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Isoelectronic impurities in semiconductors are investigated using a Koster-Slater one-band-one-site ap-
proximation. Good agreement with experiment is found for the optical absorption induced by nitrogen in
gallium phosphide. Binding energies of excitons to single nitrogen impurities and to double nitrogen im-
purities are calculated using the complete structure of the GaP conduction bands. Very limited success is
achieved in these calculations, which ignore correlation effects and the lattice relaxation and electronic
polarization of the host crystal. The indications are that the response of the host to the impurity is of crucial
importance in the short-range-interaction problem in semiconductors.

I. INTRODUCTION

HE term “isoelectronic impurity”’ is used to denote
an impurity center in a crystal arising when an
atom from the same column of the periodic table as one
of the constituents of the host crystal substitutes for
that constituent. Isoelectronic substitutions in certain
wide band gap semiconductors have a profound effect
on the optical properties of the materials for photon
energies in the vicinity of the band gap. In particular,
the impurity systems GaP:N, GaP:Bi, and ZnTe:O
exhibit sharp absorption lines and CdS:Te exhibits an
absorption band lying within the band gap of the pure
crystal.m=* These lines can be attributed to exciton
bound states at the impurities.

These systems have been classified as isoelectronic
acceptors and isoelectronic donors on the basis of
whether the impurity is, respectively, attractive for
electrons or attractive for holes.? For isoelectronic ac-
ceptors, the mechanism for binding an exciton is
conceived to be as follows: An electron in the conduction
band is attracted to the uncharged impurity by a short-
range potential and becomes bound to it, the result
being a charged system that can subsequently bind a
hole. Isoelectronic donors would operate in the inverse
sequence, first binding a hole and then an electron.

In one system, GaP:N, in addition to the principal
bound state (A4 line), other bound states have been ob-
served in both absorption and fluorescence which lie
lower in energy than the 4 line and form a sequence of
levels converging to the A4 line.! These levels have been
identified as bound states of excitons to two nitrogen
impurities at various interatomic spacings. They are
labeled NNj, NN, NNj, etc., in increasing energy
(diminishing binding energy). There is no apparent
regularity in these lines except that they converge to
the 4 line.

* Work supported in part by the National Science Foundation.
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In GaP:N, the 4 line is actually a doublet, called 4
and B, arising from the degenerate valence band. The
A-B separation is 0.8 meV. Lying above the 4-B
doublet by 1.8 meV is a pair of doublets (seen weakly
in fluorescence) lying quite close together and which
are clearly replicas of the 4-B doublet.5 Figure 1 shows
the fluorescence from these states. GaP has a three-
valley conduction band and these higher states can be
identified as the antisymmetrical pair split off from the
symmetrical 4-B doublet by intervalley mixing.

GaP is an indirect band gap semiconductor and as
such, the optical absorption above the band gap is
dominated at low temperatures by the presence of
nitrogen.® Purely electronic processes (assisted by the
nitrogen) which produce optical absorption are (1)
creation of an unbound electron and an unbound hole,
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Fi6. 1. Fluoresence spectrum of the 4, B lines in GaP:N
showing the excited states split oﬁ’ from A,B by intervalley
mixing. (Spectrum taken by P. J. D

J. Dean (grlvate communication).
. 4; J( J6Hopﬁe1 P. J. Dean, and D. G. Thomas, Phys. Rev. 158,
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(2) creation of a bound electron and an unbound hole,
(3) creation of an unbound exciton.

i These processes are discussed in Sec. III, where the
consequences of making a Slater-Koster one-band-
one-site approximation will be investigated. This simple
model has the advantages of being soluble analytically
and of being able to correlate a great deal of information
with essentially only one adjustable parameter. In

Secs. IV and V, the results of more extensive computer .

calculations are presented.

II. THEORETICAL FORMALISM
A. Notation

Before proceeding further, an aside on notation
would be in order. ,

Almost always, units with #=1 will be used.

Bloch functions (BF) will be denoted either as
¥n(k,x) or abstractly as a ket vector with a round
bracket: |#k). Here, # refers to the band and k refers
‘to the reduced wave vector lying in the first Brillouin
zone.(BZ). The normalization for the BF’s will be taken
to be a Dirac § function:

(nk| k') = 8,wd(k—K'). (2.1)

In terms of the periodic part Ua(k,x), ¥a(k,x) may
be written

¥all,x)=[072/(2m)* 2 Je**Un(kx),

where  is the volume of a primitive cell of the crystal.
The normalization of U,(k,x) is

(2.2)

f @x Un*(kx) U (k,x)= (nk|#'k)=0nn. (2.3)

Pointed brackets, as above, refer to integrations over
the primitive cell of the periodic parts of the BF’s.
Round brackets refer to integrations of the complete
BF’s over all space.

Wannier functions (WF) are defined in terms of the
BF’s:

9112
wa(x—R)= / @k 0(k)e~ xRy, (kx) (2.4)
(2m)3:2
or
Q1
|nR) = 2 / @k 6(k)e~*=R|nk), (2.5)

where R is a direct lattice vector.

The function (k) is defined to be one if k lies in the
first BZ and is zero otherwise. This is simply a device
for restricting k-space integrals to the BZ.

The WF normalization is

(%R I M'R') = 5,”.'31{1{' . (2.6)
BF’s can be written in terms of the WF’s defined
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above:
QI/Z

[nk)= > e=R|gR),

(2m)32 '’ @)

Reciprocal-lattice vectors are denoted as G, and
G-R=2rX(an integer).

B. Formalism

Let the interaction between electrons in the crystal

‘and the isoelectronic impurity be describable by a

potential ¥(x), which consists of both the bare inter-
action and the interaction due to the self-consistent
rearrangement of the charge density in the crystal. Let
us also adopt the independent-particle approach for
the moment.

The Hamiltonian for a single electron then becomes

H=Hy+V, (2.8)
where
Hy|nk)= e, (k) |nk) (2.9)
and e,(k) are the band energies.
We may write Schrodinger’s equation

and use the BF representation

(B aJ0klR) =2 o)

X (k| V [wK) (K [¢n).  (2.11)

Writing the amplitude (zk|¢a) as ya(zk), the
momentum-space wave function, we have the integral
equation

(k)= 8,nd(k—k)
+[B—i0—el) T T / oK)

Xk|V[n'K)h@'K). (2.12)

\ denotes the quantum numbers #, and ky of the un-
perturbed wave function.

The unperturbed wave function is ¢x= 8un\0(k—ky)
and satisfies the equation

[E— ea(k) Jen(k)=0.

The term —40 is attached to Ey in Eq. (2.12) specifies
what to do with the singularity when Eh=e¢,(k). In
particular,

1

=P Fird(Fa— ea(k)),
NTRY BT

where P denotes the principal ‘part.
If the eigenvalue E, lies in the band gap, the first
term is omitted and ¥, becomes square integrable. If the
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eigenvalue lies in the continuum of the unperturbed
crystal, then Ey=e¢,,(k)) and the normalization of the
states ¢, is

> / 0% 0N ek (n) = 8 ()6 (k— ). (2.13)

One must be careful to distinguish the argument of
the wave function (zk) from the labeling of the wave
function (mky).

The ground state of the crystal consists of electrons
occupying these states up to the band gap between the
conduction bands and the valence bands. If the admix-
ture of conduction band states to the valence band
states is not great, we can take the ground state to be
the same as the unperturbed ground state, i.e., electrons
filling Bloch states up to the band gap.

An excited state of the crystal consisting of one elec-
tron in the conduction bands and one hole in the
valence bands can be written

A= Zv‘, / d*k10(ky) f 20 (ka)¥n (cky,vk)
XCol(k)Co(ke) |G), (2.14)

where Ct and C are Bloch-state creation and destruction
operators and |G) is the state vector of the ground
state. C and Ct satisfy the anticommutation relations

{Cn(k):cn’T(k’)} = 5,,,,»3(1{— k/) . (2-15)

The Schrédinger equation for ¥y consists of the un-
perturbed part, the interaction of the electron and of
the hole with the impurity, and the Coulomb attraction
of the electron and the hole:

LB ex(ko)+ e (k) ek k)
-3 [0kl VI ask)
- [24 06l i)

4re? 1

k (27)3

1
f dzg—;p(ck1+ q, vko+q).  (2.16)
q

If the state is discrete, it can be normalized:

AN=1=2 % f Ph(ls) [ kst
X |a(chaks) 2. (2.17)

In Born approximation (linear response), the transi-
tion rate for optical absorption is given by

Wyi= 27!'[ Tf.‘] 23(E1—E.') y (2.18)
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where

[
Tp=—X %

mec v ¢

d%k10(ky) / ks

X 0(ke)yr* (cky,vks) (ékl |A-P|ks). (2.19)

A(x) is the vector potential for the incoming radiation,
A(x)=Aei® ==t P is the momentum operator —i#%V.

As usual, since the wave vector of the incoming light
is so small compared to the extension of the BZ, we
may take it to the zero:

Tri=— 55 [ sk 00kyn*(ckok) (ck| Ao- P| o). (2.20)

mec v ¢

The incoming radiation flux is
(S)=w?|Ao|2n/8mc,

where # is the index of refraction at frequency w.
The cross section for optical absorption by a single
impurity center is then

(2.21)

o(w)= > 4(2r)> °
final micwn
st(a)‘t)es )
2
X| S [ o ek ekl 1k
Xo(B—t). (2.22)

The absorption coefficient « is given by
a(w)=0(w) X (No. of impurities per unit volume).

The formula for o(w) can be simplified under special
conditions, as will be discussed in the next chapter.

III. ONE-BAND-ONE-SITE APPROXIMATION
A. Model

One can expand the matrix element appearing under
the integral sign in Schrédinger’s equation (2.16) in
terms of WF matrix elements?:

Q
(k| V|n’k’)=ﬂ Y e ®XuR|V|nw'R)e ™, (3.1)

T)° RR¢

If V(x) is of shorter range than the interatomic
spacing in the crystal, and if the WF’s are well localized,
the dominant term in the expansion above comes from
R=R'=0 [if V(x) is centered at the origin of
coordinates].

A simple model may be obtained if we take only this
principal term into account and if, further, we consider
only one conduction band (¢) and only one valence

" G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954).
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band (v). Then, in this model,
(ck|V]cq)
=[0/(2r)¥])(cR=0|V|cR=0)=J.Q/(2x)?,
(vk| V| vq)
=[Q/(2r)*]J(sR=0|V|2:R=0)=7 ,2/(27)?,

(3.2)

and, if the impurity is located at a lattice site R instead
of the origin,

(ck|V(x—=R)|cq)=ei&R] Q/(2r)3.  (3.3)

This second form will be useful when we consider the
case of two impurities separated by a lattice vector R.

Measuring the excited-state energy from the band
gap, the electron-band energy e(k) up from the
conduction-band minimum, and the hole energy down
from the valence-band maximum, the Schrédinger
equation for an electron and a hole is

LB — eo(ks) — € (k2) T (k1 ko)

b 2% 0(q) (g, k2) J”Q/ds 8(q)¥x(k1,q)
"‘( 1r) q 0(q)¥a(q,Ke (2.".)8 q 0(q)¥\\K1,q
4re? 1

1
—— d3g—~\I')\(k1+ g, ktaq). (34)
k (2m)3

Let us restrict ourselves, for the remainder of this
section, to the case of GaP:N. In this case, the nitrogen
impurity is attractive for electrons and repu1s1ve for
holes. The parameters J, and J, appearing in Eq. (3.4)
are negative.

We can argue that we can ignore the interaction of
the hole with the impurity as follows: We expect a
resonance behavior for conduction-band electrons due
to the existence of a shallow bound state at the im-
purity, making a large scattering phase shift even
though the attraction is rather weak. For holes, the
potential is repulsive and no resonance will exist. The
analogy here is obviously to neutron-proton scattering
and the existence of the weakly bound deuteron. In the
case of the bound state, which we think of as the elec-
tron bound by the short-range impurity potential and
the hole bound by the long-range Coulomb attraction
of the electron, the short-range repulsive core the hole
experiences due to the impurity can be ignored for the
most part. We then have Schrodinger’s equation for the
electron-hole-impurity system:

P el — e () o (k) = fda o) T (e ke)
[x €c(K1)—€r(Ke )\1,2—(27‘_)3 q 0(q)¥\(q,K2

4me? 1

k- (2w)3

/ oot k), G9)

where J is a negative energy parameter yet to be
determined.
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B. Bound-State Problem in the One-Band- .
One-Site Approximation

We shall approximate ¥y (k,ks) for the bound state
by a product wave function ¥,(k;)¥,(ks) and first look
only at the electron part of Schrédinger’s equation:

[ el TR = [#as@3@. 69
o (27r)3 q0q q). i

The interaction between the electron and the im-
purity is a truncated momentum-space interaction
reminiscent of the BCS model for superconductivity. If
the integral over the BZ were extended over all space,
the interaction would be a §-function potential. In
three dimensions, of course, a é-function potential has
no bound state.

The Fourier transformation of the model cutoff
momentum-space interaction leads to a potential in
coordinate space that is almost a square well with a
range equal to the interatomic spacing. The deviation
from a square well is principally a small, decaying,
oscillatory tail.

Equation (3.6) can be solved immediately by noting
that the right side of the equation is a constant and that
for E<O, the multiplier on the left is never zero:

(k)= N/[E—e(8)], G.7)

N=J- 2 d%q 0
- / @YW (.9

Substituting (3.7) into (3.8) gives us the eigenvalue
equation

14+

? f g 6(a)— (39)
3 —_—_— .9
@) Y et E]

We are measuring both E and e,(k) from the lower
edge of the conduction band. It becomes quite clear
that the effective-mass approximation is not good in
this problem, because if we take e.(q)=g¢%/2m* and
extend the integration over all momentum space, the
integral diverges. However, we can use the relation

1 11 E

(e—E)=; ; (e—E)

(3.10)
to obtain the equation

14+J(1/e)=—J ¢ /d3 8(q) “ (3.11)
@) T Vae-n"

where

W= [ g (0
7 2y “’qem

is the average over the BZ of 1/¢(k).

(3.12)
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Fic. 2. Band structure and
Brillouin zone of GaP. (After
Cohen and Bergstresser, Ref. 8.)

kx

The second integral can be extended over all space
and effective masses can be used if | E| is small.

We now need to know the band structure of GaP.
Figure 2 shows the GaP band structure as given by the
empirical pseudopotential calculations of Cohen and
Bergstresser® along with the Brillouin zone for a face-
centered cubic crystal with the symmetry notation
of BSW.?

The (indirect) band gap is between points I';s and
X, and equals 2.3 eV. There are three inequivalent
points X in the Brillouin zone, giving GaP a three-valley
conduction band. The effective masses in the valleys
are not isotropic, the longitudinal mass being 1.49 m
and the two transverse masses being 0.25 m (directions
relative to the line from X to T'). Of special note is that
the first conduction band bends over in the center of
the zone and comes within 0.5 eV of the minimum at X.

Denoting the effective masses at X as (m1,m,m5)
and extending the integral of Eq. (3.11) over all space,
we obtain

14+J(1/e)=T 39/ 2m)ms(2ms| E|) 12, (3.13)

For the bound state to exist, we must have 14+J(1/¢)
<0. Therefore, there is a critical value of |J| below
which no bound state exists. The special combination
of J and (1/¢) appearing in Eq. (3.13) occurs so often
in what follows that we shall give it a name:

1+J(1/¢)
—F>0.
J

(3.14)

fi

Q

The normalization constant appearing in Eq. (3.7)
can be determined by requiring

/ &% 0(k) | ¥ (k) |2=1 (3.15)
or
/ &k o(k)————l-Alz———= 1. (3.16)
le()+ | E| |2

8 Marvin L. Cohen and T. K. Bergstresser, Phys. Rev. 141,
789 (1966).

9 L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.
50, 58 (1936).

For small | E|, we can use the effective-mass approxi-
mation again, and |N| is then

_ | By

h 27r(3m1mg)1/2

|| (3.17)

or, letting m*= (mymim,)'”® be the geometric mean of
the masses,
@m*| E|) e

[N|=——.
\/3-(27rm*)‘

(3.18)

Equation (3.7) for the electron wave function then
becomes

o U (3.19)
V3(2rme) [e(k)+|Er|]’
with | E;| given by
39 14J(1/¢)
—m*(2me¥| Ey|) 2= Q=—0""" (3.20)

(2m)

In the spirit of the previous discussion, we now take
the hole to be in a hydrogenic 1S state

_ 2\@! Ez' (th*"Ezl)iM
Qrmy¥)[e(k)+ | Ea| T2

where, for purposes of maintaining a simple model, the
hole'mass is taken to be isotropic around a valence-band
maximum at the center of the BZ (T):

(k) (3.21)

eo(K) = k2/2m;*. (3.22)
The hole wave function is normalized so that
f d%| Wa(k)|2=1. (3.23)

We can now use the two wave functions we have ob-
tained to form a product trial wave function for the
bound-exciton problem, using E; and E; as variational
parameters. c
) Solving numerically gives the value of Q, the one
mportant parameter of the simple model, using the
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experimentally known value of E (0.02 eV),

14-J(1/ &)
Qz____..__...

=0.022 eV—! (3.24)
J
along with the wave-function parameters
E4|=0.0104 eV,
| o (3.25)

| E5| =0.0096 eV.
The masses have been taken to be

me*=0.35m,

mh*= 0.20m.

C. Optical Absorption at the Bound-State Energy

Thus far, nothing new has been learned; we have
simply substituted one parameter for another. How-
ever, we can go on to calculate the integrated optical
absorption strength due to the bound state using the
wave-function parameters calculated above.

The expression given in the last section for the
optical-absorption cross section can be simplified con-
siderably, using the properties of the wave function.
First, since we are considering only one valence band
and one conduction band, we may write the general
expression as

2 2

€
o(w)=8(Q2m)*—
new

f &% 00 Ak (ck | p/m| o)

X 6(hw— (E,— | Es])), (3.26)
where the sum over the final states has given a factor

of 2 due to spins.

Because the hole wave function is concentrated about
k=0, we can make the further approximation of setting
k=0 in the BF matrix element and in the electron

wave function:
<ck= olfi k= 0>
m

X ] / &% 0(k)pa(k)

2

¢
o(w)=8(2m)>—
new

[¥(0) ]2

25(flw- hwn).  (3.27)

Using Eq. (3.21) for the hole wave function, the
integral over k space can be performed, and we obtain

Cemr (D) { =]
otor= () ol =

X (ma*/me*)*12| Eq| V2] Es |28 (heo— o), (3.28)
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where
n (index of refraction)=3.45,
A=¢,(T)—e,(X)=0.5 eV,
E, (indirect energy gap)=2.3 eV,
#iwo=(E,— | E| (bound state)),
| X|*= | (ck=0[x|vk=0)]
= [{ck=0]p/m|vk=0}|%/(E,+A)?
=optical absorption matrix element.
Because no broadening processes have been con-
sidered, the cross section as a function of frequency is
represented by a 8 function. The expression for o(w) can
be integrated and this integrated absorption can be
compared to the area under the experimental absorption
curve.

frso- (D) ]

X (ma*/mo¥)312| By | V2| Ey| 302
=1.01X|X[* (meV).

(3.29)

Experimental areas give
/a(w)d(ﬁw) = (4.541.0) A2 meV. (3.30)

If |X|=(2.1£0.3)A, not at all an unreasonable
value for the optical matrix element, the area under the
experimental absorption curve is well accounted for.

D. Optical Absorption Above the Band Edge

Yet another experimental observation can be under-
stood using the simple model: the optical absorption
above the band edge induced by the nitrogen impurities.

Considering only purely electronic transitions, the
optical absorption occurs principally in three processes:
(a) the creation of a bound electron and an unbound
hole, (b) the creation of an unbound electron and an
unbound. hole, and (c) the creation of an unbound
exciton. Processes (a) and (c) have one-particle den-
sities of final states which lead to square-root absorption
thresholds. Process (b) has a two-particle density of
final states and, consequently, an E? threshold.

Process (a) is the simplest to calculate because the
wave function for the electron+impurity bound state
has already been determined. The hole can be taken to
be free if the Coulomb interaction is ignored. This is
undoubtedly a bad approximation at the absorption
threshold, but it improves for higher energy. Making
this approximation gives us the electron-hole wave
function for this process:

Y(ka,ke) = o(ky)d(ko—ko) (3.31)

where ko is the final hole momentum, and y.(k;) is given
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by Eq. (3.19) with | Ee|=8 meV, the binding energy
of the electron by itself to the nitrogen impurity.

Using the effective-mass approximation for the hole
and the same approximations made before in the case
of the absorption at the exciton bound-state energy, we
obtain the square-root absorption curve for frequencies
greater than, but near, the absorption edge:

o(w)__l_(41r)<e )[Xl [ a:-ATlEelluz

nhw

X (mh*/m,*)m(ﬁw-— hwo)llz ,

hwo=E,— | Ea| . (3.32)
Process (b), the production of unbound electrons and

unbound holes, is one step more complicated. We will

now need the continuum-electron wave function.
Schrodinger’s equation for the electron in interaction

with the impurity, Eq. (3.6), can be written for E>0:
¥io(k) = 8(k—ko)

: ® [ staeed. (.39
+[E+i0— (k)] (27,.)3/ q 6(a)¥re(a). (3.

Here, k is the argument of the wave function and ko
is the label of the state represented by y; d(k—ko) is
the unperturbed wave function; and E=e¢/(ko) is the
energy of the state.

Writing ¢ in the form above preserves the normali-
zation,

f &%k 0 WY,() =b(ki—ks).  (3.34)
Integrating Eq. (3.33) over the BZ yields

f 3% 0(k) (k) = 1+ bl
N (2n)?

Xok————————[d3 8(@)¥ie(a). (3.35
()[E+i0—e¢(k)] q 0(Q)¥xe(a). (3.35)
Defining
Q
=———- | d% , (3.36)
ARAC=T A Gy M
we can solve for /"d%q 0(q)¥r,(q):
1
d? k() =—"""". 3.37
[ oo o 69
The electron wave function then becomes
Yio(k) = 8(k—ko)
JQ 1 1
(3.38)

+ :
(2m)* (147 f(B)] [E+i0—eo(k)]
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The function f(E) has appeared before in the bound-
state problem where the eigenvalue equation for E<0
was

[1+J f(E)]=0. (3.39)

For energies E above the indirect minima but below
the direct relative minimum of the conduction band

JQ 1 1
Yio(0)= ,
@m? [+JfE)][E—-A]  (3.40)
E= éc(ko) .

Had we used the Born approximation for this calcu-
lation, setting yi,(k)=8(k—ko) in the right side of
Eq. (3.33), we would have obtained

Pk = 8(k— k) o (3.41)
i T o) [E+iv—e®)]
Vi (0 )_E?)-a TN (Born approx.). (3.42)

But because of the existence of a shallow bound
state, |1+Jf(E)|«<1 for E near zero (recall that
[1+7(0)]1/7=0.022 eV-7). Since the optical absorp-
tion is approximately proportional to |¢(0)]2, we would
have lost several orders of magnitude had we used the
Born approximation for the continuum-electron wave
function.

If the Coulomb interaction between the electron and
the hole is ignored, we can take the hole to be a free
particle and take its wave function to be a momentum-
space 6 function. The electron+hole wave function is

then
¢(kl,k2) = xbk (kl)a(kz— kh) s

where kj is the final hole momentum.
Using Eq. (2.22) for the optical absorptlon cross
section,

(3.43)

/ % 0(k)y* (ck,ok)(ck| p/m| k) 2

(0] p/m] 50 |2 O)] | / &% 8(k—ks)

112 1
@m)3 Al [14-T5(E) |2’

where E has been assumed small compared with A.
Summing over the final electron and hole states gives

32 /2 \[E,+ AT miF\32 1
oSO ()
2 \#c A me*/  nho
(ho—Eg) EV2(y— E,— E)!/?
X / aFE
0 Le(B)+E]

~(EA+A) | X |2

(3.44)

, (3.45)



998
where
[1+J Re(f(E))]?

- (3.46)
36w (2m*)*[JQ/ (2w)*

e(E

and the term E accompanying ¢(E) comes from
Im[ f(E)] which is proportional to the density of
states (E'/?).

We now need to know Re[ f(E)] for E>0. The trick
used before for E<0 does not work in this case, so that
we must resort to something else.

If the density of states for the entire conduction band
were known, f(E) could be calculated. In the absence
of this knowledge, and in order to keep the calculations
simple, a model density of states can be used as shown
in Fig. 3. Re[ f(E)] can be calculated from this density
of states and is also shown in Fig. 3.

The essential features of Re[ f(E)] illustrated here
which would hold true for any density of states begin-
ning as E'/? and having a finite total integral are

(1) Re[f(E)] has a square-root singularity as E—0
from below:

f(E) — (1/e)—const X | E| /2. (3.47)

(2) Re[ f(E)] is analytic about E=0 for E— 0 from
above:

Re[ f(E)]— (1/€e)+const X E-+const X E2+- -+ . (3.48)

14+J Re[ f(E)] is sketched in Fig. 3 also. There is a
point for E>0 at which it equals zero. At this point,
¢(E)=0 in Eq. (3.45), greatly augmenting the optical

! !

K (€) fle) Ve,
I

ROGER A. FAULKNER

175

absorption. We can, in fact, obtain an upper limit on
o(w) for this process by setting ¢(E)=0 for all E in the

integral of Eq. (3.45):
EV2(jo— Ey— E)V2

/ o dE
0 Le(B)+E]

< hw—Eg E(hw—-Eg—fE)m .
_‘/D d T=§‘n’(ﬁw—E‘,).

(3.49)

The resonance effect acts to change the (Zw—E,)?
form for the optical absorption arising from the two-
particle density of final states to the linear form
(hw—E,).

Using the linear form Re[ f(E)]=(1/e)(1—pE), the
integral can be performed and the optical absorption
cross section expressed in closed form. The results are
not sensitive to the value of p. Figure 4 shows the cross
section calculated for p(1/e)=0.82/(eV)2 The curve
goes as (fw—7iwy)? at threshold and approaches
(Fiwv— Fivg) /2 asymptotically.

The final process, the production of unbound excitons,
is the most complicated of all but it can be calculated
in much the same way as the previous process.

We must now consider Schrédinger’s equation for
both the electron and the hole:

[E" fc(kl) - ev(k2) - VCoul]’ﬁ(kl,kz)

= 3.50
2n) (3.50)

d’q 0(q)¥(q,ks).

0O —e— €
(model density of states)

4 |

} |

[t- 14 t(e)]

absorption.

‘ .

| > —
\ ! R
/v———s—> I€° -

Optical Absorption
Resonance

Bound State
Energy

1t (1-19] £ (0)) >0, there
is no bound state and no
resonance in optical

l
I
. - | -
| e T
ple) =/e Jeg —€ ‘_,_4/6
0

[ F16. 3. Model density of states for
the GaP conduction band and the
function f(E)=(1/(e(k)— E))pz. Only
the real part of f(E) is shown here.
The imaginary part is proportional to
#(E), the density of states.
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We can write this equation formally: again exhibiting the resonant denominator
1 [1+J AE—e(K))]. (3.59)

kl,kz =Y kl;k2 +
¢( ) ¢ ( ) [E+i0——e°(k1)—5v(k2)]

JiQ
X—— | d?q 0 ke
2y q 0(q)y(q,ks)

+ (Power series in Veour), (3.51)

where ¥o(ky,ks) is the wave function of the unperturbed
exciton.

If we ignore all Coulomb interactions except that
necessary for yo(ky,ks), that is, if we drop the power
series in Veour from Eq. (3.51), we obtain a soluble
equation. This approximation, along with the same
approximations made for the other two processes, is
undoubtedly bad near the absorption edge, but it
improves for higher energies.

Making this approximation, integrating the resulting
equation on k;, and solving algebraically gives

[ &g 0@ (k)
1

[1+J f(E—es(ke)) ]
This gives us the exciton wave function
1

[E+40— eo(ks) — e (k2) ]

d3g6 q ‘lo qyk2 )
14+J f(E—e,(ks))] (27)3

/ g 0(alaks). (.52)

Yk, ko) = ok, ko) +

The unperturbed exciton wave function for energies
near the exciton band edge is, assuming spherical
masses,

Yo(ky,ks) = 8(ki—3G—k,—K)

o
X ‘Po(m
3*

Here, p is the electron-hole reduced mass, m *m;*
/(m *+mp*); 3G is the position of one of the conduction-
band minima; K is the momentum of the exciton.
E=—|Ex|+K*/2M, M=m*+my*. ook) is the
Coulomb wave function of the electron-hole system in
the c.m. frame,

(=16)+ka) . 359)
mhp

(2V2/m)as 5(1+Fa) 2,

0*=1/2u|Eex|. |Ee| is the exciton binding energy,
0.010 eV. Because of the & function in yy(kyk,),
Yo(k,k) =0. Therefore,

1
[E—eo(k) = e (k)] [1+J f(E— &0 ())]
JQ
X

©
of k+— .
(21r)3‘p ( +mG*K) , (3.56)

where the § function has been used to perform the
integral on v,.

For small values of K, E=— | E| +K2/2M is small
compared to A=0.5 eV and k is restricted to small

¥(k k)=
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values by ¢o. We may then approximate:

1 1
k k)= —~
)= T /2]
JQ "
o(k+—K). (357
X(zw)3‘o(+m,*) (357)

Integrating ¥(k,k) and performing the sums over
the final states yields

e2\[E,+AT 1 @ 1
o= EE el 2L
w/l A nhew (21)% 02

X (ma*/me*)2| Eex| ¥12(2M)?
X (o— o) 2 | w(hw— ) |2, (3.58)

where
ﬁwo'—‘Ea— IEex[ ’
® J
w(x)=/ dz (z)1/2 0
0 (14T f(o— | Eex| — | Eex|2)]
mp* % M 7 wm* x -1
X “:1— —-————+———z] +4— ——} . (3.59)
me* lEexI me* me* |Eex|

The evaluation of w(x) must be done separately for
three regions: :

(1) #<|Eex|—|Ea|, |Ea|=Dbinding energy of an
electron to the nitrogen.

(2) |Eex| = | Ba| <#<|Eex|.

(3) > | Eex|.

These boundary values represent the thresholds for
the two competing processes: (a) bound electrons--free

ROGER A. FAULKNER

175

holes and (b) unbound electrons+free holes, both of
which fall within the range of optical absorption due to
unbound excitons.

In evaluating w(x), the argument of f(x— |Eex|
— | Ex|2) can be positive for > | Eex|. f(w) is taken
to be

f(w)=<i>—§(2me*)3’2(—w)1’2, w<0 (3.60)

1 3Q
f(w)=<—>(1—pw)+iz;(2me*)3/2(w)1/2, w>0 (3.61)

where p is the same parameter introduced earlier in the
consideration of process (b).

The analytical results are lengthy and are not
presented here.

Figure 4 shows a plot of the optical absorption cross
section for this process using p(1/€)=0.82/(eV)? the
same value as for competing process (b).

The sharp peak in this curve occurs at the threshold
for the production of bound electrons and free holes
and is a resonance effect due to the appearance of this
cross-channel square-root threshold. If the Coulomb
interaction were treated better, this peak would become
much less pronounced.

Figure 5 shows the sum of the three processes for
optical absorption considered here superimposed on the
experimental curve, which has had the background
intrinsic absorption subtracted out.

The first thing that one is struck by on comparing
the two curves is the lack of any structure on the
theoretical curve such as is present on the experimental
curve. The reason, of course, is that phonons have been
totally ignored in this treatment.

Several resonance effects are present in this absorp-

140 4500
roA EXPERIMENTAL ABSORPTION
LESS BACKGROUND OF
120 INTRINSIC ABSORPTION
100 - A+T0*
L A+LAY l
= 8ot
£ L Fic. 5. Comparison of the
- THEORETICAL ABSORPTION theoretical  optical absorption
60 (SUM OF THREE PROCESSES) coefficient for GaP:N with experi-
ment. (Experimental s?ectrum by
i a+Lof Dean and Thomas, Ref. 6.)
a0t
GaP:N 2°K
I n=7x10" N/cc
20
O 1 1 1 1 1 1 1 1
2.30 2.34 238 242 2.46 2.50

hw (eV)
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tion curve. Hopfield ef al. have discussed these effects.®
Of particular note are two positions marked 4+TOT
and A+LOT, where ordinary phonon replicas of the
principal absorption line (4 line) would be expected.
Instead, due to cross-channel interference, valleys occur
instead of peaks.

The second thing that one is struck by is the sharp
peak in the theoretical curve, which is much less
pronounced in the experimental curve. As was discussed
previously, a better treatment of the Coulomb inter-
action should wash the theoretical peak out, bringing
it more into line with experiment.

With these exceptions noted, the theoretical curve is
seen nonetheless to account very well for almost all cf
the absorption induced by the nitrogen impurity well
above the band edge.

The value of the optical matrix element used for the
theoretical curve is | X| =1.66 A, slightly less than that
determined from the area under the principal absorption
peak (2.140.3 &) but still quite reasonable.

It is satisfying to see that the tail of the theoretical
curve is practically parallel to the experimental curve
since the approximations concerning the Coulomb
interactions are much better in this region than near
the thresholds.

It is also worthwhile to point out again at this point
that if the Born approximation had been used for the
electron wave functions, the magnitude of the theo-
retical optical absorption curve would be four orders of
magnitude smaller than is shown here.

E. Electron Scattering Cross Section

The scattering cross section for Bloch electrons in the
conduction-band scattering from a nitrogen impurity
can be calculated from the electron continuum wave
function (3.38).

The total cross section for scattering out of a pure
Bloch state is

3 1
osor(E) =—(m*JQ)2—m— 3.62
O:CT( ST 4o
47 . 2r(14-J Re[ f(E)D\?
sscx(B)=~ / [:Zme E+< P ) :l
(3.63)

For electrons near the minimum of the conduction
band, E— 0,

oscr(E) = (3/m)(ms*2)%(1/Q?)
=6300 (R)2.

We can do the same thing for the hole except that
now 14J(1/€) is no longer near zero as it was for the
electron but is of order 1. This reduces the scattering
cross section by four orders of magnitude. This can be
considered an a posteriors justification for ignoring the
hole-impurity interaction in the beginning.

(3.64)
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F. Double-Impurity Bound States

We return to the bound-state problem in the one-
band-one-site approximation, now considering the case
of an electron bound to a pair of impurity atoms
separated by a lattice vector R. We let one atom be at
the origin of coordinates and the other be centered
about the lattice site at R. Then, according to Eq. (3.3),
the potential matrix element should be

(ck| V| cq)~[JQ/(2r)*][1+¢-*&-0R], (3.65)
and Schrédinger’s equation for the electron becomes

LE—eq(l) ] (k)

JQ
=—— [ &’ 0(q)[ 14"V ]y(q).

3.66
Y (3.66)
This equation has an immediate solution for E<0:
¥ (k) At B (3.67)
((®)—E)’ '
where
2 / d*q 8(a)¥(q) 3.68
BET A 0¥(q), (3.68)
JQ )
=——— [ d’q 6(q)e"®Y(q). (3.69)

(2m)
Let us define a new function related to f(E):

eiq-R

Q
ER)=— | &% 0(g)————, -
K D osn e

(2m)?
f(E)=f(E,0).

Substituting the wave function Eq. (3.67) into
Eqgs. (3.68) and (3.69) yields two equations for the two
unknowns 4 and B:

[1+Jf(E)]4+J f(ER)B=0,
T4 E,R)A+[1+7 f(E)]B=0.

Requiring the determinant of the coefficients to
vanish gives the eigenvalue equation

[+ AE) =T AER)|2. (3.72)

Because of the crystal symmetry, f(E,R) is real and
we can write the two eigenvalue equations

1+Jf(E)=Jf(ER), (caseI)
1+J f(E)=—Jf(E,R). (case II)

One of these equations gives an energy level below
the single-impurity level and the other gives a level
above the single-impurity level (if it can be satisfied at
all for negative energies). These are the familiar bonding
and antibonding states of molecular calculations.

(3.71)

(3.73)
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In case I, by the eigenvalue equation,

= (3.74)
" [el)—E] '
and in case II,
1+4-¢ &R
ynk)=———. (3.75)
= w0z

We have seen before that the optical absorption cross
section is approximately proportional to [¢(0)[2 At
k=0, ¢1(0)=0, and ¢11(0)==2/A. Therefore, the states
of case I are first-order forbidden optical transitions
and the states of case IT are allowed.

If f(E,R)>0, the case-II state lies lower in energy
than case I. If f(E,R)<0, the case-I state lies lower.

We already have an expression for (1+Jf(E)) for
small negative energies from the work done on the
single-impurity bound state. To do a good job of
evaluating f(E,R), knowledge of the band structure
throughout the Brillouin zone is again necessary. How-
ever, a good insight into the nature of the wave-function
interference effects in this problem can be gained by
simply using the effective-mass approximation and
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G1=(27/2)(2,0,0),

Go=(2r/0)(0,2,0),

G;=(27/a)(0,0,2).

The G’s are reciprocal-lattice vectors pointing toward
the three valleys of the GaP conduction band.

If we were to use isotropic masses for each valley
(m1=ms=m*), we would obtain

(3.76)

@ exp{—(2m*|E|)'?R}
ER)=m* R), 3.77
JER)=m ) 2 T'(R) 3.77)
T'(R)=exp(i3G1-R)+exp(i3G2-R)
+exp(i3Gs-R). (3.78)

Each of the exponentials in T'(R) can be either 41
or —1, so that I'(R) can be &1 or 3. In fact, it turns
out that T'(R) is either +3 or —1 for different values
of R.

I'(R)=3 yields a lower-lying state than I'(R)=—1,
other things being equal, and speaking only of the state
lying below the single-impurity level, T'(R)= —1 yields
an optically forbidden state, and T'(R)=3 yields an
allowed state.

If we use the fact that the masses in each valley are
anisotropic, m*=(mymi,ms), we get further striking

extending the integral over all k space. The oscillatory  effects:
complex exponential causes the integral to converge. FER)= fr+fot+fs, (3.79)
Let where
. exp{ — (2ms| E|)}2R[ cos8y+ (m1/ms) sin?6]1/2
fr=mr— — exp(i3Gy-R) D" RLeosut (m/ms) sin®d:1') (3.80)
27) [cos26,+ (m1/m5) sin26, M2

Here, 6, is the angle between R and Gy; f5 is the same
function with G, substituted for Gy; and f; is the same
function with Gj substituted for Gi.

Using the pseudopotential calculation of Bergstresser
and Cohen,? the effective masses of GaP are m1=0.26m
and my=1.49m. With such a great difference between
the masses, f(E,R) becomes quite sensitive to the
orientation of R in addition to its ordinary dependence
on the magnitude of R.

This scheme for the double nitrogen-impurity bound
states, due partly to the crudeness of the evaluation of
f(E,R), does not yield energy levels in agreement with
experiment. Computer calculations have been per-
formed that use a realistic potential and that take the
band structure of GaP more fully into account. These
will be presented in the next section.

1IV. COMPUTER CALCULATIONS OF THE
BOUND-STATE PROBLEM

The one-band—one-site approximation cannot be
considered an adequate description of isoelectronic im-
purities despite its success in certain areas. Most notable

among its failures is its inability to predict the energies
of any bound states or, given the energy of the single-
nitrogen bound state, to predict the energies of the
double-nitrogen lines correctly. Furthermore, the excited
states of the single-nitrogen level do not appear, even
incorrectly.

Therefore a more ambitious program was undertaken,
to calculate the bound states from more or less first
principles.

To do this requires a number of items of information.
First, the band structure and BF’s of the host crystal
must be known throughout the BZ. This can be
generated from the empirical pseudopotential form
factors given for GaP and many other semiconductors
by Cohen and Bergstresser.® Second, a pseudo-
potential representing the difference between the im-
purity and the atom it replaces is needed. The atomic
structure calculations of Herman and Skillman!®
provide the core-electron wave functions necessary for
this task.

10 Frank Herman and Sherwood Skillman, Atomic Structure
Calculations (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1963).
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It also involves the problems of choice of phase for
the numerically calculated BF’s and the band assign-
ments to be made for the different energy levels.

A. Band Structure and Bloch Functions of GaP

The periodic parts of the Bloch functions can be
written as

Ua(k,x)=2 an(k,G)ei® =/ (2)1/2 (4.1)
qQ

and therefore the complete BF’s are

¥a(lx)=[1/(2m)**] 2 an(k,G)ei S =, (4.2)
G

Here, k is a reduced wave vector in the first BZ and the
G’s are reciprocal-lattice vectors.
The crystal pseudopotential Hamiltonian is

| H=—%V*2m+V(x), (4.3)
VE) =Y [SS(G)Vo54iS4(G)VedleiS = (4.4)

where the notation of Cohen and Bergstresser has been
used. The pseudopotential V(x) differs from that of
Bergstresser and Cohen in that the origin of coordinates
is taken at a phosphorous site rather than half-way
between a phosphorous site and a gallium site. This is
done with an eye to the future because the nitrogen
impurity will be located at a phosphorous site.

==3%(1,1,1)a,
where @ is the length of a unit cube.
S8(GQ)=cosG-=,
S4(G)=sinG-~.

VoS and Vg4, the pseudopotential form factors, are
given for GaP by Cohen and Bergstresser.® Here, G is
measured in units of (2r/a).

To find the energy levels and the coefficients a,(k, @)
in Eq. (4.1), the basis states ei(6+k)-x/Q1/2 with
(G+k)2<7, were used to form the Hamiltonian matrix
with perturbation corrections applied using states with
7<(G+k)2<21 according to Léwdin’s method.!! The
matrix is then diagonalized to find the eigenvalues and
eigenvectors. The computer program that does all of
this was originally written by Brust.12

The complex matrices involved are approximately
20X 20 and the entire calculation takes approximately
10 sec of IBM 7094 computer time for each point k.

(4.5)

(4.6)

B. Impurity Pseudopotential

The assumption contained in the band-structure
calculation, and continued here, is that when atoms are
placed in a regular array forming a crystal only the

1P, Lowdin, J. Chem. Phys. 19, 1396 (1951).
12 David Brust, Phys. Rev. 134, A1337 (1964).
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outer electrons are modified; the electrons making up
the filled shells underneath are not appreciably affected.
One can then go on to talk only about the valence
electrons if, somewhere in the formalism, account is
taken of the Pauli exclusion principle. Formally, this
simply requires that all wave functions be orthogonal
to the unchanged core wave functions.

If we write a Schrodinger equation for a true wave
function,

(HotV)[9)=E[Y),

and require |¢) to be orthogonal to a number of core
states |C),

(4.7)

Cl¥y)=0, all|C)

(C|C=b¢cr, (*8)
then we can write
l¢>=[1—§ [CXC] ] ¢) (4.9)

and no matter what | ¢) we choose, |¢) will automati-
cally be orthogonal to all the |C)’s.

The energy-dependent nonlocal pseudopotential is
defined to be

V= V—% (Ec—E)|CXC], (4.10)

so that
(Het V)| 0)=E| o)

with no restrictions on |¢) imposed by the Pauli
exclusion principle.

This procedure is implied in the band-structure
calculations, which do not yield the true BF’s but the
“pseudo” BF’s which must yet be orthogonalized to the
core wave functions.

One can ignore this fact and continue working with
the “psuedo” BF’s if an appropriate pseudopotential
representing the difference between the nitrogen im-
purity and the host phosphorous can be computed.

Consider an isolated ion core: The potential seen by
an external electron consists of the electrostatic attrac-
tion of the nucleus and the repulsion of all the core
electrons:

(4.11)

Z 2 2
V(X)= — 3 e / dsM. (4.12)
|| ¢ [x—y|

The pseudopotential acting on the wave function
would be

Voe(x)=V(x)o(x)
— (B B)eo®) [ &5 00 (Dol (419
If o(x) is nonzero and smooth in the neighborhood

of x=0, much more slowly varying than any of the
@c’s, we can write the pseudopotential as a local
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Fi16. 6. Pseudopotential for nitrogen substituting for phosphorus
from the core wave functions of Herman and Skillman, Ref. 10.

potential by observing

f &y 0c*(5) e(¥) ~ o(0) / By oty (414

and
pc(x) p(x) = pc(x) ¢(0). (4.15)

Then
Vw(X)z[V(X)—%Z (Eo—E)

X po(x) [ &y ¢c*(Y)]¢(X)~ (4.16)

This local pseudopotential can be calculated for
phosphorous and for nitrogen using the core wave func-
tions calculated by Herman and Skillman.!® Because
the core states are rather deep, |E¢|>>| E|, and V, is
not sensitive to E, which can be taken to be an average
of the atomic energy levels for the outer .S and P states.

The bare potential for the nitrogen impurity in GaP
is the difference between the nitrogen and the phos-
phorous core pseudopotentials.

Figure 6 shows this potential calculated numerically
from Eq. (4.16) together with the analytic approxima-
tion actually used in the computer calculations of the
bound-state problem. The approximation ignores the
innermost structure of the pseudopotential because that
region does not contain sufficient volume to affect the
wave functions appreciably. The greatest strength of
the potential comes from the broader well farther from
the origin.

Because the first conduction band of GaP is pre-
dominantly S-like in character, the approximation cf
Egs. (4.14) and (4.15) should not be too bad.

C. Bound-State Problem

The technique for finding bound states is simple in
theory but more complicated in practice.
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We write Schrodinger’s equation

(E-Hy)|¥)=V1¥),

where H, is the crystal Hamiltonian and V is the
pseudopotential presented in the previous section.

For an energy which lies outside the spectrum of Hy,
we can write

(4.17)

(1=-GM)[¥)=0, G=(E—Hy)™.  (4.18)

Because we have a short-range potential, the appro-
priate set of basis functions to use for Eq. (4.18) is the
set of WF’s. Expressing (1—GV) as a matrix in this
basis, the condition that a bound state exist is that the
determinant of (1—GV) vanishes for some E= E;, the
bound-state energy. The matrix considered is finite
because (#R|V|n'R’), the matrix element of V with
WZE’s, becomes negligible for sufficiently large R or R’.

The problem one faces now is how to generate WF’s
from BF’s. The relevant formula is straightforward

enough:
QII 2

wn(x—R)=

(27r)3/2./ d*% o) (k). (4.19)

However, numerical calculations of y,(kx) do not
specify the phase relative to BF’s with different values
of k. An even greater problem is a useful definition of an
energy band. Does one require, e.g., band No. 4 to lie
lower in energy than band No. 5 everywhere in the BZ
or does one allow them to be inverted in certain regions?

Callaway and Hughes have investigated these prob-
lems.** They treated the case of the neutral vacancy
in silicon. Since silicon contains a center of inversion,
they were able to work with real matrices in the genera-
tion of their BF’s, and so the choice of phase reduced
to a choice of sign. Their method of defining energy
bands is based on considerations of continuity of sym-
metry through the BZ rather than strict continuity of
energy. Their method yields WE’s that are well localized
and that possess the symmetries of the one-dimensional
representations of the point group.

GaP has no center of inversion, and the numerical
BF’s have complex components. Also, the energy bands
do not cross so neatly in GaP as in silicon. Whether for
these reasons or because of a lack of fortitude on the
part of the investigator, simpler phase and band assign-
ments were chosen for this problem. The BF’s were
taken to be real and positive at x=0 and band assign-
ments were made straightforwardly according to in-
creasing energy. The WF’s obtained in this way were
not as well localized as those of Callaway and Hughes,
so more lattice sites were needed for the matrix 1—GV.
A total of 19 was used as opposed to Callaway’s 10.
To keep the numerical labor within reason, only the

( 13 J;)seph Callaway and A. James Hughes, Phys. Rev. 156, 860
1967).
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first two conduction bands were considered. This re-
sulted in 38X38 matrices for the single-nitrogen
problem and as large as 76X 76 for the double-nitrogen
problem.

The matrix (1—GV) in the WF basis is

(@R|(1—GV)|#'R’)= b, drrs
— ¥ @R|G|w"R")W'R"|V|vR).

/'R

(4.20)

To find the G matrix, we expand the WF’s in BF’s:

Q
"RN=—— | @3 6(k 3k'0(k’
(nR|G|#'R") (Zﬂ,)3/dk0( )/dkﬁ( )

XeikRegik! R (k| (E—Ho) ! [n'K’). (4.21)
But
(k| (E~ B |w'K)
= [E—en(k) T 0umb(k—K), (422)
therefore
Q eik~(R—R’)
R|G|#'R")=bnnr /d“‘k@k)——. 4.23)
ORIGIR) =en) O

We recognize this, of course, as being an old friend:
the function f(E,R—R’) of Sec. IIL.

The calculation of the Green-function (GF) matrix G
requires only knowledge of the energy-band structure
and is relatively straightforward to calculate numeri-
cally once the €,(k) are known for a dense enough set
of points in the BZ.

To find the potential matrix elements (#R|V|#'R’)
is a bit more difficult, because the WF’s are not known
directly, but through an integral formula involving the
numerically known BF’s:

R|V|#'R 2 ask o(k) | a3k
(nR|V|n )—'(—2;“)—3[ (

XO(k')eite R R (nk |V |n'k’). (4.24)
But the BF’s themselves are known only through the
coefficients of the basis set of plane waves: ¢?(G+&)-x,

1
(nk| V!n’k')=z2—); 2 Z’ a.*(k,G)an (K',G')

X / @3y e GH=C"—K) X (x) | (4.25)

This formula illustrates why an analytic approxi-
mation for V(x) was used. If a numerical evaluation of
the Fourier transform of ¥ had been done, along with
all the other computer operations necessary to calculate
(nR|V|#'R’), the cost would have been prohibitive.

For the potential

V(t)=—J(r/ro)te 4 /m, (4.26)
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we have the Fourier transform
Vk)= / &ir e %Y (x)
15 6—20(kro/4)24+6(Er,/4)4
- J__7_r<g\{ G/ apor/ sy
8 \4/ [ 14 (kro/4)2 6
and the BF matrix element
1
(k| V[n'K)=——2 3 a.*(k,G)
273 6 &
XV(G+k—G —K)an(K,G'). (4.28)

The numerical evaluation of the BF’s yields approxi-
mately 20 of the a.(k,G)’s for each function.

Returning to the WF matrix elements, use of the
point group of GaP, Tq, simplifies Eq. (4.24) somewhat.

Denoting by {a} one of the 24 rotations of T,

{a}n (kx) =, (ko 1-x). (4.29)

With the phase convention adopted here (¥,(k,0)
=real and positive), the BF’s are symmetrical for all
rotations (eigenvalue=1) and, for time inversion,

{e} |nk)= |nak)
¥a(—kx)=y¢.*(k,x).

The origin of coordinates has been taken at the im-
purity site, so that V(x) is invariant under all rotations:

(&} V{a ) =V. (4.31)

(4.30)

Therefore,

(nk| V|#'k) = (nak| V|n'ak’)
for all {a} in Tg4, and

(4.32)

Q
mR|V|WR)=— |  d% / ar
(2‘”)3 [BZ] [1/48 of BZ]

X2 Re{Z(kR; K ,R)(nk|V|n'K)}, (4.33)
where

S(R; K R) =3 citem-a'®), (4.34)

The complex function Z(k,R; K’,R’) can be expressed
in closed form.

This use of symmetry reduces the labor of computa-
tion by a factor of 48 but there still remains a double
integral to perform, once over a basic 1/48 of the BZ
and once over the entire zone.

We therefore need (zk|V|#’k’) for K’ in a set of
points within a basic 1/48 of the zone and for k on 48
times that number of points. The number of points
actually used in the basic 1/48 of the zone was 16. This
means the evaluation of (zk|V|#n'k’) a total of
3X48X16X16=236864 times. The factor of 3 arises
because two bands are involved. Although 16 points do
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not thoroughly cover the basic volume of the zone, they
should be just adequate for the present work.

The evaluation of 36864 matrix elements required
approximately one-half hour of high-speed computer
time. Having these numbers in storage, the evaluation
of four matrix elements (#R|V|#'R’) for » and n'=1,2
(first and second conduction bands) required from
10-30 sec of computer time, depending on the values
of R and R'.

Symmetry can be used to reduce the number of WF
matrix elements which must be computed. From
Eq. (4.35) it is seen that the matrix elements are real:

#R|V|#'R)=@'R’|V|xR). (4.35)

Also, using Eq. (4.30) for the transformation prop-
erties of the BF,

R 2 a3k 0(k)e~ % R|nak
{a}|n )—‘(E;ﬁ/ (k)e |na )

Q
=—— | d% 6(k)e~% R |nk)

(2m)?
= |naR). (4.36)
Therefore,
(nR|V[n'R)=(#R|{a}~"V{a} |#'R)
=(naR|V|n'aR’). (4.37)

Using values of R out to the second neighbor
[R~(0,0,0), (1,1,0), (2,0,0), where ~ indicates the
inclusion of all symmetry-equivalent sites], the total
number of pairs (R,R’) which must be calculated re-
duces from 19X19=361 to 17. Table I lists these
matrix elements.

TasiLE 1. Wannier-function potential matrix elements for the
first two conduction bands of GaP: #R|V|#'R’) (eV).

(nn)=

R R 1,1 (1,2) (V) 2,2

(000)  (000) —2.26051 —1.11251 —1.11251 —0.54756
(110)  (000)  —0.18857 —0.09280 —0.06120 —0.03013
(2000  (000)  +0.06466 -+0.03182 —0.04950 —0.02437
(110)  (110)  —0.02314 —0.01065 —0.01065 —0.00865
(110)  (ii0) —001592 —0.00304 —0.00304 -+0.00321
(110)  (1i0)  —0.01535 —0.00498 —0.00498 —0.00136
(110)  (101)  —0.01594 —0.00811 —0.00811 —0.00693
(110)  (10i)  —0.01741 —0.00508 —0.00508 —0.00191
(110)  (i01)  —0.01308 —0.00330 —0.00231 -+0.00149
(1100 (doi)  —0.01308 —0.00231 —0.00330 -0.00149
(200) (2000 —0.00200 --0.00141 40.00141 -—0.00138
(200)  (200) —0.00179 +0.00145 --0.00145 ~—0.00080
(200)  (020) —0.00183 -+0.00141 .+0.00141 —0.00108
(110)  (200)  -+0.00591 —0.00436 -+0.00210 —0.00207
(110)  (300)  +0.00514 —0.00398 -+0.00153 —0.00065
(110)  (002)  -+0.00487 —0.00475 --0.00164 -—0.00174
(110). - (002) - +0.00538 —0.00334 +0.00161 —0.00087
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D. Single-Impurity Bound State

Using the matrix elements of Table I, the (2X19)
X (2X19) matrix (#R|V|#'R’) can be set up. Given a
value of E, the GF matrix (#R|G(E)|#'R’). can be
calculated fairly quickly.

The energy eigenvalue of the bound state can be
found by plotting det[1—G(E)V] as a function of E.
The point where det[ 1—G(E)V]=0 is the bound-state
energy Ej.

The entire process of calculating G(E), setting up
(1—GV), and taking the determinant required less than
S sec of computer time, most of which was spent
calculating the determinant.

It was found that the potential used gave a bound
state well into the forbidden gap, approximately 1 eV.
A reduction factor X was used to reduce the strength of
the potential to fit the experimentally observed single-
nitrogen level in the hope that the same parameter
would give reasonable values for the double-nitrogen
levels. The energy of the single-nitrogen state was found
to be extremely sensitive to the value of this parameter,
giving —0.0133 eV at A=0.504 and —0.0068 eV at
A=0.50. A similar situation existed in the one-band-
one-site approximation in its sensitivity to the potential
strength J. The calculations of Callaway and Hughes!
exhibit a similar sensitivity. Also in the computer calcu-
lations, excited states of the single-nitrogen problem
never appeared. This is a property of the short range of
the potential chosen for the calculation. A longer-range
potential would reduce the intervalley matrix elements
responsible for splitting off the excited states, and would
bring them below the band edge. This, coupled with the
sensitivity of the energy level to the potential strength,
suggests that the self-consistency effects, which would
be of longer range than the present bare potential, are
of prime importance in this problem.

A multiplying factor of 0.501 puts the single-nitrogen
level at approximately —8 meV.

E. Double-Impurity Bound States

For the bound states arising from a pair of nitrogen
atoms, one located at the origin and the other located
at the lattice site Ry, we can write the potential

Vu(x)=V(x)+V(x—Ro) (4.38)
and the WF matrix elements of this potential
(#R| Vi |#'R)=@uR|V|#'R)

The size of the GV matrix is controlled by the con-
ditions that R and R’ must belong to either or both of
the sets of vectors

S1={(000), ~(110), ~(200)}
S2= {Rl R—' ROESl} .

There are 19 vectors in each set, and the sets overlap
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for small Ro. Thus, the GVir matrix will be a size
ranging from (2X19)X(2X19) to (2X38)X(2X38),
depending on the extent of the overlap of Sy and S,.

In any case, (#R|GV1|#'R’) can be calculated almost
as easily as (#R|GV |#'R’). In fact, several values or Ry
can be considered at the same time if they are close
enough together because many of the matrix elements
of G are the same for different but close values of R,.

Again, the evaluation of the det(1—AGV1) averaged
about 5 sec.

Using a multiplying factor of 0.501, which puts the
single-nitrogen level at —0.0083 eV, the double-nitrogen
levels come out as shown in Fig. 7. They are arranged
into two groups, allowed and forbidden, according to
whether Y(k=0)>40 or Y(k=0)=0, respectively. The
leftmost column contains the experimental levels for
comparison. The numbers in parentheses represent the
lattice vector separating the two nitrogen impurities.

Although these energy levels obviously do not agree
with experiment, the range of energy is correct and the
average spacing of the levels is about right.

Of special note is the fact that the theoretical levels
appear in almost a random ordering according to the
magnitude of R, the separation of the two nitrogens.

This great shuffling of the energy levels is, of course,
due to the wave function interference effects discussed

before in the case of the one-band-one-site approxima-
tion. The calculated energy levels are obviously very
sensitive to the orientation of R.

V. PHENOMENOLOGY: EFFECTIVE
DEPTH AND RANGE

One certain conclusion can be drawn from the results
of the calculations presented in the preceding sections:
The bare, very-short-range potential of one atom
substituting isoelectronically for another in a semi-
conductor is not adequate to describe all aspects of the
problem.

It is clear that the effective potential that one should
use must include lattice relaxation and electronic
polarization of the host crystal. These effects are of
longer range than the bare potential and their inclusion
would decrease the sensitivity of the binding energy to
the potential strength and reduce the intervalley matrix
elements responsible for splitting off the excited states
and for the orientational dependence of the double-im-
purity bound states. On the other hand, there must
remain a sufficiently strong short-range part of the
potential to give strong optical absorption as observed
in GaP:N.

This section will be concerned with an attempt to
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find a characteristic potential depth and range which
will reproduce the experimental binding energies ob-
served in GaP:N without worrying about the ultimate
origin of such a potential.

A. Procedure

One could choose, say, a Gaussian potential with
adjustable range and run through the calculation
described in Sec. IV for several values of the range.
Such a procedure would waste a great deal of computer
time.

In lieu of recalculating the WF matrix elements for
each value of the range, it was decided to make a
truncation of the problem and simply assign these
matrix elements reasonable values and proceed from
there with the rest of the calculation of Sec. IV.

For the determinant of (1—GV), the matrix elements
of V were taken to be zero for interband coupling,
thereby reducing the problem to the consideration of
only the lowest conduction band. Within this band, the
matrix elements of V were taken to be

(R|V|R) =06z »V(R),
V(R) = — Jo-(RHI4Y)

where J is the adjustable depth and 4 is the adjustable
range.

The matrix elements of G were calculated exactly,
using the band structure of Cohen and Bergstresser® as
described in Sec. IV.

This procedure is obviously bad for several reasons:
(1) It ignores interband coupling; (2) it ignores off-
diagonal elements of (R|V|R’); and (3) it possesses
inversion symmetry, while GaP does not have inversion
symmetry.

However, it has advantages: (1) It can be doneina
reasonable amount of time; (2) it becomes exact in the
limit of very-long-range potentials.

B. Results

With two parameters to adjust, two experimental
binding energies can be fitted exactly or several experi-
mental binding energies can be fitted approximately.
The former procedure was adopted here. The 4 line
and the valley-orbit excited states (4* line) were fitted
using a depth and range

J=0.64 eV,
A=1.15a,

where a (cubic lattice constant of GaP)=>5.44A.

With these parameters, the binding energy of an
electron in the ground state (T) is 8 meV and the
binding energy in the doubly-degenerate first excited
state (T'yz) is 6.5 meV. The splitting between I'; and T'1z
is a fairly sensitive function of the range, being essen-
tially zero at 4=1.5a¢ and being greater than 10 meV
at 4=1.0a. The binding energy of the 4 line is much
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less sensitive to the potential strength. With the range
as chosen, J=0.6 eV gives a binding energy of 2.5 meV
and J=0.7 eV gives a binding energy of 19 meV.

Having chosen a depth and a range, the double-
impurity bound states can be calculated. These are
shown in Fig. 8 along with the experimental levels for
comparison.

In this sequence, as opposed to the sequence of
Fig. 7, the levels appear in more nearly the ‘“normal”
sequence, i.e., monotonically diminishing binding
energy with increasing separation. However, there is
still enough intervalley coupling to cause the splitting
shown between the (330) state and the (411) state,
which have the same magnitude of separation but
different orientations. Also, as contrasted to Fig. 7, the
levels do not converge to the 4 line nearly so fast as
the experimental levels.

It appears that the double-impurity levels are quite
dependent on the shape of the potential and cannot be
calculated simply knowing a depth and a range.

VI. CONCLUSIONS

Short-range interactions in solids have been a tradi-
tional source of frustration. In some cases, namely,
“central cell corrections” to donor and acceptor binding
energies, their effects are often small compared to the
more tractable aspects of the problem. For isoelectronic
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F1c. 8. Energy levels of the double nitrogen states calculated
semiempirically after first fitting the single nitrogen state (4 line)
and its excited states from intervalley mixing (4* line). Only the
theoretical electron binding energies are presented here and the
experimental levels have been raised by 13 meV. (Experimental
levels after Thomas and Hopfield yRef. 1.)
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impurities, however, the short-range interaction is the
dominant, if not the entire, problem.

Much has been explained here about isoelectronic
traps using the Slater-Koster one-band-one-site ap-
proximation. In regard to GaP:N, this approximation
correlates the position of the principal bound state (4
line) with its oscillator strength in optical absorption
and with the absorption strength for frequencies above
the band edge using essentially only one adjustable
parameter.

In both the one-band—-one-site approximation and the
more elaborate computer calculations using a very-
short-range potential, the binding energy was found to
be extraordinarily sensitive to the potential strength
and, contrary to experiment, the excited states due to
intervalley mixing were found to be unbound. Taking
a phenomenological potential of intermediate range
both reduced the binding energy sensitivity substan-
tially and brought the excited states below the band
edge. This indicates that a large measure of lattice
relaxation and electronic polarization of the host crystal
must be included in the short-range potential problem
in future calculations. The extra potential from such
effects might be exponentially decaying or it might go
as 1/r» for large distances. However, the central core
cannot be neglected for any such long-range potential
for > 1. Only the Coulomb problem of all the singular
potential problems of this form becomes insensitive to
additional structure in a small central region when the
size of that region is allowed to become very small.

Callaway and Hughes'® have shown that practical
calculations involving WF’s and short-range potentials
are possible. The present work, which uses many of their
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methods, indicates that the next major step must be a
first-principles calculation of the response of the host
crystal to the short-range perturbation. In the case of
GaP:N, such a calculation could be tested by its ability
to predict the double-nitrogen levels. Electron-hole
correlation effects, also ignored here, could prove quite
important to a thoroughly successful theory.

A better understanding of isoelectronic traps would
lead to a better understanding of the related problem of
central cell corrections to donor and acceptor states.
It would also open the way for calculations of more
complicated systems such as nearest-neighbor donor-
acceptor pairs. With vision, one can imagine a whole
chemistry of complexes within the vacuum represented
by the perfect crystal.

Note added in proof. Those who compare Fig. 7 of
this article with Fig. 6 in the previous paper by Faulkner
and Hopfield" will note that they are quite different. In
the previous calculation, the shift of origin which was
made in order to compute BF’s with the origin of co-
ordinates at the impurity site was inadvertently taken
in the wrong direction. Thus, that calculation was
actually a calculation of an impurity on a gallium site
instead of on a phosphorus site in GaP.
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