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Toward a Theory of Isoelectronic Impurities in Semiconductors*
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Isoelectronic impurities in semiconductors are investigated using a Koster-Slater one-band-one-site ap-
proximation. Good agreement arith experiment is found for the optical absorption induced by nitrogen in
garium phosphide. Binding energies of excitons to single nitrogen impurities and to double nitrogen im-
purities are calculated using the complete structure of the GaP conduction bands. Very limited success is
achieved in these calculations, vrhich ignore correlation effects and the lattice relaxation and electronic
polarization of the host crystal. The indications are that the response of the host to the impurity is of crucial
importance in the short-range-interaction problem in semiconductors.

L DTTRODUCTION

l
'HE term "isoelectronic impurity" is used to denote

an impurity center in a crystal arising when an
atom from the same column of the periodic table as one
of the constituents of the host crystal substitutes for
that constituent. Isoelectronic substitutions in certain
wide band gap semiconductors have a profound effect
on the optical properties of the materials for photon
energies in the vicinity of the band. gap. In particular,
the impurity systems GaP:N, GaP:Bi, and ZnTe:0
exhibit sharp absorption lines and Cds: Te exhibits an
absorption band lying within the band gap of the pure
crystal. ' 4 These lines can be attributed to exciton
bound states at the impurities.

These systems have been classided as isoelectronic
aceeptors and isoelectronic donors on the basis of
whether the impurity is, respectively, attractive for
electrons or attractive for holes. ' For isoelectronic ac-
ceptors, the mechanism for binding an exciton is
conceived to be as follows: An electron in the conduction
band is attracted to the uncharged impurity by a short-
range potential and becomes bound to it, the result
being a charged system that can subsequently bind a
hole. Isoelectronic donors would operate in the inverse
sequence, 6rst binding a hole and then an electron.

In one system, GaP:N, in addition to the principal
bound state (A line), other bound states have been ob-
served in both absorption and. Quorescence which lie
lower in energy than the A. line and form a sequence of
levels converging to the A line. ' These levels have been
identified as bound states of excitons to tv' nitrogen
impurities at various interatomic spacings. They are
labeled NN~, N¹2, N¹, etc., in increasing energy
(diminishing binding energy). There is no apparent
regularity in these lines except that they converge to
the A line.

~ VVork supported in part by the National Science Foundation.
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In GaP:N, the A line is actually a doublet, called A
and 5', arising from the degenerate valence band. The
A-8 separation is 0.8 meV. Lying above the A-8
doublet by 1.8 meV is a pair of doublets (seen weakly
in fluorescence) lying quite close together and which
are clearly replicas of the A-8 doublet. ~ Figure 1 shows
the Quorescence from these states. GaP has a three-
valley conduction band and these higher states can be
identi6ed as the antisymmetrical pair split OG from the
symmetrical A-J3 doublet by intervalley mixing.

GaP is an indirect band gap semiconductor and as
such the optical absorption above the band gap ls
dominated at low temperatures by the presence of
nitrogen. ' Purely electronic processes (assisted by the
nitrogen) which produce optical absorption are (l)
creation of an unbound electron and an unbound hole,
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FIG. I. Fluoresence spectrum of the A, 8 lines in GaP:N
showering the excited states split o6 from A,B by intervalley
mixing. (Spectrum taken by P. J. Bean.)
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I J.J.Hop6eld, P. J.Dean, and D. G. Thomas, Phys. Rev. 158,

748 (1967).

991



(2.'1)

Lct the interaction between electrons in the crystal
and the isoelectronic impurity be describaMe by a
potential V(x), which consists of both the bare inter-
action RQd thc lQtcI'action duc to thc scH-consistent
rcarrangexncnt of thc charge density in thc crystal. Lct
us also adopt the independent-particle approach for
the moment.

The Hamiltonian for a single electron then becomes

Before proceeding ful ther' an aside ' on notation
would be in order.

Almost always, units with A= 1 will be used.
Bloch functions (BF) will be denoted either as

f„(k,x) or abstractly as a ket vector with a mund
bracket: ink). EIere, n refers to the band and k refers
to the reduced wave vector lying in the 6rst Brillouin
zone (BZ}.The normalization for the BF's will be taken
to bc a DllRc 8 fuQctlon:

(2 g)

Hojnk)=e (k) jnk)

and e„(k) are the band energies.
Wc IDRy %'rltc SchI'odlngcl s cquatloD

(2.9)

(2) creation of a bound electron and an unbound hole, above:
(3) creation of an unbound exciton. ~ e'~'RIOR

Tllcsc proccsscs Rrc discussed in Scc. III whcI'c thc0 (2s.)'i' R
conscqucDccs of IQRklng R Slater-Kostcr oDc-bRQ(I-

pproxnnation will be mvest'gated .Th's simPle Reciprocal-lattice vectors are denoted. as 6 and
model has the advantages of being soluble analytically G.R 2~X(an, nteger)
Rnd of bclng able to corrclRtc R grcRt dcRl of lnformatlon
with cssentiaBy only one adjustable parameter. In B. 10fIQRHSXQ.
Secs. IV and, V, the. results of more extensive computer,
calculations Rrc presented.

(nl jn'k') =8...8{k—k'). (2.1)
(2.10)

. Rnd usc tIlc SF I'cprcscQtatloQ
In terms of the periodic part U„(k,x), f„(k,x) may

be written

P (k,x)= j &'l2/(2x)'"js'~'*U„(k, x),

%'herc 0 ls thc vohlnM of R prilnltivc cell Gf thc crystal.
The normalization of U„(k,x) is

LE1—a (k)j(nk j g) =Q d'k'8(k')

)&(nkj Vjn'k')(n'k'jf), ). (2.&1)

Writing the a~plitud~ (nk j A} as A(«),
momentum-space wave function, we have the integral

d'x U *,x U„.(k,x)= nk n' =8„„.. (2.3

&1(nk) 5=„8(k k)—),
Pointed brackets, as above, refer to integrations over

the primitive cell of. the periodic parts of the BF s. +LE—i0—e„(k)j-'Q
Round. brackets refer to integrations of thc complete
SF s over RH spRcc.

Wannier functions (WF) are de6ned in terms of the
BFS

d'k'8(k')

&&(nkj Vjn'I')@,(n'k'). (2.12)

X denotes the quantum numbers ni and k1 of the un-

perturbed vrave function.
The unperturbed wave function is q1=8„„„8(k—k&)

Rnd satlsflcs thc cquatlon

LE1—e (k)j~(k}=0.

n (x—R)= d'k 8(k)s-'~ iP.(k,x) (2.4)
(2s)'l2

or
Q~I2

InR) = d'k 8(k)& ~'"jnk),
(2s)'" The term —i0 is attached to E), in Eq. (2.12} speci6es

what to do with the singularity when E1=e„{k).In
particular,where R is a direct ls,ttice vector.

The function 8(k) is de6ned to be one if k lies in the
erst SZ Rnd, is zero otherwisc. This is simply R device
for restricting k-space integrals to the BZ.

The %F normalization is

+kr8(E),—e (k)3,
LE1—i0—e (k)g LE1—e (k)j

(nRjniR~) 8 8 (2 6} wlieie P denotes the pi'iiicipal pai't.
If the eigenvalue Ey lies in the band gap„ the 6rst

BF's can be written in terms of the WF's de6ned term is omitted andfibecomessquareintegrable. H the
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Tg; = p—p d'kIe(kI) d'ks

eigenvalue lies in the continuum of the unperturbed where
crystal, then EI,= e„„(kI,) and the normalization of the
states g is

d'k e(k)gg*(mk)PI, .(Nk) = e(nI„nI,.)5(kI,—kx ) . (2.18)

One must be careful to distinguish the argument of
the wave function (Nk) from the labeling of the wave
function (nI,k(().

The ground state of the crystal consists of electrons
occupying these states up to the band gap between the
conduction bands and the valence bands. If the admix-
ture of conduction band states to the valence band
states is not great, we can take the ground state to be
the same as the unperturbed ground state, i.e., electrons
Glling Bloch states up to the band gap.

An excited state of the crystal consisting of one elec-
tron in the conduction bands and one hole in the
valence bands can be written

e
d'k e(k)((t g*(ck,I(k)(ck

I A0 P
I
Ik). (2.20)

/AC o c

The incoming radiation Qux is

(5)=co'I Ao I
'ejgs(;, (2.21)

where n is the index of refraction at frequency e.
The cross section for optical absorption by a single

impurity center is then

xe(km)QI, *(ckI,I(km)((,.kI I A PI skm) . (2.19)

A(x) is the vector potential for the incoming radiation,
A(x) =Aos'("'* ~'I. P is the momentum operator —itic.

As usual, since the wave vector of the incoming light
is so small compared to the extension of the BZ, we
may take it to the zero:

z'e, e(k, ) z'u, e(k,)p&(ck„~k,) e'
0((0)= P 4(2s)'XC,t(kI)C„(km) I&), (2.14)

where C~ and C are Bloch-state creation and destruction
operators and IG) is the state vector of the ground
state. C and Ct satisfy the anticommutation relations

states
(&)

x g Q dab e(k)g+(ck,.k)(ikl pl&k)

{C (k),C t(k')}=8 e(k—k'). (2.15)
Xe(EI,—Ps')) . (2.22)

The Schrodinger equation for g consists of the un-
perturbed part, the interaction of the electron and of
the hole with the impurity, and. the Coulomb attraction
of,the electron and the hole:

I EI,—e,(kI)+e.(kg) ]P((;kI,vkm)

z~q e(q)(~kII vlc'q)y(c'q, ek, )

(f'g e(q) (I'q I V I sk2)p(ckI, ((('q)
~l

4me' I j.
(Pg~(ckI+ q, Ik((+ q) . (2.N)

(2s)' g'

If the state is discrete, it can be normalized:

(z(x)=&=I;T.fz'k, e(t, ) Pk, s(4)

x lg(.kI,.k.) I'. (2.»)

wr =2''I 2 y I e(Ey E)—(2.18)

$n porn approxImatIon (llIleal' response)~ tile 'tI'aIlsl-
tion rate for optical absorption is given by

The absorption coeS.cient 0, is given by

n(co) = 0(~)X(No. of impurities per unit volume).

The formula for o(cu) can be simplified under special
conditions, as will be discussed in the next chapter,

III. ONE-SAND-ONE-SITE APPROXIMATION

A. Model

One can expand the matrix element appearing under
the integral sign in Schrodinger's equation (2.16) in
terms of KF matrix elements'.

0
(nkl Vln'k')= P e '"' (nRI VIN'R')e' '"' (3 1)

(2s.)' Ra.

If V(x) is of shorter ~ange than the interatomic
spacing in the crystal, and if the%F's are well localized,
the dominant term in the expansion above comes from
R= R'= 0 Df V(x) is centered at the origin of
coordinates'.

A simple model may be obtained if we take only this
principal term into account and if, further, we consider
only one conduction band ((:) and only one valence

' G. F. Koster and J. C. Slatcr, Phys. Rcv. 96, 5208 (4954}.
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Ã„—&,(kI)—~„(k,Gq, k„k,

dag—41(kI+q, km+ qdg—1 I, (34)
(2m)' g'

(3.7)

p„bIem in &b6 0g,o-Q~o~g Spate
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g, 8
~ pro~g+OQ

ln this Inodcl~

k, k.) f"'h' '""

bg,nd (&) Th

(,kIy~~q)
R 0)=J,Q/(2 )'

(32) by repro'i""" „t,f Sch»~»g""q
„/(2 ) j(,R=OI&l~ = —',

„ly,t the eleCtro»"

JQ,
8 )@(q) (3.6)

(,kl VI q)

I,R=A)=J.Q/(2-)'

(k)je(k) = d'g {q
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. , d I:&—"
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(3.8)E=J — d'g 8(q)%'(q).
2m)'(

the eigenvalueInto (38) gives us the 'gSubstituting (3./) into . '
the g

cqURtion

—0
0

1+J — d'g 8{q)—
(2~)'

(3.9)

(3.10)

t00 Mbt in the equation

jV

(3.11)
~(q)(~(q)-&)

d'g 8(q)

k from the lowerin both E and ~,%e are measuring o
f the conduction ba

Bt 'tile effective-msss happ
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integral diverges.

=+
(tE) 6 't(6 E)'
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FIG. 2. Hand structure and

Brillouin zone of GaP. (After,
Cohen and Bergstresser, Ref. 8.)
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The second integral can bc extended over aH space
and effective masses can be used if I ZI ts smalL

%e now need to know the band structure of GaP.
Figure 2 shows the GaP band structure as given by the
empirical pscudopotential calcula, tions of Cohen and
Bergstresser' along with the Brillouin zone for a face-
centered cubic crystal with the symmetry notation
of BSW.'

The (indirect) band gap is between points Frs and

I& and equals 2.3 eV. There are three inequivalent
points X in the Brillouin zone, giving GaP a three-valley
conduction band. The effective masses in the valleys
are not isotropic, the longitudinal mass bring 1.49 m
and the two transverse masses being 0.25 m (directions
relative to the line from X to F). Of special note is that
the 6rst conduction band bends over in the center of
the zone and comes within 0.5 eV of the minimum at X.

Denoting the effective masses at X as (mr, rpsr, ms)
and extending the integral of Eq. (3.11) over all space,
we obtain

.1+/(1/ )=j(3Q/2s)e'er(2fnsIEI)" . (3.13)

For the bound state to exist, we must have 1+J(1/e)
&0. Therefore, there is a critical value of

I J I
below

which no bound state exists. The special combination
of J' and (1/e) appearing in Eq.. (3.13) occurs so often
in what follows that we shall give it a name:

2~I@,I(2m.eIZ, I) t«
%'s(k) =

(2s.ms*)I e„(k)+ IgsI js ' (3.21)

For small
I
~ I, we can use the effective-mass approxi-

mation again, and
I XI is then

(2 I&I)'"

2~(3mrm, )«s

or, letting sos*=(~rrwrms)'" be the geometric mean of
the masses,

(2rrs*IEI)'~'

v3'(2s m*)

Equation (3.7) for .the electron wave function then
becoxnes

(2m.*Is,I) t«
@.(k)= — —, (3.19)

vF(2~m.*) Le,(k)+ I Z,
I j

with IErI given by

30 1+J'(],/e)~;(2~.*IZ,I)»s=Q=—— — (3 20)
(2s)

In the spirit of:the previous discussion, wc now take
the hole to be in a hydrogenic IS state

1+J(1/e)
Q—= — &0.

where, for purposes of maintaining a simple model the
~3.I4 hole mass is taken to be isotropic around a valence-band

maximum at the center of the BZ (F):
The normalisation constant appearing in Eq (3 &)

can be determined by requiring
s,{k)=k'/2gg„*. (3.22)

The lmle %'ave functj()n is normabzed so that

de S(k) Ie(k) I'=1 (3.15)
(3.23)

dsk e(k) = 1 . {3.16)
I e( )+ I ~l I

'

'Marvin, L. Cohen and T. K. Bergstresser, Phys. Rev. 141,
789 (j.9eu).' L. P. Houckaert, R. Snmluchowslq:i, and E. signer, Phys. Rev.
50, 58 (1936).

%'e can novr use the two wave functions we have ob-
tained to form a product trial wave function for the
bound-exciton problem, using E~ and Eq as yariational
parameters.

Solving numerically gives the value of Q, the one
important parameter of the simple model, using the



experimentally known value of E (0.02 eV),

1+J(1/e, )
Q= —=0.022 CVJ

along with the wave-function parameters

iE, i
=0.0104 ev,

[E2i =0.0096 eV.

The masses have been taken to be

m,*=0.35ns,

m p,
stc =0.20ns.

(3.24)

(3.25)

e (index of refraction) =3.45,

6= e,(P)—e,(X)=0.5 eV,

E, (indirect energy gap) =2.3 eV,

A&oo= (E,—
~
E

~
(bound state)),

]Xj'= )(ck=0[x[sk=0)/'
= f(ck=0/p/mjvk—=0)/'/(E, +6)2
=optical absorption matrix element.

Because no broadening processes have been con-
sidered, the cross section as a function of frequency is
represented by a 8 function. The expression for 0(a&) can
be integrated and this integrated absorption can be
compared to the area under the experimental absorption
curve.

a (au) =8(2s')' d'& e(k)@.*(k)u.(k)( kl P/ I »

C. Oytical Ahsorytion at the Bound, -State Energy

Thus far, nothing new has been learned; we have

simply substituted one parameter for another. How-

ever, we can go on to calculate the integrated optical

absorption strength due to the bound state using the
wave-function parameters calculated above.

The expression given in the last section for the

optical-absorption cross section can be simplified con-

siderably, using the properties of the wave function.

First, since we are considering only one valence band

and one conductIon band& wc may wl ltc thc gcncl al

expressIon as

16 e'~ 1 -E,+Z 2-
( )d(~ )=—(4 )' —

I

3 kc)'SANO

X (my*/m, *)'»
[ Ey [

'»
~
E,

~

312

=1.01)& [X(' (meV).

Experimental areas give

(3.29)

0 (&o)d(k(a) = (4.5+ 1.0) A' meV. (3.30)

~X~ =(2.1+0.3) A, not at all an unreasonable
value for the optical matrix element, the area under the
experimental absorption curve is well accounted for.

Xg(@(g—(E,—i
E

pi�

)), (3.26)

where the sum over the 6nal states has given a factor

of 2 due to spins.
3ecause the hole wave function is concentrated about

k=(},we can make the further approximation of setting
R= 0 jn the 3F matrix element and in the electron

wave function:

c9 P 2

g(cy)=8(2s.)' ck=0 —wk=0 ig, (0) i'

d'k tt(k)gh(k) b(ha& &coo) —(3.27.)

Using Eq. (3.21) for the hole wave function, the

integral over k space can be performed, and we obtain

16 e' 1 Eg+6 '
o(cu)= —(4 )' — — ~X~'

3 Ac nkco

D. OyticaI Absorytion Above the Band Edge

Yct another experimental observation can be under-
stood using thc simple model: the optical absorption
above the band edge induced by the nitrogen iInpurities.

Considering only purely electronic transitions, the
optical absorption occurs principally in three processes:
(a) the creation of a bound electron and an unbound
hole, (b) the creation of an unbound electron and an
unbound hole, and (c) the creation of an unbound
exciton. Processes (a) and (c) have one-particle den-
sities of Anal states which lead to square-root absorption
thresholds. Process (b) has a two-particle density of
6nal states and, consequently, aII E' threshold.

Process (a) is the simplest to calculate because the
wave function for the electron+impurity bound state
has already been determined. The hole can be taken to
be free if the Coulomb interaction is ignored. This is
undoubtedly a bad approximation at the absorption
threshold, but it improves for higher energy. Making
this approximation gives us the electron-hole wave
function for this process:

0(k,k2) =f.{4)&{k2—ko), (3.31)

&((mz*/m. *)'» ~Ex
~

"'~
E2~

'I'8(hs& —5~0) (3.28) where k0 is the fmal hole momentum, and&, (k&) is given



THEORY OF I SOB LECT RON r C r M P U'R. I YI F S

by Eq. (3.19) with IE,&l =8 meV, the binding energy
of the electron by itself to the nitrogen impurity.

Using the CGective-mass approximation for the hole
and the same approximations made before in the case
of thc absorption at thc cxclton bound-state energy» wc
obtain the square-root absorption curve for frequencies
greater than, but near, the absorption edge:

The function f(E) has appeared before in the bound-
state problem where the eigenvalue equation for 8&0

I 1+Jf(E)7=o. (3.39)

For energies E above the indirect minima but below
the direct relative minimum of the conduction band

16 t'e') E +6 'IE,gl'I'
~(~)=—(4~)I —II&l'

Etc& a nt

X (mi, */m, ') '"(Ace—A&so)'"

Ao(0) =
(2 )' I:1+JX(E)]LE-~]

E= e,(ko).

(3.40)

a~,=E,—IE.,I. (3.32)

d'g 8(q)gp, (q). (3.33)
I
E+io—~,(l )] (2~)'

Here, k is the argument of the wave function and ko
is the label of the state represented by P; B(k—ko) is
the unperturbed wave function; and E= e,{ko) is the
energy of the state.

Writing f in the form above preserves the normali-
zation»

d'k 8(k)gg, *(k)gg,(k) = b(kg —kp) . (3.34)

Integrating Eq. (3.33) over the BZ yields

d~k e(1)y„(k)= 1+ dak
(2n.)'

Process (b), the production of unbound electrons and
unbound holes, is one step more complicated. Ke will
now need the continuum-electron wave function.

Schrodinger's equation for the electron in interaction
with the impurity, Eq. (3.6), can be written for E)0:

pg, (k) = 8(k—kp)

JQ
P~,(0)= — (Born approx. ).

(2~)& LE—a7
(3.42)

But because of the existence of a shallow bound
state, Ii+Jf(E)l((1 for E near zero (recall that
L1+Jf(0)7/J=0.022 eV '). Since the optical absorp-
tion is approximately proportional to

I P(0) I
', we wouM

have lost several orders of magnitude had we used the
Born approximation for the continuum-electron wave
fuQctlon.

If the Coulomb interaction between the electron and
the hole is ignored, we can take the hole to be a free
partide and take its wave function to be a momentum-
space 8 function. The electron+hole wave function is
then

4(k~,k2) =A,(k,)s(k,—k„), (3.43)

where kg is the final hole momentum.
Using Eq. (2.22) for the optical absorption cross

section,

Had we used the Born approximation for this calcu-
lation, setting fj„(k)=B(k—ko) in the right side of
Eq. (3.33), we would have obtained

JQ
y„(k)= b(k —I,)+ (3.41)

(2~)3 LE+io—,.(k)]
'

DC6ning
LE+io—e,(k)7

d'k e(k)g*(ck,.l )(.I I p/~ l.k)

0
f(E)= d'k 8(k) —,(3.36)

(2n)' Le,(k)—E—io]

we can solve for J'd'q e(q)fq, (q):
JQ 12 j.

=(E,+~) lxl2
(2~)3~ I1+Jf(E)I2

(3.44)

d'g ~(q)A. (q) =
L1+Jf(E)]

The electron wave function then becomes

if', {k)= b(k —ko)

(3 3&) where E has been assumed small compared with g.
Summing over the 6nal electron and hole states gives

32 s' 8,+6 ' (ma)"' I
~(a) =—— lxl'I

2 fbi a Em.* na

JQ
(3.38)

(2~)' D+Jf(E)] I:E+@—"(k)7

(@I-&u& E&lm(jg(g E E)xl2——
X dE, 3.4S

L~(E)+E]



L1+JRe(f(E))]'
I/(E)

36~ (2~:)'Pa/(2 )']'

absorption. We can, in fact, obtain an upper limit on
o(st) for this process by setting r/(E) =0 for all E in the

(3.46) integral of Eq. (3.45):

e(o/re -El/2(Ard E E)1/e

f(E) -+ (1/c)—const (3.47)

(2) Re)f(E)] is analytic about E=O for E-+0 from
above:

and the term E accompanying y(E) comes from

1m'(E)] which is proportional to the density of
states (E'").

We now need to know ReD'(E)] for E)0. The trick
used before for 8&0 does not work in this case, so that
we must resort to something else.

If the density of states for the entire conduction band
were known, f(E) could be calculated. In the absence
of this knowledge, and in order to keep the calculations
simple, a model density of states can be used as shown
in Fig. 3. Re(f(E)] can be calculated from this density
of states and is also shown in Fig. 3.

The essential features of Reef(E)] illustrated here
which would hold true for any density of states begin-
ning as E'" and having a 6nite total integral are

(1) ReLf(E)] has a square-root singularity as E-+0
from below',

Lt (E)+E]

(Are —Ee—E)"'
dE = —,'tr(Are —E,) . (3.49)

gc/s

The resonance effect acts to change the (Ard —E,)'
form for the optical absorption arising from the two-
particle density of fina1, states to the linear form
(Ard Ee)—

Using the linear form Reef(E)7=(1/e)(1 pE)—, the
integral can be performed and the optical absorption
cross section expressed in closed form. The results are
not sensitive to the value of p. Figure 4 shows the cross
section calculated for p(1/e)=0. 82/(eV)'. The curve
goes as (As/ —Aste) ' at threshold and approaches
(As/ —Aloe) asymptotically.

The final process, the production of unbound excitons,
is the most complicated of all but it can be calculated
ln IQuch the same way as the previous pl'ocess.

We n1ust now consider Schrodinger's equation for
both the electron and the hole:

Retj(E)]-+ (1/e)+const&&E+const)&E'+ ' . (3.48)
f(E e,(kt—) e.(ke—) Vc,„—t]$(k,,k,)

1+7ReLf(E)] is sketched in Fig. 3 also. There is a
point for E&0 at which it equals zero. At this point,
te(E) =0 in Eq. (3.45), greatly augmenting the optical

JQ
d'g 0((1)g(ILke) . (3.50)

(2tr)'

0

/u. (ej .X6 geo —c
(model density of states )

i-!J!f(e)

If (i-!J! f (0)) &0, there
is no bound state and no

resonance in optical

absor ption .

FIG. 3, Model density of states for
the GaP conduction band and the
function f(E) = (1//(e(k) —E))ne. Only
the real part of f(E) is shorn here.
The imaginary part is proportional to
II.(E), the density of states.

Bound State
Energy

Optical Absorption
Resonance



THEORY OF ISOOELECTRONIC IMP URITIES

OPTICAL ABSORPTION CROSS SECTION
FOR THREE PROCESSES

Fzo. 4. Theoretical optical
absorption cross sections for three
processes in GaP for electrons and
holes in interaction with nitrogen
impurities.
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%e can write this equation formally:

j.
f(kl)k2) 4'0( I) 9)+

&'a ~(Il)f(a, km)
(2)))'

+ (Power series in Vo,„I)) (3.51)

where $0(kI,km) is the wave function of the unperturbed
exclton.

If we ignore a ou11 C lomb interactions except that
necessa for i/0(kI, km), that is, if we drop the power

e uation. This approximation, along with t e same
de for the other two processes, isapproximations ma e or

de but itundoubtedly bad near the absorption edge, u i
improves for higher"enery. cs.

Making this approximation, integrating the resu ting
equation on g, ank and solving algebraically gives

A e(e)4(e,km)

again exhibiting the resonant denominator

L&+V(&-"(k))3.
The unperturbed exciton wave function for energies

near the exciton band edge ls assuming spherica
masses,

&0(kI,kg) = lI(kI—sG—km —K)

( —kG)+-;k I (3.55)

Here, p, is the electron-hole reduced mass, ~,+~„+
/(m ~*+ma*); ~2G is the position of one of the conduction-
bRIld mInIma K 1s tllc IlloIIlentum of thc cxclto11.

l++ /2~ ~= In *+~a ~ s)0(k) Is 'tllc
Coulomb wave function of the electron hole system i
the c.m. frame,

(2VZ/~) II»2(1+hmo2)-2,

&'=&/2PI&~l ~ l~~l Is the exciton binding energy,
0.010 eV. Because of the l1 function In y~(kIk, )
ft)(k, k) =0. Therefore,

d'g 8(Il)&0(Ii,km). (3.52)
L&+~f(~—"(k~))j

This gives us the exciton wave function

p(k, k) =
L&—«(k) —~.(k)j l &+&f(&—.(k))j

X —

gaol

k+ K l, (3.56)
JQ ( p

(2~)'P(kI,km) =$0(kI,km)

JQ

L1+Jf(E—c,(km))j (23)'

where the 8 functio~ has been used to perform the
integral on $0.

(353) compared to 5=0.5 eV and k is restricted to ~pi
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values by q0. %e may then approximate:

j.
p(k, k) =—

~ L1+Zy(E—Z'/2~&*))

JQ
qsl k+ K l. (3.5V)

Integrating P(k,k) and performing the sums over
the 6na1 states yields

(e' Es+6 ' 1 Qs 1
{~)=768l — lxl

Eisc 6 ebony (2s)' Qs

&&(~.*/~.*)sIslE, l
sjs(2M) s

X(hro —
hoIs)'Isle�(hoI

—lgnIII) l', (3.58)

AMII=Eg
l Eex

l
~—

esp,
~ x JI/I ' esp,

~

X 1— + s +"- (359)
~.* lE l m,' ~.* lE, l

The evaluation of m(x) must be done separately for
three regions:

(1) x& lE l
—lE,1l, lE,1l =binding energy of an

electron to the nitrogen.
(2) IE-I- E. I «iE.*l
(3) g)tE
These boundary values represent the thresholds for

the two competing processes: (a) bound electrons+free

holes and (b) unbound electrons+free holes, both of
which fall within the range of optical absorption due to
unbound excitons.

In evaluating m(x), the argument of f(x—IE—lE ls) can be positive for x) lE, l. f{oI) is taken
to be

30
f(oI) = ———(2m, *)'~'(—oI) '~'

4x
oI&0 (3.60)

3Q
f(oI) = —(1 pa—&)+s (2—m,*)'I'{oI)'~s, oI)0 (3.61)

4m

where p is the same parameter introduced. earlier in the
consideration of process (b).

The analytical results are lengthy and are not
presented here.

Figure 4 shows a plot of the optical absorption cross
scct1011 fol' tllls pl'occss 11S111g Is{1/s)=0.82/(cV), thc
same value as for competing process (b).

The sharp peak in this curve occurs at the threshold
for the production of bound electrons and. free holes
and is a resonance e6ect due to the appearance of this
cross-channel square-root threshold. If the Coulomb
interaction were treated better, this peak would become
much less pronounced.

Figure 5 shows the sum of the three processes for
optical absorption considered here superimposed on the
experimental curve, which has had the background
intrinsic absorption subtracted out.

The first thing that one is struck by on comparing
the two curves is the lack of any structure on the
theoretical curve such as is present on the experimental
curve. The reason, of course, is that phonons have been

totally ignored in this treatment.
Several resonance efI'ects are present in this absorp-

4Q-

FIG. 5. COInparison of tl1e
theoretical optical absorption
coefficient for GaP.*N with experi-
xnent. (Experimental spectrum by
Dean and Thomas, Ref. 6.)

20 "



tion curve. Hop6eld eI, uI. have discussed these effects. '
Of particular note are two positions marked A+TOr
and A+LO", where ordinary phonon replicas of the
principal absorption line (A line) would be expected.
Instead, due to cross-channel interference, valleys occur
instead of peaks.

The second thing that one is struck by is the sharp
peak in the theoretical curve, which is much less
pronounced in the experimental curve. As was discussed
previously, a better treatment of the Coulomb inter-
action should wash the theoretical peak out, bringing
it more into line with experiment.

With these exceptions noted, the theoretical curve is
seen nonetheless to account very well for almost all cf
the absorption induced by the nitrogen impurity well
above the band edge.

The value of the optical matrix element used for the
theoretical curve is !X!= 1.66 A, slightly less than that
determined from the area under the principal absorption
peak (2.1+0.3 A) but still quite reasonable.

It is satisfying to see that the tail of the theoretical
curve is practicaHy parallel to the experimental curve
since the approximations concerning the Coulomb
interactions are much better in this region than near
the thresholds.

It is also worthwhile to point out again at this point
that if the Born approximation had been used for the
electron wave functions, the magnitude of the theo-
retical optical absorption curve would be four orders of
magnitude smaller than is shown here.

E. Electron Scattering Cross Section

Thc scattering cross section for Bloch electrons in the
conduction-band scattering from a nitrogen impurity
can be calculated from the electron continuum wave
function (3.38).

The total cross section for scattering out of a pure
Bloch state is

— &'a ~(«)L1+ -'~"- & "je(«). (3.66)
(27r)'

This equation has an immediate solution for 8&0:

where

A+Br~'R
0(k) =

(e,(k)—E)

JQ
A = — d'g e(«)iP(«),

(2s.)'

(3.6"/)

(3.68)

d'a e(«)o"'V(«).
(2x)'

Let us define a new function related to f(E):

(3.69)

f(E,R)= d'g 8(«)
(2n.)' (e,(«)—E) (3.70)

f(E)=f(E,O)

Substituting the wave function Eq. (3.67) into
Eqs. (3.68) and (3.69) yields two equations for the two
unknowns A and 8:

F. Double-Impurity Bound States

We return to the bound-state problem in the one-
band-one-site approximation, now considering the case
of an electron bound to a pair of impurity atoms
separated by a lattice vector R. We let one atom be at
the origin of coordinates and the other be centered
about the lattice site at R. Then, according to Eq. (3.3),
the potential matrix element should be

( klI **I «)=t:JQ/(2-)*~LI+ — — 'j, (3.65)

and Schrodinger's equation for the electron becomes

LE—e.(k)jf(k)

3
o'soT(E) =—(m~ JQ)s

!1+Jf(E)!'
or

(3.62) P1+Jf(E)jA+Jf(E,R)B=0,
Jf*(E,R)A+[1+Jf(E)jB=0. (3.71)

' os(oET) = (3/m') (es~*Q)2(1/Q~)
= 6300 (A)'. (3.64)

We can do the same thing for the hole except that
now 1+J(1/e) is no longer near zero as it was for the
electron but is of order j.. This reduces the scattering
cross section by four orders of magnitude. This can be
considered an o posts'ori justification for ignoring the
hole-impurity interaction in the beginning.

p2~(1+JReLf(E)j)q2-
(E)=— 2 .*E+!

3m.*JQ i
(3.63)

For electrons near the minimum of the conduction
band, 8—+0,

Requiring the determinant of the cocKcients to
vanish gives the eigenvalue equation

LI+Jf(E)j = IJf(E,R)l . (3.22)

Because of the crystal symmetry, f(E,R) is real and
wc can write the two eigenvalue equations

1+Jf(E)=Jf(E,R), (case I)
1+Jf(E)= Jf(E,R) . (case II)—(3.73)

One of these equations gives an energy level below
the single-impurity level and the other gives a level
above the single-impurity level (if it can be satisfied at
all for negative energies). These are the familiar bonding
and antibonding states of molecular calculations.
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In case I, by the eigenvalue equation, Gx = (2n./u) (2,0,0),
Gg ——(2'/a) (0,2,0),
Gg ——(2m/o)(0, 0,2) .

(3.76)

fr, (k) —Ej

(3.75)

The G's are reciprocal-lattice vectors pointing toward
the three valleys of the GaP conduction band.

If we were to usc isotropic masses for each valley
(mg ——m2 -—m*), we would obtain

%C have seen before that the optical a.bsorption cross
section is approximately proportional to ~f(0) ~'. At
k=0, fg(0)=0, and Pn(0) 2/A. Therefore, the states
of case I are first-order forbidden optical transitions
and the states of case II are allowed.

H f(E,R)&0, the case-II state lies lower in energy
than case I. If f(E,R) (0, the case-I state lies lower.

gieal're'ady have an expression for (1+Jf(E)) for
small negative energies from the work done on the
single-impurity bound state. To do a good job of

evaluating f(E,R), knowledge of the band structure

throughout the Brillouin zone is again necessary. How-

ever, a good insight into the nature of the wave-function

interference CGccts in this problem can bc gained by
simply using the CGcctive-mass approximation and

extending the integral over all k space. The oscillatory

complex exponential causes the integral to converge,

Let

0 exp f—(2m*atE i)'12E)
1(R),

E.
f(E,R)=m*

(2s)

I'(R) = exp(~-', Gg. R)+exp(PG2. R)

(3.77)

f(E,R)=f~+f2+fa, (3.79)

+exp(i-,'GI R). (3.78)

Each of the exponentials in I'(R) can be either +1
or —1, so that I'(R) can be +1 or +3. In fact, it turns
out that I'(R) is either +3 or —1 for diferent values
of R.

1'(R) =3 yields a lower-lying state than I'(R) = —1,
other things being equal, and speaking only of the state
lying below the single-impurity level, I'(R) =—1 yields
an optically forbidden state, and I'(R)=3 yields an
aOowcd state.

H we use the fact that the masses in each valley are
anisotropic, m*=(mq, mq, m2), we get further striking
cRccts:

exp( —(2m2 t E ( ) '~'ELcos'8g+ (mg/m2) sin'8& j'12)
j'g ——m, —exp(i-,'Gx R)-

(2s) & icos'8&+ (mg/m2) sin'8Q"'
(3.80}

Here, 8q is the angle between R and Gx,. f2 ss the same

function with Gg substituted for Gl& and fl ls the same
function with Ga substituted fol Gl.

U'sing thc pseudopotcntlal calculation of BcrgstresscI'

and ("ohen, a thc elective masses of Ga+ are 5$I= 0.265$

~,= j..49m, . Vfith such a great diGerence between

f(E,R) becomes quite sensitive to the

orientation of R lIi addition to its ordinary dependence

on the Inagnltudc of R.
This scheme for the double nitrogen-impurity bound

states, duc paltly to the crudeness of the evaluation of

f(E,R), does not yield energy levels in agreement with

experiment. Computcl. calculations have been per-
formed that use a realistic potential and that take the

band structure of GaP more fully into account. These
will be presented in the next section,

The one-band —onc-site approxlDlation cannot be
considered an adequate description of isoefectronic im-

purities despite its success in certain areas. Most notable

among its failures is its inability to predict the energies
of any bound states or, given the energy of the single-
nitrogen bound state, to predict the energies of the
double-nitrogen lines correctly. Furthermore, the excited
states of the single-nitrogen level do not appear, even
incorrectly.

Therefore a more ambitious program was undertaken,
to calculate the bound states from more or less first
pI'lnclplcs.

To do this requires a, number of items of information.
First, the band structure and SF's of the host crystal
must be known throughout the SZ. This can be
generated from the empirical pscudopotential form
factors given for GaP and many other semiconductors

by Cohen. and Sergstresser. ' Second, a pseudo-
potential representing the di8ercnce between the im-

purity and the atom it replaces is needed. The atomic
structure calculations of HerInan and Sklllman'0

provide the core-electron wave functions necessary for
this task. .

MFrank Herman and Shenvood Skillman, Atomic SAgctlre
Culmlutioes (Prentice-Hall, Inc. , Englewood Cliffs, ¹ J., 1963).



It also involves the problems of choice of phase for
the numerically calculated BF's and the band assign-
ments to be made for the different energy levels.

U (k x)=g a (k G)e'o'*/(fl)I" (4.1}

A. Band Structure and BIoch Functions of GaP

Thc periodic parts of tbc Bloch functions can bc
written as

(Ifs+V) lf&=~lb&, (4.7)

outer electrons are modified; the electrons making up
the filled shells underneath are Dot appreciably a6ected.
One can then go on to talk only about the valence
clcctI'ons if somewhere lI1 thc formalism accouDt ls
taken of the Pauli exclusion principle. Formally, this
simply requires that all wave functions be orthogonal
to the unchanged core wave functions.

If we write a Schrodinger equation for a true wave
fUDCtlOD,

and therefore the complete BF's are

(Cly&=O, all IC)

(CI c')=~« (4.8)
Here, k is a reduced wave vector in the 6rst BZ and the
6's are reciprocal-lattice vectors.

The crystal pseudopotential Hamiltonian is
then we can write

I4&= L1—2 I C&&cl j I ~& (4.9)(4.3)H = —III'V I/2III+ V(x),

and require lg& to be orthogonal to a number of core

P„(k,x)= D/(2Ir)'Isj g a„(k,G)e'&o+'I'*. (4.2)

V(*)=Z I:~'(G)Vo'+s~'(G) Vo"3e "'* ' (4.4)

where the notation of Cohen and Bergstresser has been
used. The pseudopotential V(x) differs from that of
Bergstresser and Cohen in that the origin of coordinates
is taken at a phosphorous site rather than half-way
between a phosphorous site and a gallium site. This is
done with an eye to the future because the nitrogen
impurity will be located at a phosphorous site.

~=-'s(1,1,1)a,

where e is the length of a unit cube.

Se(G)=cosG ~,
S~(G)=sinG ~.

(4.5)

B. Impurity Pseudoyotential

The assumption contained in the band-structure
calculation, and continued here, is that when atoms are
placed in a regular array forming a crystal only the

"P.LowdiII, J. Chem. Phys. 19, 1396 (1951).
'2 David Blust, Phys. Rcv. 1M, A1337 (I964).

Vg~ and V~", the pseudopotential form factors, are
glvc11 fol GaP by Cohcll alld Bcl'gstl'easel'. Herc~ G ls
measured in units of (2s./a).

To fmd the energy levels and the coeflicients a„(k,G)
in Kq. (4.1), the basis states e'I +"I'*/0I~' with
(G+k)'&7, were used to form the Hamiltonian matrix
with perturbation corrections applied using states with
7&(G+k)'&21 according to Lowdin's method. "The
matrix is then diagonalized to Gnd the eigenvalues and
eigcnvectors. The computer program that does all of
this was originally written by Brust. "

The complex matrices involved are approximately
20&20 and the entire calculation takes approximately
10 sec of IBM 7094 computer time for each point k.

and no matter what
I 9) we choose, If) will automati-

cally be orthogonal to all the
I
C)'s.

The energy-dependent nonlocal pseudopotential is
defined to be

V„=V—P (&o—E) IC)(CI, (4.10)

(&o+V.) I 9»=~l 9» (4.11)

The pseudopotential acting on the wave function
would be

V,e (x) = V(x) p(x)

—Z(&e—&)~e(x) d'3 9 e( )y(9)y(413)

If q(x) is nonzero and smooth in the neighborhood
of x=0, much more slowly varying than any of the
qg's, we can write the pseudopotential as a local

with no restrictions on I9» imposed by the Pauli
cxclusloD pI'lnclplc.

This procedure is implied in the band-structure
calculations, which do not yield the true BF's but the
"pseudo" BF's which must yet be orthogonalized to the
core wave functions.

One can ignore this fact and continue working with
the "psuedo" BF's if an appropriate pseudopotential
representing the diGerence between the nitrogen im-
purity and th'e host phosphorous can be computed.

Consider an isolated ion core: The potential seen by
an external electron consists of the electrostatic attrac-
tion of the nucleus and the repulsion of all the core
electrons:

(4.12)
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We write Schrodinger's equation
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whcI'c Bo 1S thc CI'ystal Hamlltonlan RDd V 18 thc
pseudopotential presented in the previous sect1on.

For an energy which lies outside thc spectrum of Bo,
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FIG. 6. Pseu(4potential for nitrogen substituting for phosphorus
from the core @rave functions of Herman and Skillman, Ref. 10.

potential by observing

V„&{x)= V(x)—Q (E,—E)
l~ C

Xtttc(x) tPy q c*(y) tlt(x). (4.16)

This local pseudopotential can be calculated for
phosphorous Rnd for nitrogen using the core wave func-
tions calculated by Herman and Skillman. " Because
the core states are rather deep, lEcl&)lEl, and V„ is
not sensitive to E, which can be taken to be an average
of the atomic energy levels for the outer 5 and I' states.

The bare potential for the nitrogen impurity in GaP
is thc diEerence between the nitrogen and the phos-
pholous co1c pscudopotentials.

Figure 6 shows this potential calculated numerically
from Eq. (4.16) together with the analytic approxima-
tion actually used in the computer calculations of the
bound-state problem. The approximation ignores the
innermost structure of the pseudopotential because that.
region does not contain suKcicnt volume to affect the
wave functions appreciably. The greatest strength of
the potential comes from the broader well farther from
thc origin.

Because the 6rst conduction band of Gap is pre-
dominantly 5-like in character, the approximation cf
Eqs. (4.14) and (4.15) should not be too bad.

C. Bound-State Problem

Thc technique fox' flI1ding bound stRtes ls simple in

theory but more complicated in practice.

(1—GV) lt8=0, G=(E—&0) '. (41&)

Because we have a short-range potential, the appro-
priate set of basis functions to use for Eq. (4.18) is the
set of WF's. Expressing {1—GV) as a matrix in this
basis, the condition that a bound state exist is that the
determinant of (1—GV) vanishes for some E=Et„ the
bound-state energy. The matrix considered is 6nite
because (NRl Vll'R'), the matrix element of V with
WF's, becomes negligible for suKciently large R or R'.

The problem one faces now is how to generate WF's
from BF's. The relevant formula is straightforward
enough:

QII2

ttt~(x —R)= tPk 8(k)e-~'Q„(k,x) . (4.19)
(2tr)'~'

However, numerical calculations of f„(k,x) do not
spcc1fy thc phRsc rclRt1vc to BF s with different values
of k An even greater problem is a useful deftnition of an
energy band. Does one require, e.g., band No. 4 to lic
lower in energy than band No. 5 everywhere in the SZ
or does one allow them to be inverted in certain regions'

Callaway and Hughes have investigated these prob-
lems. " They treated the case of the neutral vacancy
in sibcon. Since silicon contains a center of inversion,
they were able to work with real matrices in the genera, -
tion of their BF's, and. so the choice of phase reduced
to a choice of sign. Their method of de6ning energy
bands is based. on considerations of continuity of sym-
metry through the BZ rather than strict continuity of
energy. Their method yields %F's that are well locahzed
and that possess the symmetries of the one-dimensional
representations of the point group.

Gap has no center of inversion, and the numerical
BF's have complex components. Also, the energy bands
do not cross so neatly in GaP a,s in silicon. whether for
these IcRsons or bccausc of R lack of fortitude on thc
part of thc 1nvcstlgRtor', simpler phase RDd band Rsslgn-
ments were chosen for this problem. The BF's were
taken to be real RIll pos1tlve at, x= 0 Rnd bRDd assign-
ments were made straightforwardly according to in-
creasing energy. The %F's obtained in this way werc
not as well localized as those of Callaway and Hughes,
so more lattice sites were needed for the matrix j.—GV.
A total of I9 was used, as opposed. to Callaway's Io.
To keep the numerical labor within reason, only the

1g Joseph Calla@ray and A. James Hughes, Phys. Rev. H6, 860
II967).
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Grst two conduction bands were considered. This re- we have the Fourier transform
suited in 38X38 matrices for the single-nitrogen
problem and as large as 76X76 for the double-nitrogen
problem.

The matrix (1—GV) in the WF basis is

(nR
~
(1—GV) ~n'R') =&„.8»

—g (nR)G [n"R")(n"R"
[ V(e'R'). (4.20)

g //R//

To 6nd the G matrix, we expand the WF's in BF's:

(nR j G ~

n'R'} = d'k 8(k) d'k'8(k')
{2z)'

Xe'~' '8'~'"'(nk~ (E—Ho) '~n'k'). (4.21)
But

(nk) (&—&0) ')n'k')
=LE—e„(k)j-'8„„.8(k—k'), (4.22)

therefore
&e t,

'R—R/)

(nRIGtn R)=8- ~'& 8(k) . (423)""
(2~)' PZ—..(k)j

We recognize this, of course, as being an old friend:
the', function f(E,R—R') of Sec. III.

The calculation of the Green-function (GF) matrix G
requires only knowledge of the energy-band structure
and is relatively straightforward to calculate numeri-
cally once the e„(k) are known for a dense enough set
of points 1n the BZ.

To fmd the potential matrix elements (nR~ V~n'R')
is a bit more dBBcult, because the WF's are not known
directly, but through an integral formula involving the
numerically known BF's:

0
{nR( V(n'R') = d'k 8(k) d'k'

(2z.)'
X8(k'}e'&~'a "'a'&(nk( V[n'k'). (4.24)

But the BF's themselves are known only through the
coefficients of the basis set of plane waves: e'{ +~)',

(nk
~
V

~

n'k') = Q P g„*(k,G)
(2z)' «'

XV(G+k —G' —1')u„.{k',G'). (4.28)

The numerical evaluation of the BF's yields approxi-
mately 20 of the a„(k,G)'s for each function.

Returning to the WF matrix elements, use of the
point group of Gap, Te, simpliies Eq. (4.24) somewhat.

Denoting by (u} one of the 24 rotations of T&,

(u}f (k,x)=i/„(k,u-'x) . (4.29)

With the phase convention adopted here (tt„(k,o)
= real and positive), the BF's are symmetrical for all
rotations (eigenvalue= 1) and, for time inversion,

(u}(nk)= (nuk),

P„(—k,x)=f„*(k,x) . (4.30)

The origin of coordinates has been taken at the im-
purity site, so that V(x) is invariant under all rotations:

(u) V(u '}= V. (4.31)

{nl [
V[n'k')=(«I

[ V~n'uk')

for all (u} in Te, and

(4.32)

(nR( V)n'R') = dab
(2&)' [sz] p&4sor sz~

X 2 Re(&(k,R; k', R') (nk i V in'k') ), (4.33)

z(k, R;k',R')=p e'& "R—~'a'~ (4.34)

15 .,q(6-20'../4) ~6g.,/4) )
(4.27)

p+(~"/4) j
and the BF matrix element

(nk~ V~n'k')= Q P u ~(k,G)u (k', G')
(2z.)' «'

d'z e '& +" o' ""*V(x) (4 25)

This formula illustrates why an analytic approxi-
mation for V(x) was used. If a numerical evaluation of
the Fourier transform of V had been done, along with
all the other computer operations necessary to calculate
(nR

~
V~ n'R'), the cost would have been prohibitive.

For the potential

V(r) = J(r/ro)'e '"'"'—, (4.26)

The complex function Z(k, R; k', R') can be expressed
in closed form.

This use of symmetry reduces the labor of computa-
tion by a factor of 48 but there still remains a double
integral to perform, once over a basic 1/48 of the BZ
and once over the entire zone.

We therefore need (nk~ V~n'k') for k' in a set of
points within a basic 1/48 of the zone and for k on 48
times that number of points. The number of points
actually used in the basic 1/48 of the zone was 16. This
means the evaluation of (nk

~
V

~

n'k') a total of
3&48X16Xj.6=36864 times. The factor of 3 arises
because two bands are involved. Although 16 points do
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not thoroughly cover the basic volume of the zone, they
should be just adequate for the present work.

The evaluation of 36864 matrix elements required
approximately one-half hour of high-speed. computer
time. Having these numbers in storage, the evaluation
of four matrix elements (nR~ V~ e'R') for e and I'= l,2
(first and second conduction bands) required from
10-30 sec of computer time, depending on the values
of R and R'.

Symmetry can be used to reduce the number of %F
matrix elements which must be computed. From
Kq. (4.35) it is seen that the matrix elements are real:

(~R[ v(n'R') =(n'R'( v(~R). (4.35)

Also, using Eq. (4.30) for the transformation prop-
erties of the SF,

{~}I~R) = d'»(k).-~ "l«k)
(2~)s

TABLE I. %'annier-function potential matrix elements for the
6rst two conduction bands of GaP: (eR~ V~e'R') (eV).

rPk fr(k)e-'"'" ink)
(2s.)'

= i«R).
Therefore,

( R]v[ 'R')=( R~{ }—'v{ }~ 'R')
= (nnR

i
V iIe'rrR')

Using values of R out to the second neighbor

r R (0,0,0), (1,1,0), (2,0,0), where indicates the
inclusion of all symmetry-equivalent sites], the total
number of pairs (R,R') which must be calculated re-
duces from 19X19=361 to 17. Table I lists these
matrix elements.

D. Single-Impurity Bound State

Using the matrix elements of Table I, the (2X19)
X(2X19) matrix (eR~ V~ I'R') can be set up. Given a
value of E, the GF matrix (eR~G(E)~ts'R'). can be
calculated fairly quickly.

The energy eigenvalue of the bound state can be
found by plotting. detL1 —G(E) V) as a function of E.
The point where detfi —G(E) V]=0 is the bound-state
cnclgy Ey.

The entire process of calculating G(E), setting up
(1—GV), and taking the determinant required less than
5 sec of computer time, most of which was spent
calculating the determinant.

It was found that the potential used gave a bound
state well into the forbidden gap, approximately j. CV.
A reduction factor X was used to reduce the strength of
the potential to 6t the experimentally observed single-
nitrogen level in the hope that the same parameter
would give reasonable values for the double-nitrogen
levels. The energy of the single-nitrogen state was found
to be extremely sensitive to the value of this parameter,
giving —0.0133 CV at X=0.504 and —0.0068 eV at
X=0.50. A similar situation existed in the one-band. —
one-site approximation in its sensitivity to the potential
strength J.The calculations of Callaway and Hughes"
exhibit a similar sensitivity. Also in the computer calcu-
lations, excited states of the single-nitrogen problem
never appeared. This is a property of the short range of
the potential chosen for the calculation. A longer-range
potential would reduce the intervalley matrix elements
responsible for splitting oG the excited states, and would
bring them below the band edge. This, coupled with the
sensitivity of the energy level to the potential stren. gth,
suggests that the self-consistency c6ects, which would
be of longer range than the present bare potential, are
of prime importance in this problem.

A multiplying factor of 0.501 puts the single-nitrogen
level at approximately —8 meV.

R R'

(000) {QOO)

(110) (000)
(200) (OQO)

(110) (110)
(110) (IIo)
(110) (1io)
(110) (101)
(11O) (1Oi)
(110) (101)
(110) (101)
(200) (200)
(2oo) (200)
(2oo) (o2o)
(110) (200)
(iio) (200)
(110) (002)
(110) (002)

—2.26051
—0.18857
+0.06466
—0.02314
—0.01592
—0.01535
—0.01594
—0.01741
—0.01308
—0.01308
—0,00200
—0.00179
—0.00183
+0.00591
+0.00514
+0.00487
+0.00538

—1.11251
—.0.09280
+0.03182
—0.01065
—0.00304
—0.00498
—0.00811
—0.00508

0.00330
—0.00231
+0.00141
+0.00145
+0.00141
—0.00436
—O.Q0398
—0.00475
—0.00334

10 11251
—0.06120
—0.04950
—0.01065
—0.00304
—0.00498
—0.00811
—0.00508
—0.00231
—0.00330
+0.00141
+0.00145
+0.00141
+0.00210
+0.00153
+0.00164
+0.00161

(N,e') =
(i,i) (1,2) (2,1) (2 2)

—0.54756
—0.03013
—0.02437
—0.00865
+0.00321
—O.OO136
—0.00693
—0.00191
+0.00149
+O.OO149
—0.00138
-0.00080
—0.00108
—0.00207
—0.00065
—0.00174
—0.00087

Vrr(x) = V(x)+ V(x—Rs) (4.38)

and the %F matrix elements of this potential

(~R[ v„[~'R') =(NRf v)~'R')
+(nR —Rpi Vf ts'R' —Rs). (4.39)

The size of the GVII matrix is controlled by the con-
ditions that I and I' must belong to either or both of
the sets of victors

St= {(000), (110), (200)},
&s= {R~R—Ro65'r}.

There are 19 vectors in each set, and the sets overlap

E. Double-Imyurity Bound States

FOI' the bound states arlslng from a pal' of nltlogcn
atoms, one located at the origin and, the other located
at the lattice site Rs, we can write the potential
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FIG. 7, Energy levels of the double
nitrogen states as calculated from the

.pseudopotential of Fig. 6 reduced by
a factor of 0.501. Only the theoretical
electron binding energies are presented
here and the experimental levels have
been raised by j.3 meV. (Experimental
levels after Thomas and Hop6eld,
Ref. 1.)
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for small Ro. Thus, the GVII matrix will be a size
ranging from (2X19)X(2X19) to (2X38)X(2X38),
depending on the extent of the overlap of Sq and S2.

In any case, (eR
~
GVrr I

e'R') can be calculated almost
as easily as (eR I

GV
I
n'R'). In fact, several values or R0

can be considered at the same time if they are close
enough together because many of the matrix elements
of 6 are the same for different but close values of Ro.

Again, the evaluation of the det(1 —XGVrr) averaged
about 5 sec.

Using a multiplying factor of 0.501, @which puts the
single-nitrogen level at —0.0083 CV, the double-nitrogen
levels come out as shovrn in Fig. 7. They are arranged
into tvro groups, allowed and forbidden, according to
whether f(k=O)WO or f(k=O) =0, respectively. The
leftmost column contains the experimental levels for
comparison. The numbers in parentheses represent the
lattice vector separating the tvro nitrogen impurities.

Although these energy levels obviously do not agree
edith experiment, the range of energy is correct and the
average spacing of the levels is about right.

Of special note is the fact that the theoretical levels

appear in almost a random ordering according to the
magnitude of I, the separation of the two nitrogens,

This great shying of the energy levels is, of course,
due to the vrave function interference CGccts discussed

before in the case of the one-band-one-site approxima-
tion. The calculated energy levels are obviously very
sensitive to the orientation of R.

V. PHENOMENOLOGY: EFFECTIVE
DEPTH AND RANGE

One certain conclusion can be dravrn from the results
of the calculations presented in the preceding sections:
The bare, very-short-range potential of one atom
substituting isoelectronically for another in a semi-
conductor is not adequate to describe aQ aspects of the
problem.

It is clear that the CGective potential that one should
use must include lattice relaxation and electronic
polarization of the host crystal. These CGects are of
longcl laDgc thaD the baI'c potcDtlal aDd thclI' lncluslon
v ould decrease the sensitivity of the binding energy to
the potential strength and reduce the intervalley matrix
elements responsible for splitting off the excited states
and for the orientational dependence of the double-im-
purity bound states. On the other hand, there must
remain a suKciently strong short-range part of the
potential to give strong optical absorption as observed
in GaP:N.

This section a&ill be concerned with an attempt to
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find a characteristic potential depth and range which

will reproduce the experimental binding energies ob-
served in Gap:N without worrying about the ultimate
origin of such a potential.

A. Procedure

One could choose, say, a Gaussian potential with

adjustable range and run through the calculation
described in Sec. IV for several values of the range.
Such a procedure would waste a great deal of computer
time.

In lieu of recalculating the %F matrix elements for
each value of the range, it was decided to make a
truncation of the problem and simply assign these
matrix elements reasonable values and proceed from
there with the rest of the calculation of Sec. IV.

For the determinant of (1—GV), the matrix elements

of V were taken to be zero for interband coupling,

thereby reducing the problem to the consideration of

only the lowest conduction band. Kithin this band, the
matrix elements of V were taken to be

where J is the adjustable depth and A is the adjustable
range.

The matrix elements of 6 were calculated exactly,
using the band structure of Cohen and Bergstresser' as
described in Sec. IV.

This procedure is obviously bad for several reasons:

(1) It ignores interband coupling; (2) it ignores off-

diagonal elements of (R~ V~R'); and (3) it possesses
inversion symmetry, while Gap does not have inversion

symmetry.
However, it has advantages: (1) It can be done in a

reasonable amount of time; ('2) it becomes exact in the
hmIt of very-long-range potent'. als.

3. Results

less sensitive to the potential strength. Kith the range
as chosen, J=0.6 eV gives a binding energy of 2.5 meV
and J=0.7 eV gives a binding energy of j.9 meV.

Having chosen a depth and a range, the double-
impurity bound states can be calculated. These are
shown in Fig. 8 along with the experimental levels for

comparison.
In this sequence, as opposed to the sequence of

Fig. 7, the levels appear in more nearly the "normal"
sequence, i.e., monotonically diminishing binding
energy with increasing separation. However, there is
still enough intervalley coupling to cause the splitting
shown between the (330) state and the (411) state,
which have the same magnitude of separation but
di8erent orientations. Also, as contrasted to Fig. 7, the
levels do not converge to the A line nearly so fast as
the experimental levels.

It appears that the double-impurity levels are quite
dependent on the shape of the potential and cannot be
calculated simply knowing a depth and a range.
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(411)
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{422)
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(400)(32 I )

UI. CONCLUSIONS

Short-range interactions in solids have been a tradi-
tional source of frustration. In some cases, namely,
"central cell corrections" to donor and acceptor binding
energies, their sects are often small compared to the
more tractable aspects of the problem. For isoelectronic

Kith two parameters to adjust, two experimental
binding energies can be fitted exactly or several experi-
mental binding energies can be fitted approximately.
The former procedure was adopted here. The A line

and the valley-orbit excited states (A line) were fitted

using a depth and range

o. "10-CO

4f
4T
laJ

-.12-

.14-
NNz
N NI

(222)

{3IO)

(220)
(211)

J=0.64 eV,

A= j..iSe,

where c (cubic lattice constant of GaP) =5.44A.
Kith these parameters, the binding energy of an

electron in the ground state (1'i) is 8 meV and the
binding energy in the doubly-degenerate first excited
state (I'») is 6.5 meV. The splitting between I'i and 1'i2

is a fair1y sensitive function of the range, being essen-

tiaBy zero at A = 1.5a and being greater than j.o meV
at 3= i.Qu. The binding energy of the 3 line is much

-.16-

(200)

;20
(110)

FIG. 8. Energy levels of the double nitrogen states calculated
semiempirically after erst Gtting the single nitrogen state (A line)
and its excited states from intervalley mixing (A* linc). Only the
theoretical electron binding energies are presented here and the
experimental levels have been raised by 13 meV. (Experimental
levels after Thomas and Hop6eld, (Ref. 1.)
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impurities, however, the short-range interaction is the
dominant, if not the entire, problem.

Much has been explained here about isoelectronic
traps using the Slater-Koster one-band-one-site ap-
proximation. In regard to GaP:N, this approximation
correlates the position of the principal bound state (A
line) with its oscillator strength in optical absorption
and with the absorption strength for frequencies above
the band edge using essentially only one adjustable
parameter.

In both the one-band —one-site approximation and the
more elaborate computer calculations using a very-
short-range potential, the binding energy was found to
be extraordinarily sensitive to the potential strength
and, contrary to experiment, the excited states due to
intervalley mixing were found to be unbound. Taking
a phenomenological potential of intermediate range
both reduced the binding energy sensitivity substan-
tially and brought the excited states below the band
edge. This indicates that a large measure of lattice
relaxation and electronic polarization of the host crystal
must be included in the short-range potential problem
in future calculations. The extra potential from such
sects might be exponentially decaying or it might go
as 1/r" for large distances. However, the central core
cannot be neglected for any such long-range potential
for e& 1. Only the Coulomb problem of all the singular
potential problems of this form becomes insensitive to
additional structure in a small central region when the
size of that region is allowed to become very small.

Callaway and Hughes" have shown that practical
calculations involving WF's and short-range potentials
are possible. The present work, which uses many of their

methods, indicates that the next major step must be a
Grst-principles calculation of the response of the host
crystal to the short-range perturbation. In the case of
GaP: N, such a calculation could be tested by its ability
to predict the double-nitrogen levels. Electron-hole
correlation eGects, also ignored here, could prove quite
important to a thoroughly successful theory.

A better understanding of isoelectronic traps would
lead to a better understanding of the related problem of
central cell corrections to donor and acceptor states.
It would also open the way for calculations of more
complicated systems such as nearest-neighbor donor-
acceptor pairs. With vision, one can imagine a whole
chemistry of complexes within the vacuum represented
by the perfect crystal.

1Vote added ie proof. Those who compare Fig. 7 of
this article with Fig. 6 in the previous paper by Faulkner
and Hopfield" will note that they are quite diferent. In
the previous calculation, the shift of origin which was
made in order to compute BF's with the origin of co-
ordinates at the impurity site was inadvertently taken
in the wrong direction. Thus, that calculation was
actually a calculation of an impurity on a gallium site
instead of on a phosphorus site in GaP.
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