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The full cluster expansion for the phonon Green's function of a bmary isotopic disordered alloy is derived
for the case of a reference lattice of atomic mass intermediate between that of the two constituents. This
result is extended to an alloy which is disordered except for speci6ed atoms which occupy a small number
of distinguished lattice sites. The latter Green's functions determine the displacement correlations of atoms
in or near a small cluster of impurities in an alloy. The one- and two-vertex self-energies are calculated
formally to all orders in the concentration, and it is shown that the disease of spurious poles, reported
earlier, persists to the two-vertex self-energy and is a general feature of in6nite partial summations when
the cumulants of the full cluster expansion are used. The approximation of Elliott and Taylor, which does
not have spurious poles, is discussed in this context and is used to evaluate the one-vertex self-energy for
a reference lattice of intermediate atomic mass.

I. INTRODUCTION

"'N this vrork @re continue the discussion of the
~ ~ pcI'tulbRtloD cxpansloD of thc vlbI'RtloDRl fI'cqucDcy

spectrum Rnd 1clatcd Glccn s functions of R mRss-

disordered alloy. In Sec. II, the restriction against
multiple occupancy of each atomic site by a,toms is
handled in a much simpler @ray than previously, ' 2 so
that it can be seen that there is no difFiculty in de6ning
the expansion about a reference lattice of arbitrary
atomic mass. The same vertex factors, or cumulants,
are obtained as for the solvent-atom reference lattice.

An extension of these arguments in Sec. III leads to
thc formulation of tlM pcI'tuI'bRtlon cxpRnslon of thc
Green's functions @which are needed for calculating the
frequency spectrum or displacement correlations in the
neighborhood of defect atoms in an alloy. The fact that
certain sites are distinguished as occupied by speci6c
types of atoms modi6es the multiple-occupancy vertex
factors of the original expansion.

In Sec. IV the complete one- and tv'-vertex self-

energy partial sums are evaluated. The disease of
spurious poles, noted. in I for the one-vertex self-energy,
ls scen to pcrslst 1D thc t%'o"vertex self-cnelgy Rnd ls R

general feature of partial summations using the cumu-

lants of the fgll perturbation expansion. The spurious

poles are not present ln the one-vertex self-energy ex-
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and Space Administration.' P. L. Leath and B. Goodman, Phys. Rev. 148, 968 (1M6),
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~ F. Vonezawa and T. Matsubara, Progr. Theoret. Phys,
(Kyoto) 34, 871 (1965);35, 357 (1966);BS, /59 (1966).

expression obtained by E1Hott and Taylor. e Their
procedure can be regarded as the 6rst step using
cumulants that correspond to a restricted part of the
perturbation expansion. It is used in Sec. V to evaluate
the one-vertex self-energy for R reference lattice of
arbitrary mass.

%c coDsldcI' R lRt tlcc occupied by two cheInlcRlly
identical types of atoms, A and 8, @which di6er only in
their D1Rss. %hen thc concentration of Dclthcl spccles
is small, it is useful to consider a perfect reference lattice
of intermediate atomic mass M, as the unperturbed
lattice. This perturbation expansion vras first attempted
by Takeno, 4 vrho vras unable to identify the general
terms involved in the rather complicated expansion.
It turns out that the complete expansion has almost
the same form as in Langer's original theorys @which

used M,=M~.
Our 6rst approach to this problem used two kinds of

interaction Uncs, one for the deviation of 3EJ, from 3f„
and the other for the deviation of Mg from M„. An
elaborate inductive argument resulted in the appearance
of thc same multiple-occupancy polynomial vertex
factors E„(c) derived in Refs. 1 and 2, where c is the
concentration of J3 atoms.

This stimulated a look for the common features in
thc expansions. MatsubarR RDd Yone«R%'R Rnd
Maradudins had pointed out that the E„(c) are cumu-

' R. J. Elliott and D. W. Taylor, Proc. Roy. Soc. (London) 296,
161 (1967).

e S. Takeno, Progr. Theoret. Phys. iKyoto) 28, 33 {1962).' J, S. Langer, J. Math. Phys. 2, 584 (1961).' A. A. Maradudin, Extended Aarhus Summer School Lectures,
1963 (unpublished).
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lants of the indicator function for the presence of, say,
a 8 atom. This function takes on the value unity with
probability c and zero with probability 1—c. The two-
valuedness obtains regardless of the reference lattice,
so that similar statistical properties are to be expected.
Furthermore, with an arbitrary M„ the expansion will

be formally symmetrical in each order with respect to
the 2 and 8 atoms. If M„ is taken to be a symmetrical
functionof {Ms,e) and(M", 1—c) such thatitbecomes
M~ or M~ for c equal to zero or I, respectively, then an
approximation which is applicable for small c should

also be applicable for small 1—c. This does not neces-

sarily mean that the approximation will be accurate for
intermediate concer trations.

Use of the position representation instead of the k

representation allows the con6.guration average for a
completely disordered system to be carried out in terms

of the simplest cumulant properties and our resulting

development is more compact than that given by
Yonezawa and Matsubara. ' The extension to ordered

systems is direct in principle, but since the cumulants

of any order involve correlation functions up to that
order, any application will require truncating the

hierarchy of correlation functions. ~

The retarded displacement Green's function is

de6ned by'

D(e, mP, f—t')—= ('k) '&[N(nn, f), N(mP, f')])
X'(f—f'), (1.)

"here N(@~ f) is the ( artcsla11 displacement c of atom

n at time f, 8(f)—= (1 for f)0, 0 for f(0), and the sub-

script T denotes a thermal average. It gives the dis-

placement correlations &eN) discussed in I. For a

harmonic system, its Fourier time transform D(s&}

satishes the equation of motion

(M(os —V)D(co) =I, (2)

where Vis tlm force-constantmatrix and M isthediago-
nal mass matrix with elements M(ln, tnp) = ~ll, meM(Q

Equation (2) may be rearranged for a reference mass

M, to obtain

(M~'I —V)D(cv)=I+pD((o). (3)

The perturbation matrix y is diagonal with the diagonal

element
(4)p(0= y,"'"(i)+us'n(i)

at the site &, where ~x(l) is the indicator function which

is 1 or zero depending upon whether there is an atom of

type A at site I, and

pg =—(M, M")(us, pe=(M„—Mn)a&s. (5)—

where 1 is the Green's function for the reference lattice

d(~) =(M,"'I—V)-'.

Iterating and averaging over con6gurations of the
two types of atoms on the lattice, we obtain

(D)=d+d&v)d+d&ed~)d+" . (g)

The sth-order term in this expansion involves the
conhguration averages of the p-products

&"(ir)~(is)" ~(i.))
This average may be factored into the product of

averages in which each factor contains the p's for a
cluster of sites in which the occupation of one site is
dependent on the occupation of others in that cluster
but is independent of the occupation of other clusters.
The i sums in Eq. (8) can be carried out independently
for each factor as long as the associated clusters remain
separated. %hen clusters interact the product of their
factors must be replaced by a new factor or, alter-
natively, a term must be added as a higher-order cor-
relation correction to the product. The correlation cor-
rections of increasing order are thus de6ned inductively
as in the Ursell-Mayer expansion of the partition func-
tion of an imperfect gas.

The result of the above procedure is to represent
Eq. (9) as the sum over all possible combinations of
products of correlation functions,

Z xt (it) "3xP"(4)j" 4(i')" j,
partitions

~""'x(&(')&(i') pD' 'Il) is anrth-order correlation
function of the r p's which vanishes when any subset of
its arguments is independent of the others. Once the
form of the functions ~ is known for every r, the sums
over the Ps in (8) can be performed wifhogt restriefions
between factors. Equation (10) is a particular case of
the decomposition of the average of a product of ran-
dom variables J; into multivariate cumulants, s

(XIXs X,)
«(XI ~ }x(X"~ ) ~ x(X" ~ .) (11)

PRftltlOQS

Equation (11) defines tile CUIzlulants recursively. one
can solve for them in terms of the product moments

172, 677 (1968).In this work the higher-order correlation functions
are approximated by products of pair correlation functions.' The cumulants of a single random variable X are de6ned by

" 0 "~„(X)(exp')=—e~

Equation (3) maybe rewritten as

9=d+dpD,

7 A treatment of the vibrations of a dilute alloy with short-

range order has been given by %. M. Hartmann, Phys. Rev.

In our case, for (X")=(Lan())g")=c, the exponents i I

g(~le)=Z- I =In(t —e+ge-),'„(&)
r-1 rI

which was originally derived in Ref 2
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(X;, X;,), for iq&i2& i, ~&s, as follows:

K(Xg,X«, ~ ~ ~,X,)

= Q (—1)" '(m —1)! Q (Xg )
te ~i partitions

into m parts

X(X" ) (X" ) (12)

The properties of multivariate cumulants are reviewed

by Meeron' and Kubo. "Equations (10)-(12)have been
written as if all the random variables are distinct; if,
say, I;=I&, they may still be treated as distinct
random variables which are perfectly correlated. This
avoids the more complicated formulas in Appendix A
of Ref. 9 and Ref. 2 which result when Eq. (11) contains
powers higher than the 6rst of the random variables,
i.e., when site indices coincide on the left side of Eq. (10),
Ke now restrict ourselves to the case of a completely
disordered alloy so that p(l) and IJ, (P) are independent
if /&l'. Since a cumulant product vanishes if any subset
of its variables is independent of the others, ' we may
write

4 (l)I (I')" ~(f'-")j=&(li'" 1'-")K.E (l)3, (13)

where 8(ll' l&~") is unity when all the l's are the
same and is zero otherwise.

In order to find the cumulants K„[p(l)$ of the random
variable p, , we rewrite Eq. (4) in the form

p (1)=pA+ (p& p&)6&(—l),
so that it divers by the additive constant p~ from the
type of random perturbation considered by Langer. "'
The first-order cumulant becomes

cumulants. Recall that K,(hs) in Eq. (18) means
K(hs. hs, ~ ~,hz), with r "temporarily distinct" As s,
which by Eq. (12) is a sum over all partitions of the
hs's into m averages (&Bks' ' 'A$)(As ) (Ag . ).
Since

((~ (1))")=(~ (l))=&, (19)

Equation (12) becomes

P.(~)= Z
part1t1ons

'Into st parte!

(—1)~—'(m —1)!cm

(20)

where
(D(a)))= {M~'g—II((o)]—V) ',

lI(a) = (M~')—'x(co) .

(22)

We note that, for fixed 3f„the vertex elements (15)
and (17) are symmetric with respect to interchange of A
and 8 labels. This follows from the identity

r
P (c)= Z (—1) '(m —1)!c"S(r,m),

since S(r,m) is the number of ways of partitioning a set
of order r into m nonempty subsets. "

The diagram representation in I of the expansion
of (D) now applies with the modifications that (a)
vertices with single interaction lines carry the factor
(1—c)p~+cps, (b) in vertices with m)1 interaction
lines pg —p~ appears as the interaction strength of each
line; and (c) the propagation lines are d.

The resulting Dyson equation is

(D)=d+dx(D), (21)

where X is the self-energy. The formal solution of this
equation is

where

(u) = (1—c)iV,+cats, (16a)

ps —yg (Mg —Ms)(a'.—— (16b)

P,(1—c)= (—1)"P,(c) for r) 1, (23)

which follows from Ref. 8, or more directly from the
fact that, for r) 1,

The higher-order cumulants K„(p), which depend on the
Quctuations of the random variable p about its average,
are unchanged by the additive term in Eq. (14). Thus,
for r)1,

K,(P) = (II~ P&)"P,(C), —(17)

which by (16b) is independent of the choice of 3l„and
where

P„(c)=K„(hg) (1g)

is the cumulant of the indicator function and was given
in closed form in I as a polynomial of degree r in c with
the coeKcients of c" containing S(r,te), the Stirling
number of the second kind. A very simple derivation of
the P„(c) follows immediately from Eq. (12) and the
direct connection of the Stirling numbers with the

' K. Meeron, J. Chem. Phys. 27, 1238 (1957).
'4 R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).

(D((o))= {LM„(o'+((M)—M )&o'jl—V)-'
—d(M )(~) (25)

the Green's function for the mean lattice.
That the one-vertex diagrams are equivalent to

using the reference lattice of mean atomic mass is

"This closed form of the cumulant appears in calculations in
binary alloys, in spin-$ systems, and whenever the stochastic
variable is limited to two values.

Kp(ks) =Kp(1—h~) =«,(—Ap) = (—1)'K,(h~), (24)

where the second equality comes from the fact that the
cumulants of greater than 6rst order are unaGected
by a constant shift in the random variable. Thus the
expansion as defined in rules (a)—(c) above is symmetric
with respect to A and 8 in each order.

H only single-interaction lines are kept, X is diagonal
with the diagonal element (p) such that
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further manifested by Eq. (15) where zl VRlllsllcs for
1lII„=(~} and thc pertulbatlon cxpRnsloll colltallllllg
no one-vertex diagrams starts with {P& IJ&) ~

Measurcxncnts lxlvo1vHlg thc lntclRctloQ with radia-
tion generally distinguish between atomic species in an
alloy. Examples include defect-induced optical absorp-
tion, nuclear y-ray emission and absorption, Rnd neu-
tron scattering. In the case of nuclear y-ray emission

the impurity is the emitting atom and the "g=yg
=lxnpurity elements of thc Gx'ccn s functloQs arc of
main interest. It is also of interest to calculate the
behavior of impurity modes in the vicinity of an im-

pux'lty ol R clustcl of lmpurltlcs.

The perturbation development of Sec. II can be
Rdoptcd to thc treatment of such dhs&sglished-siQ
Green's functions, that is, Green's functions for when

the atomic species at some particular sites are jGMwn.

The case wiH be considered in detail where the origin
atom is distinguished, but generalization to more than
one distinguished site will be evident. For simplicity,
only the argument for the displacement Green's

function and for the use of the host lattice as reference
lattice is given.

Let (9'(co)} denote the displacement Green's func-

tion for the alloy with a distinguished. atom at the
origin. It is evaluated by the expansion (8) as before

except that there are new values for the moxnents

{il(tl) ~ p(l, )}.It is clear that {9')is not translationally

invariant.
With 3f'„=M~, Eq. (4) becomes

~(l) =vs~s(1} (26)

Again wc assume no short-range order, so that sites l
and I,'&l are occupied. independently. The cumulants

of hs(l) still satisfy Eq. (13) but «„t 611(l)jnow depends

upon the site L

Let each site l bc occupied by a 8 atom with prob-
ability e for /go and probability co for 1=0, so that

(b s(l)}=e+ baal 0, (»)

where b=co c. From Eqs. (—12), (20), and (26) it
follows that

The moments (il{ll). p(l,)} are still evaluated ac-
cording to Eq. (10) and, as in Sec. II, each product on
the right side of (10) corresponds to the vertex factors
of some diagram. According to (28b) each vertex can
bc divided into two parts, the second, of which carries
the factor BlottP„(b+i) I'„(—c)j and gives an extra
diagram. The Qew vertex can be represented by an
open circle as in Fig. i. Because of the 8)0, all of the j
open-cllclc vcx"tlccs ln R diagram can bc collcctcd to"
gether into a single vertex with the factor

Then ail the resultant diagrams (coming from the
various asslgnxncnts of Interaction llncs to thc ollglnal
open-circle vertices) that now have the same topological
structure can be collected together into a diagram with
R single open-circle vertex of order r and value

P„(b,c)big- blP P—P'„,(b+c)—E„,(c)j
p8rtlt10ns

&&)P„(b+c)—P,{c)j LP„,.(b+c)—P,.(c)j. (30)

Examples of these extra diagrams are shown in Fig. 1(a)
and are obtained from the diagrams of Sec. II by re-
placing each open-circle vertex by Eq. (30}.

Since E„{b,c) measures the total extra scattering at
the distinguished site it is proportional to the ex/re
probabiTity h that a 8 atom is there. This may be seen by
comparing the II. moments with and without 5. Doing
the average of any f(il) for the distinguished site last
gives cd(ps)+ (1 co)f(p~) v—ersus cf(lls)+ (1 c}f(pg)—
and thc diGcrencc ls proportional to 5. Slncc each
fac'tor Ea(b+c) E~(c) 111 thc sllllllllalld of (30) ls a
polynomial in 5 beginning with the erst powcl; lt rQust
be that all terms cancel out except for the linear term of

Q,tII I P ~y—I I X

()

a
fb)

„fhs{l)g= Q (—1)"—'(ll —1)!{Ds(l)}"S(r,m), (28a) + ~ 1 + I l + ~
(C)

~,[~s(~)j=f'.(~)+P'.(b+~)—&.(~)j&1o

The first term on the left, E,(c), contributes at all sites
and is taken into account by the same diagrams (of
Sec. II) for the completely disordered alloy. The second

term represents the extra scattering of the phonon by
the origin atom.

(@), Solllc d&~g&@z68 OCGUrrillg in the cxpgnsjon Of i+0}
with scattering by the distinguished site; {b) some irreducible
parts contributing to Xo; (c) the one-vertex distinyushed site
self-energy; and (d) some irreducible parts with scattering by
t%'0 distinguished sites p and g contrlbntlng to X~~f.



the trivial partition into one, so that

d b
P,(b,c)=b—P,(c)= P~I(c),

dc c(1—c)

where the irst equality follows from Eq. (20) and the
second follows from the relations

P„(c)= (d/da)" ln(1 c—+cc ) ~
c. (32)

FIG. 2. (a) An analysis of
the self-energy X to explain
the form of X'; (b} two dia-
grams which are represented
by (c} a single diagram in the
notation of Dzyub (Ref. 12}.

+
C~

ice)

cl+II' 1 I rl it~'I/a ask L Il I/

&b)

The first few values of P„(b,c) are given in Table I.
Since a diagram contains at inost one open-circle

vertex with the factor (31), (D') is related to the Green's
function (D) of the disordered alloy without a dis-
tinguished site by the relation

(D'&=(»+&»*'(D), (33)

where X' is the sum of all irreducible parts, such as
those in Fig. 1(b), which contain an open-circle vertex.

As a cheek, consider an isolated 8 atom in the pure A
crystal so that c=O and b=1. Then P„(b,c)=b=1 and
(D)=d~, the A lattice Green's function. The only con-
tributions to X' are the one-vertex diagrams of Fig.

TABLz I. Distinguished site vertex factors
P, (b,c} for x~&6.

(c)

interact differently with radiations but they do not
apply, for example, to the displacement correlations
among atoms in the neighborhood of a defect (dis-
tinguished site) nor to clusters of defects. The relation-
ship with the distinguished-site expansion of the ap-
proach of Elliott and Taylor is shown below and is
instructive when it comes to considering approxima-
tions. They note that the con6guration average of
Eq. (6) connects (D) with (Dc), namely, (for M„=M~)

(D(l,en)&=dg(l, ne)+1' g dg(/p)(I)s(p)D(p, nl)). (36)
Pe(b, c)=b

Eg(b,e}=b(1—2c}
Pe(b, c)=b(1 6c+6c—')
Pe(b, c)=b(1 14c+3—6c' 24c')—
Pe(b, c) =b(1-30c+150c'-240c'+120c')
Pe(b,c)=b(1 —62c+540ce—1560ce+1800ce—'/20ce)

1(c), so that

X'= Z vs"do 'P.(1 0) =~/(1 —ado'),
t~1

(34)

(~ (p)D(p )&=(~ (p))(D'(p, )
=c(D"(p,en)), (37)

where the second equality assumes no long-range order
and (De'), the average of D conditional on there being a
8 atom at site p, requires b= 1—c in Eq. (31). Solving
Eq. (36) for (Dc(p, tn)& and using Eq. (21), one obtains

&D (p, ))=(;.)- Ld„- &D&
—Ij,„,„,

=(c») 'I X(D)j .,&- I (»)
where. do"=d~(0x, Ox). Then Eq. (33) reproduces the
usual Green's function for a single impurity.

The extension to cases where there are more than
one distinguished site is straightforward. For example,
if sites p and q&p have extra probabilities b~ and bc,
respectively, the extra diagrams will contain an open-
circle vertex for either or both sites with the correspond-
ing factors (31). The extension of Eq. (33) is more
coIQp1lcated)

(D" )=(D)+(»(X"+X+X-)(D)+(D)X"
X(D&X &D&+&D&X &D&X (D&, (35)

where Xj'& is the sum of all irreducible parts containing
both a p and q open-circle vertex such as shown in
Fig. 1(d).

The special matrix elements (Dc(p,m) & and (De'e(p, q) &,
for which one or.both sites coincides with distinguished
sites, have been evaiuated by Elliott and Taylor' using
a different method. These matrix elements appear
directly in expressions where the two atomic species

as a I'clatloll bctwccll 'thc exact Gl'cell s fllllctlolls (whlcll
holds even in the case of short-range order). But
Z(p, n) is of the form

Z(p, n) =cpsb„+(parts with at least two
interaction lines) . (39)

Consideration of Fig. 2(a) shows that, after division
by cps Lsince an (r+1)st-order first vertex in X at the
site 1 has the factor ps"P„+I(c)/c=ps "bP~I(c)/c(1 c)j, —
X is related to X2' by

(,.)-Z(p, )=b„„+DD)Xj,„,„,, (40)

which, when put into Eq. (38), gives

(D&(P,ne) &
= (D(P,nl))+ P (D(P, /) &Re'(l, n)(D(n, ne) &,

which agrees with Eq. (33). This consistency relation
(40) may not hold for approximate forms of X and Xe'.
For example, use of the form Eq. (53) of Sec. V, as was
done in Ref. 3, is equivalent to replacing the (D) in
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i) + /g + I) + ~ ~ ~
s I

Pro. 3. The one-vertex self-energy.

Fig. 2(a) and in Eq. (40) by d~ (which means neglecting
all scatterings prior to the interaction with the particular
defect). A self-consistent approximation in which d~
lines are replaced by (D) lines will satisfy Eq. (40).
%e shall not repeat the argument of Elliott and Taylor'
for expressing (D&&(p,q)) in terms of (D) but shall note

only that the relation

(D"'(P P))=(D'(P P)) (41)

is not satisfied when the approximation (53) is used. "'
Since Eq. (35) applies only when P&q, there is no

question about Eq. (41) here.
Dzyub" has calculated the neutron scattering cross

section to second order in concentration which in-

cludes all two-vertex diagrams in (D'). His calculation is

the same as ours in this order. To extend it further would

require something like the factors E,(c). In addition,
his three-vertex and higher-order diagrams must be
multiplied by appropriate multiplicity factors. For
example, the two diagrams shown in Fig. 2(b) cor-

respond to the same diagram, Fig. 2(c), in his notation.

IV. PARTIAL SUMMATIONS

The use of cumulants in the vertex factors in Secs.
II and III permits each vertex index to be summed

over RO sites independently of other vertices so that the
rigorous Dyson equation (21) and similar equations

(22) and (35) can be written, as was 6rst emphasized

by Langer. s Equation (21) effects a partial summation

in terms of the self-energy, the series for which can be
arranged, following Langer, in terms of partial sums

Iro. 4. The {a} diagonal and (b} nondiagonal two-vertex
self-energy, where (c) the cross-hatched legs are one-impurity
t matrices.

"'Pote added in proof. It has been pointed out to us by Dr.
R. J. Elliott that (4i} is satis6ed by Taylor's self-consistent
calculation of Ref. 17, as this analysis plus the connection estab-
lished by Ref. 18 would indicate. Indeed, Eq. (41} can be used
to derive Taylor's result.

'~ I. P. Dzyub, h. Tverd. Tela 6, I866 (1964};6, 3691 (1964}
LEnghsh transls, ; Sqyiet Phys. —Sohd State 6, 1469 (1964); 0,
2N5 (1965)g.

&"'=Z s.(p)ds' ', (43a)

&"'=~ +p ~ Z (P—1)'(—~i ~do)" 'L(1—p ~d )
y=l

&&(1—2i»do)" (1 Pp»do)—3 ' (43b)
or

qadi~& ('
&"'=p,~+

1 pBAd0

1
;c i, (43c)

paxdo

wlieie ds= d(ge, gn) aiid piig= pii —p~.
Yonczawa Rnd Matsubara have Rlso derived RQ

egression /their Eq. (44)) for the one-vertex part in

the form of an integral based on the generating func-
tion for P„(c) in Ref. 8. This integral can be reduced to
a standard representation of the hypergeometric func-
tion above. The series form shows the analytic prop-
erties clearly.

There is a sequence of poles in X('& at

1—epggds(ai) =0, e= 1,2, . (44)

Near each pole there is an co interval within which the
denominator of (D(o&)) in (22) has a zero eigenvalue so
that (p~(&e))&0, where p~(co) is the weighted frequency
spectrum which is proportional to ImLD(&0+ss)1. The
6rst pole (m= 1) is the eigenfrequency condition for an
isolated impurity. The poles for m=2, 3, ~ ~ ~ are the
cigenfrcquency conditions for m superimposed pcrturba-
tions on R single site and can occur at frequencies

higher than the maximum frequency of a lattice
entirely of the lighter atoms. ' These spurious poles
1'csult froIQ Rn ovc1 counting lInpllclt 1n thc partial
summation X&'&.

More evidence for overcounting is seen in the two-
vertex summation. This may be calculated in two

parts,
(45)~ (s) —gs (s)+y„„is)

as shown in Figs. 4(a) and 4(b), respectively. As a
matrix in connguration space, X&& & is diagonal with

elements corresponding to the upper of the two sites
while X &'& begins and ends on diferent sites."Each

'g Strictly speaking, X„&') has a diagonal part also, correspond-
ing to the coincidence of the two lattice points. The cumulants
allow and reggae independent summation over all vertex sites.

y„=yit)+ gis)+ X(s)+. . . (42)

in increasing order of the number e of interlocking
vertices representing the interferencc of scattering
from a cluster of the corresponding number of atomic
sltcs. Thc contributions to X( ) Rnd X( ~ Rrc shown ln

Figs. 3 and 4, respectively. In Fig. 3, the vertices,
after the first, have the polynomial factors Ps(c), Ps(c),
etc. The series for Z('& was summed in closed form in I
for the case M, =M~. For M„ithas the form Z&'&(Nn, mP)
=Z('&8„, p, where
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cross-hatched leg shown in Figs. 4(a) and. 4(b) represent
the sum over all interaction lines to the same vertex
as shown in Fig. 4(c). The nondiagonal part X„&s&

introduces a mixing of the polarizations of the normal
modes of the perfect crystal with a corresponding
branch and directional h dependence of the phonon
linewidths and frequency shifts.

In the Appendix it is shown that

&g f c
X„&s~(l,m) =d(l,m)s Q (—1)&~

&1—c&

(46a)
-ts(p —s)$1—t,t .d(l,~)'1

and
0(} p c &~~tt, s

X.&»(l,~)=&&, g (—1)
~

n 2 (1—c ~-& (p —s)XP, (46b)
(, )

s 1 tt~, d(l—, )k'

hatt
= $~ f 2 ~ ~ ~

I—Spggdo
(4&)

is the scattering matrix (diagonal) for an isolated site
with s superimposed perturbations, and d{l,m) is still
a 3X3 matrix in a and P.

The expressions (46) are again much more transparent
than the multiple-integral form derived by Yonezawa
and Matsubara' LEq. (3.14) of the third paper), but
they are still complicated to evaluate numerically and
this was not done.

The poles of X{'~occur at frequencies where

(1—t,t~,d(k, l) ')

has a zero eigenvalue for some s, p —s, l, and k. After
some rearrangement using Eqs. (5) and (47), this eigen-
value condition can be shown to be equivalent, if the
sites L and k do not coincide, to the vanishing of the
6g 6 determinant

1 s(M—g Ms—)co'd(l, l) s(Mg—M)(sa—'d(l, k)—(p—s)(Mg —Ms)cosd(k l) 1—(p—s)(M~ —Ms)&lsd(k, k),

c'd(l sN) stt'
Z.&»(l,m) = +0(")

1—ttsd(l, m)'
{49a)

d {l,k)'tys
X.& ~(l,~)=b, ,.c'P +O("), (49b)

s 1 tPd(l, k)'—
and are of the form 6rst given by Langer for the case
3f„=3f~. From the previous discussion it is evident
that the k=1=m terms of Eq. (49) correspond, at
their pole, to a spurious overlap of two mass impurities.
The singular part of this diagonal term of (49) cancels
the first spurious pole (m=2) of X&'& in Eq. {43b) as
was shown by Langer. It seems likely that the poles of
X&'& in which two of the three vertices coincide will
cancel the spurious two-site poles of X &s& for p =3, while
the m=3 pole of X&'~ together with the k=l=w term

This is the normal mode condition for two mass im-
purities ~,=s(M~ —M~) at site Rg and hM~,
=(P—s)(M~ —Ms) at site Es in the M„ lattice. For
p = 2 the only term in Eq. (46) is s =p —s = 1 correspond-
ing to the physical case of an impurity le =M~—3f~
at the two sites Eg and Rs and condition (48) gives the
frequencies of the optical and acoustical modes of vibra-
tion for the two impurities. The terms for p) 2 cor-
respond to p impurities superimposed onto two lattice
sites in all ways and give rise to new spurious poles for
ns& j.. The codEcient of these spurious terms are of
order c' and. higher.

The lowest terms in Eq. (45), of order c', are

in c' of X{'& will cancel with the triple-coincidence term
in X{'&.

V. DISCUSSION

The appearance in each order' of X{"& of spurious
poles which are eventually cancelled by terms in other
orders is inherent with the use in a partial summation of
the cumulants de6ned by the complete expansion.
%hen a restricted summation is made, appropriately
restricted cumulant corrections for the coincidence of
the diagram elements should be used. These curnulants
will change as more terms are included in the expansion.
%e do not know if such a procedure can be developed
rigorolsly but the X{'~ approximation given by Klliott
and Taylor' and recently extended to X&'& diagrams'
may be regarded as a erst step in such a scheme.

Their X{'& approximation is a partial summation of
(D) in Eq. (8) starting from labeled diagrams (i.e.,
before summing over l~, ls ) containing irreducible
parts with one vertex only. However, in summing over
site labels they correct for the coincidence of successive
scattering sites but not for other coincidences. This
partial sum (D"&) now contains only one-vertex ir-
reducible parts (even in the corrections) and the latter
de6ne a X{')exactly.

The connection with cumulants is illustrated by an
example. Let us consider the contribution to the third-
order vertex shown in Fig. 5(a), for the case M„=M&.
In order to obtain the contribution «s(p) to this vertex

'4 R. N Aiyer, R. J. Elliott, J. A. Kru~beusl, aud p. L. Leatb(to be published).
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(b)

Pro. 5. (a) A third-order vertex and (b) diagrams vrhose
vertex confluence determines PI(c}.

in I we subtracted from egg' the contribution of all
diagrams coming from distinct ways that the diagram
could be broken apart as shown in Fig. 5(b). The result
of this procedure is

xs{ )=I n'{~—L&I(~)]'—3&I(~)&s(c))

Irido(c —3cs+ 2co) .
Howcvel' tile diagram oil thc extrcme rlgll't 1I1 FIg. 5{b)
contains a two-vertex irreducible part. Thus, for ex-

ample, if only one-vertex parts are put into the self-

energy in a partial summation of the diagrams, this
diagram does not appear explicitly although there is a
correction for it in Eq. (49). This kind of overcorrection
leads to spurious poles. Elliott and Taylor' leave out
such corrections and would obtain as the contribution
f(3' to the third-order vertex

xs'(I )=»'{~—O'I(~)3' —2&I(~)&s(&))
=pnso(1 —c)'.

The general vertex factor found by this procedure is

x„'(Iu) =pn "c(1—c)"-'. (52)

This result, using Eq. (43a), gives

&»'"—u~o/I 1—(1—c)I ado],

the result obtained by Elliott and Taylor. The spurious

poles are missing, which indicates that their presence
was indeed related to the overcounting. However a

'

given by this method is not a true cumulant of the
restricted summation if cumulants are de6ned as in
Ref. 8 and thereby are related to the moments by Eq.
(12).The reason that these relationships are not satisfied

by it;„' is due to the fact that many diagrams unavoidably

appear in any partial summation even if they are not
included explicitly. For example, the last diagram in

Fig. 5(b) appears in the "one-vertex" partial summa-

tion (D"I)with weight c'. It appears in the summation

over internal indices of the first diagram in Fig. 5(b)
when the 6rst and last site coincide. This correction
wouM. be pI'opclly Inade by any true cuIQulant. The
undercorrection is, however, of higher order in c than
the overcorrection ca,used by using the cumulants of
the full expansion and does not seem to lead to spurious
poles.

As a further example of the method, vre calculate the
one-vertex self-energy X&~& for the arbitrary reference
mass M,. Thc bare one-vertex self-energy, Fig. 3, with

no corrections is

~I= (1—c)1 A/(1 —I A&o)+oI1n/(1 —yahoo), (54)

which is the mean t matrix for scattering at a site. This
term can be obtained from Eq. (43b) by neglecting all
correction terms Lthose of 0(c") for Is&&2, and those of
O(pA"pn") for both I, m, ~&1$. The corrections to this
term come from all ways that the diagrams in Fig. 3
can be broken apart such that only one-vertex ir-
reducible pal'ts IIlakc lip thc 1'csllltlllg dlagl'Rxns. Tile
total corrections to Z&'& from breaking into two such
parts can be summed to

o s
——g(I)gP (I)

The corrections from three parts is

os ——g(I)g+(I)std(I) (56)

and so forth, where Z&'& is the fully corrected self-

energy. The result for Z&II=Q I"o; is

Q(I) —o (+II)If+(1)++ (IId~(1)tip {I)+.. .) {57)

vrhich can be solved with the result

&"'=or/(1+ ~o~t) .

Upon substituting for ot from Eq. (50), one obtains

(1 c)IAA+cpn—IIApndo
yO.)—

1 LcisA+ (1—c)Irn jIfo

which is formally symmetric with respect to interchange
of A and 8 atom types and reduces to Eq. (53) when

@~=0,or M„=M~. The vertex factors a ' obtained by
cxplcsslIIg (59) 1I1 'thc fol'Ill (43R) Rlc

«I'(J)=(1—r)I A+en,
(60)

x-'(I )=~(1—~)6 A
—I n)'Le A+(1—o)I n3" '

for I&2 as compared with Eq. (17).For M„=MA, this

reduces to Eq. (52). For M, =(1—c)MA+cMn= (M},
however, Eq. (60) reduces to

~ '(I )=~(1—~)(1—2~)" '(I A
—I a)" (61)

In summary, we can say that the two procedures

agree to the same order as that of the uncorrected

diagrams that are put into the partial summation but
that the higher-order terms which are put in only ap-
proximately (by both procedures) lead to spurious

poles in the full cumu1ant expansion but do not in

EBiott and Taylor's approximation.
Finally, we note the importance of reducing the

CGcct Gf ovcI'- or undelcountlng ln self-conslstcnt partial
summations where many more diagrams are included.
Self-consistent calculations based, on the uncorrected
self-energy insertion Ol on all internal d lines give ex-

aggerated broadening of impurity-mode bands in three-
dimensional systems" similar to the results of Davies
and I anger in one dimension. "Recent self-consistent

"P. L. Leath, Ph.D. thesis, University of Missouri, 1966
(unpuhlishedl."R.W. Davies and J. S. Langer, Phys. Rev. 131, 163 (1963)
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calculations by Taylor, which were based on the use of
Eq. (53) in a multiple-scatte) ing formalism, have given
much improved results for three dimensions. '~ It has
been shown' that the form of X,., (') involved can be
obtained by an application of the arguments leading to
Eq. (58). Self-consistency is required to get asensible
result for the frequency spectrum of a distinguished
atom starting from (33). Expressions like Fig. 1(c)
for X~' have isolated poles in ~ and not branch cuts,
so that the contribution of x' tends to be in 8-function
peaks rather than in broadened bands. Bands result
from the corresponding approximation to X in (D(&v))
because X appears in the denominator. Another
advantage of self-consistency was mentioned below
Eq. (39).
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d'l t' c
X'

. 1»11+ exly
k y')y'ay, 'nr , t "dy'd E 1—c

II
1—X(d/dy)

(ASa)

APPENDIX

In the nondiagonal two-vertex self-energy z„(2&
shown in Fig. 4(a), the diagram rules lead to

gin 1 — expy A5b
1—c @=0

X(d/dy) )" (—1)' 't' c

1—X(ds'dy)& .- s \1 —c)

Z„(2)(l,m) = P (t a—t ~)'+' Xexpsy1v-a (ASc)
n 2 il i2 ~ ~ ~ iN jl ~ ~ ~ jN&0

XP;(c)P, (c)d()"-'d(l,m)d()y)-'
(—1) '( c )' ( Xs )"

s El —ci E1—Xs
(ASd)

Xd(m, l) d(l, m)d()y' -' (A1)

( 1)s+rp c d+r

~-"'(l,m) = Z
sr (1—c) d(l, ss)

N

i=giN, j=Z j,.
k k~1

Inserting (ASd) into (A2) and interchainging orders

where lV j.s the number of cross-hatched legs, and i and
of sum~ation, we obtain

j satisfy

The d factors are 3X3 matrices in Cartesian indices,
d() is a constant matrix, and d(m, l) =d(l, m) with the
assumed symmetry; thus we can collect like terms in

'~ D. %. Taylor, Phys. Rev. 156, 101/ (196/)."P.L. Leath, . Phys. Rev. 171, /25 (1968).

X Q t t,tg(l, m)'g" (A6)
N 2

which is equivalent to (46a).
The diagonal part Xq") LFig. 4(b)j can be evaluated

similarly with the change that the variable inner
vertex k has A' —1 legs when the vertex l=m has S
legs, so that Eq. (46b) is the result.


