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The magnetic hyperfine splitting constants, a~, from theoretical calculations on the 3 S,
2 P, 3 P, and 3 D excited states of the Li atom are reported. The wave functions were cal-
culated using the author's GF method, which corresponds to optimizing the orbitals of a
Slater determinant afte~ spin projection. Thus the wave functions include core polarization,
but no appreciable correlation. For the 2 P state we calculate a&p = 0 2206 a.u. (45.74 Mc/
sec for Li) which is in good agreement with the experimental value, 0.2227+ 0.0017 a.u.
(45.17 + 0.35 Mc/sec for Li), and the value from configuration interaction calculations,
0.2206. Thus for the Li atom core polarization accounts for most of the error in the Hartree-
Fock values of a~. These calculations yield (1/r ) and spin density, Q(0), in agreement
with other accurate theoretical calculations, and in disagreement with the values found using
level crossing experiments, indicating that the interpretation of the level crossing experi-
ments in terms of (I/r~) snd Q(0) may not be correct. It is found that for both the unre-
stricted Hartree-Fock and GF methods the use of a different Hamiltonian for each electron
leads to virtual orbitals which are good approximations to the actual orbitals of excited
states.

INTRODUCTION

The Fermi contact portion of the magnetic hyper-
fine interaction is proportional to the spin density
at the nucleus, Q(0). The Hartree-Pock (HF) wave
function for an atom such as Li sP(ls'2P),
N 'S(1s'2s'2p'), or 0 'P(ls'2s'2p') has all s orbitals
doubly occupied and hence leads to a zero Fermi
contact interaction. However, the experimental re-
sults show that the Fermi contact term is not zero
in these atoms'~' and thus that the spin density at
the nucleus is nonzero. This clearly indicates that
to study such interactions we must improve upon
the Hartree- Fock wave function. One approach has
been to use configuration interaction (CI), 'i' where
~any Slater determinants are formed from a large
set of orbitals, and the determinants are combined
such as to minimize the total energy. If this is
carried out for a complete set of orbitals, we must
get the exact wave function, and thus for a suffi-
ciently large basis set we should be able to get ar-
bitrarily good energies and spin densities and cor-
rectly account for the magnetic hyperfine interac-
tions.

Another approach has been to retain the Slater
determinant form of the wave function, but to re-
move some of the other restrictions of the Hartree-
Fock method. In particular if we allow the 1s or-
bitals of the Li 'I' wave function to be different for
different spins, there will be a net spin density at
the nucleus, I pi&(0) I' —.. I Qih (0) I', where qual~ is
associated with a spin and IfIIh with p spin. This
procedure, which is called the unrestricted Har-
tree- Fock (UHF) method, ' has the disadvantage'
that the many electron wave function is not an ei-
genfunction of O'. Since the property we are con-
sidering depends on spin, we are led to consider
the spin projected UHF (PUHF) wave function in
which we delete the parts of the UHF wave function
having the wrong spin. However, in this case we
are using the orbitals optimized for the unpro-

jected (UHF) function, whereas we really should
use the orbitals optimized for the projected func-
tion. This latter approach in which the orbitals are
optimized after spin projection is equivalent to the
GF method' ' for electronic wave functions. That
is the GF wave function is the best possible spin
projected Slater determinant wave function. '

Since the GF wave function is based on spin pro-
jection of a single Slater determinant, it will not
coincide with the exact wave function and will not
yield the spin density exactly. However, it does
take into account the direct spin polarization of the
core (we will call this core polarization) caused by
the unpaired spins of the valence electrons. Any
difference between the GF value of Q(0) and the
exact value could be accounted for by mixing in
sufficient other spin projected determinants; such
effects we will simply ascribe to correlation. Thus
we distinguish the simple exchange correlation in-
volved in core polarization and accounted for by GF
wave functions from the other kinds of correlation.

We will see that just as for the Li 2'S ground
state' the GF wave function also accounts for the
hyperfine structure of the Li 2 'I' state, and thus

corrections beyond direct core polarization are
not too important for Li.

CALCULATIONS

The 2'S O'-S, 2 'P 3'I', and 3 'D states of Li
were considered, and UHF, PUHF, and GF calcu-
tions were carried out for each state. Since HF
wave functions for these states have been published
by gneiss, 4 we used basis sets based upon his
calculations. These basis sets of Slater orbitals"
were selected so as to satisfy the cusp condition
at the nucleus [this seems to be important for re-
liable values of Q(0), especially for larger atoms
such as N] . It was established that for Li the op-
timum orbital exponents for all three types of wave
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functions (HF, UHF, and GF) are essentially the
same. Four of the ns orbitals were primarily used
by the core electrons and had been taken to have
the same orbital exponents in all of Weiss's cal-
culations. We reoptimized these orbitals for the
2 'P state and found that the new orbital exponents
also led to lower energies and better virial ratios
for the other states. Thus we changed Weiss's
basis sets by using these reoptimized (for the 2 'P
state) exponents for the core orbitals.

A self- consistent-field calculation ( e. g. , HF,
UHF, or GF) for the second-lowest state of some
symmetry [e.g. , 3'P(ls'3p)] is straightforward
and leads to an upper bound on the exact energy of
the excited state (see Appendix C). However, for
the O'S and 3'P states of Li the solutions of the

usual form of the UHF and GF equations diverged
and oscillated. This required using the form of
the self- consistent-field equations derived directly
from the variational theorem rather than the usual
form of the equations in which self-repulsion terms
are added. This is discussed later.

CORE POLARIZATION

The calculated hyperfine splitting constants are
given in Table I (see Appendix B for the relation-
ships between ag and Q(0) and (1/r')). As occurred
for the 2 'S state, ' the a,&, for 2'P as calculated by
both the GF and CP' methods is in good agreement
with experiment. " Since the GF results are close
to experiment, we see that the main error in the

TABLE I. Hyperfine splitting constants and other properties for the ground and excited states of Li as obtained from
GF and other wave functions. E is the total energy, V is the potential energy, V/2E is the virial ratio, p(0) is the
electron density at the nucleus, and Q(0) is the spin density at the nucleus. All quantities are in atomic units (the
hartree is the unit of energy).

V/2E p(0) Q(0) (1/r') L+-'2

22$ HF
UHF

PUHF
GF
CI

EXP

-7.432 725
-7.432 749
-7.432 767
-7.43'2 813
-7.477 9
-7.478 07

1.000 002
1.000 000
0.999999
1.000 000

13.8160
13.8159
13.8159
13.8159

1S.638
18.630
18.630
18.609

0.1667
0.2248
0.1866
0.2406
0.2249b
0.2313d

1.'396
1.883
1.563
2.016
1.884
1.937

3 SHF
UHF

PUHF-
GF

EXP
22P HF

UHF
PUHF
GF
CI

EXP

-7.310210
-7.310212
-7.310213
-7.310216

7 35410c
-7.365 069
-7.365 076
-7.365 OSQ

-7.365 091
-7.408 38
-7.410 16

0.999994
1.000 002
1.000000
1.000 002

0.999 995
1.000 000
1.000 000
1.000 002

13.7080
13.7067
13.7067
13.7067

13.6534
13.6535
13.6535
13.6534

119.480
119.470
119.469
119.447

28.716
28.709
28.709
28.692

0.038 64
0.052 53
0.043 35
0.056 22

0.000 00 0.05S 48
-0.01747 0.058 52
-0.005 82 0.05S 52
-0.023 04 0.058 61
-0.022 22

0.1559
0.2407
0.1722
0.2206
0.2206
0.2227h

0.3237
0.4401
0.3632
0.4710

+0.0311
-0.0176
+0,0149
-0.0331
-O.Q302

i

3PHF
UHF

PUHF
GF

EXP

3 D HF
UHF

PUHF
GF

EXP

-7.293 186
-7.293 187
-7.293 188
-7.293 189
7.337 15c

-7.291 973
-7.291 974
-7.291 974
-7.291 974
-7.335 52

0.999 945
0.999972
0.999972
0.999972

0.999936
0.999 966
0.999966
0.999966

13.6660
13.6661
13.6661
13.6661

13.6715
13.6722
13.6722
13.6722

172.536
172.530
172.530
172.511

126.924
126.923
126.923
126,923

0.00000 0.01759
,-0.005531 0.017 60
-0.001843 0.017 60
-0.007318 0.01759

0.00000 0.004 951
-0.000036 0.004 951
-0.000012 0.004 951
-0.000053 0.004 951

0.046 89
0.062 34
0.052 04
0.067 35

0.004 948
0.005 008
0.004 968
0.005 037

+0.009 37
-0.006 07
+0.004 22
-0.01106

0.001412
0.001352
0.001 392
0.001 323

aE. A. Burke, Phys. Rev. 130, 1871 (1963).
bE. A. Burke, Phys. Rev. 135, A621 (1964).

Atomic Energy Levels, compiled by C. E. Moore,
National Bureau of Standards Circular No. 467 (U. S.
Government Printing Office, Washington; D. C. , 1947).

P. Kusch and H. Taub, Phys. Rev. 75, 1477 (1949);
R. G. Schlect and D. W. McColm, Phys. Rev. 142, 11

(1966). The conversion factor from Mc/sec to a.u. is
given in Appendix B.
e
Weiss, Ref. 4
Ardill and Stewart, Ref. 18.

g (1/r )orb=.05975, (1/r )dip=. 05923 Ref. 17.
Ritter, Ref. 15.

iSee discussion in the Core Polarization section.
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HF calculations for the magnetic field at the nu-
cleus, H(0), is just the lack of core polarization.
The error due to correlation is the difference be-
tween the GF and experimental values which we
see is small.

The a,q, hfs constant for the 2 'P state could not
be measured directly. " However, some level
crossing experiments were carried out"~" which
led to effective values of (I/x') and Q(0) that could
be extrapolated to zero magnetic field in order to
calculated a„,. The resulting value for (I/r') is
0.0645 a.u. which differs from the CI value'~" by
about 8%. The CI values of 0.0596 and 0.0594 for
the ay/2 and a,&, states are consistent with HF,
UHF, PUHF, and GF values of 0.0585 to 0.0586 and
should be expected to be within 1/o of the exact val-
ue. Since the CI and GF values of Q(0) and (I/x')are
consistentwith the experimental a,&„ it may be that
the interpretation of the experimental results in
terms of Q(0) and (I/x') are incorrect. " In par-
ticular the external field, H, must lead to per-
turbations in the core orbitals which depend on H

and thus lead to effective values of Q(0) and (I/r')
which are different for each level and which depend
on H. " Since the value of a,&, from the GF and CI
calculations is a factor of two larger than that ex-
trapolated from level crossing experiments, it may
be that direct measurements at small field could
determine which of these values is best even though
it cannot" give a precise value to a», . (Note from
Table I that the HF and PUHF wave functions lead
to the wrong sign of a„, for the Li 2'P and 3'P
states. )

We should note here that since the UHF wave
function is not an eigenstate of S' or J', the UHF
values for ag are somewhat suspect since ag is
necessarily defined for some specific value of J,
We have used the usual"~" (apparently reliable)
procedure of pretending that the UHF wave func-
tion has the same 4 and S that it would have if the
core orbitals were identical.

Perturbation Approximations

Rather than calculate the effect of core polariza-
tion pelf-consistently as in the GF method, several
perturbation approa. ches (starting with the HF wave
function) have been suggested. "i"One interesting
approach" lets the core orbitals be perturbed by
the nuclear magnetic moment via the Fermi con-
tact term. By solving for the electronic energy
for the perturbed wave functions, one gets direct-
ly the core polarization contribution to ag. Since
the orginal perturbation is due to the nuclear mo-
ment, the distortion of the core orbitals should be
relatively independent of the electronic state. Thus
the core polarization in molecules or metals can
be calculated more easily. This approach leads to
an approximation to the UHF wave function and for
the 2s and 2P states of Li leads to core polariza-
tion contributions to Q(0) of 0.0482 and —0.0154,
respectively, which are about 85% of the UHF val-
ues. Similarly, a perturbation approximation" to
the GF function for the 2'S state yields a core po-
lariza, tion contribution to Q(0) of 81% of the GF
value. Thus, self-consistency is important for a
reliable value of Q(0).

Summary on Core Polarization

The term core polarization refers only to
changes which occur upon improving the wave
function within the independent particle interpre-
tation, i. e. , as in going from HF tp UHF or HF to
GF. The GF results given here show clearly the
importance of core polarization and thus justify
the concept both for polarization by s and non-s
electrons. ' Regardless of how the remaining cor-
relation energy is taken into account, it leads to
a minor change in Q(0). By comparing the GF and
HF energies, we see that although the core polari-
zation effects are crucially important for Q(0),
they have an almost negligible (but numerically
significant) effect on the energy, which is the rea-
son that some very good (low-energy) calculations
have yielded rather poor spin densities. "

CALCULATIONS ON EXCITED STATES

~t [41,(l)42, (2)AIb(8)n(I)o'(2)P(8)],

and require that. the orbitals be optimum, that is,
yield a stationary energy. (In the above expres-
sion 8 is the antisymmetrizer, and o and P are
the spin-up and spin-down eigenfunctions of sz. )
The result is a set of three equations

la~la la~la'

2a~2a 2a~2a'

1b ~lb 1b ~lb'

the self-consistent solutions of which are the op-
timum orbitals. In (1)

1 2a 2a ~ lb,

H2
——b+ gl —Xl y gib

H h+g

(2)

where

8, (1)=fdx2$. *(2)P, (2)/~12

X.(1)=fdx &f), *(2)P12$,(2)/~12

~h

are the Coulomb and exchange operators and Py2
permutes electrons 1 and 2. However,

In carrying out calculations on the O'S and 3 P
excited states of Li, we observed some interesting
features which would be expected to occur gener-
ally when performing calculations on excited states
of the same symmetry as some lower state. In
order to keep the discussion clear and simple, we
will discuss the 3'S state of Li.

In the UHF method for Li we consider a wave
function of the form
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So (2) are usually replaced by

~ =@+{8I -Xl )+ (82 —X2 )+ 8 i~

-"- 'i. -'2f —"lh- ~if '
where (3) has the same self-consistent solutions
as (2),

+($1gpihnp) .Thus (7) is expected to close to the
ionization energy for a 3s electron, and the virtual
solutions of II2Q can be expected to be good ap-
proximations to the excited state orbitals of the Li
atom.

Now consider the Ss virtual solution of HA

A A A
"A&s. ='s. &s.

From (3) this has an energy of

A
=(ys Inly )+y -3:I, 3,

H~'-2a- 2a&2a

a'Pif ='ll 'Pif.

Besides the self-consistent solutions {i.e. , the
ones used in the field terms), (2) and {3)have an
infinite number of othel solutions, CRlled the v1x'-
tual orbitals. Let us consider the ground state of
Li, 2 'S[(ls)'(2s)]. Then la and Ib correspond to
1s orbitals and 2Q corresponds to the 2s orbital.
Fr'om (1) and (2) we have

e2 =($2 lh)$2 )

+ ~ la, 2a +la, 2a+ ~lb, 2a

=&42 (1)ei,{2)~1/ l2 ~ 42, (1)el (2)&

~la, 2.=&&2. ~ la~&2a&

=&42 (1)01 (2)~i/ 12~%1 (1)42 (2)&.

Hence (5) is just the difference in energy between
the three- electron wave function 8 ($1~$2~$1f,an p)
and the two-electron wave function e(p]~pipe. p),
and thus (5) is expected to be close to the ioniza-
tion energy for the 2s electron (Koopmans'
theorem"). Now consider the solution of ff2~
which has two nodes and is spherically symmetric
(i.e. the ss virtual orbital), and call this orbital

0

2Q 2Q
~2.&Ss = Ss &S.

Then from (2) and (6)

2Q's. =&~3. ~" ~ ~s.»i., s. — 1.,3. »h, s. ,
{7)

which is just the difference between the energy of
the three-electron wave function 8 (Pl~pss2&plf, nnP)
and that of the two-electron wave function

'~u, Ss'&-2a, Ss ~2a, Ss .

But the ionization potential for the 3s electron
should be as in (7); thus ess& is too large by
82g Ss Sf2a ss~ which is just the term arising
from. the addition of the self-Coulomb and ex-
change operators to 02n. Since g 2~ Ss y X 2~ ss

the energies of theA-type virtual orbitals are all to
high (in the case of the Li atom ground state, the vir-
tual orbitals are all unbound), and the orbitals are
too diffuse. This occurs because the virtual or-
bitals see an effective field due to N othex elec-
trons rather than N lother el-ectrons. (The &f&ss+
vlx'tuRl orbital of HA 1s Rn approximation to the
Qss in I ($1~$2~$3s Qlbnnnp), which is a wave
function for the 3 '8 state of Li, probably an un-
stable state. )

To illustrate these points, both (1) and (4) were
solved for the ground state of Li using a basis set
of 15 basis functions. The resulting eigenvalue
spectra are given in Table II, where they are com-
pared with the expex'imental ~d self-consistent-
field values for the excited states. We see that
the virtual solutions of IJ2Q axe comparable to the
self- consistent solutions for the excited states,
whereas this is not at all true for the virtual solu-
tions of HA. The errors in the higher eigenvalues
of H2Q are mainly due to the incompleteness of the
basis set. If a complete basis set had been used,
we probably would have obtained good values for
the energies of all observed ns, nP, nd, and nf
states of Li. Thus if one wishes to study a series
of rydberg states of 3n atom or molecule without
doing each state self-consistently, the HF or UHF
equations analogous to (1) should be used, rather
than those analogous to (4). Actually, the core
orbitals can be solved for with (3) as long as the
orbital to be excited is solved for with the H~ from
(2)

If we wish to solve self-consistently for the (Is)'
(ss) '8 excited state of Li, we just solve (1) where
the $2~ in $2~ and 3', 2~ is taken to be the third
lowest s solution to H2Q rather than the second
lowest. As would be expected, this process works
well, and the wave functions converge as well as
for the ground state. We could also use the same
process with (4) wliere we would take the first and
third solutions of HA to be occupied. However, in
this case the second and third s-type solutions are
nearly degenerate, and the iteration process
diverges (this problem also occurs for the 3'P
state of Li). Thus we were forced to use (1) for
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TABLE II. The energies for the 28 orbitals and the virtual orbitals of Li from UHF and GF calculations (the basis
set was based on the effective quantum numbers, n*, from the term values of the lower s and p states. We used 18,
28=2.7; 28, 38=0.63; 3s, 48=0.39; 4s, Gs=0, 28; 58=0.22; 2p, 3p=0.51; 3p, 4p=0.34; 4p, Gp=0. 25 where the Slater
orbital is represented by g) and the number is the orbital exponent) on the ground state, 8t(1s)2

t,'28) ]. Energies are in hartrees.

2a
Different c

Hami ltonlan

B~
Samed

Hamiltonian

H H~

D&ffel ent Same
Hamiltonian Hamiltonian Experimental

28
38
4s
Gs
6g

-0.1961
-0.0738
-0.0385
-0.0236
-0.0123

-0.1961
+0.0017
+0.0077
+0.0214
+0.0548

-0.1963
-0.0738
-0.0385
-0.0236
-0.0123

-0.1963
-0.0152
-0.0060
+0.0033
+0.0289

-0.1963
-0.0738

-0.1982
-0.0742
-0.0386
-0.0236
-0.0159

-0.1283
-0.0567
-0,0317
-0.0193

+0.0036
+0.0106
+0.0230
+0.0516

-0.1283
-0.0567
-0.0317
-0.0193

-0.0273
-0.0084
+0.0005
+0.0221

-0.1287
-0.0568

-0.1302
-0.0572
-0.0320
-0.0204

To this many places the UHF and GF methods yield the same orbital energies.
bExperimental excitation energies from C. Moore, footnote c to Table I. This column is not strictly comparable with

the other columns because of differences in the core states and correlation energy for the various states. However,

these differences are sIQall fol the excited states.
cwo self-repulsion terms are included in the one-electron Hamiltonian. Thus each electron has a different HamOtonian.

Self-repulsion terms are included in the one-electron Hamiltonian. Thus p1 and ft)2a are both eigenstates of the

same Hamiltonian.

calculations on these excited states of Li.
All these results are exactly the same in the

GF case. The wave function is taken as

Again we can add terms to 8la and H2a to get an
Hg such that Qia and $2a are both solutions of
H~ as in (4). For example, we would add

f 1 2 lb

and the equations for the optimum orbitals hre as
in (1), '~' where the forms of Hla, H2a, and Hlb
are more complicated than (2). For example,
after making a Roothaan expansion of the orbitals
in terms of basis functions (&jthe matrix equiv-
alent of 112+ has the, form'~9~2"

H = (1+ 2(la I lb)')(p, lh I v)
p. v

+ 2 ((p. Ih lib) —(p lh lla)(la lib))(lb iv)

+ 2 (p, I lb) ((lb Ih I v) —(la Ih I v)(lb I la))

+ & (p. I lb)(lb I v)((la Ih I la) —8)

+ (p v I lala) + (p v I lb lb) + (p v I la lb)(la I lb )

—(p, la I via)+ 2 (plb I vlb)

—&(la I lb) [(p, la I vlb) ~ (p, lb I via)]

+ 2 [(p. lb I lala) —(p, la I lalb)](lb I v)

+ 2 (p, I lb) [(lala'I vlb) —(la lb I via)].

= p(2a lib)'( p, Ih I v)
p, v

—~ (p Ih 12a)( 2a I lb)(lb I v)

—2 (p I lb)(lb 12a)(2a Ih I v)

+ a (p I lb)(lb I v)(2a ih I 2a)

+ (p v12a2a) + (p v12alb)(2a I lb)

—(p. 2a I v2a)

—~p( 2a I lb) [(p2a I vlb) y (p lb I v2a) ]

+ —,[(p lb 12a2a) —(p, 2a12alb)](lb I v)

+ 2 (p, I lb) [(2a2a I vlb) —(2alb I v2a)]

to H v2a to get Hpv . (Note that +v~pv2a
&&(vI2a) =0. ) Just as in the UHF case, we find that
the virtual solutions of II2~ are good approxima-
tions to the excited orbitals, whereas the virtual
solutions to HA are not (see Table II).

Of course the above results apply equally well
to other symmetries and other systems of various
numbers of electrons.
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DEPENDENCE OF PROPERTIES UPON EXCITED
STATES

The total electronic density at the nucleus, p(0),
is given in Table III for the various states of Li.
It is interesting to note that for ns states the p(0)
decreases as we go to large n, eventually decreas-
ing to the p(0) of Li+, but that for np and nd states
p(0) is less than the p(0) of Li+ and increases to
p(0) of Li+ as n and l increase. ~ An explanation
of this behavior is that the valence electron, ~l,
partly shields the nucleus from the core electrons
and thus leads to a slightly lower contribution to
p(0) from the core electrons, p(0)core, as com-
pared to Li+. If the added electron is in an ns
state, it has a nonzero amplitude at the nucleus
which leads to an increase in p(0) that more than
cancels the previous decrease. But for l 4 0
there is no compensating term, and p(0) is lower
for the atom than for Li+. (Note that p(0)co e is
nearly independent of l for ns and np states.

In addition, (see Table I) we have the order
2s (2p&3s (3p(3d for total energy, whereas for
Qr) we have the order 2s&2P&Ss&3d&SP. Thus
using r') as the criterion, QSd is less diffuse
than $3p, but more diffuse than $3s. However,
for (1/r~)nf the order is 2p&Sp&Sd, which might
be expected since the inner loop of the 3p should
count heavily here.

The value of (1/x') for various states nl of the
same l are often" ~~ expected to scale as (1/n*)',
where n* is the effective quantum to use in the
hydrogen atom formula in order to obtain the term
energy. It has been less clear how the spin den-
sity term would scale, although it ha, s also been
assumed~ to scale as (1/n~)'. In Table IV we com-
pare the scaling of the hyperfine constants to that
of n~. We see that (1/n*)' leads to results too
small by 1% and 8% for Q(0) of the 3 '8 and 3'P
states and too small by 2%, 4%, and 13% for (1/rg,
a,&~ and a,i, of the 3 'P state.

CONCLUSIONS

For the excited states of Li as for the ground
state, the GF wave function leads to good values
for the hyperfine parameters. Thus the major er-
ror in the Hartree-Fock value of the hyperfine
splitting constants of Li is due to the lack of core
polarization.

TABL& Gl. The density at the nucleus, p(0), for Li+
and several states of Li. P 0 core ~s th d "s]ty at th
nucleus due to the 1s electrons. The Hartree-Pock
wave functions of gneiss (see Hef. 4) for Li and Roothaan,
Sachs, and%'eiss [Hev. Mod. Phys. 32, 186 (1960}]for
Li+ were used.

Li 228

3$
2I
3P
3D

Li 1S

p(0)

13.816
13.708
13.653
13.666
13.672
13,674

P(o)core
13.652
13.666
13,653
13.666
13.672
13.674

APPENDIX A. THE CALCULATED NAVE
FUNCTIONS

The calculated orbitals for the UHF and GF
wave functions are available upon request. The
basis functions (which are Slater orbitals), the
orbital energies (e), and the amplitude at the nu~
cleus [Q.(0)] are given in Table V.

APPENDIX 8: HYPERFINE SPLITTING CONSTANTS

%e define the hyperfine splitting constant„Ag,
as the proportionality constant between (I ~ J) and
the perturbation energy E =A&(i J) . Then we de
fine ag by A~=gzppg~p~ag, where p& and p~
are the Bohr and nuclear magnetons, and g& and
g~ are the gyromagnetic ratios for the electron
and nucleus. If the different states are all taken
to be eigenstates of I ' and S', then ag is»

The calculated a,i, from GF and CI calculations
disagree with the values deduced from the level-
crossing experiments. This casts doubt on the in-
terpretation of these experiments in terms of ef-
fective (I/rP and Q(0) that are independent of
magnetic field.

The use of different Hamiltonians for different
orbitals leads to improved convergence of excited-
state wave functions and also leads to virtual or-
bitals closely related to the orbitals of other ex-
cited states.

TABLE IV. The scaling of the hyperfine constants for the ns and np states of Li (n=2, 3). n~ is the effective quantu&
number obtained from the term energies (from Moore, footnote c to Table I).

(1/ng) 3 Q(0)

2s
3s
ratio
2P
3P
ratio

1.588
2.596

~ ~ ~

1.966a
2.956a

~ ~ 4

0.229

~ ~ ~

0.294

0.2406
0.056 22
0.234

-0.023 04
-0.007 318
0.318

~ ~ 0

0.058 61
0.017 60
0.300

~ ~ ~

0.2206
0.06735
0.305

~ ~ ~

-0.033 13
-0.01106
0.334
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TABLE V. The orbital energy and amplitude at the nucleus from the UHF and GF wave functions of Li. All quantities
are in Hartree atomic units. Basis sets: the entries represent the nl& of each Slater orbital (see Ref. 10).

State

2 S UHF
GF

-2.486 70
-2.498 75

Orbital Energy

-2.468 73
-2.463 88

-0.196 37
-0.19649

Amplitude at the Nucleus

ga(O) gab(&) $2a(O)

2.618 48 2.606 84 -0.404 86
2.633 88 2.591 73 -0.401 95

-2.664 84
-2.667 66

-2.660 74
-2.659 52

-0,073 80
-0.073 80

2.615 54
2.619 22

2.612 87
2.609 20

-0.19641
-0.196 12

-2.531 33
-2.530 55

-2.530 05
-2.532 20

-0.128 68
=0.128 72

2.611 13
2.606 14

2.614 48
2.61941

0.000 00
0.000 00

3'rc UHF
GF

-2.677 80
-2.677 55

-2.677 35
-2.677 99

-0.056 78
-0.056 78

2.613 49
2.6119]

2.614 54
1.616 11

0.000 00
0.000 00

3~Dd UHF
GF

-2.681 23
-2.681 22

-2.681 23
-2.681 24

-0.055 56
-0.055 56

2.614 59
2.614 58

2.614 60
2.614 61

0.000 00
0.000 00

als 3.0, 3s 8.7, 3s 3.398, 3s 2.544, 3s 1.24, 3s 0.757, 3s 0.345, 4s 0.345.
bls 3.0, 3s 8.7, 3s 3.398, 3s 3.544, 2p 1.5, 4p 2.12, 4p 1.275, 4p 0.785, 4p 0.566.

Same as b except that 4p 0.566 is replaced by 4p 0.63, 4p 0.37, 4p 0.21.
s orbtials as in b, 3d 1.0, 5d 0.98, 5d 0.60, 5d 0.404, 5d 1.762.

2 (L J) 8m (&.J)
g lJ(J+1) 3 cJ (8+1)

m(3z' —x') „ I
—2l 1SLS ~, s LSL

,3(~ L)(L J) —L(L + 1)(f' J)
j(J+ 1)

1a

SI.S Z'—iLSLe&'~

LSLS Z5(r)s LSLS,

Relativistic effects and breakdown of LS coupling
have been ignored and g~ = 1 has been assumed.
The constants in the above equation are defined as

where (1/x') is a one-electron radial integral over
the l o 0 orbital (with mf = l).

Using the value s2s & 2 002 3192 p,& 9 2732
x10 '4 Am', p,~=5.05050x10 "Am', 1eV
= 1.602 10&&IO "J, leV=2. 41804x10"Hz, and a,
= Q.529 167 A, we find that to convert ag from
atomic units to Mc/sec we have to multiply by
c = 95. 51975'~. Thus for Li' «ing29 g& = 3.256 31/
1.5, we obtain c(Lj') = 207.36, .

Using the above equations and letiing ac ——Q(0)
we obtain

(l. J)=-,'[Z(J+1)+L(L+1)—S(S+1)],

(S J)-=-,' [J(/+1)+S(S+1)—L(L+1)j,
(S 1, =-.'[J(J+1)-S(S+1)-L(L+1)],

where [LSMLMS) denotes a many-electron wave
function having quantum numbers I, 8, MJ, and

Mg. The subscripts l,c, and d refer to orbital,
Fermi contact, and spin-dipolar contributions, re-
spectively.

For the HF, PUHF, and GF wave functions of

Li, a~ and ad simplify since
aha

LSLS &,—, , LSL

and

for ns'S states: a», = 8.3776Q(0),

for nP'P states: a„,= 2.6651(l/H) —2.7925Q(0),

a,g, = 0.53256(1/r') + 2.7925Q(0),

for nd'D states: as~, = 0.99930(1/x') —1.6755Q(0),

a,g, = 0.28525(1/x ) + 1.6755Q(0).

In the derivation it is necessary to assume that
the wave functions are eigenfunctions of I.' and S'
and can be combined into eigenfunctions of J .
This is correct for the HF, PUHF, and GF wave
functions for Li, but not for the UHF wave func-
tions. Thus in the UHF case it is not correct to
use the above equations (or any others for that
matter) for aJ, since the UHF wave functions are
not eigenfunctions of 8' or O'. However, we will
follow the usual practice of using the above equa-
tions for UHF also.



EXCITED STATES OF Li

APPENMX C: UPPER BOUNDS ON THE ENERGY
FOR EXCITED STATES &~is ~cols 2 ff~ls ~3s ~]s )

(C-4)
The UHF and GF wave functions for the excited

states of Li lead to upper bounds on the exact
energy, even though the wave functions are not
orthogonal to the ground state. Below we sketch
the proof of this for GF wave functions. " A sim
ilar theorem for HF wave functions has been
proved using a different approach by Perkins. »

a a b«» Ci = Of(4» 42, 4 I, «P),

a a b

(C-I)

and consider linear combinations

of these functions. If the coefficients in (C-2) are
chosen to make the total energy stationary, we find
that the coefficients for the ith solution satisfy

Z~(g. IH —E. |g~)C. =0. (C-3)

In addition, from the Hyn. eraas-Undhei. m-Mac
Donald theorem" the calculated energy of the ith
solution is an upper bound on the exact energy for
the ith solution allowed by the symmetries of (C-l).
But if the orbitals in (C-I) are solutions of the GF
equations corresponding to (l), where /is& /Is",
and p3p are used in the field terms, then from
the Brlllouln theorem for QF wave functions» we
have that

for any pc orthogonal to p3&+. Thus the solutions
«(C-3) are C, = 1, C, = 0 and C, = 0, C, = l; that is,
the (, and g, in (C-I) are solutions of (C 3). Bu+2

El =&&I~H ~ti)&&tl~ti) =E*+~2,',

E2=&|)'2~H ~42)~(42~t)'2) =E*+
3

where E* is the par«f the energy term which de-
pends only' on Qlz and ply, e3s~ is the eigenvalue
for the occupied orbital f3 ~, and q2

~ is the
eigenvalue of the virtual orbital y2 a
&2s &&3s, then El&E2 and g2, the GF solution
for the 3'8 state of Li, yields an upper bound on
the exact energy of the 3'8 state. This occurs de-
spite the fact that(, is not orthogonal to the exact
GF solution for the 2'S state and a fortiori is not
orthogonal to the exact solution of the 2'8 state.

Now consider the case where the N-electron wave
function g„ is a self-consistent GF solution of the
nth state of a given symmetry and (&(j &n) are
constructed by replacing Qzs~ by Qjs~, a lower
energy virtual orbital of H2~. Then (C-4) still
holds for Qc = Pjs~ ifj 0 n, and gz is already a
solution of the equations corresponding to (C-3).
Thus if there are yg —1 virtual orbitals of lower en-
ergy, then E„=g„lHIg„)/((„IHlgz) is an upper
bound on the energy of the rsth state of this sym-
metry. This proof does not depend on the symme-
try of the valence orbitals; it applies only to ex-
cited states obtained by exciting a single electron.
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Relativistic atomic wave functions and electron binding energies have been calculated by a
modified Hartree-Fock-Slater method, The local exchange approximation, originally intro-
duced by Slater, is modified in such a way that the total energy of the system is minimized.
Approximate expressions for the optimum exchange potential are suggested for all atoms and

ions. The total atomic energies and electron binding energies obtained by this method agree
extremely well with the corresponding Hartree-Fock results in the cases where such data
are available. Various corrections to the theoretical binding energies are discussed, in
particular the effect of rearrangement during the ionization process. It is found that this
effect is of importance for inner shells in all elements and is responsible for the main dis-
crepancy between experimental and previous theoretical results for light and medium-heavy
elements. For heavy elements other effects are of importance, and various possible sources
of the residual discrepancy between theory and experiments are discussed.

I. INTRODUCTION

During the last decade our knowledge of electron
binding energies in atoms has increased consider-
ably, due in particular to the development of the
electron-spectroscopic method (ESCA) by Siegbahn
et al. ' This method has been applied to almost all
elements between lithium and berkelium and to
inner as well as outer shells. The accuracy of the

new data is so high that improved theoretical cal-
culations are justified. The electron binding
energies are often used to check the accuracy of
electronic wave functions. When the accuracy of
the calculations increases, several effects have to
be taken into account. Besides the relativistic
effects, which of course are dominant for heavy
elements, it is necessary to consider relaxation
mechanisms, correlation effects, core polariza-


