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pg is independent of 7'. Although the glasses have
electrical conductivities which are many orders of
magnitude smaller than in T1-Te, and their activation
energies are much larger, pg is in the same range for
both: 0.1-0.5 cm?/V sec. This suggests that the elec-
tronic behavior in liquid Tl-Te and in the chalcogenide
glasses is similar in this respect, and a common ex-
planation may be expected. It would seem that the
anomalous situation is closely connected with the atomic
disorder which exists in both systems.

At these compositions (31< X <60 at.9, T1), analysis
of S and ¢ indicates that an activation energy E,=0.25
eV occurs in the transport behavior. This has been
interpreted by Cutler and Mallon? in terms of excitation
of deep acceptor states. An alternative hypothesis is
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that it reflects a hopping process. The small-polaron
mechanism for hopping has been studied by Holstein
and Friedman and others,*° and there has been dis-
agreement between them on whether the Hall mobility
is independent of T, as claimed by Schnakenberg,! or
whether it has an activation energy.®® Holstein and
Friedman claim that § of the activation energy in o
should appear in ug. If they are correct, our results elimi-
nate the possibility of small polaron hopping in TI-Te,
although other hopping mechanisms are conceivable.

8 T. Holstein and L. Friedman, Phys. Rev. 165, 1019 (1968).

9 Yu. A. Firsov, Fiz. Tverd. Tela 5, 2149 (1963) [ English transl.:
Soviet Phys.—Solid State 5, 1566 (1964)].

10 J, Schnakenberg, Z. Physik 185, 123 (1965).
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An important portion of the vibrational spectrum of an infinite disordered solid is attributed to ‘“localized”
vibrations. These can be investigated in detail through the study of the vibrations of very small solids: It is
argued that any vibrational mode found in a small solid that has the property that atomic amplitudes are
very small near the boundary will also be found, with at most slight perturbation, in a large solid. It is ob-
served that such modes appear whenever a group containing light atoms occurs and is bounded by a suffi-
cient number of heavy atoms; the number that is “sufficient” depends somewhat on force model, mass ratio,
and dimensionality, but is generally small. The density of these local modes in the spectrum of the large
crystal can then be computed from the probability of the occurrence in the large crystal of the configuration
of masses that produces it. For the case of the one-dimensional binary alloy, the major features of the earlier
direct numerical computation (Dean) can be reproduced and understood by this simple method. Similar
features (peaks) are predicted for two- and three-dimensional structures, but their intensity compared to the
continuous part of the spectrum is shown to be smaller.

1. INTRODUCTION

T seems now to be commonly agreed that vibrational
spectra of disordered solids are, at least in one di-

dimension, irregular, rather than smooth functions. For
ordered solids, this fact first obtruded itself when model
calculations in two dimensions'™® and three dimen-
sions®* became feasible; van Hove® explained the ever-
present singularities in the vibration spectra by tracing
them to critical points (maxima, minima, or saddle
points) of the frequency w in momentum space {k},
and showed that a certain minimal number of the latter
would necessarily appear in any function that, like
w(k), is (multiply) periodic. This periodicity of w in k
is, in turn, a consequence of the periodicity of the mass
distribution of an ordered lattice in real space; van

1 M. Smollett, Proc. Phys. Soc. (London) A65, 109 (1952).

2E. W. Montroll, J. Chem. Phys. 15, 575 (1947).

3W. A. Bowers and H. B. Rosenstock, J. Chem. Phys. 18,
1056 (1950); 21, 1607 (1953).

4 G. F. Newell, J. Chem. Phys. 21, 1977 (1953).
5 L. van Hove, Phys. Rev. 89, 1189 (1953).

Hove had thus traced the observed singularities in the
frequency spectra to the fact that the lattice under
consideration is ordered.

The preceding argument does not apply to disordered
structures; it does not suggest that the vibrational
spectra of disordered solids should be anything but
smooth. Therefore, the first indication by direct nu-
merical calculation® that the spectra of disordered
crystals were also highly irregular caused renewed
surprise. One-dimensional lattices comsisting of dis-
ordered binary mixtures’ were shown to contain many
sharp peaks. The explanation now generally accepted®

6 P. Dean, Proc. Roy. Soc. (London) A254, 507 (1960).

7By this we mean a one-dimensional chain of atoms of two
different masses with the same interaction between all nearest
neighbors, regardless of mass. Plausible models for a one-dimen-
sional glass, obtained by letting the force constants vary in a
continuous way, do not provide vibrational spectra with the same
structure of peaks; see P. Dean, Proc. Phys. Soc. (London) 84,
727 (1964).

8P. Dean and M. D. Bacon, Proc. Phys. Soc. (London) 81,
642 (1963).
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is that the peaks are due to “localized vibrations” of
certain groups of atoms. A “group” of atoms, such as L
or LHL in a long chain of light atoms L and heavy ones
H, is alleged to produce a localized vibration near its
location; and the peak at that frequency in the vibra-
tional spectrum is attributed to the repeated occurrence
of that group.

For the time being, let us accept this explanation of
“localized” vibrations for the peak structure of the
vibrational spectra of one-dimensional disordered lat-
tices. (Later we shall actually present a proof of it.)
The calculations that follow are based almost entirely
on one further simple thought: If the vibrations of
interest are indeed localized—that is to say, if for cer-
tain normal vibrations the atomic displacements are
considerable only within a small region R, but negligibly
small outside it—then all the calculations needed for
that vibration should be obtainable from studying that
small region R alone. The many atoms outside that
region can be ignored, for they can have no effect if
they remain practically at rest; they might as well be
replaced by a fixed wall. Thus, if localized vibrations
exist in a large crystal, they can be completely analyzed
by the study of a much smaller crystal, of the size of R,
with fixed boundary conditions. In the past, convincing
studies of one-dimensional lattice dynamics have in-
volved chains of many thousands of atoms, but region
R need, as we shall see, often involve only five or ten
atoms. We can therefore expect to attain considerable
simplification as well as clarification from an approach
that starts with configurations involving small groups
of atoms.

A more useful statement is obtained if the above
argument is inverted: If, for a small crystal of size R
and with fixed boundary conditions, a mode is found to
exist such that the atoms adjacent to the boundary
have (practically) zero displacement, then that same
mode will also exist in a large enough crystal. (The
atoms in R that do the moving “do not know” whether
beyond their stationary neighbors there is a stationary
wall or an array of many more stationary atoms.) All
that is necessary is that the crystal be large enough to
contain somewhere a region with the same configuration
of atomic masses as in R. In the usual limit of infinite-
size crystals, this is not a restriction at all; to the con-
trary, it enables us to calculate the probability of the
configuration R occurring, and from this the frequency
of occurrence of the localized mode under discussion
follows directly. By considering successively all “small”
disordered crystals of the size of R, we can find not
only all the localized frequencies, but also their density
in the frequency distribution. That is, we should be
able to calculate not only the position of all the peaks
in the frequency distribution, but also their heights,
i.e., all the major features of the frequency distribution
itself.

We have stated the preceding arguments in terms of
one-dimensional (1D) crystals with nearest-neighbor
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Fi1c. 1. Model of 1D disordered lattice. @, light mass; O,
heavy mass.

interaction only. This the reader will recognize as a
rhetorical convenience rather than an essential restric-
tion. Consider a small 3D crystal, size R, with inter-
action extending to kth neighbors, and suppose we find
a mode of vibration in which all substantial motion is
confined to the interior and all the kth neighbors of
boundary atoms are (practically) motionless. Then
that same mode will occur in the corresponding infinite
crystal, and its frequency of occurrence will be the fre-
quency of occurrence of the particular configuration R.
The argument is valid for any dimension, and worthless
only when forces of infinite range exist. The present
method should thus enable us to study the motion of
two- and three-dimensional crystals as well.

In Sec. 2, we study the 1D binary disordered lattice.
Some of the localized frequencies and normal modes
can actually be obtained analytically (Sec. 2 A), and
many others numerically, but with little difficulty in
view of the small required size of the crystals (Sec. 2 B).
The results are then systematized (Sec. 2 C) to give a
reasonable picture of the frequency distribution. In
Sec. 3, the analogous model of a two-dimensional crystal
is treated. Here, the numerical work becomes appreci-
able even though it involves only ‘“‘small” crystals,
and the “local” modes appear to make only a smaller
contribution to the total frequency distribution. In
Sec. 4, the three-dimensional structure is discussed
briefly. Section 5 presents a summary and suggestions
for further work.

2. ONE-DIMENSIONAL SOLIDS

Consider a linear chain of lattice sites / on which
particles of mass m; are located. Let the force constants
between atoms /—1 and / be %;, and the instantaneous
displacement of m; be u; (see Fig. 1). After introducing
harmonic time dependence, d?/df— —w? the New-
tonian equation of motion for the /th particle becomes

ki(sr1— )+l (w1 —u) = —mpduy, 1
where
A=w?. 2)

We will generally confine ourselves to the situation
where all force constants are the same; hence we will
set all = 1. Our model is thus a reasonable first approxi-
mation to alloys, but not to glasses.” This is an im-
portant restriction physically; its relaxation would lead
to very different mathematical results as well. We also
restrict the m,; to two different values. This is a less
significant restriction, made for convenience only, and
its relaxation will not qualitatively change our results.
Equation (1) can now be written as

1= (2—mNt—tp-1. 3
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For an infinite chain, these equations suffice as they
stand. For a finite chain of N atoms there will be N
such equations, but they contain N4-2 variables u;.
The extra two #’s, which are #o and %y, can be deter-
mined by the boundary conditions (b.c.) desired. If we
want fixed ends, we insert

uo=u1v+1=0 (ﬁxed b.C.), (4)

whereas free boundary conditions are attained by
setting

uo=u; and wuypi=uy (freeb.c.), (5)

thereby making sure that #, exerts no force on #;, thus
allowing it to move as if nothing were to its left, and
similarly for .

A. Analytical Solutions

For certain mass configurations, the system (3)-(4)
or (3)-(5) can be solved exactly. This is mostly true
for infinitely long monatomic chains (with only few
impurities), and in that sense this subsection represents
a digression from our plans, which call for the study of
modes in very short chains. The main use of this work
is to provide limiting values for the frequencies for some
of the groups that we shall treat later. Many defect
modes in infinite chains have been previously studied
by Bacon, Dean, and Martin.®

Consider first a single impurity of mass m (at site
zero) in an infinite chain (from — « to «) of atoms of
mass M. Equation (3) then becomes

Q2—=Nw=ur_1+uy, forall /0
(2—77\)u0= u1+u_.1 .
Here X= MM\, y=m/M. For a solution corresponding to

e
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F1c. 2. Localized vibrations of groups of atoms of mass 1 (@)
in an infinite chain of masses 2 (O) or 3 ((J).

w?=2.414 "In" GROUP IN 2-CHAIN

9 M. D. Bacon, P. Dean, and J. L. Martin, Proc. Phys. Soc.
(London) 80, 513 (1962).
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a localized vibration, one tries'® ;=AY i.e., requiring
that the ratio of displacement of neighbors be a con-
stant 4. One finds by substituting that

A=4[My(2-7)]7,
A=—v/(2—7).

This is physically acceptable as a localized solution only
if A<1, or, by (7b), y<1,m<M. Thus a single im-
purity in a long monatomic chain is seen to have a
localized vibration only if the impurity is a light one,
a well-known result; localization increases with mass
difference. For an impurity of mass 1 in a chain of
masses 2, this mode is illustrated! in Fig. 2(a).

The local modes for two adjacent impurities in a
long chain are found by the same method. It is here
convenient to renumber the sites so as to omit site
zero, and to put the impurities at sites —1 and +1,
thus getting for (3)

Q—=Nwm=wur1+uy,
QC=yNm=u_1tuz,

and seek even solutions, u;=A!4-1, Substitution into
(8) yields

()

1] %1
|7] ®)

A=[M~(1 -v)]7,

A=—v/(1—7),
and tells us that a localized even mode does indeed
exist for this configuration if y<} (otherwise 4 is

greater than 1 and the displacements build up as we
move away from the center). Figure 2(b) shows this

)

TaBLE I. Some simple localized modes of impurity groups in
an infinite chain of heavy atoms. H =heavy, L=light; y=ratio
of light to heavy mass.

Impurity
group in Parity Ratio of displace- Physical
infinite of ments of neigh-  restric-
chain  mode mw? boring atoms tion
L even 4/(2—7) v/ (2—7) v<1
LL even 1/(1—v) v/ (1= v<3%
3—dy+O—8) 3—2y— (98"
LL odd v<9/8
2(1—-v) 21—y
HEL odd 14(-yn 1-(-y7r o ysi

10 H, B. Rosenstock and C. C. Klick, Phys. Rev. 119, 1198
1960).
( 11 Two notes concerning the tables and figures: The displace-
ments % in a 1D crystal should logically be interpreted as displace-
ments in the direction defined by the crystal itself (although the
equations of motion for perpendicular displacements would actu-
ally be the same). Figures 2-4 should therefore be viewed as
plots of the amplitudes #; versus ! rather than as direct pictures
of the vibrating solid. The terms “even” and ‘“odd” have the
usual meaning, #;=u_; or u;= —u_y, respectively. However, this
does not coincide with “symmetric’ and “antisymmetric” as
commonly used in the description of the vibrations of linear mole-
cules in the study of infrared spectra [see G. Herzberg, Infrared
and Raman Spectra of Polyatomic Molecules (D. Van Nostrand,
Inc., New York, 1945), pp. 66, 83].
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TasLE II. Quasilocalized modes in very short chains with fixed boundary conditions.

Ratio of displacements of

Chain Parity Mw? neighboring atoms

HLH even I+y+ (14D —v/[1=v+ (1++)12]
HLLH even &) {1+2y+[1+4 (27)*]2} —2v/{1=2v+[1+ (2v)?]"2%}
HLLH odd $03+2v+ (9—8y+49)12] —2v/[3—2y+ (9—8y+4y)V2]

mode for y=4%. An odd solution for the same configura-
tion is obtained by trying #;=A"" for />0 and u_;
= —u; in (8). This gives

A= QB—4y+s)/[2My(1—7)],
A4=@ -2v—9)/[2(1—y)], with s=(9—8)",

and represents a physically acceptable solution (|4 |
<1) for y<9/8. See Fig. 2(c).

For three adjacent light atoms in the heavy chain, an
odd mode, #o=0, #;=u_,= A" is found by a simple
method to be

(10)

A=C1+(1=2)")/ My,
A=1= (=),

valid for all y<£. The fact that the center atom in this
mode is at rest makes its mass irrelevant; it follows
that this mode will exist for the LHL impurity group
in the infinite H chain as well as for the LLL impurity
group. An even mode which also exists requires the
solution of a fifth-order algebraic equation for detailed
investigations.

All these modes are summarized in Table I and ex-
hibited in Fig. 2. Related calculations have been pub-
lished by Dean.!?

The other limit in which modes can be calculated
exactly is that of a very short chain. The “chain” con-
sisting of three atoms HLH with fixed boundary condi-
tions gives, by direct solution of the determinantal
equation resulting from Eqs. (3) and (4), three modes,
one of which has a somewhat ““localized” appearance,

A=14y"14(1+y2)42

with displacement ratio #i/#s=[1—y"1— (14y~H)12].
For 2-1-2 masses, that ratio becomes —1/3.263. For
HLLH we find a well-localized odd mode,

X=1+En+s, d=1-@n)—7,

where s'=[1—{4/(2v)}+{9/(2y)?} J*2. For y=3, the
displacement ratio becomes %1/u#2=4.45. The even mode
for this configuration has a displacement ratio of only
1.41 for the mass ratio 3 and can therefore hardly be
called “localized” in this case; for y=1% the displacement
ratio is —2.30. These numbers are also summarized!
in Table II.

(11)

B. Short Chains

We have reasoned that if a certain mode (defined by
its vibrational frequencies and atomic amplitudes) is
found in a short chain and has the property of being

2 P. Dean, Proc. Phys. Soc. (London) 90, 479 (1967).

“localized” in the sense that the atoms near all its
boundaries are practically undisplaced, then that same
mode will also be found in any chain long enough to
contain that particular short configuration somewhere.
This now leads us to search numerically for modes in
short chains. We use a method of solving Egs. (3) and
(4) that gives both eigenvalues and eigenvectors without
the usual solution of a determinantal equation,’® as
follows. Use the boundary condition #,=0, set #;=1
(arbitrary scaling), pick some X\, use Eq. (3) succes-
sively to compute us, us, - -+, %n, #ny1. The question
now is whether uyy; turns out to be zero as according
to Eq. (4) it should be, or not. If it is, then the X that
we have chosen is an eigenvalue and the computed #’s
are eigenvectors; if it is not, then we discard the #’s
and try another A\. (For an arbitrarily chosen \, #y41
will, of course, rarely turn out to be exactly zero; but
in the actual computation, one can utilize the fact that
#n41 1s a continuous function of \; therefore an eigen-
value is known to lie between any two trial \’s for which
the corresponding #xy1’s have different signs.)

We begin with the five-atom chain. Let us fix the
masses 7; as 1 and 2 and compute the five eigenvalues,
each with five eigenvector components, for each of the
25=32 possible chains. If we arbitrarily define a mode
as “local” if the largest atomic displacements exceed
both #; and #; by a factor of 4, then we find four modes
out of the total of 160 that meet our criterion; they are
exhibited in Table III. The selection of any mode as
“local” in a chain whose total length is only five atoms
may seem like stretching the concept beyond its reason-
able limit. Yet there are things to be learned from
Table III. First, local modes arise from islands of light
atoms embedded in a heavy neighborhood; in this case,
the groups are {1}, {11}, and {111} embedded among
mass-2 atoms. The great similarity between line 3 and
line 4 confirms this particularly well. Second, the simi-

TasBLE IIL. The four normal modes that are “localized” that were
found among the 160 modes of the binary chains of five atoms.

Mass

Mode configu- Squared
number ration frequency Atomic displacements
1 22122 2.6617 (1, —3.32,10.04, —3.32, 1)
2 21121 3.216 (1, —4.49, 4.60, —1.24, 1)
3 21122 3.230 (1, —4.46, 4.48, —1.05, 0.23)
4 21112 3.517 1, —5.03, 6.63, —5.03, 1)

( 13 H; B. Rosenstock and R. E. McGill, J. Math. Phys. 3, 200
1962).
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TaBLE IV. Frequencies of some localized modes of groups containing light atoms, in chains of heavy
atoms of various lengths. Light mass 1, heavy mass 2.

Local Squared
group Parity Chain frequency Remarks
1 even 22122 2.6617 (=8/3)
28 123 2.6661
2% 12% 2.6667
11 odd 221122 3.2355
28 1123 3.236
2% 112% 3.23607 (=1++/5)
1 even (not localized)
111 even 22 13 22 3.52119
23 13 238 3.521372
26 13 28 3.521379
111 odd 22 13 22 2.406
28 13 28 2.4128
2 132 24142 (=1+V2)
121 even 22 121 22 2.8378
22 121 3 2.8391
2¢ 121 28 2.8392
121 odd 28 121 28 2.4128 same as odd mode of 111
1111 even 22 14 22 2.8378
28 14 23 2.8391
24 14 2¢ 2.8392
1111 odd 22 14 22 3.67506
28 14 28 3.67513
26 14 28 3.67514
1221 even 24 1221 2¢ 2.592 combination of two {1} groups
1221 odd 2¢ 1221 2¢ 2.726
1211 2¢ 1211 2¢ 3.258 perturbation of {11} mode
1211 24 1211 2¢ 2.623 perturbation of {1} mode

larity between the local modes of the five-chain and
those found in Sec. 2 A above for both the limit of even
shorter chains and the limit of infinitely long chains is
striking. For the 1-island in the chain of three atoms
we found a frequency of 2.618, and in the infinite chain,
2.666- - - . Here in the five-chain, 2.662 is intermediate,
as expected, but already very close—within three
parts in 1000—to the infinite chain. This last fact
confirms the utility of studying small, even very small,
chains to obtain information about local modes in long
ones. Perhaps we should add explicitly that this state-
ment is true for local modes only; the majority of the
modes in the five-atom chain, which are not local in
character, bear no resemblance to modes found in
longer chains. The reader can make similar comparisons
for the 11- and the 111-islands.

This suggests that the local modes produced by each
island be next investigated in chains of heavy atoms of
various lengths. The results for masses of 2 and 1 are
shown in Table IV and, for masses of 3 and 1, more
concisely, in Table V. Only the eigenvalues and the
parity of the modes are listed. The form of the modes
(that is, the atomic displacements) are shown pictorially
in Fig. 3 for selected cases. In both crystals, A=4 (the

maximum frequency of the infinite monatomic chain of
atoms of mass 1) is an upper limit on the possible
frequencies.

The main qualitative observation from these two
figures and tables is confirmation of the localized nature
of the modes about groups that consist in part of light
atoms and are surrounded by heavy ones. Heavy atoms
are symbolized by open circles, light ones by dots. In
Fig. 3, the environment is three heavy atoms on the
left and three on the right ; the local groups shown are L
(one even mode), LLL (one even and one odd mode),
and LHL (one even and one odd mode, the latter
identical to the odd mode of LLL). Figure 4 repeatedly
shows the same mode of one particular group—the LL
group—in three different environments; it illustrates
clearly that neither the frequency nor the atomic dis-
placements are substantially affected by the environ-
ment, provided only that the local group is bounded on
each side by at least two heavy atoms. (On the other
hand, when the embedding environment is changed so
as to contain fewer than two heavy atoms on one
side, the vibrational mode generally changes beyond
recognition.)
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TaBLE V. Frequencies of localized modes of groups containing
light atoms, in chains of heavy atoms of verious lengths. Light
mass 1, heavy mass 3.

VIBRATIONS OF DISORDERED SOLIDS

Local Squared
group Parity Chain frequency
1 even 321 3 2.3995
3 1 3 2.4000
32 1 3 24
11 odd 32 11 3 3.13742
3 11 3 3.13746
11 even 3 11 3 1.4869
33 11 38 1.497
3° 11 3= 1.5
111 even 33 13 3 3.4757
odd 3 13 33 2.2243
131 odd 38 131 33 2.2243
even 33 131 33 2.5399
1 odd 3¢ 1t 3 3.6505
even 3 14 3 2.7399

Some further qualitative comments on the tables and
figures follow: The degeneracy of the odd modes of
LLL and LHL is significant (the central atom is at
rest; hence its mass does not matter), but that between
the even modes of LHL and LLLL is accidental (a
consequence of the choice of 3 for the mass ratio L/H :
Two neighboring atoms which are displaced the same
amount—as the central ones will be in any even mode—
exert no force on each other, and hence behave exactly
as if they were rigidly connected, or as if they consisted

w?=2.6661 "I" GROUP
0, 0\
—" \ / o—1
o o
w?=35213 "In" GROUP
0 o,
*_oho/ \o_’_o____{

w?=2.4128 "11"oR "i21"

\ o  GROUP
}\o/"\ @\ \o/"\l
) "121" 6GROUP

No—o—i

w? = 2.8392

}'—°\o/°

F16. 3. Local modes of groups of light atoms surrounded by three
heavy atoms on each side. @, mass 1; O, mass 2.
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F1G. 4. The odd local mode of two adjacent light atoms in various
environments. Mass 1, @ ; mass 2, O.

of one atom of twice the mass). The modes of the {121}
group can be interpreted as modes of each of the two
mass-1 atoms perturbed by the nearness of the other;
one looks like an odd, and the other like an even, linear
combination of the two—the former somewhat lower
(2.41), the latter somewhat higher (2.83), in frequency
than the unperturbed mode (2.67). Finally, we note
that the modes of groups consisting of light atoms ex-
clusively have frequencies only slightly dependent on
their environment (e.g., the highest mode of a mass-1
atom has a frequency of 3.67 in an environment of 2’s,
of 3.65 in an environment of 3’s). This, too, can be
thought of as a consequence of the localization itself.
If all atoms except for the local group are barely moving,
their mass cannot be of great import. This then suggests
the case of a binary crystal with infinite mass ratio,
which can be treated exactly, not only as the limit,
but also as an actual approximation for the calculation
of local modes for these particular groups. The fre-
quencies of the modes of N adjacent light atoms
(mass-1) embedded in an infinite chain of heavy ones are
in this approximation just those of the linear chain of
N atoms with fixed boundary conditions. Our numerical
experiments show that for mass ratios between 1 and
%, only the first few, if any, of these N modes are actu-
ally local in nature. It is then instructive to construct
Table VI, which shows the modes of groups of 1, 2, - - -,
atoms of mass 1 embedded in an infinite chain of mass
M>1 as a function of M. As expected, the infinite
chain is a fairly good approximation for those modes
that are most localized and highest in frequency.

1 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of
Lattice Dynamics in the Harmonic Approximation (Academic
Press Inc., New York, 1963), p. 192.
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TasLE VI. Modes of groups of light particles embedded in
infinitely long chains of heavy particles. Light mass, 1; heavy
mass, M (as shown). Abbreviations in last column: LL, lower
limit’ (monatomic lattice) ; ITA, analytical calculation in Sec. A;
N, numerical calculation; UL upper limit [Eq. (9)].

Squared
Chain Parity M frequency  Source
M® 1 M® odd 1 “4) LL
2 2.667 ITA
3 24 ITA
4 2.28 IIA
Y 2 UL
M® 11 M® odd 1 (4) LL
2 3.333 ITA
3 3.236 ITA
4 3.137 ITA
© 3 UL
even 1 4) LL
2 2) ITA
3 1.5 ITA
4 1.333 IIA
0 1 UL
M 13 M” even 1 €Y LL
2 3.545 N
3 3.475 N
4 3.457 N
® 3.414 UL
odd 1 4) LL
2 2.414 ITA
3 2.225 IIA
4 2.155 ITA
© 2 UL

C. Density of Frequencies

We have established the approximate rule that a
group containing / light and % heavy atoms will produce
local modes if and only if it is bounded by two or more
heavy atoms at each end. If the concentration of heavy
atoms is C, then the frequency of occurrence of such a
configuration will be C*+4(1—C)%, and this will also be
the frequency of occurrence of each of the local normal
modes of that group. This enables us to estimate the
frequency spectrum of a binary disordered lattice as a
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: | |
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F1c. 5. Density of the most important modes of the 1D binary
alloy with masses 1 and 2, shown for three concentrations C of
heavy masses.
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function of both mass ratio and concentration. The
results are shown in Fig. 5 for the example of mass
ratio 1:2 and for three different concentrations. Only
the higher ranges of frequency (in the case of 1:2 mass
ratio, 2<w?<4), in which the local peaks dominate the
spectrum, are shown; for the lower frequencies, for
which g(w?) is comparatively smooth, an approximation
based on continuous behavior,'*'7 such as a moment
approximation, could be joined to our “é-function”
approximation. The original curve of Dean,® corre-
sponding to our Fig. 5(b), is reproduced in Fig. 6. We
have written in the identifications for the more promi-
nent peaks; the reader will have no trouble identifying
the others by reference to our Table IV. Quantitative
agreement is thus excellent as far as position of the
peaks is concerned. It appears also to be good for the
number of modes under each peak if account is taken
of the finite peak width in the bottom portion of Fig. 6.
The validity of these rules depends to some extent
on the detailed nature of the model. All properties in-
volving localization would, for example, be weakened
by smaller mass differences between component con-
stituents, and by the presence of long-range forces.
They would be strengthened if the mass differences were
large, but they would not be greatly affected by the
presence of more than two atomic components.!®

3. TWO-DIMENSIONAL SOLIDS

Even though the major part of this paper has been
devoted to one-dimensional illustrations, the theoretical
results are just as applicable to higher-dimensional
crystals, and some higher-dimensional crystal models
can be discussed in detail without very great mathe-
matical complications. We choose here the model of a
two-dimensional simple cubic lattice with interactions
that act between nearest neighbors only but have a
noncentral, as well as a central, component. This model
is well known from the theory of ordered crystals®®; its
virtue is simplicity rather than physical realism.2—2 It
leads to a secular determinant of order 1, rather than D,
for a D-dimensional ordered crystal, and to a secular
determinant of order N, rather than ND, in the D-
dimensional disordered crystal containing NV atoms. The
noncentral-force component can be small, but is neces-
sary to provide an essentially D-dimensional behavior;

15 H, B. Rosenstock, Phys. Rev. 97, 290 (1955).

16 E. W. Montroll, J. Chem. Phys 10, 219 (1942).

17 C. Domb, A. A. Maradudi W. Montroll, and G. H.
Weiss, Phys. Rev. 115,18 (1959), 115 24 (1959); see "also Ref. 14,
p- 202 f.

18 For related discussion of one-dimensional problems, see also
J. Hori and M. Fukushima, Proc. Phys. Soc. Japan 19, 296 (1964) ;
K. Okada and H. Motsuda, Progr. Theoret. Phys. (Kyoto) 39,
1153 (1968).

¥ H. B. Rosenstock and G. F. Newell, J. Chem. Phys. 21,
1067 (1953).

20 R, F. Wallis, Phys. Rev. 116, 302 (1959).

21 P, N. Keating, Phys. Rev. 169, 758 (1968).

22 Work relevant to multidimensional disordered crystals and
possible band gaps in their spectra has recently been done by J.
Hori, J. Phys. 1, 312 (1968).
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TasLE VII. Local vibrational mode of a small crystal containing one light mass. O, mass 2; @, mass 1.

OO0OO0O0OO0O0O0
OO0O0O0O0 OO0OO0O0O00O0
O OO0 OO0 00O OO O0OO0OO0OO0O0
Masses O @O O0O@O0O0 OO0O0O@O0O0O0
O OO0 OO0OO0OO0O0 OO0 O0O0OO0O0O0
OO0 000 OO0 O0O0O0O0O0
222 2 2 OO0OO0O0O00O0
Frequencies 2.799 2.839 2.842
0 0 0 -3 0 0 O
0 —1 11 -1 0 0 0 -1 12 -1 0 0
3 —41 3 -1 3 —42 3 -1 0 —1 3 —42 3—-1 0
Displacements —41 171 -4 11 —42 166 —42 11 -3 12 —42 165 —42 12 -3
3 —41 3 -1 3 —42 3 -1 0 —1 3 —42 3—-1 0
0 —1 11 -1 0 0 0 -1 12 -1 0 O
0 0 o0 -3 0 0 0

in its absence, the equations of motion degenerate into
one-dimensional ones. For other two- and three-dimen-
sional calculations, see Payton and Visscher.?

The equations of motion for the x component #;;, of
the displacement of the atom at site (/,k) is

(2420—MuNun= (tr—1,1+t111,1)
Fo(urpr1tuier), (12)

with o =8/a, \=w?/a, where « is the central, and 8 the
noncentral, force constant. We were not able to obtain
analytical solutions of this system with disordered
masses, and therefore solved it numerically for various
small crystals with fixed boundary conditions and &
=vo. The special method of Sec. 2 applies to one-
dimensional crystals only, and we had to use the
“usual” matrix-diagonalization methods. We hoped
again to find modes so localized that the displacements
of atoms near the boundaries would be small. Such
modes would be expected to persist in larger crystals.
This was indeed found: Results are shown in Tables
VII-IX.

In Table VII we see the highest-frequency mode of a
single impurity of mass 1 at the center of 3X3, 5X35,
and 7X7 lattices of atoms of mass 2. Localization is
apparent in each, even with the almost trivially small
3X3 crystal; frequencies are nearly the same in all
three cases, and also very close to the value 2.666 that
would be approached if the noncentral-force constant
were to approach zero (Table IV). [To be precise, we
should say the the displacements shown in Table VII
are not the #; resulting from solving (12), but the
symmetrized sum #;+v;, where vy, denotes the dis-
placement in the y direction of the atom at site (&),
obeys an equation quite analogous to Eq. (12), and has
the same eigenfrequencies. ]

Table VII thus confirms that in higher dimensions,
as well as in one dimension, localized modes exist whose
frequencies can be computed from small-crystal models.
This will be possible whenever an impurity group is
isolated. The question now is what constitutes sufficient
isolation. In one dimension we established the approxi-

% D. N. Payton and W. M. Visscher, Phys. Rev. 156, 1032
(1967).

mate rule that two heavy atoms on each end of a group
containing light ones was sufficient. What is the
corresponding rule now? Table VIII is designed to
answer this.

Table VIII, similar in organization to Table VII,
therefore shows the perturbing effect of other nearby
light atoms on the local mode of the light atom at
the center. All crystals are 5)X5 here [hence, diagonali-
zation of a 25X25 matrix, with coefficients defined
by Eq. (12), was involved each time]. The xy symmetry
no longer exists; hence we show the computed u;;
directly, rather than u;+4v,. The highest frequency
and, where it is of interest, the second-highest frequency
are shown in each case. Table VIIIe, where the two
light atoms are nearest neighbors in the direction of
motion, is an exceptional case, to be discussed later in
connection with Table IX. There are two requirements
if we are to conclude that the mode will persist in

L

0.4

03

g(\)

02 Rlg 13

0.l

F16. 6. Frequency spectrum of 1D binary alloy of masses 1
and 2, equal concentration. Curve taken from Dean (Ref. 6).
Inset reproduced from our Fig. 5. Identification of peaks from
this work—Fig. 5 and Tables I-IV.
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TaBLE IX. Local modesin a 6X$5 crystal containing two adjacent impurities. @, mass 1; O, mass 2.

OO0OO0OO0OO0O0
OO0 O0OO0OO0O0
Masses ool N NeNe
OO0 O0O0O0O0
OO0OO0OO0OO0OO0
Frequencies 3.431 2.051
0 0 O 0 0 O 12 —21 26 —26
0 1 -3 3 —-1 0|—-12 21 —-26 26

Displacements 5§ —21 67 —67 21 —5 0 0 0
0o 1-3 3-1 0| 12 -21

0O 0 0 O o0 o0f-12

26 —26
21 —26 26

2.920 2.750
21 —12 0o 0 O 0 0| O 0 0 0 0

=21 12 1 =2 3 -2 1|-1 2 —4 2 —1
0 0(-7 26 —-59 26 —7 8 —27 58 —-27 8
21 —12 7 -26 59 =26 7 8 —27 58 —27 8

—-21 12| -1 2 -3 2 —1| -1 2 —4 2 -1

0 0 0 0 0 O 0 0 0 0

large crystals: The frequencies must not be changed
greatly from the “fully isolated” case of Table VII (i.e.,
from 2.84), and localization must be apparent from the
smallness of displacements of atoms that are near the
boundary. For the situations of Tables VIIIa~VIIId,
both criteria are fully satisfied; indeed, the frequency
change is only about 0.01 in each of these four cases.
In Table VIIIf, where the light atoms are third neigh-
bors in the direction of motion, the localization criterion
fails for both modes shown. For Tables VIIIj and
VIIIk (nearest neighbors in a direction perpendicular
to that of the motion), localization is adequate, but the
frequency somewhat more affected (deviations of 0.09
from the isolated case). For Tables VIIIh and VIIIi
(second-nearest neighbors, diagonal direction), one of
the modes appears satisfactory.

Table IX is designed to illustrate the modes due to
an adjacent pair of light atoms in a symmetrical en-
vironment of heavy atoms. We see, as we have already
noted in Table VIIIe, VIIIj, and VIIIk, that the pair
mode appears only if the light atoms are neighbors in
the direction of the motion; otherwise two modes (one
“even,” one “0dd”) very similar to that of a single light
atom appear. The difference in environment between
this case and that of Table VIII affects the value of the
frequency only very slightly.

The rough conclusion to draw from Table VIII is
that an impurity, or impurity group, is sufficiently
isolated for the persistence of its normal frequency,
independent of the nature of its more distant environ-
ment, if it is bounded by at least two heavy atoms in
the direction of motion and by one heavy atom in the
direction perpendicular to this. Quantitatively, this
leads us to the expression C(1—C) for the probability
of occurrence of, or the density in the frequency spec-
trum of, the mode due to the single light atom [re-
placing C*(1—C) in the 1D case], C3(1—C)? for the
two adjacent light atoms [replacing C*(1—C)?], and
generally, C?*+4(1—C)! for | light atoms along one main
crystallographic direction [replacing C4(1—C)*]. More
complex isolated groups, such as three light atoms in
an L configuration, for which each local normal mode
would not involve displacements in one of the crystallo-
graphic directions alone, will lead to more complicated
expressions,

The method of finding important modes in large
crystals by considering small ones has thus involved
more numerical labor (diagonalization of a 25X25
matrix) than in the 1D case, but the relative saving
over actually solving the case of the large crystal of V
atoms on edge (an N2XN? matrix) is even larger. We
have found that the density in the frequency spectrum
of the local mode due to a single light atom is somewhat
reduced from the 1D case, and that of the other isolated
groups is more greatly reduced. There will thus be more
quasilocal modes of smaller intensity, except for the
mode due to the single light atom, and the many peaks
in the structure of the spectrum as a whole may, if a
detailed calculation for a large crystal is done, be hard
to detect unless the interval for the histogram is taken
extremely small. We must again remember that our
conclusions are at least somewhat sensitive to the de-
tails of the forces and masses in the crystal model.

4. 3D SOLIDS

We have performed no detailed calculations for 3D
crystal models, but extrapolation now seems quite
justified. Local modes, which could be calculated for a
single atom or for a neighboring group containing light
atoms in a small crystal (of perhaps 27 or 125 atoms)
containing otherwise only heavy atoms, can be expected
to appear as well in the spectrum of a large disordered
crystal. Following the reasoning of the last section, we
would expect their intensity to be further reduced, to
C8(1—C) for the mode of the single light atom, and to
C4+4(1—C)* for the modes of } light atoms in a row. The
density of more elaborate groups is harder to estimate,
and again we must add our caveat about possible sensi-
tivity to forces in the model.2

5. RESUME

We have shown that the existence of peaks in the
frequency spectra of 1D infinite isotopically disordered
crystals can not only be explained in terms of local
vibrations of groups containing light atoms, but can
also be predicted in some detail by easy calculations on
very small crystals. The arguments are not qualitatively
sensitive to dimensionality. Hence, similar peaks are
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moment of local modes that are odd is, of course, zero,
but that of other local modes is likely to be considerable,
and to provide a prominent feature in the absorption
spectra of crystals, as most “lattice” modes themselves
lack a dipole moment. The present work can be applied
rather directly to mixed crystals A X ¢V1_¢, in which the
concentration C can be varied. The absorption spectra
of these crystals thus provide a simple tool for observa-
tion and the semiquantitative comparison of present

results with experiment.

also predicted for 2D and 3D disordered crystal models.
However, the intensity of the peaks should be smaller in
higher dimensions.

Extension of this work should be useful in several
directions. Clearly, numerical work should be per-
formed in three dimensions, and in any dimension with
more realistic models. Most importantly, the depen-
dence on mass ratio of our criteria for localization and
persistence should be established. (Our own simple
force model—forces independent of the atoms in-
volved— applies best to so-called isotopically disordered
lattices, but not so well to lattices with mass ratios of
2:1 or higher.) Also, solids with more than two con-
stituents could be studied.

We should finally note that when each atom has an
electric charge (ionic crystals), the dipole moment of
each of the modes can be readily found from the atomic
displacements we have already calculated. The dipole

ACKNOWLEDGMENT

Thanks for many useful discussions are due to Dr.
Marvin Hass.

20 M. Hass, H. B. Rosenstock, and R. E. McGill, Solid State
Commun. (to be published).

PHYSICAL REVIEW VOLUME 176, NUMBER 3 15 DECEMBER 1968
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A modification of the point-ion model is proposed which provides an approximate correction for ion-size
cffects. The difference between the optimum pseudopotential for the smoothest pseudo-wave-function
and the point-ion potential is treated as an ion-size correction to the Hamiltonian, appropriate to
a smooth variational trial function. By neglecting the variation of the trial function over the ion cores
in the evaluation of matrix elements, one obtains a simple, approximate form for the pseudopotential:
Vp=Ve1+2,[4,+ (V—U,)B,]6(r—1,), where Vpr is the point-ion potential, U, is the potential at ion v
due to the other ions, and V is the average potential. The coefficients 4, and B, are properties of the ions
alone, and have been computed for a large set of ions. The approximate pseudopotential is applied to the
calculation of ionization potentials of alkali atoms, where it works well, and of F-band energies in alkali
halides and alkaline-earth fluorides, where it is found that all of the coefficients 4, must be reduced by a
factor of 0.53 in order to obtain agreement with experiment. With the adjusted pseudopotential coefficients,
the theory accounts well not only for the Ivey law in alkali halides, but also for deviations from the Ivey
law. In addition, the seemingly anomalous F-band energy in BaF; is accounted for. The empirically adjusted
constants may be useful in other color-center problems as well.

I. INTRODUCTION

RIGOROUS formulation of the electron-excess

color-center problem requires that all of the
electrons be treated equivalently. However, a vast
simplification results from the recognition that the
occupied ion-core states are much more tightly bound
than the states associated with the color center, and the
consequent assumption that the ion-core electrons

simply contribute to the potential seen by the excess
electrons. Models based on this assumption include the
point-ion model of Gourary and Adrian (GA),! with
which we shall be primarily concerned, as well as
continuum and semicontinuum models.? In the point-
ion model, the ions are replaced by point charges, and
the resulting potential is used with a smooth variational
trial function which is subsequently orthogonalized to

1B. S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180 (1957).

* Permanent address: Physics Department and Institute of
Materials Science, University of Connecticut, Storrs, Conn.
1 National Defense Education Act Fellow.

2B. S. Gourary and F. J. Adrian, in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press Inc., New York,
1960), Vol. X, pp. 127-247.



