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A formally exact expression for the Kubo thermal conductivity is obtained for an inhnite, one-dimensional
chain of atoms which are connected by nearest-neighbor, harmonic springs of equal strength, and which
are of equal mass except within a finite section of the chain which contains disordered isotopic impurities.
The two in6nite, isotopically pure regions are used as high- and low-temperature reservoirs which cause an
energy flow through the isotopically disordered region, whose thermal conductivity is calculated. It is found
that the Kubo thermal conductivity for this model is always finite. Various approximations which allow
explicit evaluation of the conductivity are discussed.

I. INTRODUCTION

~ NERGY transport in a solid has experimentally
& been found to obey an equation' of the type

K(d T/dx), —

where J is the energy per unit time per unit area flowing

in the x direction, dT/dx is the temperature gradient,
and E is the thermal conductivity. For solids which are
electrical insulators, a theoretical calculation of E may
be made in terms of phonon scattering by other
phonons, ' ' by lattice defects, 4' and by the crystal
surface. ' Although at high temperatures these calcula-
tions certainly yield valid results which may be fitted
to the experimental data, ' they all involve uncontrolled
approximations of one type or another, and most
involve the Boltzmann equation in the relaxation-
time approximation. At high temperatures for which

the lattice motion is anharmonic, these approximations
are at present unavoidable. But at su%ciently low

temperatures, the lattice motion is dominated by
harmonic forces, and a first-principles calculation of the
lattice thermal conductivity, though dificult, should be
possible. We here attempt such a calculation of E for
a simple-type harmonic system containing isotopic
impurities. Before turning to this calculation, however,
we must discuss several very basic diAiculties which

arise in using a harmonic system as a model for thermal
conductivity.

*This work was supported in part by the National Science
Foundation.
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First, in neglecting anharmonicity we have omitted
not only the umlzlapp processes, which are unimportant
at low temperatures, but also the normal processes, '
which are responsible for that energy exchange between
normal modes which causes an approach to equilibrium.
We overcome this difficulty by choosing the initial
state of our harmonic system so that energy is correctly
distributed among the various modes. ' Second, the
calculation of the thermal conductivity due to multiple
phonon scattering from isotopes in three dimensions is
a problem which can be treated at present only through
perturbation theory, even for a harmonic system. '
Thus we choose to attack the problem in one dimension,
where one may obtain a formally exact solution to the
multiple scattering problem.

Third, there is the problem of obtaining a 6nite
thermal conductivity for a harmonic system whose only
scattering mechanisms is isotopic impurities. In the
usual derivation of the thermal conductivity, " the
expression for the one-dimensional heat current J is
written

1J=—P N. Aced, v„
8

where I. is the length of the sample, and where E„
Ace„and v, are the occupation number, energy, and
group velocity for phonons of wave number s. The
Boltzmann transport equation is then solved for E„
using the relaxation-time approximation, yielding

N. =cV,' r,v, (dN, '/d T) (d T/dx—), (3)

where T is the absolute temperature and where 7-, and
E, are the relaxation time and the equilibrium occupa-

J. M. Ziman, Electrons and Phonons (Oxford University
Press, London, 1960).' A discussion of the extent to which a purely harmonic system
approaches equilibrium is given by G. Klein and I. Prigogine,
Physica 19, 1053 (1953).' A. A. Maradudin, J. Am. Chem. Soc. 86, 3405 (1964); also
see E. J. Woll, Jr. (Phys. Rev. 137, A95 (1965)), who makes a
similar calculation for one dimension.

"See, e.g. , P. Carruthers, Rev. Mod. Phys. 33, 92 (1961).
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tion number for phonons of wave number s. Combining
Eqs. (2) and (3), one obtains

1J=——P Ate, r, (dN, '/dT)ii, '(dT/dx),
s

(4)

with J being proportional to the temperature gradient
in agreement with Eq. (I). If one considers a material
whose only scattering mechanism is isotopic impurities,
then one may show that r, becomes infinite as s tends to
zero; hence Eq. (4) yields an infinite thermal con-
ductivity for this case. However, one notes that as r,
increases, Eq. (3) must, at some point, predict negative
occupation numbers, which is physical nonsense. Thus
the usual derivation is not internally consistent. We
overcome this difhculty by observing that Eq. (4)
cannot be strictly correct when only isotopic scattering
is operative, since the low-frequency phonons are not
sufFiciently attenuated. The Kubo formalism' pro-
vides a systematic method for including the low-fre-
quency phonons; using it we obtain a, finite conductivity.
We now turn to a discussion of our model.

In this paper, we choose to consider an infinite, one-
dimensional chain of atoms connected by nearest-
neighbor harmonic springs of equal strength. All atoms
outside one fjnite section of the chain have mass m.
Within this finite section there is a disordered mixture of
two isotopes having mass m and M. Physically the two
infinite, isotopically pure regions will be used to
stimulate high- and low-temperature reservoirs which
cause an energy Sow through the isotopically disordered
region whose thermal conductivity we intend to
calculate.

In Sec. II we calculate a formally exact expression for
the thermal conductivity for this model, using the
Kubo method of correlation functions. ""Our formal
expression for the Kubo thermal conductivity is put
into a form which relates it to some recent work by
Rubin'4 on the transmission properties of one-dimen-
sional isotopically disordered chains. Section II con-
cludes with a discussion of the physical significance of
the derived results. Section III then summarizes our
papel .

The literature on this problem is extensive, and our
list of references is not meant to be encyclopedic. This
paper was initially motivated by the work of Kashi-
wamura and Teramoto, "who calculated a temperature
drop across a single impurity and by the work of Rubin, "
who made computer studies of the energy Qow in small

"H. Mori, I. Oppenheim, and J. Ross, in Studies in Statistical
3fechalics, edited by I. DeBoer and G. E. Ublenbeck (Inter-
science Publishers, Inc. , New York, j.962), Vol. I."J.A. McLennan, in Advances in Chemical Physics, edited by
I. Prigogine (Interscience Publishers, Inc. , New York, j.963),
Vol. V.

'4 R. J. Rubin (to be published).
'5 S. Kashiwamura and E. Teramoto, Progr. Theoret. Phys.

(Kyoto) Suppl. 23, 207 (1962).
'6 R. J. Rubin, Phys. Rev. 131, 964 (1963).

isotopically disordered systems. In concluding this
section, let us note that the primary motivation of this
paper is not tha, t of fitting theory to experimental data;
rather, we seel. to expose a model whose solution may be
used to explore the theoretical problems of nonequi-
librium processes.

II. THERMAL CONDUCTIVITY

I.
II= hai (s)I,—at (s)a(s)+-', wads2'

by the transformation

(6)

I.
n; = LA—/2m, tc (s))'i')B, (s)a(s)+B;~(s)at (s)$ds (7)'

2~

and

p;= —'—L-,'hm; ()J"
2'

&&LB (s)a(s) B*(s)a'(s)3~—s (g)

Here the at(s) and a(s) are, respectively, creation and
destruction operators for phonons with wave number
s, cc(s) is the frequency of a phonon with wave number
s, 5 is Planck s constant divided by 2x, u is the equi-
librium lattice spacing, and L is the total length of the
chain which is to be made infinite in the final formulas.
The B,(s) satisfy the equation

P PP;, q/(m, mi)'"jB~(s) =cc'(s)B (s) (9)

and are normalized so that they satisfy the equation

Z»(s)B *(s')= (2 /L)~(s —'), (&o)

where 6 is the Dirac 6 function. For our model with
nearest-neighbor harmonic forces, P, ,~ is given:

ys, a= —y(b, , s i —2b; i+5, wi),
where y is the strength of the harmonic force.
"T. A. Bak, Phonons and Phonon Interactions (W. A. Benjamin

Co., Inc, , New York, 1964).
'8 All integrals over s are from —~/a to ~/a unless otherwise

noted.

In this section we use the Kubo formalism in order to
calculate the thermal conductivity of our model. Before
turning to this, however, we shall very brieQy outline
the transformation to the phonon representation. We
do this primarily to define the notation which we shall
use through the remainder of this paper.

The Hamiltonian for our system is given by

&=2 (Ps'//2~~)+2 2 4V, ~&s» (5)
j j,k

where p; is the momentum of particle j, m; its mass, u;
its displacement from equilibrium, and P, , i, the nearest-
neighbor harmonic-force constants. Equation (5) can
be reduced to the form""
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It might at first be surprising to see modes of well-
dedned wave vector employed in a defect calculation.
The justi6cation for this is the fact that for this model
one obtains eigenfunctions which are plane waves
outside of the region of impurities. Furthermore, these
plane waves may be put in one to one correspondence
with the modes of a simple Inonatomic chain as L
becomes infinite. An exception to this occurs when the
impurity mass is less than host mass. If the impurity
mass is less than the host mass, then, in addition to
those modes included in Eqs. (6)—(8), one obtains a
finite number of so-called localized modes for which s
is complex. The localized modes, however, do not con-
tribute to the heat current and are therefore neglected.
(For further discussion of these points, see Appendix A.)

Solving Eq. (9) for the 8&(s) is the crux of perform-
ing this transformation; and for this model, a procedure
which yields formally exact solutions to Eq. (9) can
be obtained. However, the discussion of this procedure
is relegated to an appendix in order not to detract from
the central purpose of this paper, which is the calcula-
tion of the thermal conductivity.

The Kubo expression for the thermal conductivity E
is given in this case by

and we have used

Ch e"'~" ~~~/~= 2 8

It is not necessary to write X= is (X+K*),but since
E is real we may do so, and this provides a convenient
expression for the rest of the paper.

We must now express the average heat-flux operator
J in terms of the p, and u;. This expression has been
derived by Hardy' and is given by

where H.c. stands for Hermitian conjugate,

Vt= s 2 tttt, tutu»
16

and
r, =j a+u;.

(19)

(20)

Using Eqs. (18)—(20) and the commutation relations

Lp/2a
J= p (I p, !2m;+Vt](p, /m, )

2Lp j=LO/2a

+P (ib) 'LPts/2m;, Vqg(r; —rp)+H. c.), (18)

Tp—00 I u;,pgj=iIM;, p, (21)

E= (I.p/T) dt dX(J(0)J(t+ikh))p, (12) the expression for the average heat-flux operator
becomes

where J is the local heat flux operator averaged over the
impurity bearing region of the chain of length Lp

I see Eq. (6.92) in Ref. 12j. Here t is a parameter with
units of time and the upper limit of the time integration
7'p can be taken as infinite since the entire system is
infinite, X is a parameter with units (energy) ' P= 1/kT,
where k is the Boltzmann constant, and

(J(0)J(t+9h))p

=Tr/J(0) J(t+iVi)e eH)/Tr[e ~Hj. (13)

The operator J(t+iXA) is given by

J(t+g,$) eiHtltte xHJ(0)exHe—iHt/—P (14)

From this point on we shall drop the argument of J(0).
It is to be understood that in subsequent equations J
is calculated at 1=0.

If we now write Eq. (12) in occupation-number reper-
sentation using Dirac bra and ket notation, where lt)
is a normalized eigenstate of the Hamiltonian with

energy E&, then, since X is real, we can write

where
X(tl Jlu&(ul Jlt)pi, (15)

pt —e tt&t/Q ie t—t&t-
l

(16)

rrLp E E-
E = ', (E+K*)= Q t't-'

tt2s t, n t't j

I0/2a

J= p (Lp, /2mt+ Vt](p,/m;)
2Lp j=L0/2a

+p tt'tp up(p /m )[(k j)a+ (u—p —u;)j+H.c.) . (22)

In terms of the 8; (s), J' is given by

ihya (L )' »ts~ tp(s') '"
tLq E2 J & ~ ( (s))'=
(»-i(s) &+i(s)) t'& -i*(s)

Ia(s)+I
km; i'" m;+i'"I E m; iits

Bt~i*(s) ».(s')-
at(s) a(s')—

1/2 .1/2mj+1 SSJ

»*(")
at (s') dsds'.

m'/'
(24)

"R.I. Hardy, Phys. Rev. 132, 168 (1963).

Equation (22) contains terms which are cubic in the
operators u; and p;, and one term which is quadratic.
At low temperatures, when the oscillations are of small
amplitude, the only significant contribution to J
comes from the quadratic term. "We thus approximate
the average heat-flux operator, with the help of Eq. (11)
for tftp,;, as

Lp/2a

J= (ya/2Lp) P (u; i—u;+i) (p;/m;) . (23)
j=Lp/2a
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If we view this as a transmission line problem, the
results given in Eqs. (34) are quite reasonable indeed.
Equations (34) state simply that if we have a wave of
complex amplitude I'(s) incident upon the scattering
region from the left, then a wave of complex amplitude
h(s) is reflected and a wave of amplitude unity is
transmitted. Equation (35) is simply the relationship
between reQection and transmission coeKcients,

The solutions given by Eqs. (34) do not include the
so-called localized modes for which s is complex. While
the procedure outlined in Appendix A can be used to
find the localized modes, we omit consideration of them
here since they will not contribute to the thermal con-
ductivity for this model. In this connection see the
article by Doll."

In Appendix 8 it is shown that

G'(s, s) = —(4Lo/mL)s~l" (s)
~

4 sin'sa
and

(4Lp)'
I
~(s) I'

G(s, —s)G(—s, s)= —
i

—
i

sin'su. (36)
&mLi ~1(s)~'

Using Eqs. (33), (35), and (36), and converting the
integral over s to an integral over x, we obtain

O'T / Lp x2eS

(37)

01

E=
27rhf' p

x2eS

gg—a(x) g dx)
(ez 1)s

where f'=E/Lp is the density of impurities taken over
the impurity bearing portion of the chain,

and
(x) = (1/R) ln

i
I'(s)

i
',

Q~ = 25(p/m)'"/k

(39)

(4o)

is the Debye 0 for our system. The factor e '*iR is

exactly the square of the transmission amplitude which
has been obtained by Rubin" using Monte Carlo
techniques. Thus one is guaranteed that Eq. (38) may
be evaluated using a computer even if analytic methods
fail.

Equation (38), the Kubo expression for the thermal
conductivity of our system, is the central result of this
paper, and we now turn to a discussion of this equation.
First, we observe that Eq. (38) yields a finite conduc-
tivity. This can be seen by noting from Eq. (35) that
~I'(s)

~

is never less than unity. For comparison, the
expression for the thermal conductivity, due only to
one-dimensional isotopic scattering, given by the method
leading to Eq. (4), is"""

8/T ~x
E= dx

2~fe'T p (e*—1)'
(41)

'OK. R. Allen, thesis, Georgia Institute of Technology, 1966
(unpublished) .

which diverges at its lower limit due to the pole in the
integrand at x=0. The integrand of Eq. (38) diverges
nowhere and hence E is always finite. This result is at
such variance with previously accepted thought that
we are obligated to explain it. In order to illuminate
this difference, we observe that the Kubo theory'
derives an expression for the heat current which may be
written

E(d—T/dx)+ (42)

where the dots represent terms proportional to higher
powers of the gradient which are assumed to be negli-
gibly small. It is importa, nt to realize that (dT/dx)
which appears in Eq. (42) is that which is initially
imposed on the system. It is assumed in the Kubo
formalism that the value of (dT/dx), which exists in
the sample after the steady state has been reached, is
not significantly different from the initial value. For
systems in which there is a reasonably strong scattering
mechanism, this assumption is probably quite good.
However, for a system in which there is no scattering
mechanism (i.e., a pure chain), the phonon gas does
not equilibrate. It is therefore not possible to uniquely
define a local temperature or local temperature gradient
within the central portion of the chain. Thus for systems
in which there is no scattering mechanism, the E given
by Eq. (38) is not the usual thermal conductivity.

Equation (38) can, however, still be used in conjunc-
tion with Eq. (42) to calculate the steady-state current
for the pure system in terms of the initially imposed
temperature difference between the two reservoirs.
For a system which contains no impurities, the usual
expressions for B,(s) are obtained from Eqs. (34) by
setting I'(s) = 1 and A(s) =0, and hence from Eq. (39),
u(x) =0. Since n(x) =0, then by using Eqs. (38) and
(42) one obtains

2+6 p

dx AT,
(e'—1)'

(43)

where c is the heat capacity per unit length and v is
the velocity of acoustic phonons. In the form given by
Eq. (44) the expression for J is transparent. It states
simply that in the absence of any scattering mechanism,
the current must ultimately be limited by the amount of
energy available for transport. Thus we see that even
for the pure chain J is finite. This point has been stressed
before by Erdos."

At temperatures which are so small that only those
phonons which suffer negligible impurity scattering are

2' Paul Krdos, Phys. Rev. 138, A1200 (1965).

where AT=Lp(dT/dx) is the initial temperature dif-
ference impressed across the length of chain Lp. At
low temperatures where the acoustic approximation is
valid, Eq. (43) can be written

(44)
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excited, Eq. (44) should be a, reasonable approximation
for chains which contain impurities. This situation is
similar to boundary scattering in the three-dimensional
crystal. '

One final remark about the pure chain result is in
order. The classical limit of Eq. (43) can be obtained
by allowing the temperature to approach infinity. If
this is done, Kq. (43) becomes

E= X2 dx.
Q~s (e~—1)s

"+.M. Pisscher (private cornnignicgtion).

(51)

Equation (45) is in agreement with a calculation inde-
pendently performed by Visscher. 22

For the impurity bearing chain one expects to be able
to define a local temperature. "Thus for chains which
contain impurities we shall discuss the energy transport
in terms of the thermal conductivity given by Eq. (38).
We shall do this even though in some cases E will be
length-dependent and hence not a thermal conductivity
in the usual sense. In fact we could have used Eq. (38)
to discuss the pure chain, in which case E depends
linearly upon the length Lo.

For the impurity bearing chain, an exact analytic
calculation of a(x) given by Eq. (39) is prohibitive. In
fact, it is dificult even to obtain reliable approximations
to a(x). In principle one can expand a(x) in a power
series in the concentration of impurities and thus calcu-
late it to any desired order in f We hav. e so far obtained
a controlled approximation for a (x) only to lowest order
in f for a chain in which the impurities are randomly
distributed. This result, while inadequate for a com-
plete analysis of Eq. (38), is nevertheless interesting.

To lowest order in the concentration of impurities,
a(x) is given by"

$2@2

a(x)=ln 1+
(0/T)' —x'

where
e= (1—M/m). (47)

It is only when the impurity scattering is very weak
(i.e., small values of x) that Eq. (46) is a reasonable
approximation to a(x); and hence we can write

a (x) = T'e'x'/0' (48)

Using Eq. (48) in Eq. (38) we obtain

k2T ~~~ X2e"
IC= R —&'2 ~2&&~2I0~2

2mhl' p

In order for Kq. (49) to be a reasonable approximation
to the thermal conductivity, the condition

2'seed/Q~s((1 (50)

must hold. When Eq. (50) is satisfied, Kq. (49) can be
written

Since it is only for small values of T that Eq. (50) can be
satisfied, the upper limit of the integral in Eq. (51)
can be set equal to infinity, which yields

P~R — 4~2Rq2
K= T 1—— T2

6kf 5Q'
(52)

The first term in Eq. (52) is simply the pure chain
result. The second term is a small correction due to
impurity scattering which diminishes E from the pure
chain result somewhat. While this approximation to the
impurity scattering has decreased the thermal con-
ductivity slightly from the pure chain result, since
R/f' =Lp, E is still length-dependent. Hence in this
approximation we have not obtained a thermal con-
ductivity in the normal sense.

We should remark at this point that Woll" has also
used the Kubo formalism to calculate the thermal con-
ductivity of an isotopically disordered chain correct to
lowest order in the concentration of impurities. There is
a slight but important difference between the model
which %oil has used and our model. In our model the
impurities are confined to a finite section of the chain
and hence there are a finite number of them. In Holi's
model the impurities are randomly distributed through-
out the entire chain and there are an infinite number of
them.

By examining Eq. (38) it is easily seen that

Re '*i~=A/e~i*i~=E/L1+a(x)R+ .]. (53)

As R tends to infinity it is clear that the term unity in
the denominator of Eq. (53) is negligible. Thus as E
tends to infinity,

Re i*i~=1/La(x)+ (54)

If we now use Eq. (48) for a(x), and retain only the
leading term in the denominator of Eq. (54), the thermal
conductivity becomes

/T ex
E=-

2rrhe't T

Equation (55) is the same divergent result which has
been obtained by Woll. It is also the same expression
given in Eq. (41).

Equation (55) is not correct for at least two reasons.
First, for very large values of R, a(x) is not correctly
given by Eq. (48). Second, the terms which were
neglected in the denominator of Kq. (54) are most
important. It is clear that in order to proceed with the
analysis of the Kubo thermal conductivity, for chains
which contain a large number of impurities and at all
but the very lowest temperatures, we must obtain more
reliable approximations to a(x) r

So far, we have not been able to obtain an analytic
approximation to a(x) for cases in which the tempera-
ture T and the total number of impurities R are too
large to satisfy Eq. (50). However, Rubin" has c|tlcu-
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for
n(x) = be'(T/0~)x

x(0.30/T.

(56)

(57)

While for values of x larger than those allowed by
Kq. (57) n(x) deviates significantly from the linear
function given by Eq. (56), these larger values of x
will not contribute significantly to the thermal con-
ductivity for our model and hence may be neglected.
The constant of proportionality b may be determined
from the numerical calculations, and we find

b= 0.10.

By inserting Eq. (56) into Eq. (38) we obtain

(58)

( Tq
— x'e*

E exp —be'~ —~Rx dx. (59)
k 0') (e~—1)'

For values of T and R which satisfy the relation

be'(T/0) R))1, (60)

the factor x'e~/(e* —1)' in Kq. (59) may be replaced by
unity. The integral in Eq. (59) can then be performed
and yields

E= O'0~/2m-bhi e' (61)

We notice immediately that E given by Eq. (61) is

independent of I.o. Hence, we have obtained a thermal
conductivity in the usual sense. Furthermore, it has
the same dependence upon i and e as that obtained by
other theories, ' "' and which seems to agree with
experiment. ~ Finally, we observe that X is independent
of the temperature. This temperature independence is
characteristic of cases in which the total scattering by
impurities is large, and hence the only significant con-
tribution to E comes from small values of x. This
may be understood from Kq. (38), where one observes
that the temperature factor of the integrand
$x'e*/(e*—1)'j tends to unity when x is small.

lated n(x) numerically for a number of isotopically
disordered chains, and his results allow us at least to
speculate on the form of E for the larger values of T
and R.

We are reduced to speculation, since Rubin's results
are not highly accurate at small values of x, which are
of paramont importance in calculating E. This is due
to the fact that there are significant Quctuations in the
numerical values of n(x) from one random distribution
of impurities to another for small values of x. This is
not surprising, since in the numerical calculations the
total number of impurities is limited to relatively small
values ( 10'). Since at small values of x the scattering
due to a single impurity is weak, this small number of
impurities is evidently not large enough to insure that
these random fluctuations in n(x) will be small. We
hope to improve this accuracy in the near future; for
the present, however, we note that Rubin's results are
at least consistent with n(x) given by

Kg i) ——43.2 W/cm K', (63)

which is certainly in order-of-magnitude agreement
with experiment.

IIL CONCLUSIONS

In this paper we have attempted a first-principles
calculation of the thermal conductivity due to isotopic
scattering using a model for which one may obtain
formally exact solutions to the equations of motion.
Our intent has been to illuminate and perhaps resolve
some of the problems in the theory of energy transport
in solids. Our calculations are relevant to experiment
only in so far as one may trust the assumption that
energy in a solid is transported along independent
one-dimensional chains.

We have obtained a finite conductivity for pure iso-

topic scattering by using the Kubo theory, which allows

for a smooth transition from energy transport as heat
(current proportional to gradient) to energy transport
as sound (current proportional to the temperature
difference). Moreover, we have suggested that previous
theory encounters di%culty precisely because it insists
that all energy Qow be proportional to the gradient.
While we are unable to evaluate the formal Kubo
expression for E exactly, we have reduced it to a form
amenable to Monte Carlo calculations of the type
performed by Rubin. '4

Recently there have been two attempts" '4 to calcu-
late the thermal conductivity due to isotopic scattering,
using a computer to solve the equations of motion.
Since it is diKcult to compare our calculations directly
with experiment, some type of computer validation
would be valuable. However, the calculations of Jackson
et at. and Payton et al. are for systems of microscopic
size (100—1000 atoms) upon which a relatively large
gradient has been imposed. The resulting large ampli-

tudes of motion force Jackson to include the cubic
terms in the current Eq. (22), and the high average

"E. A. Jackson, J. R. Pasta, and J. F. Waters, J. Comput.
Phys. (to be published).

'4 D. X. Payton, III, M. Rich, and W. M. Visscher, Phys. Rev.
160, 706 (1967),

Since our model is one-dimensional and does not
contain any anharmonic contributions, the extent to
which Eq. (61) is relevant to experiment is uncertain.
It is nevertheless interesting to calculate a value pre-
dicted by Eq. (61) for typical values of the parameters.
For this purpose we assume that a three-dimensional
crystal may be approximated by a set of parallel one-
dimensional chains having a cross-sectional diameter
given by the lattice spacing. We find that

J„n=+/e2= PQ~/2~bo2jzf e2 (62)

Some typical values for the parameters are b=0.10,
Q'=300'K, e=0.10, a=4X10 ' cm, and t'=8.5&&10'
cm ' (5% impurities). Using these values, Kq. (62)
yields
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temperature of the system forces Payton to consider
localized modes. Our calculations, on the other hand,
are for systems of macroscopic size, low average tem-
perature, and small gradient. As a consequence there is
no overlap between our theory and theirs. We have
attempted computer verification by solving Eq. (A9),
since this requires solving only E. equations, one for
each impurity atom, rather than one equation for every
atom. Weighting the energy in each reservoir at a
representative sampling of modes according to the Bose
distribution, we are able to calculate a E= J/(d—T/dx),
which is in order-of-magnitude agreement with Kq.
(38).However, this method requires that one introduce
a low frequency cutoff, since the impurity scattering at
low frequencies is insufhcient to yield the low-frequency
energy difference between the reservoirs. As a conse-
quelice, our computer studies of thermal conductivity
are inconclusive.
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APPEND&X A

The central problem of this appendix is to find the
solutions to Eq. (9). If we define the function C;(s)
so that

8; (s) =m, '12C;(s), (A1)

and recall that our model is one of nearest-neighbor
harmonic forces with P;,& given by Eq. (11), then
Eq. (9) reduces to

P2y m;oF(—s)jC;(s) =pl C,~i(s)+Ci—a(s)g. (A2)

and (A3b) are just the classical equations of motion
for the running wave modes of our system. Thus, think-
ing classically, if energy at a single frequency passes to
the right through the impurity bearing region of length

Lo, we anticipate that a plane wave would emerge from
the impurity region, propagating to the right without
further attenuation. Moreover, we would expect each
impurity atom to reQect energy back to the left. Hence
we anticipate finding a certain number of standing
waves, in the pure regions between impurities
n„&j&e„+&,which decreases as r increases. With these
intuitive arguments as prolog, we seek a solution to
Eqs. (A3a) and (A3b) of the form

C, ( )=f( )(e'' + p A (s) sinl (j—e)sa]}, (A4)

where j lies in the interval e„&j&er+~ on the under-

standing that the labels n~ and eg+~ denote minus and

plus in6nity, respectively, where s&0 since the wave is
traveling to the right, where f(s) is the pure running
wave amplitude, and where the f(s)Ai(s) are standing
wave amplitudes.

Substituting Eq. (A4) into Eq. (A3), we obtain the
dispersion equation

~'(s) =4(y/m) sin'(-,'sa) . (A5)

p (5„ i+2p(s) sinL(e, —ei)sa)}Hi(s) =—p(~)e'""",
l=r (A6)

Notice that Eq. (A5) is the dispersion equation for the
pure chain. This point will be discussed later.

Substituting Eq. (A4) into Eq. (A3), we obtain

In Eq. (A2) we now require that all m;= m except for
an integer number E. of atoms which have a mass 3f
and which lie somewhere in the interior of a region of
length Io. The atoms are labeled consecutively with the
integer index j, increasing from left to right. The E
atoms of mass 3I each bear an integer label j=e„,where
e~&e2& . &eg. We shall ultimately assume that the
atoms of mass M are randomly positioned within Lo,
but we do not need this assumption in formally solving
Eq. (A2). Equation (A2) may then be written as

where

and
p(s) = e tan lksal

e=1 —(m/m).

r. L., (~)~i(e) =—2P(e)e'""'

where Lq, i(s) is the triangular matrix

py writing Fq. (A6) in the matrix form

(A7)

(AS)

(A9)

l 2~—~ (~)jC;(~) =vLC'+&(~)+C;-i(~)j (A3a)

for jQn„, and as

l:2v —~~'(&)jC~(&) =vrCJ+i(~)+Ci-i(e)3 (A3b)

for j=n„.
Equations (A3a) and (A3b) form a set of coupled,

second-order difference equations whose solution may
be obtained by straightforward, albeit tedious, methods.
However, in attempting to solve equations of this type,
it is customary to use one's physical intuition in order
to guess a form for the solution which bypasses much
of the algebraic labor. We first notice that Eqs. (A3a)

Li i(s) =5~ i+2p(s) sin(ei, —Ni)sa, k&l

L, , i(s) =0 otherwise, (A10)

one obtains the formal solution

Ai(s) = —2p(s) p cVi, i, (s)e'"", (A11)

where 3fi i,(s) is the matrix inverse to Li, i(s).
Equation (A11) can now be used to write Eq. (A4) as

C;(s)= f(s)/r„(s)e'&'~+A, (s)e '&"] (A12)—
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where where we have neglected terms of order 1/L. In the limit
I —+ ~ we can write

1',(s) =$1+ip(s) P g e-'" -tMi, i(s)e'"""j (A13)
2ir) a zi2a—~b(s s')-= —g e'i&*-"&'

'=I /2a

l~r+j. k=1

(,
A, (s) =—ip(s) p p e'"" Mi, i(s)e'"" . (A14)

l~r+1 k=1 Hence, Eq. jioj is satisfied if

(A20)

Recall that e„&j&n„+g and s&0.
If s&0, a similar argument shows that C, (s) is still

given by Eq. (A12), where

I', (s) = f1+ip(s) p p e-'"i-Mi
1, (s)e'"&-g (A15)

3=1 k=1

&„(s)= ip(s—) p Q e'" iM pi(s)e' &' (A16.)

It can also be shown that

Mi, ,(s) =M, , i(—s). (A17)

We must now choose f(s) so that the normahzation
condition, Eq. (10), is satisfied. For this purpose, as
well as for the calculation of the thermal conductivity,
we need the B,(s) only in the pure in6nite regions at
either side of the impurity bearing regions of the chain,
By using Kq. (A1) and Kqs. (A12)—(A17), we can write

B.(s) ml/2f (s)LI'(s) ei jss+ g(s)e—ijea)

j&ni (A18a)

mI.
I f(s) I'- L1+ ll'(s) I'+ Ii~(s) I'j=1 (A»)

28

1+I~()I'= ll ()I'.

Equation (A22) thus becomes

f(s) = (a/ml. }'i'
I
I'(s)

I

Finally we can write Eqs. (A18a)—(A18d) as

(A23)

(A24)

f(s) = (2a/ml )'"L1+Ii (s) I'+
I S(s) I'j '" (A22)

It is clear that negligible error has been introduced by
approximating certain of the B,(s). Equation (A19)
is of order I. and diRers from the true value of
P;B;(s)B,*(s) only by a fixed finite number. Hence as
I.~ ~, this finite correction is negligible.

The expression for f(s) given by Eq. (A22) can be
simplified somewhat. By using Eq. (9) it can be shown
that if s=s' or s= —s', the combination in brackets in
Eq. (26) is independent of j.By evaluating that com-
bination when s=s in each of the two pure infinite
regions of the chain, one obtains

B (s)=m''f( )se'&'

B;( s) =m'"f(s)e '—&'

j&nii (A18b)
B,(s) = (a/1. )'1'll'(s)

I

—'I I'(s)e'i-+h(s)e —'~' j,
j&n i (A25a)

(A»c) B,(s) = (a/I)'"Ir(s)
I
""", j&nR (A25b)

B;(—) =m'"f(s)LI'(s)e-"' —LV(s)e"'j

j &nii (A18d)

where s) 0, and I'(s) and h(s), are obtained from Eqs.
(A13) and (A14), with r=R.

Since the B,(s) satisfy Eq. (9), it is only when
co(s)=co(s') for, from Eq. (AS), when s=s' or s= —s'j
that Eq. (10) is nonzero. We shall first choose f(s)
so that Eq. (10) is satisfied when s=s', and then show
that Eq. (10) is zero for s= —s'. We shall illustrate the
calculation of f(s) for the case in which s&0.

For j&0 we use Eq. (A18a) for B,(s), and for j&0
we use Kq. (A18b) for B;(s). We thus approximate a
finite number of the B;(s).As we will show, this approxi-
mation causes a negligible error. The left-hand side of
Eq. (10) thus becomes

Lj2a

»(s) Bs*(s)

mI.
= lf(s) I'-- Ll+ li'(s) I'+

I
~(s) I'3, (A19)

2Q

B(—)=(/~)'"I~() I

'

B;(—s) = (a/I. )' 'I I'(s) I-'I I'(s)e-' "—LV(s)e" j
j&nii (A25d)

where s)0. By direct substitution of Kqs. (A25a)—
(A25d), it follows that P~B; (s)B,"( s) =0. —

Before leaving this appendix, Eq. (A5) requires
some further discussion. Normally, one would expect to
have to solve a secular equation for the eigenfrequencies
~(s). Fortunately, for this model (i.e., a finite number
of impurities in an infinite chain) it is not necessary to
do so. Since the density of impurities taken over the
entire infinite chain is zero, the dispersion relation is
simply that for the pure chain. This can be shown by
making use of a theorem due to Lord Rayleigh, 5 which
has been stated by Maradudin" as: "If in a dynamical
system composed of an array of masses coupled to each
other by Hookeian springs a single mass is reduced by
M, all frequencies are unchanged or increased by no
more than the distance to the next unperturbed fry-

' l.ord Rayleigh, The Theory of Sound (Dover Pub/ic@tions,
Inc. , New York, 1945), Vol. I, Chap. IV.
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quency. An increase of a single mass by Bf leaves
the frequencies unchanged or reduces them by amounts
no greater than the distance to the next unperturbed
frequency. "

As I.~ ~, the dispersion relation for the pure chain
becomes continuous. Thus, by successive application of
Rayleigh's theorem, it is seen that if M) m the intro-
duction of a finite number E. of impurities into an
infinite pure chain will not produce a finite shift in the
frequencies. The same is true if M&m, except for a
finite number E of frequencies which can shift to values
greater than 2(y/m)'". These out-of-band frequencies
correspond to complex values of s, and are referred to
as localized modes.

The procedure outlined here can be altered slightly
to account for the localized modes. At low tempera-
tures, however, they will not contribute to the thermal
conductivity and we therefore neglect them.

APPENDIX B

From Eq. (26) we have

I4i2. -B; g*(s) B;+,*(s)-B;(s)
G(s,s) =

I,p/2g yg . 1/2 yg. 1/2 ~.l/2

B;,(s) B; (s-) B, (s)
(81)

1/2 . 1/2 .1/2mj 1 Slj+] 1'
As noted in Appendix A, it can be shown that the com-
bination over which the sum is performed is independent
of j.Thus, the expression for G(s,s) can be written as

(, ) = ( 0/ )(L; x*(s)—B;+)*(s)jB,(s)

-l:B;- ()-B;.())B; ()), (82)

where j corresponds to a particle in either of the two
pure regions of the chain.

The expression for G(s,s), where s&0, can be calcu-
lated most easily by choosing j in the pure region at the
right of the impurity bearing region. The use of Eq.
(A25b) in Eq. (82) yields

G(s,s) = i(4LO/mL)
l
I'(s)

l

' sinsa, (83)

where s)0. The same calculation for s&0 with j
chosen in the pure region to the left of the impurity
bearing region also yields

G(s,s) =4(4L,/mL) l
I'(s) l-'sins~. (84)

Notice that Eqs. (83) and (84) are antisymmetric
about s=0. From Eqs. (83) and (84) we 6nd

G'(s, s) = —(4LO/mL)'l I'(s)
l

4 sin'sa (85)

for all values of s.
In the same way that Eq. (82) was derived for

G(s,s), it can be shown that

G(s s) (Lo/~o)(l Bj—& (s) Bj+& (s)jB'( s)
—

l B —(—)—B (—)jB"( )), (86)

where j is in either of the two pure regions of the chain.
If j is chosen in the pure region at the right, then by
using Eqs. (A25b) and (A25d) for B;(s) and B;(—s)
in Eq. (86), we obtain

G(s, —s) = i (4L0/mL—) l
I'(s) l-'6'(s) sinsu, (87)

where s)0.
It is the product G(s, —s)(G(—s, s) rather than

G(s, —s) itself which is of interest here. By noting from
Eq. (86) that G( —s, s) = —G*(s, —s), it is easy to see
that

G(s, —s)G(—s, s)
= —(4LO//rNL)'ll" (s) l~l6(s) l2sin'sa, (88)

where s)0.
Notice that G(s, —s)G(—s, s) is symmetric about

s=0, thus Eq. (88) holds for s&0 as well.


