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The full cluster expansion for the phonon Green’s function of a binary isotopic disordered alloy is derived
for the case of a reference lattice of atomic mass intermediate between that of the two constituents. This
result is extended to an alloy which is disordered except for specified atoms which occupy a small number
of distinguished lattice sites. The latter Green’s functions determine the displacement correlations of atoms
in or near a small cluster of impurities in an alloy. The one- and two-vertex self-energies are calculated
formally to all orders in the concentration, and it is shown that the disease of spurious poles, reported
earlier, persists to the two-vertex self-energy and is a general feature of infinite partial summations when
the cumulants of the full cluster expansion are used. The approximation of Elliott and Taylor, which does
not have spurious poles, is discussed in this context and is used to evaluate the one-vertex self-energy for

a reference lattice of intermediate atomic mass.

1. INTRODUCTION

N this work we continue the discussion of the
perturbation expansion of the vibrational frequency
spectrum and related Green’s functions of a mass-
disordered alloy. In Sec. II, the restriction against
multiple occupancy of each atomic site by atoms is
handled in a much simpler way than previously,!? so
that it can be seen that there is no difficulty in defining
the expansion about a reference lattice of arbitrary
atomic mass. The same vertex factors, or cumulants,
are obtained as for the solvent-atom reference lattice.
An extension of these arguments in Sec. III leads to
the formulation of the perturbation expansion of the
Green’s functions which are needed for calculating the
frequency spectrum or displacement correlations in the
neighborhood of defect atoms in an alloy. The fact that
certain sites are distinguished as occupied by specific
types of atoms modifies the multiple-occupancy vertex
factors of the original expansion.

In Sec. IV the complete one- and two-vertex self-
energy partial sums are evaluated. The disease of
spurious poles, noted in I for the one-vertex self-energy,
is seen to persist in the two-vertex self-energy and is a
general feature of partial summations using the cumu-
lants of the full perturbation expansion. The spurious
poles are not present in the one-vertex self-energy ex-
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expression obtained by Elliott and Taylor.? Their
procedure can be regarded as the first step using
cumulants that correspond to a restricted part of the
perturbation expansion. It is used in Sec. V to evaluate
the one-vertex self-energy for a reference lattice of
arbitrary mass.

II. PERTURBATION EXPANSION USING A
REFERENCE LATTICE OF ARBITRARY
ATOMIC MASS

We consider a lattice occupied by two chemically
identical types of atoms, 4 and B, which differ only in
their mass. When the concentration of neither species
is small, it is useful to consider a perfect reference lattice
of intermediate atomic mass M, as the unperturbed
lattice. This perturbation expansion was first attempted
by Takeno,* who was unable to identify the general
terms involved in the rather complicated expansion.
It turns out that the complete expansion has almost
the same form as in Langer’s original theory® which
used M ,=M 4.

Our first approach to this problem used two kinds of
interaction lines, one for the deviation of M 4 from M,
and the other for the deviation of M from M,. An
elaborate inductive argument resulted in the appearance
of the same multiple-occupancy polynomial vertex
factors P,(c) derived in Refs. 1 and 2, where ¢ is the
concentration of B atoms.

This stimulated a look for the common features in
the expansions. Matsubara and Yonezawa? and
Maradudin® had pointed out that the P,(c) are cumu-

. -

161 1?1'9'16'7})2,1110“ and D. W. Taylor, Proc. Roy. Soc. (London) 296,

4S. Takeno, Progr. Theoret. Phys. (Kyoto) 28, 33 (1962).

5J. S. Langer, J. Math. Phys. 2, 584 (1961).

¢ A, A. Maradudin, Extended Aarhus Summer School Lectures,
1963 (unpublished).
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lants of the indicator function for the presence of, say,
a B atom. This function takes on the value unity with
probability ¢ and zero with probability 1—c¢. The two-
valuedness obtains regardless of the reference lattice,
so that similar statistical properties are to be expected.
Furthermore, with an arbitrary M, the expansion will
be formally symmetrical in eack order with respect to
the 4 and B atoms. If M, is taken to be a symmetrical
function of {M p,c} and {M 4, 1—c} such that it becomes
M 4 or M p for ¢ equal to zero or 1, respectively, then an
approximation which is applicable for small ¢ should
also be applicable for small 1—¢. This does not neces-
sarily mean that the approximation will be accurate for
intermediate concentrations.

Use of the position representation instead of the %
representation allows the configuration average for a
completely disordered system to be carried out in terms
of the simplest cumulant properties and our resulting
development is more compact than that given by
Yonezawa and Matsubara.? The extension to ordered
systems is direct in principle, but since the cumulants
of any order involve correlation functions up to that
order, any application will require truncating the
hierarchy of correlation functions.”

The retarded displacement Green’s function is
defined by?!

D(na, mB, t—t")= (i)~ Y[u(ne,t), u(mp ') r
Xo0(—1t), (1)

where #(na,f) is the Cartesian displacement a of atom
n at time £, 8()=(1 for £>0, 0 for ¢<0), and the sub-
script 7' denotes a thermal average. It gives the dis-
placement correlations (u#) discussed in I. For a
harmonic system, its Fourier time transform D(w)
satisfies the equation of motion

(Me?*—V)D(w)=1, 2

where V is the force-constant matrix and M is the diago-
nal mass matrix with elements M (la,mB3) = 81a,meM (I).
Equation (2) may be rearranged for a reference mass
M, to obtain

(M 61— V) D(w) =1+uD(w). 3)

The perturbation matrix  is diagonal with the diagonal
element

() =uaAa())+usip(l) (4)

at the site J, where A4(J) is the indicator function which
is 1 or zero depending upon whether there is an atom of
type 4 at site /, and

MA= (Mr""MA)w29 MuB= (MT_MB)w2‘ (5)
Equation (3) may be rewritten as

D=d+duD, (6)

7 A treatment of the vibrations of a dilute alloy with short-
range order has been given by W. M. Hartmann, Phys. Rev.
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where d is the Green’s function for the reference lattice
d(w)= (M, T— V)1, (7

Iterating and averaging over configurations of the
two types of atoms on the lattice, we obtain

(D)=d+d{y)d+d(udy)d+---. (8)

The sth-order term in this expansion involves the
configuration averages of the u-products

(w(lu(ls) - - -u(ls)). 9

This average may be factored into the product of
averages in which each factor contains the u’s for a
cluster of sites in which the occupation of one site is
dependent on the occupation of others in that cluster
but is independent of the occupation of other clusters.
The I sums in Eq. (8) can be carried out independently
for each factor as long as the associated clusters remain
separated. When clusters interact the product of their
factors must be replaced by a new factor or, alter-
natively, a term must be added as a higher-order cor-
relation correction to the product. The correlation cor-
rections of increasing order are thus defined inductively
as in the Ursell-Mayer expansion of the partition func-
tion of an imperfect gas.

The result of the above procedure is to represent
Eq. (9) as the sum over all possible combinations of
products of correlation functions,

<ﬂ(l1)#(lz) o ‘M(ls»
= 2 «p() - Wul@)]- - wlul)---],

partitions

(10)

where k{u(Du() - - -u[1¢—D7]} is an rth-order correlation
function of the 7 u’s which vanishes when any subset of
its arguments is independent of the others. Once the
form of the functions & is known for every 7, the sums
over the s in (8) can be performed without restrictions
between factors. Equation (10) is a particular case of
the decomposition of the average of a product of ran-
dom variables X; into multivariate cumulants,?

<X1X2. . .Xs>
- =

partitions

K(X1‘ . ')K(Xi' . ) . 'K(Xj' . .). (11)

Equation (11) defines the cumulants recursively. One

can solve for them in terms of the product moments

172, 677 (1?68). In this work the higher-order correlation functions
are approximated by products of pair correlation functions.
8 The cumulants of a single random variable X are defined by

(expaX)=exp ( i ?M;—SX)
=1 .

In our case, for (X")=([Ag(})1*)=c, the exponent is simply
gla; =3 a’w=ln(1—c+ce"), ‘
r=1 !

which was originally derived in Ref. 2.
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(Xip - Xip), for 41<is< -4, <, as follows:
K(X17X2," ',Xs)

= T D™Dl T (Xee)
X(Xge o) (X ) (12)

The properties of multivariate cumulants are reviewed
by Meeron® and Kubo.!® Equations (10)-(12) have been
written as if all the random variables are distinct; if,
say, X;=Xy, they may still be treated as distinct
random variables which are perfectly correlated. This
avoids the more complicated formulas in Appendix A
of Ref. 9 and Ref. 2 which result when Eq. (11) contains
powers higher than the first of the random variables,
i.e., when site indices coincide on the left side of Eq. (10),
We now restrict ourselves to the case of a completely
disordered alloy so that u(l) and u(l') are independent
if I/, Since a cumulant product vanishes if any subset
of its variables is independent of the others,® we may
write

fuDu(@) - -p@e=)]= 8l - - -1 [u(@],  (13)

where §(I'---1¢—D) is unity when all the Is are the
same and is zero otherwise.

In order to find the cumulants k,[u(?)] of the random
variable u, we rewrite Eq. (4) in the form

u()=pat(up—pa)As(l), (14)

so that it differs by the additive constant u4 from the
type of random perturbation considered by Langer.!:2:5
The first-order cumulant becomes

ka(u) = (uy=pa+@e—pa)e=(M,— (M), (15)
where
M)=(1—c)M s+cMp, (16a)
and
pa—pa= (M 4—Mp)w?. (16b)

The higher-order cumulants «,(u), which depend on the
fluctuations of the random variable u about its average,
are unchanged by the additive term in Eq. (14). Thus,

for r>1,
Kr(ﬂ) = (ﬂA'—IltB) rPr(c) ) (17)

which by (16b) is independent of the choice of M, and
where
P.(c)=k(AB) (18)

is the cumulant of the indicator function and was given
in closed form in I as a polynomial of degree r in ¢ with
the coefficients of ¢™ containing S(r,m), the Stirling
number of the second kind. A very simple derivation of
the P,(c) follows immediately from Eq. (12) and the
direct connection of the Stirling numbers with the

9 E. Meeron, J. Chem. Phys. 27, 1238 (1957).
10 R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).
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cumulants. Recall that x.(Ag) in Eq. (18) means
k(Ap.Ap,* + +,Ap), with » “temporarily distinct” Ap’s,
which by Eq. (12) is a sum over all partitions of the
Ap’s into m averages (ApAp- -+ -Ap){Ap+++)+++(Ap-+-).

Since
(As)m)={bs(D))=c, (19
Equation (12) becomes
P)= X (=D™m—1)km,
ime i parts
ini (20)

PA)=Y (=)™ m—1)leS(rm),

m=1

since S(r,m) is the number of ways of partitioning a set
of order 7 into # nonempty subsets.!!

The diagram representation in I of the expansion
of (D) now applies with the modifications that (a)
vertices with single interaction lines carry the factor
(1—c)uatcus; (b) in vertices with m>1 interaction
lines up—pu4 appears as the interaction strength of each
line; and (c) the propagation lines are d.

The resulting Dyson equation is

(D)=d+d=(D}, (21)

where X is the self-energy. The formal solution of this
equation is

(D(w))={M o I-T1(w) ]V},

I(w)= (M ) 1E(w).

We note that, for fixed M,, the vertex elements (15)
and (17) are symmetric with respect to interchange of 4
and B labels. This follows from the identity

P,(1=¢)=(—1)"P,(c) for r>1,

(22)
where

(23)

which follows from Ref. 8, or more directly from the
fact that, for r>1,

k(Ap)=k(1=Ax) =k, (—Aa)=(—1)x,(A4), (24)

where the second equality comes from the fact that the
cumulants of greater than first order are unaffected
by a constant shift in the random variable. Thus the
expansion as defined in rules (a)-(c) above is symmetric
with respect to 4 and B in each order.

If only single-interaction lines are kept, X is diagonal
with the diagonal element {u) such that

(D(w))={[M >+ (M)—M ;)o*T— V}~1
=d0n(y),
the Green’s function for the mean lattice.

That the one-vertex diagrams are equivalent to
using the reference lattice of mean atomic mass is

(25)

11 This closed form of the cumulant appears in calculations in
binary alloys, in spin-} systems, and whenever the stochastic
variable is limited to two values.
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further manifested by Eq. (15) where «; vanishes for
M,={M) and the perturbation expansion containing
no one-vertex diagrams starts with (up—pa)%

III. PERTURBATION EXPANSION INCLUDING
DISTINGUISHED SITES

Measurements involving the interaction with radia-
tion generally distinguish between atomic species in an
alloy. Examples include defect-induced optical absorp-
tion, nuclear y-ray emission and absorption, and neu-
tron scattering. In the case of nuclear y-ray emission
the impurity is the emitting atom and the “n=m
=impurity” elements of the Green’s functions are of
main interest. It is also of interest to calculate the
behavior of impurity modes in the vicinity of an im-
purity or a cluster of impurities.

The perturbation development of Sec. II can be
adopted to the treatment of such distinguished-site
Green’s functions, that is, Green’s functions for when
the atomic species at some particular sites are known.
The case will be considered in detail where the origin
atom is distinguished, but generalization to more than
one distinguished site will be evident. For simplicity,
only the argument for the displacement Green’s
function and for the use of the host lattice as reference
lattice is given.

Let (D%w)) denote the displacement Green’s func-
tion for the alloy with a distinguished atom at the
origin. It is evaluated by the expansion (8) as before
except that there are new values for the moments
(u(ly) - - -u(ls)). It is clear that (D) is not translationally
invariant.

With M,=M 4, Eq. (4) becomes

() =palp(0).

Again we assume no short-range order, so that sites /
and 1 are occupied independently. The cumulants
of Ap(l) still satisfy Eq. (13) but x,[As(!)] now depends
upon the site I

Let each site I be occupied by a B atom with prob-
ability ¢ for /50 and probability ¢, for /=0, so that

(As(l))=c+bdw,

where b=co—c. From Egs. (12), (20), and (26) it
follows that

(26)

v2))

W[Bs0)]= 3 (— D)™ m— 1) As@)"S(rm), (28a)

[ As(0)]= P.(c)+[P(b+c)—P.(c) Jbr. (28b)
The first term on the left, P,(c), contributes at all sites
and is taken into account by the same diagrams (of
Sec. II) for the completely disordered alloy. The second
term represents the extra scattering of the phonon by
the origin atom.

LEATH AND B. GOODMAN

175

The moments (u(ly)---u(l,)) are still evaluated ac-
cording to Eq. (10) and, as in Sec. II, each product on
the right side of (10) corresponds to the vertex factors
of some diagram. According to (28b) each vertex can
be divided into two parts, the second of which carries
the factor &w[P.(b+c)—P,(c)] and gives an extra
diagram. The new vertex can be represented by an
open circle as in Fig. 1. Because of the &y, all of the j
open-circle vertices in a diagram can be collected to-
gether into a single vertex with the factor

SIOI:Pm(b"{'C)—"Pnl(c)][‘P“Z(b—*—c)—P"’(c)]
c+ [Pa;(0+0)—Pay()]. (29)

Then all the resultant diagrams (coming from the
various assignments of interaction lines to the original
open-circle vertices) that now have the same topological
structure can be collected together into a diagram with
a single open-circle vertex of order 7 and value

P,(b,c)810= S Z [Pnl(b+5)_P"1(5)]

partitions

XLPry(b+0) = Pry(0)]- - -[P;(b+0)— Puyf)].  (30)

Examples of these extra diagrams are shown in Fig. 1(a)
and are obtained from the diagrams of Sec. II by re-
placing each open-circle vertex by Eq. (30).

Since P,(b,c) measures the total extra scattering at
the distinguished site it is proportional to the extra
probability  that a B atom is there. This may be seen by
comparing the u moments with and without 4. Doing
the average of any f(u) for the distinguished site last
gives cof (us)+ (1—co) f () versus cf (us)+ (1—c) f(ua)
and the difference is proportional to b. Since each
factor Pn(b+c)—Pn(c) in the summand of (30) is a
polynomial in & beginning with the first power, it must
be that all terms cancel out except for the linear term of

? /x \ /1 /R,\'$\
(a)

/RAQ\! /$\ /é‘\!\
(b)

Z" = ? R\ l$\

_|_+(I)+l|)+n'o
(c)

®
?R Ig)! ?}’1 '\
(d)

F16. 1. (a) Some diagrams occurring in the expansion of {D°)
with scattering by the distinguished site; (b) some irreducible
parts contributing to X% (c) the one-vertex distinguished site
self-energy; and (d) some irreducible parts with scattering by
two distinguished sites p and ¢ contributing to X»e,
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the trivial partition into one, so that

d
P(b,c)=b—P.(c)= Pra(c), (31)
dc

¢(1—¢)

where the first equality follows from Eq. (20) and the
second follows from the relation®

Pu(c)=(d/da)* In(1—c+ce?) | amo. (32)

The first few values of P.(b,c) are given in Table I.

Since a diagram contains at most one open-circle
vertex with the factor (31), (D) is related to the Green’s
function (D) of the disordered alloy without a dis-
tinguished site by the relation

(D%)=(D)+(D) =° (D), (33)

where X0 is the sum of all irreducible parts, such as
those in Fig. 1(b), which contain an open-circle vertex.

As a check, consider an isolated B atom in the pure 4
crystal so that ¢=0 and b=1. Then P,(b,c)=b=1 and
(D)=d4, the 4 lattice Green’s function. The only con-
tributions to X° are the one-vertex diagrams of Fig.

TasiE I. Distinguished site vertex factors
P,(b,c) for r<6.

P1 (b,C) = b

Pab,e)=b(1—2¢)

Py(b,6) =b(1—6c--6¢%)

Pu(b,c) = b(1— 14c-+36¢2—24¢5)

Py(b,6) = b(1 — 301502 — 240¢+120c*)

Po(b,6) = b(1 — 626+ 54065 — 15603+ 1800c4 — 720¢9)

1(c), so that

20=2 up'dy"'P,(1,0)=p/(1—pde4),

re=1

(34)

where .do4=d4(0x,0x). Then Eq. (33) reproduces the
usual Green’s function for a single impurity.

The extension to cases where there are more than
one distinguished site is straightforward. For example,
if sites p and ¢>*p have extra probabilities 4, and b,,
respectively, the extra diagrams will contain an open-
circle vertex for either or both sites with the correspond-
ing factors (31). The extension of Eq. (33) is more
complicated;

(D?9)=(D)+(D)(E?+ X2+ 279 (D)+(D)x»
X (D)z«D)+(D)=«D)=7(D), (35)

where X7¢is the sum of all irreducible parts containing
both a p and ¢ open-circle vertex such as shown in
Fig. 1(d). v

The special matrix elements (D?(p,m)) and (D?%(p,q)),
for which one or both sites coincides with distinguished
sites, have been evaluated by Elliott and Taylor® using
a different method. These matrix elements appear
directly in expressions where the two atomic species

MASS-DISORDERED LATTICES. II
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( ah
= 1 + 4
<0>
(a)
Fic. 2. (a) An analysis of
the self-energy X to explain -} <
the i’ormh?(f:11 X0 (b) two dia.(i /ﬁ\l \\ Fa N
‘grams which are represente //o\ 0 YA L AN
by (c) a single diagram in the LN WIATRA\N
notation of Dzyub (Ref. 12). (b)
(e)

interact differently with radiations but they do not
apply, for example, to the displacement correlations
among atoms in the neighborhood of a defect (dis-
tinguished site) nor to clusters of defects. The relation-
ship with the distinguished-site expansion of the ap-
proach of Elliott and Taylor is shown below and is
instructive when it comes to considering approxima-
tions. They note that the configuration average of
Eq. (6) connects (D) with (D?), namely, (for M,=M 4)

(D@m))y=da(lm)+ue 3 da(,p){As(p) D(p;m)). (36)

But
(As(p)D(p,m))=(As(p) XD?(p,m)
=(D*(p,m)), (37)
where the second equality assumes no long-range order
and (D?), the average of D conditional on there being a
B atom at site p, requires b=1—¢ in Eq. (31). Solving
Eq. (36) for (D?(p,m)) and using Eq. (21), one obtains
(D#(pm)) = (cuz) [ (D)~T]

= (C#B)_1[2<D>] (p,m) (38)
as a relation between the exact Green’s functions (which

holds even in the case of short-range order). But
=(p,m) is of the form

2(p,m) = cupdpat(parts with at least two

interaction lines). (39)

Consideration of Fig. 2(a) shows that, after division
by cug [since an (r+1)st-order first vertex in ¥ at the
site [ has the factor up"Pry1(c)/c=ps"bPra(c)/c(1—c)],
X is related to X7 by

(u50) "2 (p,1) = 8pnt[(D)E?] (5, ,
which, when put into Eq. (38), gives

(D2(p,m))={D(p;m))+ IZ (D(p,))z*(,m){D(n,m)),

(40)

which agrees with Eq. (33). This consistency relation
(40) may not hold for approximate forms of X and X».
For example, use of the form Eq. (53) of Sec. V, as was
done in Ref. 3, is equivalent to replacing the (D) in
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T + ‘/.\ + /T\‘ oo

Fic. 3. The one-vertex self-energy.

Fig. 2(a) and in Eq. (40) by d4 (which means neglecting
all scatterings prior to the interaction with the particular
defect). A self-consistent approximation in which dg4
lines are replaced by (D) lines will satisfy Eq. (40).
We shall not repeat the argument of Elliott and Taylor?
for expressing (D?%(p,q)) in terms of (D) but shall note
only that the relation

(D?2(p,p))=(D*(p,p))

is not satisfied when the approximation (53) is used.!=
Since Eq. (35) applies only when ps£g, there is no
question about Eq. (41) here.

Dzyub? has calculated the neutron scattering cross
section to second order in concentration which in-
cludes all two-vertex diagrams in (D). His calculation is
the same as ours in this order. To extend it further would
require something like the factors P,(c). In addition,
his three-vertex and higher-order diagrams must be
multiplied by appropriate multiplicity factors. For
example, the two diagrams shown in Fig. 2(b) cor-
respond to the same diagram, Fig. 2(c), in his notation.

(41)

IV. PARTIAL SUMMATIONS

The use of cumulants in the vertex factors in Secs.
II and III permits each vertex index to be summed
over all sites independently of other vertices so that the
rigorous Dyson equation (21) and similar equations
(22) and (35) can be written, as was first emphasized
by Langer.® Equation (21) effects a partial summation
in terms of the self-energy, the series for which can be
arranged, following Langer, in terms of partial sums

F1c. 4. The (a) diagonal and (b) nondiagonal two-vertex
self-energy, where (c) the cross-hatched legs are one-impurity
¢ matrices.

us Note added in proof. It has been pointed out to us by Dr.
R. J. Elliott that (41) is satisfied by Taylor’s self-consistent
calculation of Ref. 17, as this analysis plus the connection estab-
lished by Ref. 18 would indicate. Indeed, Eq. (41) can be used

to derive Taylor’s result.
121, P. Dzyub, Fiz. Tverd. Tela 6, 1866 (1964); 6, 3691 (1964)

[English transls,: Soviet Phys,—Solid State 6, 1469 (1964); 6,
3955 (1965)].
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pCON
SI=XD4TDLETGOA...

in increasing order of the number # of interlocking
vertices representing the interference of scattering
from a cluster of the corresponding number of atomic
sites. The contributions to X and X(® are shown in
Figs. 3 and 4, respectively. In Fig. 3, the vertices,
after the first, have the polynomial factors Pa(c), Ps(c),
etc. The series for Z( was summed in closed form in I
for the case M ,= M 4. For M ,,, it has the form 2 (na,m)
=3W§,4,mp, Where

(42)

Z0=3" k(u)dot, (43a)

r=1

30 =patpac 3 (9—1)(—cupade) = [(1—upads)
p=1

X (1—2ppado)- - - (1—pupado) I, (43b)
or
MBAC
2(1)=“A+——————-—2F1 1,1;2— 3C )y (43C)
1—ppado uBado

where do= d(na,na) and upa=pp—p4.

Yonezawa and Matsubara®? have also derived an
expression [their Eq. (44)] for the one-vertex part in
the form of an integral based on the generating func-
tion for P,(c) in Ref. 8. This integral can be reduced to
a standard representation of the hypergeometric func-
tion above. The series form shows the analytic prop-
erties clearly.

There is a sequence of poles in ™ at

(44)

Near each pole there is an w interval within which the
denominator of (D(w)) in (22) has a zero eigenvalue so
that {(pop(w))>%0, where pp(w) is the weighted frequency
spectrum which is proportional to Im[ D(w-ie)]. The
first pole (m=1) is the eigenfrequency condition for an
isolated impurity. The poles for m=2, 3, -+ - are the
eigenfrequency conditions for m superimposed perturba-
tions on a single site and can occur at frequencies
higher than the maximum frequency of a lattice
entirely of the lighter atoms.! These spurious poles
result from an overcounting implicit in the partial
summation =M,

More evidence for overcounting is seen in the two-
vertex summation. This may be calculated in two
parts,

1—mpupado(w)=0, m=12,---.

ED=3,043%,@ (45)

as shown in Figs. 4(a) and 4(b), respectively. As a
matrix in configuration space, Xq® is diagonal with
elements corresponding to the upper of the two sites
while =,® begins and ends on different sites.!® Each

13 Strictly speaking, X,® has a diagonal part also, correspond-
ing to the coincidence of the two lattice points. The cumulants
allow and require independent summation over all vertex sites.



175

cross-hatched leg shown in Figs. 4(a) and 4(b) represent
the sum over all interaction lines to the same vertex
as shown in Fig. 4(c). The nondiagonal part =,®
introduces a mixing of the polarizations of the normal
modes of the perfect crystal with a corresponding
branch and directional k dependence of the phonon
linewidths and frequency shifts.
In the Appendix it is shown that

Z.O(,m)=d(l,m)? i (—1)”( : )p

p=2 1—c¢
1 taﬁt 82
x5 - (462)
=1 5(p—s)[1—tetp—sd(l,m)?]
and
© c ? p-1 tgtp—,g?
20m=in X (~07(-——) &
=2 1—¢/ s=1(p—s)
d(l,k)?

— 1 (46b
F 1—tpd(LE)? (46b)

1—s(M 4— M p)w?d(l})

This is the normal mode condition for two mass im-
purities AM,=s(Mo—M3p) at site R, and AM,_,
=(p—s)(M4—M3z) at site R, in the M, lattice. For
p=2 the only term in Eq. (46) is s= p— s=1 correspond-
ing to the physical case of an impurity AM =M 4— M5z
at the two sites R; and R; and condition (48) gives the
frequencies of the optical and acoustical modes of vibra-
tion for the two impurities. The terms for p>2 cor-
respond to p impurities superimposed onto two lattice
sites in all ways and give rise to new spurious poles for
m>1. The coefficient of these spurious terms are of
order ¢® and higher.
The lowest terms in Eq. (45), of order ¢?, are

c*d(l,m)3?

Za® ()= ——
" 1—t,2d(lm)?

+0(c?) (49a)

and

2eOUm =t £~ o, ay
)= 81,mc? } ——————— c?),

‘ M 2Ry

and are of the form first given by Langer for the case
M,=M 4.5 From the previous discussion it is evident
that the k=I/=m terms of Eq. (49) correspond, at
their pole, to a spurious overlap of two mass impurities.
The singular part of this diagonal term of (49) cancels
the first spurious pole (m=2) of X® in Eq. (43b) as
was shown by Langer. It seems likely that the poles of
=® in which two of the three vertices coincide will
cancel the spurious two-site poles of Z® for p=3, while
the m=3 pole of =M together with the k=Il=m term
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—S(M 24— M g)w?d(l,k) -0
—(p—s)(Ma—Mp)w?d(k)]) 1—(p—s)(Ma—Mp)e?d(kE)|=""
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where
SuBA
, §=12...

(47)

8

1—supado

is the scattering matrix (diagonal) for an isolated site
with s superimposed perturbations, and d(J,m) is still
a 3X 3 matrix in « and 8.

The expressions (46) are again much more transparent
than the multiple-integral form derived by Yonezawa
and Matsubara?® [Eq. (3.14) of the third paper], but
they are still complicated to evaluate numerically and
this was not done.

The poles of =® occur at frequencies where

(1 - tstp—sd(k;l) 2)

has a zero eigenvalue for some s, p—s, I, and k. After
some rearrangement using Eqs. (5) and (47), this eigen-
value condition can be shown to be equivalent, if the
sites / and £ do not coincide, to the vanishing of the
6X 6 determinant

(48)

in ¢® of 2® will cancel with the triple-coincidence term
in X®,

V. DISCUSSION

The appearance in each order of X® of spurious
poles which are eventually cancelled by terms in other
orders is inherent with the use in a partial summation of
the cumulants defined by the complete expansion.
When a restricted summation is made, appropriately
restricted cumulant corrections for the coincidence of
the diagram elements should be used. These cumulants
will change as more terms are included in the expansion.
We do not know if such a procedure can be developed
rigorously but the XM approximation given by Elliott
and Taylor® and recently extended to X diagrams?4
may be regarded as a first step in such a scheme.

Their X approximation is a partial summation of
(D) in Eq. (8) starting from labeled diagrams (i.e.,
before summing over Iy, Iy, ---) containing irreducible
parts with one vertex only. However, in summing over
site labels they correct for the coincidence of successive
scattering sites but not for other coincidences. This
partial sum (D®™) now contains only one-vertex ir-
reducible parts (even in the corrections) and the latter
define a =M exactly.

The connection with cumulants is illustrated by an
example. Let us consider the contribution to the third-
order vertex shown in Fig. 5(a), for the case M,=M 4.
In order to obtain the contribution k3(u) to this vertex

“R. N. Aiyer, R. J. Elliott, J. A. Krumhansl, and P. L. L h
(to be published). J $o0 et
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(a)

P

1t T/'\”/'\T /A

Fic. 5. (a) A third-order vertex and (b) diagrams whose
vertex confluence determines P;(c).

in T we subtracted from cup® the contribution of all
diagrams coming from distinct ways that the diagram
could be broken apart as shown in Fig. 5(b). The result
of this procedure is

k3(u) = us*{c—[P1(c) —3P1(c) Ps(c) }

=ug*(c— 3¢+ 2¢%). (50)

However, the diagram on the extreme right in Fig. 5(b)
contains a two-vertex irreducible part. Thus, for ex-
ample, if only one-vertex parts are put into the self-
energy in a partial summation of the diagrams, this
diagram does not appear explicitly although there is a
correction for it in Eq. (49). This kind of overcorrection
leads to spurious poles. Elliott and Taylor® leave out
such corrections and would obtain as the contribution
x3’ to the third-order vertex

x5’ (u) = pp?{c—[P1(c) J*— 2P1(c) P2(c)}
=ugdc(1—c)2.

&Y

The general vertex factor found by this procedure is

Kka' () =pup"c(1—c)" 1. (52)
This result, using Eq. (43a), gives
Spr—ppc/[1—(1—c)usdo], (53)

the result obtained by Elliott and Taylor. The spurious
poles are missing, which indicates that their presence
was indeed related to the overcounting. However «,’
given by this method is not a true cumulant of the
restricted summation if cumulants are defined as in
Ref. 8 and thereby are related to the moments by Eq.
(12). The reason that these relationships are not satisfied
by .’ is due to the fact that many diagrams unavoidably
appear in any partial summation even if they are not
included explicitly. For example, the last diagram in
Fig. 5(b) appears in the “one-vertex” partial summa-
tion (DM) with weight ¢%. It appears in the summation
over internal indices of the first diagram in Fig. 5(b)
when the first and last site coincide. This correction
would be properly made by any true cumulant. The
undercorrection is, however, of higher order in ¢ than
the overcorrection caused by using the cumulants of
the full expansion and does not seem to lead to spurious
poles.

As a further example of the method, we calculate the
one-vertex self-energy = for the arbitrary reference
mass M,. The bare one-vertex self-energy, Fig. 3, with
no corrections is

o1=(1—c)pa/(1—pado)+cus/(1—ppdo),  (54)
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which is the mean # matrix for scattering at a site. This
term can be obtained from Eq. (43b) by neglecting all
correction terms [those of O(c*) for #>2, and those of
O(ua™up™) for both n, m>1]. The corrections to this
term come from all ways that the diagrams in Fig. 3
can be broken apart such that only one-vertex ir-
reducible parts make up the resulting diagrams. The
total corrections to ZM from breaking into two such
parts can be summed to

oy=—3MNdZ M, (55)
The corrections from three parts is
3= —3DdZDgZHM | (56)

and so forth, where =W is the fully corrected self-
energy. The result for ZM=3;_1® 0; is

SV =g — (ZWFZ DL ZWFZDGZ D4« ) (57)
which can be solved with the result

M =g/(14dooy). (58)

Upon substituting for oy from Eq. (50), one obtains

(1—c)patcps—papsdo
1—[epat(1—c)usldo ’

which is formally symmetric with respect to interchange
of A and B atom types and reduces to Eq. (53) when
pa=0, or M,=M 4. The vertex factors x,’ obtained by
expressing (59) in the form (43a) are

k()= (1—C)ua+tcus,
kn' ()= c(1— ) (wa—ps)Lena+(1—c)us]"2,

for n>2 as compared with Eq. (17). For M,=M 4, this
reduces to Eq. (52). For M,=(1—c)M a+cMp=(M),
however, Eq. (60) reduces to

k' () = c(1—¢)(1—2¢)"*(ua—u5)".

In summary, we can say that the two procedures
agree to the same order as that of the uncorrected
diagrams that are put into the partial summation but
that the higher-order terms which are put in only ap-
proximately (by both procedures) lead to spurious
poles in the full cumulant expansion but do not in
Elliott and Taylor’s approximation.

Finally, we note the importance of reducing the
effect ¢f over- or undercounting in self-consistent partial
summations where many more diagrams are included.
Self-consistent calculations based on the uncorrected
self-energy insertion o1 on all internal 4 lines give ex-
aggerated broadening of impurity-mode bands in three-
dimensional systems!® similar to the results of Davies
and Langer in one dimension.!s Recent self-consistent

SW=

(59)

(60)

(61)

1P, L. Leath, Ph.D. thesis, University of Missouri, 1966
(unpublished). : :
16 R, W. Davies and J. S. Langer, Phys. Rev. 131, 163 (1963)-
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calculations by Taylor, which were based on the use of
Eq. (53) in a multiple-scatteiing formalism, have given
much improved results for three dimensions.’” It has
been shown!® that the form of X, ,.(* involved can be
obtained by an application of the arguments leading to
Eq. (58). Self-consistency is required to get a sensible
result for the frequency spectrum of a distinguished
atom starting from (33). Expressions like Fig. 1(c)
for X,° have isolated poles in w and not branch cuts,
so that the contribution of =° tends to be in §-function
peaks rather than in broadened bands. Bands result
from the corresponding approximation to X in (D(w))
because X appears in the denominator. Another
advantage of self-consistency was mentioned below
Eq. (39).
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APPENDIX

In the nondiagonal two-vertex self-energy =,®
shown in Fig. 4(a), the diagram rules lead to

2. ®O0m)=3 >

n=2 41,12, *,iN; j1,*+,JN>0
X Pi(c)Pi(c)do™*d(lm)dyi
Xd(mi)- - -d(,m)d»1,

(MB - #A)2+j

(A1)

where IV is the number of cross-hatched legs, and 7 and
7 satisfy

3 NO N
1’=Z IN, ]=Z ]k

k=1 k=1

The d factors are 3)X3 matrices in Cartesian indices,
do is a constant matrix, and d(m,})=d(Im) with the
assumed symmetry; thus we can collect like terms in

17D, W. Taylor, Phys. Rev. 156, 1017 (1967).
18 P, L. Leath, Phys. Rev. 171, 735 (1968).
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(Al) to obtain

ZaO(m)= 22 d(m)*N=1do)=2¥
N=2

X{An[(us—pa)docl}?, (A2)
where
AvX)= 3 XPi0). (A3)
J1,52,+++,JN=1
However, Eq. (32) can be rewritten as
d’ c
A | (Ad)
ay’ 1—cd) o
Thus A 5 becomes
AN(Xyc)
e di c
= ( > X f——_) In(l-l——— expy) (ASa)
dneeein=l  dy’ 1—¢ y=0
N 1
= _1
[ Hl I:I—X(d/dy) :”
Xln(l-{—-—f— expy) (ASDb)
1—(} =0
=( X(d/dy) )N f (- 1)*“/:_)*
1-X(d/dy)/ =1 s \1—¢
Xexpsy|y=o (ASc)
© (_ 1)&1/ ¢ s Xs N
L, \1—c> (I—Xs) ' (A3

Inserting (A5d) into (A2) and interchainging orders
of summation, we obtain '

200m= 5 DW('C—")&T*I—

8,r=1 Sr 1—¢ d(l,'m)

X 3 [Lbdm) ], (A6)

which is equivalent to (46a).

The diagonal part 4@ [Fig. 4(b)] can be evaluated
similarly with the change that the variable inner
vertex k has N—1 legs when the vertex /= has N
legs, so that Eq. (46b) is the result.



