinct peaks were observed in the yield curve measured at 0°
and had peak-to-valley ratios varying from 1.3 to 6.0. A fluctuation analysis of the yield curve gives a
corrected coherence width I'=0.4940.40 MeV (c.m. system) in the excitation energy range of Na? of 18.0
to 24.6 MeV for the sample size #»=>5.3. This analysis predicts a direct reaction contribution to the differen-
tial cross section of 0 to 609. Angular distributions were measured at seven energies: 5.50, 5.70, 6.22, 11.60,
12.20, 12.80, and 13.30 MeV, which correspond to peak and valley energies observed in the yield curve.
At the three lowest bombarding energies, the angular distributions have little structure, while at the four

higher energies they oscillate rapidly.

I. INTRODUCTION

VIDENCE for both compound nucleus and direct
interaction has been observed in lithium-induced
reactions,! particularly in the C24-Li¢ investigations 27
in the Li%74B!* investigations,®? and in the Li®+Be®

* This work was supported by the National Science Foundation.
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investigations.® A summary of these results has been
given recently by Carlson.!?

A fluctuation study of several reaction particle groups
from the Li®+ C™ reaction® over the bombarding range
2.4 to 8.5 MeV suggested that more than 409, of the
interaction cross section was due to compound-nucleus
formation. The average energy level width was found
to be 250 keV at 17-MeV excitation in the compound
nucleus F®8. Fluctuation analyses have also been
applied by Seale® to the Li®4-Be’— p+4C“ and Li®
-+B¥ — a4 C* reactions. Little structure was observed
in the yield curve for the first reaction over the bom-
barding range 3.8 to 6.4 MeV. In the second reaction,
the bombarding range was much larger (3.2 to 13.6
MeV), and even over this large range, the sample
size was small: #~2.5. In the latter reaction, the average
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