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Relativistic atomic wave functions and electron binding energies have been calculated by a
modified Hartree-Fock-Slater method, The local exchange approximation, originally intro-
duced by Slater, is modified in such a way that the total energy of the system is minimized.
Approximate expressions for the optimum exchange potential are suggested for all atoms and

ions. The total atomic energies and electron binding energies obtained by this method agree
extremely well with the corresponding Hartree-Fock results in the cases where such data
are available. Various corrections to the theoretical binding energies are discussed, in
particular the effect of rearrangement during the ionization process. It is found that this
effect is of importance for inner shells in all elements and is responsible for the main dis-
crepancy between experimental and previous theoretical results for light and medium-heavy
elements. For heavy elements other effects are of importance, and various possible sources
of the residual discrepancy between theory and experiments are discussed.

I. INTRODUCTION

During the last decade our knowledge of electron
binding energies in atoms has increased consider-
ably, due in particular to the development of the
electron-spectroscopic method (ESCA) by Siegbahn
et al. ' This method has been applied to almost all
elements between lithium and berkelium and to
inner as well as outer shells. The accuracy of the

new data is so high that improved theoretical cal-
culations are justified. The electron binding
energies are often used to check the accuracy of
electronic wave functions. When the accuracy of
the calculations increases, several effects have to
be taken into account. Besides the relativistic
effects, which of course are dominant for heavy
elements, it is necessary to consider relaxation
mechanisms, correlation effects, core polariza-
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tion, quantum-electrodynamic effects, and nuclear-
size effects. These effects are discussed in this
paper.

With present data techniques the Hartree- Fock
(HF) equations, at least in the so-called "re-
stricted" scheme, can be treated for all atoms.
The corresponding relativistic equations can also
in principle be solved, but so far only a few such
calculations have been presented. '-' It has been
previously' shown, however, and is demonstrated
further in this paper that accurate electron bind-
ing energies can be obtained without use of the
comparatively complicated HF scheme. A sim-
pler procedure is also needed in other applica-
tions. The exchange potential obtained in the
HF methods is nonloca1, that is, it depends not
only on the space coordinates but also on the value
of the electron wave function. In band-structure
calculations, e.g. , by the augmented plane wave
method, only local potentials can be handled, and
good atomic approximations are required as a
starting point. During the last few years con-
siderable interest has been devoted to the problem
of finding the "best" local approximation to the
HF potential in free atoms and ions. The first
local exchange potential was suggested by Slater. '
His approximation, now usually referred to as the
Hartree-Fock-Slater (HFS) method, has been ex-
tensively used, e.g. , in the atomic calculations
by Herman and Skillman' and by Liberman et al. '
and in numerous band-structure calculations. "
By a slightly different derivation, Gaspar" obtained
an exchange potentia1, which is & of Slater's
potential. This approximation has recently been
discussed by Kohn and Sham" and Cowan et al. '3

Neither of these two approximations, however,
represents the best local a proximation of the HF
potential. One of us (I.L. has shown' that, by
introducing two adjustable parameters in Slater' s
expression, an appreciable improvement could
be achieved in the nonrelativistic case as judged
by the total energy. The "optimized" potential
was found to yield total energies, as well as
electron binding energies, remarkably close to
the HF values. Once the parameters have been
determined, this method can be employed as easily
as any other method of the Slater type. In the
present paper these calculations are extended to
the relativistic case and comparisons are made
with HF results, where such data are available.

II. METHOD OF CALCULATION

A. General

0 represents here the Pauli spin matrices and I
is a 2x2 unit matrix. The wave function (t) is a
four-component function of the form

where (t), and P, are two-component functions of
the Pauli type.

By subtracting the rest energy of the electron,
Eq. (1) becomes

H' /=[co, p+(P-1)m, cm+V(r)]g= eP.

K = P (Pr ' L + 1),

where c O&0-I ~0 j

a can take the values + (j+ —,
'

); the values of z and
j are uniquely determined by the value of K.

The spin-angular dependence of the functions P,
and g is given by

obtained by vector coupling of the normalized
spherical harmonics Fl &(e, p) and the spinors by«P

The.Dirac Hamiltonian in Eq. (4) commutes with
the total electron angular momentum j and with
the parity operator P = pP„where P, is the con-
ventional parity operator. ' We can then find
simultaneous eigenfunctions (t)~&m of H, I, jz,
and P with the eigenvalues j (j + 1), m, and
(-1)j+(d/2, respectively, where (d = + 1. In this
way Q, has the parity j + &o/2, and (t)) has the
parity j—(d/2. The (t)~jm are also eigenfunc-
tions of the operator K with eigenvalues —(d(j+-,')
= —z, and of EP with eigenvalues (j+ z )' = z'.
Here E is given by

The Dirac' equation for an electron in a spheri-
cally symmetric potential V(r) is

HP= [co, p+ Pmoc'+ V(r)] Q =EQ,

where p is the momentum operator, c the velocity
of light, m, the rest mass of the electron, and n
and p are the Dirac matrices

(2)

The functions P~jm can then be written

[Z(r)iir) ))(. (8, r, r) )
jm

'G -. 8 y,

where l =j + ur/2 and l =j—&()/2. By inserting this
wave function into Eq. (4), one gets the two cou-
pled differential equations for the radial functions
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dI K F+, —[e —V(y)+2m, e'] G,
dh

In this approximation the total potential is the same
for all electrons and becomes

=-'G'-- [e- V(r)]F, v{~,) = — + f p(~ )d~2
o

where the quantum number ~ is given by , f p 2 d~+v (~1).2 ex
1

1 1K=j+2 for l =j+ 2

~=-(t+-,') for f =j —~2 ~

For many-electron atoms the Hamiltonian is in
the first approximation (in Hartree atomic units")

2 1en. p. +(P. —1)e'- —+ Z
2 2 2 2- 2 j 2

(12)

E=Z&iIfIi &+ Z (ijIrIij&,
2 2&j

&ijIgIij& = ff y, (1) yj. (2)

x y. (1)y. (2)dvld72 .

Here P,2 xs the exchange operator and x12 ~s the
inter-electron distance. As in the nonrelativistic
case, application of the variational principle leads
to the (nonlocal) HF potential

V, (r )=- —+S" f y. (2) "y.(2)di . (14)
1 ~ 12

Here magnetic interactions and retardation effects
(Breit interactions) are neglected. These can later
be treated as perturbations. The wave function is
a,ssumed to be an antisymmetrized product of ortho-
normal spin-orbitals Qi (Slater determinant). The
tbtal energy then becomes

At large values of r this potential does not approach
the correct Coulomb potential. Therefore, the
potential [Eq. (17)] is normally replaced by this
limiting potential at points where the Coulomb po-
tential is larger (Latter&s correction").

In the nonrelativistic treatment the HFS wave
function has been considerably improved' by the
introduction of a parametrized exchange potential
of the form

1

V, (~,) =- {C/~, )[31~,"p(~,) /32~ ]', (13)

where C, ~, and m are adjustable parameters
(equal to unity in HFS approximation). The param-
eters are determined by minimizing the total energy
of the system. The total energies and the electron
binding energies obtained in this way are remark-
ably close to those obtained by the HF method. ' It
has been found that for practical purposes it is
sufficient to vary only the paxameters C and v.
The optimum value of m is very close to unity.
Furthermore, the parameters need not be deter-
mined separately for each element, degree of
ionization, configuration, etc. , but the same param-
eter combination can be used over large xegions of
the periodic table.

Gaspar, "Kohn and Sham "' and Cowan et al. "
have suggested an exchange potential, which is two-
thirds of the Slater's potential (i.e. , C =&,
n =I =1). This modification represents a signifi-
cant improvement over the ox'iginal Slater method
(as measured by the total energy), but does not
yield the same good agreement with the HF result~
as does the optimized potential above. For free
atoms or ions the optimized potential is, in prin-
ciple, the best local potential that approximates
the nonlocal HF potential and is therefore a good
starting point for calculations on more complicated
systems, e. g. , for band-structure calculations
on solids,

From Eqs. (4) and (13) one obtains for the eigen-
value of electron 2

In the approximation introduced by Slater, ' the
HFS pxocedure, the potential is assumed to be
spherically symmetric and the exchange part is
replaced by a local term

V (~1) = —[Blp(ri)/32m'~1'] '",

e. = ( i I H I i ) = ( i If Ii ) + ( i I V, (t')+ /xZIi ) .
(19)

In the HF scheme one gets from Egs. (13) and (14)

where p(~, ) is the radial electron density

Z.
& ij Ig Iij &

—
& i I v (r)+z/~I i & .= O,

2

which together with Eqs. (13) and (19) gives

(2o)

E=p e. --,' g. &iIV (~)+Z/~Ii & . . (21)
2 2

'
2 2
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In other methods, such as HFS, Eq. (20) is not ex-
actly valid due to the approximations in the potential
and has to be replaced by

Z,.(~~tgii~ )- (f iW(~)+Z/~if) = be. .

This gives the total energy

E=~. e.--.' Q.&f iV(~)+Z/rii)+ ." Q-.be. .
i i

(23)

The expressions above are identical to the coxre-
sponding nonrelativistic ones, if ei represents the
eigenvalue of the corresponding nonrelativistic
Hamiltonian. ' The last term in Eq. (23} is a
correction which has been neglected in most earlier
applications of the HFS method. '»' The correction
is, however, considerably larger than the difference
in total energy between different approximations
considered hexe and has to be included to make a
comparison between the methods meaningful (see
Table II).

The expression (23) for the total energy involves
a summation of electrostatic integrals over all
electron pairs. The suxnmation of the direct and
exchange integrals over one closed shell can be
written

Z ab cb — Z ab 'cb ab~ bc
m ~n m~b b—

=b(I, I )b(~, ~ )(2~ +I)

(.' .Y
x fl (abcb)-g a (abbe)

~

O

TABLE I. Parameters [as defined in Eq. {18)t of the
optimized potential. {In aH eases m =1.)

9
11
11
13
16
18
19
19
21
24
26
29
29

Atom C
Nonrelativistic

2p' 0.94
Na 2p 3s 0 82
Na 2p 0.92
Al 3p 0.84
8 3p 0.82

3p' 0 82
K 3p 4s 0.72
K 3p 0.84
Sc M4s2 0.77
Cr 3d44s2 0.78
Fe 3d64s2 0 79
Cu 3d~04s 0.85
Cu M 0.88

1.36
1.17
1.28
1.20
1.15
1.17
1,01
1.20
1.10
1,12
1.15
1.24
1.30

H,elatlvlstlc
Cu 3d~04s 0.85
Kr 4p' 0.77

5p' 0.75
Eu 4f 76s2 0.75
Hg 5d 6s 0.75
Po 6p4 0.72
U 5f 6d 070

1.25
1.12
1.10
1.10
1.12
1.08
1.06

10& Z' 40
408 Z

General
0.80
0.75

1.15
1.10

that the parameters determined nonrelativistically
can be used in relativistic calculations and vice
versa.

%hen the optimum parameter values are plotted
in a diagram (see Fig. l), they fall in a narrow
band in the C-n plane, i. e. , there is a strong
correlation between the two parameters. One also
finds that there is a tendency of the optimum values
to move along this band from the upper right to the

where R (abcb) and R (abbe) are radial integrals
0 k

given by

fl (abed) = Jj[&,(~,)F,(~I) + G', (~I)C, (~I)j

x [F (~ )F (r ) + G (x2)t d(x2)] — dhld~2 .5 2 d 2 b 2 d 2 p+y

C =08 v=1I5

~ Na'

This agrees with the expression given by Grant, "
although some of his coefficients are in error. 5

In the case of unclosed shells the average energy
for the configuration is calculated according to the
method described by Slater. '

The parameters in Eq. (18) have been determined
for a number of atoms by minimizing the tota, l
relativistic energy calculated according to Eq. (23}.
The optimum values are collected in Table I together
with the nonrelativistic values fox' light elements.
For copper an optimization has been performed
relativistically as well as nonrelativistically, and
the results agree %'lthln the numerlc3, 1 uncertain-
ties. One can therefore with good reason assume

KeAI

213 OF SLATER
APPROXIMATION

(C= 2/3

Na, Ar

Kr Feee$

I.Eu Q ~ Sc
Po e

U e

S LATER

AP PROX I MATIO N

0.7 0.8 0.9

FIG. 1. Parameters jas defined in Eq. {18)j of the
optimized exchange potential. {In all. cases m = 1.0.)



lower left of the diagram as Z increases. For
very heavy elements the optimum exchange potential
becomes relatively close to the approximation
suggested by Gaspar and others" "(C = &, n = 1),
while for lighter elements it differs appreciably
from that approximation. The energy surface is
such that the slope along the band in the C-n plane,
whex'e most optimum points fall, is very much
smaller than the slope perpendicular to that band.
Therefore the absolute values of the two parameters
are not very critical, as long as one chooses a
combination at the bottom of the energy valley.
This means that it is possible to find "general"
parameter combinations, which can be used for a
large number of elements. These are given at
the bottom of Table I. For very light elements
(Z (10) a statistical approach is less justified
and no systematic investigation ha, s been performed.

%e have also made an optimization for some ions
and found that the results are close to those ob-
tained for the corresponding atom with the same
electron configuration (see Table I and Fig. 1).
As a rule, when ionized and excited states are
considered, the general parameters given in
Table I represent good approximations.

Recently Berrondo and Goscinski" have suggested
a further modification of the local exchange ap-
proximation in the nonrelativistic case. They
pointed out that in approximations of the Slater
type, the vlrial theorem ls not usually fulfiQed
8y the introduction of a "scaling parameter" it
is possible, without any further computations,
to obtain a solution with a lower total energy, for
which the virial theorem is satisfied. The optimum
scaling factor is

where V is the potential and T is the kinetic en-
ergy before scaling. The total energy E is then
reduced by the amount I O'E t. Berrondo and
Goscinski" have shown that when the scaling pro-
cedure is applied to the Slater approximation, the
difference in the total energy between the HFS and
HF approximations is reduced by approximately
a factor of 2. By optimizing the potential accord-
ing to Eq. (18), we have obtained a corresponding
reduction by a factor of 5-6. It should be ob-
served that Berrondo and Goscinski in contrast
to us do not norma1ly use the Lattex' correction
(see above), which makes comparison between the
results difficult. When the Latter correction is
omitted, the total energy seems to be somewhat
reduced in most cases. Potentials obtained in
such a way, however, have little relevance for
excited states, since the asymptotic behavior is
Qot correct. We have therefore preferred to keep
the I atter correction in all cases. When the ex-
change potential is optimized according to our
procedure, the virial theorem is very nearly ful-
filled (5 ( 0.001), in the nonrelativistic calcu-
lations and hence no significant improvement can
be achieved by scaling. In the relativistic case
the virial theorem has another form' and so far
has not been applied in our calculations.

8. ICalcu4tions of Binding Energies

The binding energy of an electroQ ln a free atom

or ion is defined as the work required to remove
the electron from its orbit to infinity with no
kinetic energy. This ionization process leaves
the system in an excited state aIld the binding
energy is essentially equal to the difference in
the total energy immediately after and before the
ioniza, tion. In the first approximation the
removal of an electron does not change the field
inside the atom, and one may assume that the or-
bitals of the other electrons remain unchanged
dur1ng the pl'Geese ( frozen orbltais"), T116
binding energy of an electron k is then [from
Eq. (Is)]

&~ = Z(ion) —Z(atom)

=-(uyiu} -Q (egging~) .

In the general HF scheme this is according to
Eqs. (19) and (20) (apart from sign) equal to-the
one-electron eigenvalue for electron 0 (Koopmans'
theorem). " In other approximations, e. g. , of
HFS type, Koopmans's theorem is not exactly
valid, and one has to correct the one-electron
eigenvalue ep to get the binding energy Bp. 6

In a similar way to the total energy above, one
obtains

5g (26)

where 5el, is the correction defined in Eq. (22).
This correction, which is usually not considered
in HFS calculations, 'y' has been found to be com-
paratively large, of the order of 100 eV for the
ls electron in medium-heavy and heavy elements.
As illustrated in Tab1e DI, the agreement with the
HF values is much improved when this correction
is included. This method of calculating the bind-
ing energy is here referred to as "method A. "

For more accurate calculations of electron bind-
ing energies, the effect of the ionization on the
remaining electron orbitals has to be taken into
account. Two cases can be distioguished. If the
relaxation time is short compared with the time
for the ionization process, one can assume that
the excited state has reached its equilibrium
before the electron is removed. In this case th8
total 61161'gy of the excited (iollic) state 18 best
obtained by a separate self-consistent-field (SCF)
procedure. The binding energy is given by the
difference between the total energy of the excited
state and that of the ground state. This method
is here referred to as "method B." If the relax-
ation time is comparatively long, the electron orbi-
tals can be assumed to be unchanged during the
ionization process. In this case the total energy
of the excited state is best obtained using the
"frozen'" orbitals of the atomic ground state. This
means that the binding energy is obtained in a
single SCF calculation (method A),

The two methods of calculating the binding en-
ergy are illustrated in a, simple way in Fig. 2.
There the energy is schematically drawn as a
function of a single-parameter wave function.
The energy «"'.inimum repx'esents the "true" wave
function. When atomic orbitals are used for the
excited state (method A), the minimum is not ob-
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TABLE II. Total relativistic atomic energies (Hartree unit&) . Nulnber»n parentheses are Hartree-~ock valuea

Z Atoxn
Conventional HF8

uncorrected corrected
C —2

3
n=m =-1

Modified HFS
General

parameters
Optimized
potential

9
10
11
12
13
14

0
F
Ne
Na

Mg
Al
Si

2p4

2P5

2P8

3s
3s
3P
3P'

3P'
3p4
3P'
3pe

73.9607
98.5176

127.591
160.774
198.487
240.714
287.681

339.554
396.499
458.681
526.264
598.930

74.7775
99.4469

128.624
162.000
199.853
242.243
289.354

341,386
398.485
460.820
528.553
601.385

74.7747
99.4467

128.631
162.056
199.912
242.302
289.416

341.452
398.555
460.896
528.637
601.501

74.8001
99.478V

128.662
162.065
199.921
242.313
289.430

341.467
398,574
460.914
528,658
601.503

99.4871
(128,692)'
162.065

(199,935)3

242.314

398.574

528.658
601.505

23
24
24

V
Cr
Cr

20 Ca
21 Sc
22 Ti

s2

3d4s2
3d 4s
3d34s2
3d'4s
3d'4s'

3d'4s'
3d'4s'
3d 4s
3d'4s'
3e"4s
4s2

676.975
760.494
849.789
945.013

1046.296
1046.322

1153.864
1267.792
1388.260
1515.420
1649.470
1790.433

679.565
763.221
852.656
948.025

1049.418
1049.483

1157,146
1271.195
1391.786
1519.071
1653.192
1794.344

679.684
V63.343
852.784
948.162

1049.627

1157.300
1271.360
1391.959
1519.253
1653.197

679.686
V63,351
852,79$
948.174

1049.576

1157.315
1271.376
1391.977
1519.273
1653.403
1794.568

31
32
33
34
35

36
37
38
49
51

52
53
54
55
56
59

63
66
67
68
69

Ga 4p
Ge 4p
As 4p

Rb
Sr
In
Sb

Gs
Gs2

5p
Gpe

Gp4

5p
Xe Gp

Cs 6s
Ba 6s
Pr 4f36s

Eu 4f '6s2

Dy 4f ~ 6s2

Ho 4f ii6s2

Er 4f ~26s2

Tm 4f 6s2

1938.151
2092.850
2254.620
2423,540
2599.810

2783.46
2974.204
3172.298
5872.88
6472.66

6785.70
7107.65
7438.60
7778.35
8127.14
9229.54

10837.88
12 152.96
12612.85
13 083.76
13,565.85

1942,290
2097.184
2259.156
2428.301
2604.731

2788.556
2979,493
317V.767
5880.09
6480.21

6793.41
7115.51
7446.62
7786.51
8135.42
9238,03

10846.71
12161.90
12 621.84
x3 092.80
13 GV4. 95

1942.507
2097.407
2259.385

2788.807
2979.775
3178.054
5880.48
6480.61

6793.81
7115.92
7447.04

&0847.23

1942,523
2097.423
225 9.402
2428.555
2604.991

2788.825
29V9.7VG

3178.053
5880.49
6480.61

6793.82
7115.93
7447.05
7786.96

9238.52

10847.25
12 162.48
12622.4g

2788.826

7115.93

10847.25

Ir
Pt
Au

Hg

Gd46s2

Gd76s2

5d 6s
Gd~ 6s
Gd"6s'

16 147.93
17839.01
18427.32
19028.26
19641.95

16 157.82
17 849.29
18437.75
19038.81
19652.59

16158.47

18438.43
19039.51
19653.31

16158.49
17850.00
18438.46
19039.53
19653.33 19653.33

Q.9653.7)'

20 268.31
21560.17
22 226.08
23 598.83
28 057.71
30494.34

20 279.08
21 571.17
22 237.14
23 609.98
28 068.81
30 505.11

20 279.82
21 571.93
22 237.91
23 610.78
28 069.70
30 506.04

20279.83
21 571.94
22 237.92
23 610.79
28 069.70
30 506.05

22 237.92

28 069.71



I29 A. ROSEN AND I. LINDGREN

TOTAL ji
E'NE RGY

8lNDlNG ENERGY

41

ION

~
(
SCF FOR ION

SC F FOR ATOM

ATOM

FIG. 2. Comparison of methods A and 8 for calculating
electron binding energies.

III. RESULTS AND COMPARISON WITH
EXPERIMENTS

In nonrelativistic applications of the modified
HFS method described above amazingly good
agreement with HF binding energies has been ob-
tained. ' It would therefore be of great interest
to test this method also in the relativistic case.
When these calculations started the only rela-
tivistic HF calculation for a heavy element
available to us was the calculations by Mayers
on mercury, quoted by Liberman et al. ' We there-
fore selectedmercury as our first example. The
results of these calculations are presented in
Table III. Column 3 gives the uncorrected eigen-
values with the original Slater potential (in prin-
ciple, identical to the values given by Liberman
et al. ') and column 4 the corresponding values
corrected for the nonvalidity of Koopmans's
theorem" according to Eq. (25). The next two

columns give the corrected binding energies ob-
tained with the potential suggested by Gaspar and
others" —"and our optimized potential, respec-
tively. The results of two HP calculations, some
binding energies obtained by method B (see previous
section) and finally the experimental results a.re
presented in the remaining columns.

The binding energies calculated by use of the
modified HFS method with optimized exchange po-
tential are found to be almost identical with the
HF results. This is quite remarkable in view of
the approximations involved. As a matter of fact
our results agree even better with the recent HF
values of Coulthard' than do the earlier HF values
of Mayers. '

The experimental values in Table III are taken

tained, but could be reached if the orbitals are
allowed to relax (method B). This means that
method A always gives a larger binding energy
than method B, which has been verified in all
numerical examples. Method A is also sensitive
to small changes in the wave function, which is
not the case for method B provided that the correct
expression for the energy [Eq. (23)j is used. This
is illustrated below for some typical cases (see
Table IX).

from the table of Bearden" and corrected for the
work function, except for the outermost electrons,
where optical data'" are used (marked with g).

In Tables IV—VIII we show in a similar way the
results for Cu, Kr, I, Eu, and U, for which the
optimum exchange potential has been determined.
Besides that we have calculated the binding en-
ergies for a large number of atoms by use of the
"general" parameters given in Table I, but these
data are too extensive to be given here.

Figure 3 shows the difference between the the-
oretical binding energy of the ls electron calcu-
lated according to methods A and B, respectively,
and the corresponding experimental results. From
the results in Tables III-VIII and Fig. 3 one finds
that for inner shells method B (separate orbitals
for atom and ion) gives binding energies in much
better agreement with the experimental results than
does method A ("frozen" orbitals for the ion).
This is particularly the case for light and medium-
heavy elements. The result can be interpreted by
assuming that the relaxation time is very short,
that is, the orbitals find their new equilibrium in
a time which is short compared with the time for
the ionization process. For the outermost electrons,
on the other hand, method A seems to yield better
results. This indicates that the relaxation time
is comparatively long for these orbitals, which is
quite understandable from an elementary point of
view.

As discussed a.bove (see Fig. 2) the choice of
approximation is not critical when the electron
binding energy is calculated according to method
B. This fact is further demonstrated in Table IX,
where some typical results obtained by different
methods are compared. The difference between
the various HFS and HF results is found to be
quite negligible (probably within the numerical
uncertainty), provided that the total energy is
calculated in the correct way according to Eq. (23).
If the energy is not corrected for the effects due
to the nonvalidity of Koopmans's theorem, "but
calculated according to the approximate relation
[Eq. (21)], quite different results are obtained with
the various HFS potentials and the agreement
with the HF results is in general not particularly
good.

As shown above there exists a significant resid-
ual discrepancy between the theoretical and
experimental binding energies, particularly for
inner shells in heavy atoms. Possible sources
of error are the following:

(a) numerical uncertainties,
(b) exchange effects,
(c) correlation effects,
(d) polarization effects,
(e) relaxation eff ects,
(f ) nuclear-size effects,
(g) chemical and solid-state effects,
(h) magnetic and retardation effects, and
(i) quantum-electrodynamic effects.
The calculations described here are carried out

to a high degree of numerical accuracy and the
numerical uncertainty in the binding energies is
normally less than a few electron volts. For inner
shells errors of this order of magnitude are
negligible.
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1/2
1/2
1/2
6/2

1/2
1/2
6/2
3/2
5/2

131.90
121.32

133.14
122.61
106.52
89.41
86.00

130.07
120.34
104.25
88.01
84.54

131.40
120.82
104.80
87.59
84.20

133.18
122.64
106.54
89.43
86.02

133.20
122.66
106.58
89.96
86.04

133,34
122.81
106.71
89.60
86.19

88.15

TABLE III. Electron binding energies for mercury (Hartree units}. Experimental values marked with
the optical data of Ref. 21; all other experimental values are from Ref. 20,

! Binding energy, method A

Fig envalue 2/3 of 81Ildlng
Sjeter Slater Slater Optimized Hartree-rock energy

Shell potential potential potential potential (Coulthard) (Mayers) method B

lg 6065.10 ! 3072.96 3076.26 6076.15 3076.18 3072.70
28' 545.16 548.02 550.68 550.50 550,56 548.41
2P 523.88 524.22 527.01 526.85 526.88 524.55

451.52 452.61 455.30 455.13 455.17 453.04

f are taken from

Exper imental

3054.19
545.51
522.34
451.60

131.06
120.65
104.80
87.81
84.50

5d

6g
Total
energy

1/2
1/2
6/2
6/2
5/2
5/2
7/2

1/2
1/2
6/2
6/2
5/2
1/2

28.97
24.75
20.84
13.90
13 17
4.167
4.004

4.628
3.213
2.511
0.587
0.512
0.352

29.64
25.10
21.23
13.84
13.12
3.573
3.424

4.687
3.147
2.497
0.402
0.344
0.257

30.82
26.28
22, 34
14.95
14.21
4.627
4.465

5.225
3.648
2.942
0.723
0.644
0.359

30.66
26.12
22.19
14.80
14.05
4.476
4.315

5.125
3.553
2.856
0.659
0.584
0.340

30.67
26.13
22.19
14.80
14.05
4.469
4.308

5.106
3.538
2.842
0.650
0.575
0.328

19641.95 19652.59 19653.31 19653.33 19653.7

30.76
26.13
22.22
14.80
14,06
4,472
4.294

5.108
3.538
2.846
0.646
0.576
0.328

30.04
25.50

14.27

4.896
3.344
2.687
0.543
0.483
0.312

29.58
25.04
21.15
14.07
13.39
3.93
3.79

4.59
3.12
2.28
0.614$
0.545$
0.384$

In calculations of the Slater type the exchange
effect is treated approximately, introducing some
errors. In the modified version used here these
errors are negligibly small, provided that correc-
tions for the nonvalidity of Koopmans s theorem
ax e applied. The presented results can therefore
be regarded as practically identical to relativistic
Hartree-Fock results based on the Hamiltonian
[Eq. (12)].

The main approximation in the Hartree-Fock

scheme is that the electrons are assumed to move
independently of each other, i. e. , correlation
effects are neglected. %hen the correlation is
included, the total energy of the system is reduced.
Since the correlation effect increases vrith the
number of electrons, it is larger in the neutral
atom thRn ln ionized states of the same RtoIQ.
Therefore the binding energy is expected to in-
crease vrhen the correlation is considered. As
seen from the Tables III-VIII, the theoretical

TABLE IV. Electron binding energies for copper (Hartree units). (See also Table III caption. )

Eigenvalue
Slater
potential

Slater
potential

Optimized
potential

Binding energy, method A

3 of
Slater
potential

Binding
encl gy
method 8 Experimental

ls
2s
2P

1/2
1/2
1/2
3/2
1/2
1/Z
3/2
3/2
5/2
1/2

328.67
39.92
35.23
34.45
4.458
2.960
2.861
0.371
0.360
0.261

331.3.6
40.77
35.38
34.62
4.777
3.062
2.966
0.188
0.178
0.219

331.38
40.78
35.38
34.62
4.777
3.062
2.967
0.188
0.178
0.219

332.58
41.56
36.22
35.46
5.134
3.411
3.310
0.470
0.457
0.252

330.81
40.69
35.27
34.52
4.851
3.143
3.048
0.274
0.265
0.242

330.14
40.48
35.11
34.38
4.57

0.39$

0.284$

Total
encl gy

1653.41
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TABLE V. Electron binding energies for krypton (Hartree-units) . (See also Table III caption. )

Shell

Eigenvalue
Slater
potential

Optimized
potential

Slate r
potential

Binding energy, method A
of

Slater
potential

Binding
energy
method B Experimental

Is
2s
2P

3d

1/3
1/2
1/2
3/3
f/3
i/3
3/2
3/2
5/3
i/3
I/O
3/2

524.80
69.92
63.52
61.50
10.23
7.908
7.605
3.504
3.452
1.009
0.494
0.467

528.19
71.02
63.76
61,78
10.71
8.106
7.809
3,265
3.218
1.062
0.437
0.414

529.86
72.22
65.02
63.03
11.34
8.738
8.429
3.897
3.845
1.248
0.584
0.552

529.65
72.01
64.82
62.82
11.20
8.602
8.295
3.762
3.711
1.197
0.546
0.517

527.68
71.05
63.75
61.77
10.88
8.272
7.974
3.428
3.380
1.136
0.498
0.474

526.47
70.60
63.47
61.55
(10.6)

8.18
7.86

3.27

1,012$
0.539$
0.514$

Total
energy

2783.45 2788.56 2788.81 2788.83

binding energies are iri almost all cases too large,
and the agreement with experiment is not generally
improved by taking correlation effects into account.
Furthermore, the effects are definitely too small
to be of importance for inner shells in heavy
elements. For outer shells, on the other hand,
the effects are more important.

Most Hartree-Fock calculations, as well as the
HFS calculations presented here, are "restricted"
in the sense that all electrons in one shell (same
n, f, and j) are assumed to have the same radial
distribution. For atoms with closed shells only,
like mercury, this treatment is exact in the
Hartree-Fock sense. However, when an inner
electron is removed, the symmetry is drastically

disturbed, and the electron shells become polar-
ized. This reduces the energy of the ionic state
and, therefore, changes the binding energy in the
right direction. The effect of the polarization is
now being investigated quantitatively.

The binding energy for an atomic electron is
determined as the difference in total energy after
and before the ionization process. The energy
after the ionization is determined here in two ways,
either by use of "frozen" atomic orbitals (method
A) or by use of self-consistent orbitals for the ion
(method B). Both methods are, of course, very
crude and can only be considered as reliable in
the two limiting cases, long and short relaxation
times, respectively. In the intermediate cases

TABLE VI. Electron binding energies for iodine (Hartree units). (See also Table III caption) .

Shell

Is
2s
2p

3s
3P

4d

j
i/3
1/2
1/3
3/2
i/3
1/2
3/2
3/3
3/3
1/3
1/2
3/2
3/2
5/2
1/2
Z/3
3/2

Eigenvalue
Slater
potential

1218.89
189.72
178.52
167 ~ 37
38.79
34.08
31.96
23.57
23.12
7.020
5.347
4.928
2.202
2.135
0.770
0.894
0.352

Optimized
potential

Slate r
potential

1224.02
191.51
178.97
167.98
39.60
34.40
32.29
23.21
22.78
7.308
5.431
5.025
1.959
1.895
O.V59
0.334
0.305

1226.21
193.13
180.70
169.67
40.60
35.42
33.29
24.28
23.84
7.827
5.937
5.513
2.406
2.337
0.920
0.456
0.412

1226.02
192.95
180.51
169.49
40.45
35.27
33.&4

24.12
23.68
7.729
5.841
5.420
2.320
2.251
0.883
0.430
0.390

Binding energy, method A

3 of
Slate r
potential

1223.56
191.67
179.08
168.11
39.91
34.71

23.52

7.525
5.645

2.150

0.835
0.395
0.362

1219.13
190.81
178.46
167.62
39.55
34.34
32.29
23.35
22.91
7.00

4.66

1.97

0.766$

0.412$

Binding
energy
method B Experimental

Total
energy

7107.65 7115.51 7115.92 7115.93
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TABLE VII. Electron binding energies for europium (Hartree units). Experimental values are from Hefs, 20 and 25,

Binding energy, method A

Shell
1s
2s
2P

1/2
1/2
1/2
3/2
i/2
i/2
3/2
3/2
5/2
i/2
1/2
3/2
3/2
5/2
5/2
7/2
I/2
1/2
3/2
1/2

Eigenvalue
Slater

potential
1785.17

294.70
280.21
256.08
65.30
58.94
53.99
42.88
41.79
13.14
10,66
9.558
5.423
5.224
0.351
0.325
1.808
1.124
0.975
0.190

Sla,ter
potential
1791.33
296.90
280.72
256.88

66.29
59.35
54.36
42.53
41.37
13.55
10.90
9.690
5.378
4.875
0.013

-0.088
1.807
1.028
0.861
0.151

~ of
Slater

potential
1793.97
298.95
282.88
258.99
67.72
60.81
55.79
44.02
42.86
14.39
11.72
10.48
6.122
5.629
0.566
0.460
2.106
1.289
1.098
0.190

Optimized
potential
1793.76
298.72
282.65
258.76
67.51
60.60
55.58
43.81
42.65
14.24
11.57
10.34

5 ~ 986
5.490
0.465
0.361
2.039
1.231
l.044
0.182

Binding
energy

method 8
1790.95
297.12
280.88
257.11
66.60
59.67

13.79
11.15

5.636

0.238

1.923
1.128

0.174

Exp erlDlental
1783.23
296.06
280.08
256.55
66.30
59.46
54.56
42.80
41.71
13.61"
10.7725

9.73"

5.13"
0.41525

0.88

energy
10837.88 10847.25

the ionization process has to be examined in
greater detail. As mentioned above, the agree-
ment with experiments is much improved for
inner shells in light and medium-heavy elements,
when'the ion is allowed to relax during the ioniza-
tion yrocess (method 8). For heavier elements
this is not the case. For the Is level in mercury,
for instance, the difference between theory and
experiment is 598 eV in method A and 504 eV in
method B. Therefore it is obvious that the major
part of the discrepancy must be due to other
causes.

The effect of the finite nucleus on the wave
functions and binding energies has been investi-
gated. The results for mercuxy are given in

5
C C
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Z

E

O

3-

e Method

Method. 8

o a
gp 0

2O

—40

~I

—20

—'l0

40

0

I 0
0
0

CO

60 80 t00 Z

FIG. 3. The difference between the theoretical binding
energy of the 1s electron calculated according to methods
A and 8, respectively, and the corresponding experi-
mental values.

Table X for surface and uniform charge distribu-
tions, with a, nuclear radius given by R = I.2A'~'
~ 10 "cm where A is the mass-number of the
isotope considered. It is seen that the effect on
the eigenvalues is significant but quite small.
When the correction for the nonvalidity oi Kooy-
manh's theorem is applied, the effect of the finite
nucleus is much reduced. The reason for this is
not clear. However, it is evident that the effect
on the binding energy is negligible in the cases
considered here compared with other effects. The
eigenvalues for a uniform charge distribution are
w1thin the limits of errox' in agreement with those
obtained by Bhalla. "

Most experimental determinations of electron
blndlng enex'gles ax'e made on solids~ wh11e the
theoretical investigations described here are
concerned with free atoms. Experimentally,
"chemical" effects, i. e. , variation in the binding
energy between different chemical compounds, of
the order of 5-10 eV have been observed. ' One
can expect the difference between the binding
energies in the solid and in the free atom to be of
the same order of magnitude. The experimental
values for outer electrons given in Tables HI-VI
are taken from optical data, and hence no solid-
state correction is required. Fox' inner shells
the effect is comparatively small, although not
quite negligible. A more detailed calculation of
this effect, e. g. , by the tight binding method, 23

could possibly improve further the agx'cement
between theory and experiment for light elements.

The Hamiltonian (12) used in the yresent calcu-
lations is only approximate, since magnetic inter-



TABLE VIII. Electl'oQ binding energies for uraniunl (Hartree UQ t )6 Unl s . Zperilnental VRlues Rle from Ref. 20.
Blndlng BQ61 gy, Inethod A

Total
encl gy

4

1/2
I/2
I/2
3/2
1/2
I/2
3/2
3/2
5/2
1/2
I/2
a/2
s/2
5/2
5/2
7/2
I/2
1/2
3/2
3/2
5/2
5/2
1/2
1/2
3/2
3/2
1/2

ElgeQVRlue
Slater

potential

4273.41
801.10
773.45
631.37
203.18
190.45
157.61
137.30
130.61
52.24
46.46
37.85
28.58
26.99
14.75
14.33
11.79
9.520
7.457
4.112
3.802
0.313
1,914
1.245
0.895
0,170
0.211

Slate r
potential

4282.33
804.40
773.39
632.63
204.79
190.97
158.28
136.87
130.29
53.10
46.90
38.33
28.52
26.94
&4.01
13.59
11.94
9.496
7.483
3.885
3.476
0.044
1.877
1.143
0.778
0.118
0.158

4286.02
807,33
776.48
635.57
206,94
193.18
160.37
139.08
132.47
54.46
48.26
39.59
29.80
28.19
15.29
14.85
12.67
10.20
8.124
4.459
4,046
0.395
2.189
1,417
1.009
0.212
0.218

Optimized
potential

4286.06
807.32
776.47
635.55
206.89
193.14
160.32
139.04
132.42
54.40
48.21
39.54
29.74
28.14
l5.23
14.79
12.62
10.16
8.081
4.420
4.005
0.369
2.161
1.392
0.987
0.206
0.212

Binding.
energy

method 8 Experimental

4248.69
799.74
769.98
631.01
204.04
190.59
158.30
137.14
130.67
53.10
46.92
38.55
28.83
27.26
14.53
14.15
12.04
9.68
7.32
4.01
3,69

2.75
1.70
1.33
0.26

actions and retardation effects (Breit interactions)
al e neglected. Smith and Johnson have calculated
these effects to be about —0. 05 eV for the ls level
in argon, while Grant" has obta, ined a value of the
order of —200 eV for the unretarded magnetic
contribution to the binding energy of the ls electron
in mercury. More detailed calculations of the
effects of the various Bx'eit interactions are desired
and are now being prepared by use of our modified
HFS functions.

As fax as we can see, there is only one remain-
ing effect which can be of importance for the

TABLE IX. Comparison between electron binding
energies cRlculRted Rcco1"dlDg to IDethod 8 (see text)
1D VRx'ious appl"oxlIQatloDS. The Uncorl'ected RQd corrected
values are calculated by use of Kqs. (21) and (23), re-
spectively (Hartree units) .

TABLE X. Comparison of eigenvalues and eleetx'on
binding energies fox mex'cury calculated with the Slater
potential and different nuclear charge distributions
(method A) (Haxtree units).

Difference from point chax'ge values in Table III

Uniform charge
dlstrlbutlon

Sur face charge
distribution

binding energy of inner electrons, namely quantum-
electrodynamic effects (Lamb shift). If Grant' s
value for the effect of the Breit interactions is
used, there is a residual discrepancy for the ls
electron in mercury of about 300 eV. By using
hydrogen wave functions Brown and Mayers24 have
estimated the effect of the I amb shift to be of
the ox'der of —500 eV for the ls binding energy in
mercury. This is of the right order of magnitude

App1"oxlIDRtloD

Slater potentlRl Unco 1"I'ec ted
Optimum potential uncorrected
Slater potential corrected
Optimum potential corrected
Hax'tree-Fock (Hef. 3)

1.60
1.48
1.81
1.80
1.81

3.26
3.10
3.59
3.59
3.58

Hg 1s

3072, 2
3061.0
3072,7
3072.7
3072.5

Shell

18
28
3s
4s
58

1.93.
0.29
0.065
0.017
0.003

BlndiDg
ene rgy

0.28
0.039
0.009
0.002

Eigenvalue

2.89
0.43
0.099
0.025
0.005

Binding
energy

0.45
0,064
0.014
0.003



to explain the residual discrepancy. A more care-
ful calculation of these effects would be highly
desirable.

The calculations described here have been per-
formed on the CDC 3600 computer at the University
of Uppsala and on the IBM 360/50 computer at
Chalmers University of Technology, Goteborg.
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