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The hyperfine interaction in the alkali-atom series has been investigated quantitatively. In
particular, both core-polarization and relativistic effects have been taken into consideration
explicitly. The former effect was studied using the moment-perturbation procedure while
relativistic Hartree~Fock theory was used for the latter. The core polarization contribution
was found to be nearly constant for-all the alkali atoms at about 23% of the nonrelativistic re~
stricted Hartree-Fock value. Relativistic corrections were found to be 0.25, 0.68, 2.18,
15.6, and 20.5%, respectively, for lithium, sodium, potassium, rubidium, and cesium. The
theoretical results are compared with experimental hyperfine constants to obtain an assess-
ment of the importance of many-body effects in these atoms.

1. INTRODUCTION

Apart from their intrinsic interest, the hyper-
fine constants in atoms provide a sensitive tool to
test the accuracy of atomic wave functions.! Ow-
ing to recent advances? in methods for computing
wave functions, it is not unreasonable to aspire
for quantitative agreement between theoretical and
experimental hyperfine-structure constants. Alka-
1i atoms and metals are some of the simplest sys-
tems in nature for which accurate hyperfine data®
are available. It is therefore desirable not only to
try to explain the experimental results quantitative-
ly, but also to understand the relative importance
of various contributions%-¢ to the hyperfine interac-
tions. This paper will deal with alkali atoms and
a subsequent paper will deal with the metals.

Prior to the present investigation, several at-
tempts” have been made to understand the origin
of the hyperfine constants in some of the alkali at-
oms. For some of the atoms, Hartree-Fock wave

functions were available and utilized for hyperfine-
effect studies while for the heavier ones, no such
functions were available, and one could only make
semiquantitative estimates. It was therefore not
possible to arrive at over-all conclusions regard-
ing the contributions to the hyperfine constants for
the entire series of atoms. Recently, Hartree-
Fock wave functions have been calculated for all
the alkali atoms by a number of different authors.®
These wave functions and the corresponding ener-
gies compare quite closely with each other giving
confidence in their accuracy. The differences be-
tween hyperfine constants calculated from these
wave functions and experimental values can thus
be aptly regarded as representative of contribu-
tions from sources that are neglected in nonrela-
tivistic restricted Hartree-Fock (NR-RHF) theory.
This is therefore an opportune time to attempt at
a quantitative understanding of various factors that
can contribute to hyperfine effects in the entire
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series of alkali atoms.

Foremost among the mechanisms neglected in
the NR-RHF theory is the core-polarization (CP)
effect.® Calculations for this effect using Unre-
stricted Hartree-Fock (UHF) theory* have shown
that it can have drastic effects on the hyperfine
constants for atoms with p and d valence electrons.
In particular, in the case of half-filled p, d, and f
shells, NR-RHF theory leads to zero hyperfine
constants while finite hyperfine effects have been
obtained experimentally. The UHF theory, on the
other hand, leads to nonzero hyperfine constants
in these cases. For the alkali atoms, there is a
finite contribution to the hyperfine constant from
the valence s states in the NR-RHF approximation.
While the role of CP in these atoms is thus less
dramatic, it is yet quite substantial, as demon-
strated by UHF calculations®* for lithium, sodium,
and potassium. These latter calculations have in-
dicated that CP has a nearly constant percentage-
wise effect relative to that from NR-RHF theory.
It is worthwhile to examine whether similar fea-
tures hold for the heavier alkali atoms rubidium
and cesium, another reason for the interest in
these two atoms being the expected importance of
relativistic effects.

The earliest attempt at an understanding of rela-
tivistic effects on atomic hyperfine structure was
made by Casimir.® Since relativistic Hartree-
Fock wave functions were not available at the time,
Casimir had utilized hydrogenic wave functions for
a study of relativistic corrections. Further, Casi-
mir in his analysis had confined himself to atoms
with p valence electrons, where available fine-
structure data could be utilized to obtain some of
the matrix elements for the hyperfine interaction.
Subsequently, Schwartz® has also analyzed relativ-
istic effects for the p -state hyperfine interaction
using Dirac wave functions obtained from an empir-
ical Tietz-type potential. The hyperfine-structure
analysis is rather involved for atoms with more
than one valence electron. Sandars and Beck!® and
Bordarier, Judd, and Klapisch!! have studied the
influence of relativistic effects on the coupling of
valence electrons in such atoms and their conse-
quence on hyperfine properties. With the recent
availability of relativistic wave functions, utiliz-
ing both Hartree-Fock!? and Slater exchange poten-
tials,!® one can now make a meaningful quantitative
analysis of relativistic effects.

The third important effect that could contribute
significantly to hyperfine structure is the correla-
tion among atomic electrons. A quantitative study
of this effect, particularly for atoms with a large
number of electrons, is rather difficult. In our
present work, we shall be concerned with a care-
ful analysis of CP and relativistic effects on hyper-
fine structure. The results of this analysis will
be compared with experiment to obtain estimates
of correlation corrections to the hyperfine con-
stants. It is hoped that these estimates of correla-
tion effects will stimulate interest in the applica-
tion of current many-body theories!¢™!¢ for atoms
to obtain such effects from first principles.

Section II will deal with the calculation of the CP
effect. In Sec. III, the calculation of relativistic
effects and results will be discussed. Finally, in

Sec. IV, the combined contributions from core-
polarization and relativistic effects will be com-
pared with experiment, and possible improvements
and the role of correlation effects will be analyzed.

II. CORE-POLARIZATION EFFECT

Core-polarization effects are associated with the
interaction between the core and the valence elec-
trons with unpaired spins. For purposes of further
discussion in this section, we shall define “up”
core states as those which have their spins paral-
lel to the spin of the valence electrons, while
“down” refers to antiparallel spin states. Elec-
trons in up core states experience a stronger ex-
change force than those in down core states. This
leads to different radial densities for up and down
core electrons resulting in a net spin density at
the nucleus. In the UHF procedure,* one utilizes
different orbitals for up and down spin states,
which are obtained from a minimization of the to-
tal energy. Alternatively, one can utilize pertur-
bation procedures,!?>18 which have the advantage of
dealing with small numbers directly rather than:
with the differences of large numbers associated
with the spin densities of up and down core states.
There are two variants of the perturbation ap-
proach. In one, referred to as the exchange per-
turbation (EP) procedure, the core states are per-
turbed by the exchange potential due to the valence
electrons and then used to obtain the expectation
value of the hyperfine Hamiltonian ¥, ¢g. In the mo-
ment-perturbation procedure (MP), the core states
are perturbed by 3, s and then utilized to calculate
the exchange energy. Both procedures have been
found to give results in reasonable agreement with
each other. The MP procedure has the added ad-
vantage of being flexible enough to be extended to
the case of metals without much additional compli-
cation. It is worthwhile to mention here two fea-
tures of interest in this work, that are character-
istic of UHF and perturbation procedures. First,
the UHF procedure incorporates self-consistency
while the perturbation procedures do not. Howev-
er in a recent analysis of many-body effects in hy-
perfine structure, using a Brueckner-Goldstone
diagrammatic!é approach, it has been shown that
consistency effects are associated with higher-or-
der perturbation diagrams. These diagrams have
been found to produce less than a 5% correction for
lithium, and there is no reason to expect larger er-
rors for other alkali atoms. In addition, wherever
results are available for atoms by both UHF and
perturbation procedures the two agree very well.1®
There is the further consideration associated with the
UHF procedure, namely that the single-determi-
nantal wave function usually utilized is not an eigen
function of S2, the total-spin operator. The conse-
quences of this approximation have been discussed
by several authors,?%2! who have shown by fairly
general arguments that there is no serious error
involved in this approximation. Further, a quanti-
tative evaluation of the diagrams in many-body:the-
ory!® which restore the S2-eigenfunction character,
indicates that the upper limit to the contribution
from such diagrams is only of the order of 5%. In
our analysis of the alkali atoms, we have used the
MP procedure, which will now be briefly described.
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The general equation for the first-order pertur-
bation to the wave function in Hartree-Fock theory
has been developed by several authors.??23 For
our present purposes, Method (3) of Ref. 23 is con-
venient and adequate and leads to the following
equations for the first-order perturbations to the ns
core_states of the alkali atoms:

(=€ V0 T 11y 0
=2n'[<un s 6uns>('sn R
* <un'scmllunsown'so+ <un’soléuns>
X Gu, 01w, O, O] (1)

where 2! is the perturbation Hamiltonian experi-
enced by an electron because of the contact hyper-
fine interaction and is given by

hi= lgnyN'yeﬁ?T' S6(3) @)

hy,s® and €,5° are the one-electron Hamiltonian and
energy for the core ns state in the restricted Har-
tree-Fock approximation. u,s° and du, g are, re-
spectively, the zero-order and first-order wave
functions, and
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In Eq. (1), the summation over n’ refers to the oth-
er s cores of the atom. In carrying out the numer-
ical solution of Eq. (1), we have utilized a local ap-
proximution to the unperturbed Hamiltonian %;,5°,
namely,
= - 0

= -v2+ (unso) v, O0+e, O (4)
The local approximation?* considerably simplifies
the computational procedure without introducing
significant error.?® In general, Eq. (1) is integro-
differential in character. For the case of a single-
core state, however, the integral terms are absent
and Eq. (1) is easy to solve by conventional proce-
dures.!” For the case of multiple cores, as in our
present work, it is convenient to utilize a nonitera-
tive procedure?? for solving integrodifferential
equations. The adaptation of this noniterative pro-
cedure to our problem is discussed in Appendix A.
In carrying out the numerical solution of the differ-
ential equation, we found that a method developed
by Froese?® combining Numerov’s procedure for
outward integration together with a special “tail-
ing” technique was particularly useful from the
point of view of both accuracy and speed.

To obtain the core-polarization component of the
hyperfine constant, we have to determine that part
of the second-order energy which is composed!? of
one order in the hyperfine interaction and one or-
der in core-valence exchange:

E y@=-22 [ [[u,o®ou, ()
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Xu o °F e, ) IT-F 1 Z 7], (5)
where u,1° represents the valence-electron wave
function. In the case of alkali atoms, we have only
a single-valence electron. When the atom has
more than one valence electron, one has to sum
over all the occupied valence states. For an atom
with total electronic angular momentum J and nu-
clear spin /, anp is given by
aCP=EeN‘2’/2‘nh’IJ. (6)

For the zero-order functions u,s° and uy41° ap-
propriate to the ground state 2S,,, of the alkali at-
oms, we have made use of available Hartree-Fock
wave functions. Thus, for the lighter atoms lith-
ium, sodium, and potassium, Clementi’s analytic
wave functions® were employed. For some of the
inner cores these analytic wave functions exhibit
spurious nodes in the tail region because of the
limited basis set used in the expansion. To avoid
errors in the numerical solution of Eq. (1) associ-
ated with these spurious nodes, it was found neces-
sary to adjust the wave functions at large 7 to have
the correct asymptotic behavior. For rubidium
and cesium atoms, Froese’s numerical Hartree-
Fock wave functions?® were used. These functions
were tabulated in a In» scale and thus required a
recasting of the differential Eqs. (1) in terms of the
In» variable. The In¥ scale is particularly desir-
able from the point of view of speed and accuracy
in the numerical solution of (1), especially near
the origin where there is rapid variation in the
wave function. For rubidium and cesium, numeri-
cal wave functions have also been obtained by
Mann?” in the regular v-scale. These functions
compare very well with Froese’s wave functions.

The results? of our calculation of acp are pre-
sented in Table I. This table includes acp, the
sum of acp and the direct term ag;(@q+acp), the
UHF values of a where available and experimental
results. For a detailed understanding of the nature
of acp we have included in Table I the contribu-
tions from individual core states. These results
indicate that for all the atoms, the outermost core-
state makes the dominant contribution to acp. It
is difficult to make a priori prediction concerning
the relative contributions of the various core
states, since the inner cores have diminished ex-
change with the valence electrons but larger densi-
ties near the nucleus. The results in Table I show
that the former effect predominates. This behav-
jor plus the fact that all the cores have positive
contributions give us confidence about the reliabil-
ity of the total acp. This situation is in contrast
to the case of atoms with incomplete p shells, for
example, in nitrogen and phosphorus atoms, where
acp is composed of comparable contributions of
varying signs from the various cores. We would
also like to remark on the influence of nonorthog-
onality effects associated with the perturbed cores
onacp. In carrying out the numerical solution for
ou,s, we demand the condition??

o =
(uns IGuns> 0. )
However, #,s°+ 0u,s need not necessarily be or-

thogonal to the other core functions u,, %+ du,, g,
and this is the reason for the occurrence of terms
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TABLE 1. Results for the core-polarization contribution to the hyperfine constant g P
are from D. A. Goodings (Ref. 4) and experimental values from a table%y Ramsey (Ref. 3).
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in Mc/sec. The UHF results

Core States

agtacp AUHF %exp
Atom 1s 2s 3s 4s 5s Total a
cp
Li 94,02 94.02 378.02 390.00 401.80
Na 36.77 104.77 141.54 764.54 764.00 885.70
K 4.43 7.20 23.86 35.49 179.00 178.81 231.54
Rb 7.86 10.40 23.12 88.76 130.14 635.94 1011.90
Cs 8.37 10.53 16.78 38.93 152.64 227.25 1211.05 2298.20

involving (/s duyg) in both Egs. (1) and (5). The
nonorthogonality terms in (1) are composed of
some terms that were present in Dalgarno’s ear-
lier formulation and the two additional ones as pre-
sented in Eq. (3), which were obtained in the re-
cent revised formulation of the nonorthogonal the-
ory by Duff.23 From our calculations we found that
these latter correction terms do not influence the
results significantly since the two terms give mu-
tually cancelling effects. In the exchange energy
expression in Eq. (15), the fractional importance
of nonorthogonality terms was found to be more im-
portant for the innermost cores, and steadily de-
creased on proceeding towards the outermost ones.
This trend can be understood as follows. On ex-
panding the MP function for the outermost core
states (like 5s in cesium), the major components
are the unoccupied higher s states which are or-
thogonal to the other occupied core states, while
the reverse is true for the MP functions of the in-
ner cores. On adding up all the nonorthogonality
terms, the net contribution was found to be only
about 6 to 7% of the total acp in all cases. Col-
umns 7 and 8 of Table I show the interesting fea-
ture that acp is about 23% of the direct term aq
for all the atoms. This is not surprising since the
contribution to acp was found to arise in all cases
from the exchange between the outermost core and
the valence electrons. While the inclusion of core-
polarization effects enhances the theoretical re-
sults substantially, the sum of the direct and core-
polarization contributions (aq+acp) are seen to be
consistently smaller than the experimental values,
particularly for the heavier atoms. It is reassur-
ing that for the atoms for which UHF results are
available (Column 9) there is very good agreement
with the numbers for (aq+acp) in Column 8. The
difference between theory and experiment appears
to increase in the order lithium to cesium. This
would seem to indicate the importance of an addi-
tional mechanism which increases with atomic num-
ber. Relativistic effects provide such a mechanism
and will be considered next.

III. RELATIVISTIC EFFECTS

Since hyperfine interactions arise primarily from
regions close to the nuclei where the kinetic ener-
gy of the electrons is greatest, these interactions

are likely to be subject to relatively strong relativ-
istic effects as compared to other properties.
There are two alternative approaches that one can
adopt to study such effects. One procedure is to
nandle the relativistic effect on the wave function
as a perturbation in the spirit of the Foldy-Wout-
huysen transformation.?® The other approach is to
work with Dirac-Hartree-Fock (DHF) Egs.* for
the electrons and handle all operators in a com-
pletely relativistic manner.®:® We have adopted
the latter procedure both as it permits a definitive
estimate of relativistic corrections and because
for heavy elements one would have to go to rather
high orders in the perturbation approach, However,
er, the perturbation procedure does have the mer-
it of allowing a convenient visualization of different
types of relativistic effects, and we shall establish
contact with it subsequently in this section.

The one-electron DHF wave functions are conve-
niently expressed in the four-component spinor
form:

-1

v gnK(V) zpw

2 . (8)
i an(r) z/)_Ku

where ¥y are two-component spinors given by

Y, CUz;p-m,m)Y;" 7" (0, xm) (9)
m==+3%

Ve =

in terms of Clebsch-Gordan coefficients,3! spheri-
cal harmonics, and the Pauli spinors

X2 =(}), x(=2)=@Q). (10)

The wave functions @k are characterized by the
eigenvalues of energy, the total angular momentum
and its z component j and u, respectively, and par-
ity. The parity and j dependence areboth described
by the quantum number k which is related to j

by the relation

(11)

for even and odd parity, respectively. Instead of
the conventional Fermi-contact, orbital, and di-
pole-dipole operators of nonrelativistic theory,

one now has to use the relativistic hyperfine opera-
tor

K=F(j+2)
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-

s Rel_.3.%&, (12)

hfs

where —e is the electronic charge, the compgnents
of @ are the first-three Dirac matrices and A is
the magnetic vector potential produced by the nu-
clear moment uj

K:;IIX 78, (13)

For a system with more than one electron, the
hyperfine operator in Eq. (12) has to be summed
over all the electrons. Similarly to the case of the
nonrelativistic Hartree-Fock approximation, one
also works with determinantal wave functions in
the relativistic case and the sum over electrons re-
duces to a sum of the expectation values over the
one-electron states. Further, as in the nonrelativ-
istic case, if one uses the restricted Hartree-Fock
approximation, the closed shells do not contribute
to the hyperfine matrix element, and only valence
electrons have to be considered. Since our pres-
ent work is concerned with alkali atoms, we have
only single-valence electron states and the algebra
for the matrix elements is analogous to that worked
out by Rose?® and others®:® for hydrogen-like at-
oms. We shall not therefore repeat the algebraic
procedure but only list the final expressions for
the matrix elements of ¥ Rel between states
(nkp) and (nk’pn’), where the » dependence is unim-
portant since we have a single-valence electron.

If the direction of the nuclear moment is chosen as
along the z axis, one can show that J; commutes
with ¥¢h¢gRel and therefore only matrix elements
with i = 1. "need tobe considered. For the study of at-
omic hyperfine structure, only the case k =k’ is of
interest. However, we are also interested in hy-
perfine effects in metals where because of the
crystalline field there is mixing of / states in the
nonrelativistic approximationandj states inrelativ-
istic theory so that the matrix elements with « = «’
are of interest. Commensurate with the notation
for the wave functions in (8), the matrix elements
are

| ».»: ’ -7 M
(kplea « Alk’ ) ieR A (14)
where
L) f—
Ry o= "2, f 48, f Jar, (15)
B = 5
AKK, —(szM{(oxr)lep_K,u>, (16)

and G represents the two-component Pauli ma-
trices. Equation (16) can be reduced further using
Eq. (9). The diagonal elements defined by x =k’
are given by

A= ity /@), j=l-%,
(17
a M=-lai@sp/@ue1)@I43)], 5 =1+ 5
For the nondiagonal elements k# «’, we can have
two cases:
Case 1: Matrix elements between states with
same I composition, for example, (pys, Pas2),

(g3, dsp3)y -« -, and
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Case 2: Matrix elements between states with dif-
ferent I composition, (S,/5,ds/2), (Pasasfsrn)s. .. -
Equation (16) then yields

AKK,“ =il (1 + 3?-p2]/(21+1) Case 1,

(18)

AKK,“ =il (1+$)?-u2]/(21+3) Case 2.

For atoms, one obtains from experiment the hyper-
fine constant a in the spin Hamiltonian a¢l+J. The
theoretical value of @ may be obtained from the hy-
perfine matrix element by the relation

a=-(iey I/n)AKK“RKK, (19)

where 77 is the magnetogyric ratio uy/Ii. The eval-
uation of a thus requires a knowledge of the radial
integrals R,,. For this purpose, we need the radi-
al functions gx(7) and fx(r). While formulations of
the DHF equations were available for sometime,
only recently have solutions of such equations be-
come available.!?>!3 The complexities of the proce-
dure for solving DHF equations can be appreciated
by noting first that one now has twice the number
of coupled eigenvalue equations that occur in non-
relativistic theory. Secondly, because the large
and small components vary by orders of magnitude
over various ranges of 7, the demands on numer-
ical accuracy are considerably larger in the relativ-
istic case. In their work, Liberman, Waber, and
Cromer?® (LWC) have utilized the Slater approxi-
mation (henceforth referred to as DHFS). Herman
and Skillman®? had also utilized the Slater approxi-
mation in their extensive nonrelativistic (NR-HFS)
calculations. While one could compare results ob-
tained from LWC’s wave functions with those ob-
tained using Herman-Skillman functions to assess
the importance of relativistic effects, there is
some question about the applicability of the Slater
approximationto systems with rapidly varying den-
sities as in atoms. The Slater approximation is
more justifiable in the solid state, where the den-
sities have lesser fluctuations. Coulthard!? has re-
cently obtained wave functions for a number of at-
oms without making use of the Slater approxima-
tion (referred to henceforth as DHF). The results
that we obtain using his wave functions are more
appropriate for quantitative comparisons with ex-
periment and nonrelativistic theory.

In utilizing the available DHF and DHFS func-
tions to evaluate Ryy in Eq. (15), one has to be
cautious about the difference in phase conventions
due to Rose?® that we have adopted and those by
other authors.!?’!* From the forms of the equa-
tions employed by these authors the following rela-
tionships are seen to hold between the various
choices of phase.

& Rose S LWC ~®Coulthard’

- - j=l-%
fRose ~Lwe = 7 coulthara’ *
ERose SLWC ~¥Coulthard’

j=l+73

FRose = Lwe = 7 coulthara’
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In relativistic theory, all states with j = % exhibit
a weak (but square-integrable) divergence of f and
g. As a result, the integrand gf/7? occurring in
the matrix element of 3¢ sgRel is singular at the
origin. The occurrence of this divergence can be
understood physically as follows. In the nonrelativ-
istic Schrodinger equation, it is the centrifugal
term [(I+1)/72 which determines the #/+1 behavior
of the radial wave functions at small . On the oth-
er hand, in the relativistic case at small », there
is a partial cancellation of the centrifugal potential
by a relativistic term of the form (zo /7)? which
leads to an ¥ dependence of the type

(k2 72q2)V2
1/1 (k2-Z2a?)

that is responsible for the divergence of the j :%
states. To avoid errors due to this apparent diver-
gence, we have evaluated the integral (15) for a
number of cutoffs (r,) at small ». The behavior of
the integral was studied as a function of 7, and was
found to have a linear dependence on 7, a typical
case was. for the cesium °S,,, state, being as shown
in Fig. 1. A linear extrapolation to 7,~0 was
therefore quite justified.

Using this limiting procedure for the evaluation
of in (15), we have obtained the hyperfine con- ar’
stants for the 2S,,, states of all the alkali atoms us-
ing DHF wave functions. The results are listed in
Table II and compared with the results from non-
relativistic Hartree-Fock theory and experiment.
The differences between the relativistic and nonrel-
ativistic values of the hyperfine constants are in
the right direction to improve agreement with ex-
periment. Further, as anticipated, the percentage
corrections are substantial for the heavier atoms
rubidium and cesium, and decrease steadily as
one goes to the lighter atoms. However, it
is clear from this table that relativistic effects
alone cannot produce perfect agreement with ex-
periment, and other factors such as the core-pola-
rization effect of the previous section will have to

\.
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FIG. 1. The hyperfine integral I= fyo v~ gf dv for
cesium as a function of the cutoff parameter 7.

TABLE II. Hyperfine constants ¢ obtained from non-
relativistic Hartree-Fock (NR-RHF), relativistic Har-
tree-Fock (DHF), and experiment in Mc/sec.

Atom  a(NR-RHF) a(DHF) a(EXP)
Li 284.00 285.00 401.80
Na 629.00 635.00 885.70
K 144.00 149.00 230.90
Rb 505.80 663.40 1011.90
Cs 983.80 1456.20 2298.29

be included. In the next section we shall combine
the core-polarization and relativistic effects and
try to draw conclusions from the nature of the
agreement between theory and experiment.

Inthe remainder of this section, we would like to make
some comparison between the purely relativistic
theory of hyperfine effects that has been used here
and the perturbation approach for handling relativ-
istic effects starting from the nonrelativistic limit.
This is important for two reasons. First there
have been recent calculations on hyperfine struc-
ture in some other atomic systems,:!! and we
would like to comment on their relationship to our
analysis. Secondly it is useful to have some non-
relativistic limits for hyperfine matrix w cments
which could be used to check solid-state ca’cula-
tions to be reported later.

There are two alternate ways of relating the rel-
ativistic theory to a perturbation expansion start-
ing with the nonrelativistic limit. One can either
take the relativistic matrix elements of the type in
Eq. (14) and make a Breit reduction® in various
orders of parameters such as Za and 7Z/mc. The
other procedure is to perform a Foldy-Wouthuysen
transformation on the total Hamiltonian 5¢R€l,

R
3CRel -1c, el +:;(:hstel,
to obtain an expansion in various orders of relativ-
istic effects. In the lowest order, J¢htsRel reduce
es to the form

. Rel 8m = ... - g
Kops =g bphyr 000 —ugl(u,-5/79)

-3(i, F)(@+ £)/7%)+ 205 (- L/79), (20)

which consists of conventional Fermi-contact, elec-
tron-nucleus dipole-dipole, and nuclear-moment-
electron-orbital terms. The Hamiltonian 3¢, Rel

can be reduced in the nonrelativistic approxima-
tion to a sum of three operators given by

e Rel NR

o =30, T+ 3~ +3C, (21)

SO
where JQ,NR is the conventional nonrelativistic Ham-
iltonian, ¥gp gives the contribution of spin-orbit
and spin-other-orbiteffects, and ¢’ represents ad-
ditional contributions, for example, the mass-ve-
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locity term which does not explicitly depend on the
angular momentum. It is this term which restores
the degeneracy between equal j states in the hydro-
gen atom after the spin-orbit effect is applied.
There is some uncertainty as to the exact form of
the spin-orbit potential for many-electron systems
in the presence of exchange. In the case of more
than one valence electron outside of closed shells,
a portion of the spin orbit term ¥gq leads to a mix-
ing between states of different orbital angular mo-
mentum (but of the same j values). This has been
referred to in the literature!® as the BDLSC effect.
However, in the case of alkali atoms, we have on-
ly one valence electron and the BDLSC effect is in-
significant. The main difference between nonrela-
tivistic results in our case is therefore a reflec-
tion of the influence of the mass-velocity term on
the radial part of the one-electron valence wave
function.

For the sake of illustration, we have listed in Ta-
ble III the nonrelativistic limit for matrix elements
of the hyperfine operator between those ku states
which reduce in NR theory £3 /2 andpu/z states,
These are determined by both the above proce-
dures, namely, by taking the expectation values of
SchfSN'R over the nonrelativistic states and also by
Breit reduction®® of the matrix elements of Eq. (14)
(see Appendix B). As mentioned earlier, this ta-
ble as well as corresponding ones for s and d
states will be of use in solid-state calculations
where off-diagonal (ju,j’u) elements can occur be-
cause of the mixing of orbital states by the crystal
potential.

It should be pointed out that in our relativistic
calculations, the effect of the Breit interaction be-
tween electrons has not been included since this ef-
fect was not incorporated in the DHF wave func-
tions!? which we have used. Since the Breit inter-
action® is essentially a two-electron effect, one
would not expect it to have significant influence on
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one-electron properties like the hyperfine interac-
tion as has in fact been demonstrated in earlier
calculations.

IV. DISCUSSION

Theoretical values for the hyperfine constants a
in all the alkali atoms including the NR-RHF, CP,
and relativistic contributions are tabulated in Ta-
ble IV and compared with the experimental results.
To facilitate discussion, the individual contribu-
tions from these sources are also included. By
relativistic contribution is meant the difference be-
tween the DHF and NR-RHF results from Columns
3 and 2 of Table II. The differences between the
experimental and theoretical values of a in Table
IV are seen to increase from about 6% for lithium
to 26% for cesium. From the trend of these differ-
ences, it is tempting to ascribe them to errors in
the relativistic calculation. However, one can dis-
pense with this source as a major contributor by it-
self, since the remaining discrepancies between
theory and experiment are much larger than the en-
tire relativistic correction (Column 4 of Table IV)
for the lighter atoms. As regards errors in the
CP contribution, it could be argued that by using a
perturbation approach (MP), we may be neglecting
higher-order perturbation effects. However, CP
contributions from UHF calculations in lithium,
sodium, and potassium are seen from Table I to
compare quite favorably with those by the MP
procedure. As a matter of fact, any appreciable
difference in the results by the two procedures oc-
curs only in the case of the lightest atom lithium,
and can be understood by the fact that exchange po-
tential is a larger fraction of the total Hamiltonian
in the lighter atoms. Therefore it seems reason-
able to assume that the MP results for rubidium
and cesium are a good representation of the actual
nonrelativistic core-polarization effect. It is then
interesting to inquire whether a relativistic treat-
ment of the CP effect would lead to any substantial

TABLE III. Reduction of relativistic hyperfine matrix elements.

Bra and ket Relativistic hfs matrix Breit reduced® Matrix elements of ZchfsNR
element matrix element
Gl 13wy Dipolar Orbital Total
el
4 L2 S 8 1 4 1 4 1 8 1
1 1 11 ~e AT 2 — = — =1 — = —_
Gzl B2 5 lﬁ{ 0 dr Skt (o3 ShpH () 3hph (55 3hgh (3
0O
8 832 J: 8 1 2 1 1 8 1
3 3] |3 3y ——eu 3/273/2 o L A S = 4 L
<2 ZI IZ 2> 5 % dv SMBNI<’V3> 5“3”[( ,',3> ZMBMI<1’3> 5MBHI<7’3>

»2

00
8 832372
1y S en
3) 15 l-—— dr

8 1
31| |38 8 =
<2 zl |2 > 15“BMI<7’3>
7

11] |31
@ 3l +12 2 g¥2  f s s 2 1

= 832128127302 = —
si by O e“J-—————-—-dv 5 g (GE
Gl 13 H 0 2

2 1, 2 A 8 1
1sMeP () kg (o) sHet )

23/2

2 i) 5/2 1 23/2 1
—3 HpH (o3

2
3 uBuI<1,3> 3 Mgt (3

2(1/#3) in this column and subsequent ones refers to the matrix element of »—3over the radial part of the non-

relativistic p wave function.
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TABLE IV. Various.contributions to the theoretical
value of @ and comparison with experiment.

Atom “NR- acp aRel aTotal aExp
RHF
Li  284.00 94.02 1.00 379.02 401.80
Na  629.00 141.54 6.00 777.54 885.70
K 144,00  35.49 5.00 184.49 230.90
Rb  505.80 130.14 157.60 793.54 1011.90
Cs 983.80 227.25 472.40 1683.45 2298.20

a, = —
%Rel ~ *DHF ~*NR—-RHF"

correction to the nonrelativistic result. In the rel-
ativistic case, the UHF approximation would imply
different radial functions (both large and small
components) for different one-electron m; states
analogous to the difference in the radial functions
for different mg states in the nonrelativistic ap-
proximation. A relativistic MP calculation will of
necessity be more complicated, since one has to
solve coupled perturbation equations for the large
and small components. Furthermore the demands
on computational accuracy will be much more se-
vere because of the expected order of magnitude dif-
ference between the radial functions for large and
small components. In the absence of actual relativ-
istic CP calculations, we can only speculate on the
magnitude of relativistic corrections to the CP ef-
fect. From Table I the nonrelativistic CP effect is
seen to be about 23% of the NR-RHF contribution
for all the atoms. If it is assumed that the relativ-
istic CP effect will also have the same percentage
importance relative to the DHF result, we get onl
39.89 Mc/sec and 122.42 Mc/sec for Bacp=acpRe
-acpNR for rubidium and cesium and negligible

cp glig
corrections for the lighter atoms. Thus the nature
of the agreement between experiment and theory
would be essentially unaltered by incorporating rel-
ativistic effects in the CP calculation.

From these considerations, we are led to be-
lieve that the residual difference between experi-
ment and theory can only be explained by including
correlation effects explicitly. There are two types
of correlation effects which could influence the the-
oretical result. One type is the correlation be-
tween the valence electron and the cores which can
lead to a change in the valence-electron wave func-
tion near the nucleus. A second effect can arise
from the intra- and inter-shell correlations among
the core electrons. The latter type of correlation
can influence the hyperfine constant indirectly
through its influence on the CP effect. Many-body
calculations?® on lithium atom using Breuckner-
Goldstone theory indicates that of the two types,
the one involving the valence electron is more im-
portant. This feature is expected to hold for all
the alkali atoms.

V. CONCLUSION

Various possible contributions to the hyperfine
constant have been analyzed for the alkali atoms.
The core-polarization contribution appears to be
the main source of correction to restricted Har-
tree-Fock approximation. Relativistic effects are
found to be insignificant for the three lighter alkali
atoms but comparable to the core-polarization ef-
fect for the heavier atoms rubidium and cesium.
The explanation of the remaining discrepancy be-
tween theory and experiment would require explic-
it consideration of correlation effects.
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APPENDIX A: NONITERATIVE PROCEDURE
FOR SOLVING INTEGRODIFFERENTIAL
EQUATIONS OF SECTION II

We shall present here a generalization of the non-
iterative procedure? for solving an integrodifferen-
tial equation when more than one core states are
involved. In most general form, Eq. (1) in Sec. II
can be written as

n
M(ﬂ :fo+ E YZ<XZ|<P>fl, (A‘l)

i=1
where M is the differential operator and f, is the
inhomogeneous part of the equation; the f; are ra-
dial functions which may in particular cases be
identical to x;, and the ¥; are multiplying constants.
In general, the f; are nonorthogonal,

(fl. If].)se Gij'

For an atom with ¢ cores (including the one which
is being perturbed) z is equal to 3(-~1). One de-
mands the solution of Eq. (A-1) in the form

(A-2)

n
¢=2 Co,
i=0
with C,=1.and the ¢; satisfying the equations

Mo ;=f;

(A-3)

(A-4)

Substituting for ¢ from Eq. (A-3) in (A-1) and us-
ing (A-4), one obtains

n / n
Elci<<fi 1= Z e

n
X= B 109, ffk>). (A-5)
In deriving Eq. (A-5), the linear independence of

the source functions f; have been utilized. Defining
the square matrix [A] by

n
4,.=(f; Ifk>—]_§17j (x]- l¢i><fj Ify) (A-6)
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and two column matrices [C] and [S], the latter be-
ing defined as

n
-one obtains the desired coefficients C; in Eq. (A-3)
from the equation

n
C;= 2 1AL,y
j=1

In Eq. (A-8), i takes the values from 1 ton, C, be-
ing equal to unity. In practice, therefore, one
solves the (n+ 1) differential Eqs. (A-4) with appro-
priate boundary conditions and then obtains the per-
turbed solution ¢ using (A-6), (A-7), (A-8), and
(A-3). The normalization of the total perturbed
function is achieved by adding to it a suitable mul-
tiple of the solution of the homogeneous equation

M@ =0. (A-9)

(A-T)

(A-8)

APPENDIX B

We are interested in the nonrelativistic reduction
of the radial part of the relativistic hyperfine ma-
trix element given in Eq. (15) of the main text.

R, = 772 ft8  f )7, (B-1)

where g, and f are the large and small radial com-
ponents of the Dirac wave functions for the state un-
der investigation. The functions g4 and fx satisfy
the following radial equations:

O e A
gg_'_x'{;;[% (1—%,>+VJgK,, (B-5)

where A =h(mc)™. The terms involving E and V
on the right may be eliminated by multiplying Eq.
(B-3) by f’ and Eq. (B-4) by g, and adding the two

ar fngfK'd
_K- 0 72 r
*1
- e )

o 1,
o Ewe g g i (Be6)
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By an equivalent procedure using Eqs. (B-2) and
(B-5), one obtains a similar equation involving g,
and f.

.417 OOgK,de
A 4] 1’2 4

71 i
of e, T )

0
1 :
+f0 7a(kg, & =K [, dr.

On adding (B-6) and (B-7), the matrix element
Ryy in (B-1) is expressed in terms of products of
large and small components by themselves, a form
particularly suitable for the nonrelativistic reduc-
tion process.
0
4m
T &S 8l

(B-7)

=) mla/ang g, s 7, ir

of Al )@ 8 0 S )dr. (B-8)

In order to take into account the fact that the nucle-
us has finite size, one has to subtract from the

Eq. (B-8) the contribution to the integrals from a
small region 0 to 7,, given by

4 (Yo 1
f'
. o FQ(gKfK' LT K)dr
7,

0
of Al g, g i

72
7o
+f Kkt 1) 8 f f N (B-9)

Subtracting (B-9) from (B-8), one obtains after
partial integration

0
1
L ’}’T(gl{fK' +gK'fI{)d7‘
("L 5 g f
= I+ 2 v
A 2 &S 8 S )
A ) , ’ dr
+'4‘7,,‘0 [gKgK'(K+K -Z)—foK,(K'*'K-Z)]F
A 1
“Tr 72 €kl S ) ’ (B-10)

In the nonrelativistic limit the first term on the
right goes to zero, the second yields the conven-
tional dipolar interaction for non-s states, and the
first part of the third term gues over to the Fermi-
contact interactions for s states.
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An extension of Brillouin’s theorem, stating that matrix elements of .H — EI between the
spin-extended Hartree-Fock (SEHF) function and the projected singly~excited functions de-
rived from it vanish, is used to calculate the SEHF function itself. Functions are reported
for C, N, O, and F, using two basis sets for each atom. Results are compared with ear-

lier calculations for other first-row atoms.

Appreciable energy reductions with respect to

the restricted Hartree-Fock results were obtained only for the closed-shell atoms He and
Be, and a spin density in good agreement with experiment was obtained only for Li. It is
suggested that larger basis sets may be required to span the SEHF functions.

I. INTRODUCTION

The method most widely used for obtaining
atomic wavefunctions is the Hartree- Fockapprox-
imation, ¥ 2 in which the best solution to the Schrd-

dinger equation representable as an antisymme-
trized product of one-electron functions is found.
The exact eigenfunctions of the nonrelativistic,
spin-free Hamiltonian are also eigenfunctions of
the spin and orbital angular momentum operators



