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To calculate the pressure dependence of de Haas-
van Alphen areas, we use the formula

d 11L4. 8 1nA d lnN 81nA d lno.

8 lns dP 8 lno, dPdP

BlnA BlnA BlnEr )dVa+Z +
BVg B lnEr BVg v, )3 dI'

Ke assume the I;;to be uniform over a given segment,
and pcIfol.m thc OIb1t avcl.agc by averaging the p1oducts
c;c;I;;, with c;c; averaged over the given segment. The
geometry involved is quite complex and only very rough
numerical estimates of the integrals I;, have been made,
from which we conclude that

0.10&() "&—X "&)/X &s' &0.20.

The processes that contribute to these I;, can be
classified as, say, E (only longitudinal phonons in-
involved) and U (both longitudinal and transverse
Phonons involved). Roughly saof the above factor
results from Ã processes, partly because there is some
cancellation between contributions from U processes.

The 6rst two terms account for the changes in electron
density n and ratio of lattice constants 0,. The last term
accounts for the change in band gaps; B Inst /B ln Va) voi
is the shift in Fermi energy, which accompanies a change
in V6 in such a way that the Fermi surface encloses
constant volume. The Va's change according to (2),
and we shall take into account possible changes in the

parameter E, with energy.
For the principal section of the P arm, we find that

dlnA/dE=$4. 41+5.10r/)Er, where Er is the com-

pressibility and s/=d lnR, /d lnE The various contri-

butions are (in units of Er):0.67 from the electron den-

sity, 1.21 from the lattice constants, "and 2.25+3.94rt

from the band gaps. Comparing this with the result

of Anderson, O' Sullivan, and Schirber, d lnA/dP
=(3.4+0.15)Es, we would deduce that st= —0.18.
%c note howcvcl that uncertainty 1n this value fol g
is greater by a factor of four than experimental un-

certainty in d lnA/dI'. Finally, we point out again that
our calculations of d lnA/dP for second-zone orbits give
numbers about 20% smaller than the experimental

ones, as do the calculations of Anderson, O' Sullivan,

and Schirber.
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The complete set of six third-order elastic constants of single-crystal Al has been experimentally deter-
mined by measuring both hydrostatic-pressure and uniaxial-stress derivatives of the natural sound velocities
using a two-specimen interferometric technique. The specimens vrere neutron-irradiated to eliminate dis-
location e8ects from the uniaxial experiments. A self-consistent set of hydrostatic-pressure derivatives of
the second-order elastic constants has been calculated from the measured third-order constants. The third-
order elastic constants have also been used to calculate the thermal expansion in the anisotropic-continuum
model at both high and low temperatures, and a comparison has been made vrith the directly measured
expansion coeScients.

INTRODUCTION

IGHER-ORDER elastic constants provide an
CScient measure of many aspects of lattice an-

harmonicity. In particular, the third-order elastic con-
stants are useful in the calculation of many mechanical
and thermal properties related to the anharmonic
nature of the lattice potential energy. In addition, the
third-order elastic constants would be expected to
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provide useful new information on the nature of co-
hesive properties and interatomic forces.

The most powerful method for obtaining third-order
elastic constants is the measurement of sound-velocity
changes with applied homogeneous stress. Basic meas-
urements of this type utilize simple modifications of the
well-known megacycle pulse-echo technique. Early
measurements were restricted to velocity change with
applied hydrostatic pressure. For a cubic crystal, this
gives three experimental numbers which are related to
6ve of the six third-order elastic constants. To obtain
sufBcient information to measure all six third. -order
elastic constants, it is necessary to utilize a deviatoric
stress such as uniaxial compression.



J. F. THOMAS, JR.

Here, in the study of metal single crystals, a basic
problem arises. Uniaxial compressions large enough to
produce directly measurable changes in the transit time
of an ultrasonic pulse will also likely produce changes
in the dislocation network always present in themctal
crystals. It&is well known that dislocations will RGect
the measured)sound velocity. If the applied uniaxial
compression changes the existent dislocation network,
for example by causing breakaway from weak pinning
points or activation of dislocation sources, a dislocation
contribution will be present in the measured sound-
vcloclty stlcss derivative. HcQcc, one ls r'cstllctcd to
very small. uniaxial compressions, and a system of
electronics capable of detecting relative sound-velocity
changes of several parts per milhon (ppm) is required.

The 6rst complete set of third-order elastic constants
of a metal single crystal was obtained by Hiki and
61RQRto. They used thc two-spccimcn lntcrfcI'omctI'lc
technique' to measure the third-order elastic constants
of'„'the noble metals Cu, Ag, and Au. Their measure-
rnents included both hydrostatic- and uniaxial-stress
derivatives. Swartz' used. the same technique for
measurements on P brass. Salama and Alers' repeated
uniaxial-stress measurements on Cu at several tem-
peratures using the sing-around method. ' Their room-
temperature values agree well with Hiki and Granato.
They also completed measurements at helium tem-
peratures, the only such measurements which exist, at
thc plcscnt time for any matcrlRl.

The third-order elastic constants of the noMe metals' 4

and P brass' confirm the expectation regarding useful

information on interatomic forces. The results for these
crystals correspond closely to those expected, if short-

range, central forces make a predominant contribution
to the higher-order elastic constants. '3 An important
conclusion, then, is that the conduction electrons seem
to play a minor role in the anharmonicity of these
materials. This might be considered somewhat surpris-

ing, but can be understood in terms of the existence of
overlapping electronic d shells and the resulting strong
cxchRngc fol ccs.

It was decided to lnvcstlgatc R material ln which thc
conduction electrons would be expected to make a major
contribution to the higher-order elastic constants and,
hence, to the anharmonic properties of the material. One
such material is a1uminum. In Al, there are no d

electrons; the ion cores are small; and the exchange
interactions between ion cores shouM be negligible.

Also, Al has three valence electrons per atom. Hence,
the Fermi surface will interact strongly with the Bril-
louin zone. The conduction electrons should contribute
to the shear as well as the compressive elastic constants.

Voslo H11D and A. V. Granato, Phys. Rev. 144' 411 (1966).
~ R. P. Espinola and P. C. Waterman, J. Appl. Phys. 29, 718

(1958).
Karl D. Swartz, thesis, University of Illinois, 1966 (un-

published).
4 K. Salama and G. A. Alers, Phys. Rev. 161, 6/3 (1967).
s R. L. Forgacs, IEEE Trans. Instr. Methods 9, 359 (1960).

SPECIMEN PREPARATION

The four aluminum single crystals used in this in-

vestigation were of dimensions 15&16&11mm. They
were oriented with faces perpendicular to L1107, L1107,
and $0017 directions. These orientations were checked
with Laii~c back-reRection photographs and were found
to be accurate to better than 1'. The crystals were
obtained as oriented from Semi-Elements Inc. , Saxon-

burg, Pa. Order-of-magnitude estimations of impurity
concentrations were determined by emission spectro-

scopy, indicating that Cu, Fe, In, Ga, Ca, and Ti were

present in concentrations of 10—f00 ppm. Hence, we

estimated that the crystals were between 99.95 and
99.99% pure AL In order to make sound-velocity
measuremcnts by the use of a pulse-echo technique, it
was necessary to polish the crystals so that opposite
faces would be Qat and paraM to better than 50 ppm.
A convenient method has been developed to obtain such
tolerances with moderate cavort. '

The second-order clastic constants of the Al crystals
were then Ineasured using a direct pulse-echo technique.
The results are presented in Table I and compared with
the values of Schmunk and Smith' and Kamm and
Alcrs. ' For the particular orientation of our crystals, we

were able to obtain eight measurerncnts of four pure-
mode velocities. The errors presented with our results
in Table I represent the consistency of these eight
measurements as derived from a least-squares 6t of the
data. The small consistency error is taken as a 6nal
indication that the Al specimens were mell-oriented

single crystals with no important lineage structure.
During the course of the investigation, it was decided

to neutron-irradiate two of the Al crystals. The irradi-
ation took place in the CP-5 reactor at the Argonne

National Laboratory. The integrated exposure was

approximately 5&10" neutrons per cm' with energy
greater than 100 kcV. The temperature of the crystals
%'as nelthcl monltoI'cd Qol" contro Bed duI'1Qg the
lrradlatlon.

EXPERIMENTAL PROCEDURE

For measurement of the sound-velocity stress deriva-

tives, we have used the two-spccimen ultrasonic inter-

ferometric technique. The method and apparatus are
basically the same as those described by Hiki and
Granato' and by Swartz. 3 A further analysis of some

aspects of the measurement found to be particularly
important in this experiment has been given by the
author elsewhere. '

The measurements have been analyzed within the
formulation developed by Thurston and Srugger. "

' T. L. Ochs (to be published).
'f R. E, Schmunk and Charles S. Smith, J. Phys. Chem. Solids

9, 100 (1959).' G. N. Kamm and G. A. Alers, J. Appl. Phys. 35, 327 (1964).
J. F. Thomas, Jr., thesis, University of Illinois, 1968 (un-

published).
'0R. N. Yhurston and K, @rugger, Phys. gqv. $33, A15Q4

(1964).
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TAaxz I. The second-order elastic constants of Al at 25'C. The
errors indicated in column 2 represent the consistency of the
measured values. t'Units of 10'2 dyn cm '.)

TmLE II. The temperature derivatives of the second-order
elastic constants of Al at 25'C. (Units of 10' dyn cm~ 'C '.)

This experiment

1.0675+0,0005
0,6041+0.0008
0.2834+0.0004

8chmunk
and Smith'

1.0732
0.6094
0.2832

Kamm
and Alersb

1.0686
0.6075
0.2824

C11
62
044

This
experiment

3051—0.67—1.45

—3.44-0.98-1.43

(ac/ar) ig

Long and
Smith'

Kamm and
Alersb

-3.75—0.55-1.43

Reference &.
b Reference 8. Reference 12.

b Reference 8.

They defined a quantity called the natural velocity,
W= 21.s/f, where I.s is the path length in the unstressed
crystal and t is the round-trip transit time. They then
evaluated the derivative (8/BP) (poW') r, p o in terms of
linear combinations of the second- and third-order
elastic constants for various combinations of pure sound
modes and applied stress P. Here po is the density of the
unstressed medium. But (psW') will vary with stress
simply as I, '. The formulation is convenient because we
no longer need to worry about the path length in the
stressed crystal.

The stress derivative discussed above can be written

t9 1 BW
(psWs) r, p=s= 2w ——

BI' H~ 8.P g p ()

Here w is the second-order elastic constant (psWs)
evaluated at zero stress and is given by an appropriate
linear combination of the constants given in Table I. If
we consider S' to be a simple thermodynamic function
of two variables, lV= lV(P, T), then

(Bc/BT)
~ p are presented in Table H and are compared

to the results of Long and Smith" and Kmnrn and
Alers. ' Kamm and Alers present their results in tabular
form, and we have calculated the derivative from their
high-temperature values.

The sensitivity of the two-specimen technique de-
pends upon thc smallest wave-velocity change which
wiB produce an observable change in an ultrasonic
interference pattern. This, in turn, depends upon the
structure of the pattern and the position in time at
which measurements are being obtained. In general, the
sensitivity is higher at longer transit times. We have
observed, that changes of the order oW/W = 2X 10-' can
be detected for waves which have spent 100-150 psec
in the crystals. Extensive measurements by Swartz' on
NaCl have demonstrated that the two-specimen inter-
ferometer gives reliable results compatible with one-
specimen techniques. The two-specimen technique has
the distinct advantage that small temperature drifts of
the stressed specimen will not obscure or CGect the
sound-velocity change with pressure.

(2)

Equation (2) indicates the procedure we followed in
measuring natural-velocity stress derivatives using the
two-specimen interferomctric technique. We first meas-
ured (1/W)(aW/BT)

~
~ for a particular sound mode.

This could be considered as a calibration of the inter-
ferometer for this mode. We then measured (BT/BI')

~
s

for the various stress derivatives of the mode. A de-
tailed account of these measurements is contained in
Rcf. 9.

The results for the natural-velocity temperature
derivatives can be expressed in terms of the temperature
dependence of the usual second-order elastic constants,
(".=pm'. Here p is the density, and e is the actual sound
velocity. Hence, the temperature dependence of c is
given by

Bc 2 88'

BTiI 8' BT g

Here n is the coc%cicnt of linear thermal expansion
(0234X10 4 'C ' for Al at 25'C)" The results for

"C. S. Taylor, L. A. %illey, Dana W. Smith, and Junius D.
Edwards, Metals R Alloys 9, 189 (1938).

EVALUATION OF THIRD-ORDER
ELASTIC CONSTANTS

For the particular orientation of our crystals, we were
able to investigate 6ve difkrent pure-mode sound
waves, two longitudinal and three transverse. We
measured the hydrostatic-pressure derivatives of the
natural velocities of these 6ve waves. We also measured
nine uniaxial-stress derivatives of the five natural
velocities. These 14 experiments are characterized in
Table III.

Thurston and Brugger'o have given explicit relation
between the measured quantities (8/aI')(psWs)r, p s
and the second- and third-order elastic constants for the
14 experiments described in Table III. These relations
are presented in Table IV. In Table IV, the superscript
T indicates an isothermal elastic constant. The third-
order elastic constants are all of the mixed type, being
derived from an isothermal strain derivative of an
adiabatic second-order elastic constant.

Kc first measured the hydrostatic-pressure deriva-
tives of the five natural sound velocities, experiments
10—14 of Tables III and IV. Measurements werc taken

»T. R. Long and C. S. Smith, J. Acoust. Soc. Am. 26, 146
(1954).

"Karl D. Smartz, J. Acoust. Soc. Am. 41, 1083 I'1967).
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TABLE III. Characterization of sound-velocity stress experiments.

Propagation Displacement
Expt. direction direction
No. N U

1 [110] D 10]
2 [110] [110]
3 [110] [001]
4 [001] [001]
3 [001] [110]

[001] Dio]
'7 [110] D10]
8 [110] D10]
9 [110] [001]

10 [001] [001]
11 [001] any J N
12 [110] D10]
13 [110] [110]
14 [110] [001]

Stress
direction

M

[001]
[001]
[001]
[110]
[110]
[110]
[110]
[110]
[110]
Hyd.
Hyd.
Hyd.
Hyd.
Hyd.

2C11+2C12+C44
1D 1&2Cll 2C12

C44

Cll
C44

C44

6C11+K16+C44

kC11 %16
C44

Cll

2Cll+ 2C12+C44
&C11—2C12

C44

t5.0 "

10,0-

O

I I I

I0 20 30 40 50
APPLIED HYDROSTATlC PRESSURE (kg cm )

TABLE IV, Natural sound-velocity stress derivatives as a function
of second- and third-order elastic constants.

Expt. No. (~/~l') (cobb )~, 1-6

1 2~e+ 2eC111+g (Be b) C112 2bC123

bC144+ 2eC188

2 2m e+~2eC111—~2(e+b}C112+-,'bC123

3 21cb+aC144+ (a b) C166—
2 '+eC111+(e—b) C112

3 1ct(a—b 2c)+6 (a b)C—y44+6 (3a——b)Cs66 —2cC456

6 m (e—b+2c}+-',(e—b) C144+-', (Be—b) C188+2cC458

» w (a b+2c) +4 (a —b) Cgn+4 (Sa —3b) C116+2aC1—66

+eC144+ (e—b+4c) C188

8 m(e —b —2e}+~ (e—b)C111+4(e+b) C112—~2eC123

9 2'+ g (e—b) C144+ 2 (Be—b) C188+2cC458

10 —1+216(2a—b)+ (2a b)[Cn1+2Cn6]
11 —1+2m|(2a —b)+ (2a—b)[Cy44+2Cy66]
12 -1+2m (2e—b)+ (2e—b) t -,'Clll+2C112

++C128+C144+2C188$
13 —1+216(2a —b) + (2a—b) [6Cn z

—$C166]
14 —1+2m(2e —b)+ (2e—b) t C144+2C188)

C1F Cll~+C12~
e~ »

b= »

3&"(Cn~—CiP) 3B~(C&F—CgF) 4C44

Cl1 +2C12
C1P'=1.0BB9X10"dyn cm -',

Clp =0.5104+10"dyn cm~

on two sets of crystals, and the results for each mode
werc averaged. The natural sound-velocity change for a
typical hydrostatic experiment is illustrated in Fig. 1.
The results were expressed in terms of three linear
conlblnatlons of 6vc of thc six third-order elastic con-
slM1l~& (C111+2+112)y (6+111 6 ~166)y

@n41 (~144+2+166)
These three numbers were determined by a least-
squares fit of the 6ve measurements. The results are
presented, in the first row of Table V. The error indi-
cated with these results represents the consistency of the
Ave measurements.

FIo. 1. Natural velocity change versus hydrostatic pressure «r
a C44 mode (experiment 14 of Tables III and IV). The separation
betvveen the curves for increasing and decreasing pressure is due
to a thermal lag between the surface and bulk of the speci~en «
approximately 0.1'C. To reduce any eGect on the measured slope,
the results for increasing and decreasing pressure vrere averaged.

TABLE V. The third-order elastic constants related to sound-
velocity hydrostatic-pressure derivatives. The errors indicated
represent the consistency of each set of measurements. (Units
Of 101' dyn cm '.)

Measurement g Clll 2C128 C144+2CI88

Hydrostatic
Uniaxial

—17.10&0.05
—17.11+0.04

—5.60+0.07—5.57+0.02
—6.99&0,04—7.+0. 01

Initial uniaxial-stress measurements were made on
the two sets of crystals. The stress range was approxi-
mately 0—40 kg cm '. Even in this small stress region,
we expected that dislocation motion might occur. HiI|;i

and Granato' found that an initial prestress was eRec-

tive in eliminating dislocation eRects in measurements
on noble metals. That method was also attempted herc.
The sound-wave attenuation was monitored during the
prestress, and no signiicant changes were detected.
However, it became apparent that dislocation CRects

were present in the initial uniaxial data.
The problem of determining whether or not disloca-

tion effects exist in a particular uniaxial experiment or
series of experiments ls qultc lnvolvcd. Initially» lt was

hoped that for any particular experiment a dislocation
contribution wouM be a nonlinear function of applied
stress, easily distinguishable from the patently linear

lattice cRcct. Hlkl Rnd Granato obscrvcd a highly non-

linear velocity change at stresses above their prestress
level. However, Salama and Alers4 discounted this

simple notion. Their measurements on hardened Cu
crystals showed that the uniaxial data could be linear,
reproducible, show no hysteresis, and give no attenu-
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8,0-

6.0-

'5 IO l5 20 25
APPLIED UNIAXIAL STRESS (kg cm )

Flo. 2. Natural velocity change versus applied uniaxial stress
for a C44 mode (experiment 3 of Tables III and IV). The experi-
ment was begun with a 4-kg-cm ~ setting stress applied to the
specimen.

ation change with applied stress and could still contain
a dislocation contribution. However, they suggested
that a suitable criterion for the absence of dislocation
cftccts in a series of uniaxial measurements was that
hydrostatic-pressure derivatives calculated from the
uniaxial data be in agreement with the directly meas-
ured values.

Wc have adopted that cx'ltcllon hcx'c. This ls rcQcctcd
in the method of data reduction. The nine uniaxial-
stress experiments give information on eight linear
combinations of the six third-order elastic constants.
The uniaxial data could be used alone to obtain a set of
third-order elastic constants. The three linear combina-
tions related to the hydrostatic pressure derivatives
could then be calculated from this set. If substantial
agreement could be obtained between the measured and
calculated values of these three linear combin&ations,
then it would be proper to combine all the data and
obtain a self-consistent set of third-order elastic con-
stants and hydrostatic pressure derivatives.

The dominant characteristic of the initial uniaxial
dRtR wRS thRt cxpcx'lmcnts 1 2, 3, 4 7 Rnd 8 gRvc R

linear dependence of the change in natural velocity with
stress while experiments 5, 6 Rnd 9 did not. A typlcRl
linear natural-velocity change is illustrated in Fig. 2. In
the nonlinear experiments, a hysteresis cBcct was ob-
served which was qualitatively reproducible. A typical
nonlinear natural-velocity change including hysteresis
is illustrated in Fig. 3.

The six linear experiments were related to Gvc of the
six third-order elastic constants. These were thc same
6ve constants which determined. the hydrostatic-
pressure derivatives. The initial uniaxial data from the
six linear experiments was used to determine these 6ve

elastic constants by a least-squares analysis. The set of
third-order constants so determined was totally in-
consistent with the measured hydrostatic-pressure
derivatives. For example, after a particular set of
measurements, we obtained (Crt t+2cr ts) = —8.20X10"
dyn cm ' compared to the measured value of —17.i0 in
the same units. Dislocation effects were obviously
present in the nonlinear experiments. It was concluded
that dislocation CGects must also have been present in
several of the linear experiments.

One set of Al crystals was then neutron-irradiated as
described previously. The uniaxial-stress measurements
were then repeated. Results for experiments 2, 3, 5, 6,
and 9 were essentially unchanged. The hysteresis effects
observed in the latter three of these experiments were
stiB present. The results for experiments i, 4, 7, and 8
changed substantially. The measured natural-velocity
changes with stress all became algebraically larger. This
is the direction of change one would expect if dislocation
eGects had been eliminated. The six linear experiments
were again analyzed to obtain a least-squares fI.t for 6vc
of the six third-order elastic constants. The three linear
combinations of thc third-oxder elastic constants related
to the hydrostatic pressure derivatives calculated from
these results agreed almost exactly with the measured
values. These combinations are presented in the second
row of Table V. The error presented represents the
consistency of the six uniaxial measurements.

Results of experiments 5, 6, and 9 on the irradiated
crystals still showed hysteresis CGccts similar to that
illustrated in Fig. 3. It is very lik.ely that the observed
hysteresis c6ccts are associated with microscopic
plastic Row. Some dislocation motion must still be

-3.0-

-2,0

—I.Q

IO 20 50
APPLIED UNIXIAL 8TRE88 {kg cm )

I"ro. 3. Natural velocity change versus applied uniaxial stress
for a typical nonlinear mode (experiment 9 of Tables III and IV}
The observed hysteresis is attributed to a dislocation eGect.
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ALE VI. Experimental data and results for natural-velocity stress derivatives. The errors

indicated in column 4 represent the range of the measured values.

Expt. No.

1
2
3

7
8

10
11, 14

12
13

(dyn cm ')

1.1192'10»
0.2317
0,2834
1.0675
1.1192
0.2317
1,0675
0.2834
1.1192
0.2317

1 8$"

WBT p
(Oc—

y}

—1.47' 10-4
—2.95—2.44

1%53—1.47—2.95—1.53—2.44—1.47—2.95

BT

~& w

( C dyn ~ cm~}

—1.74+0.10'10-8
0.66+0.04
1.78a0.07—0.51+0.05—1.04+0.07
0.23+0,02
1.80+0.10
1.40+0,02
1.98&0.02
1.01&0.05

1 8W

W'BE g
(dyn ' cm')

—2.56+0.14' 10-»
1.95&0.13
4.34+0.16—0.78+0.08—1.53W0.10
0.68a0.04
2.75+0.15
3.42+0.05
2.91&0.02
2.98+0.15

8—(po+ )1' p-o
BI'

(dimensionless)

—5.73+0.32
0.90~0.06
2.46+0.09—1.67+0.16—3.42~0.22
0.32+0.02
5.87+0.32
1.94&0.03
6.51+0.05
1.38+0.07

occurring in the irradiated crystals. However, because
of the excellent agreement observed in Table V between
uniaxial and hydrostatic measurements, we conclude
that dislocation effects have been electively eliminated
from the six linear uniaxial experiments.
I.- %e then combined the acceptable uniaxial and hydro-
static data to obtain a self-consistent set of third-order
elastic constants and hydrostatic-pressure derivatives.
The data used in this calculation are summa, rized in
columns 2—4 of Table VI. Results for the natural-
velocity stress derivatives [Eq. (2)$ are presented in
the fifth column, and for (4i/BI') (poW') r, p=o [Eq. (1)]
in the sixth column of this table. The errors presented
with the measured (BT/BI')

~
s represent the range of

several measurements for each mode (on the irradiated
crystals only for uniaxial measurements). These num-

bers are simply scaled to obtain the error presented in
the fifth and sixth columns. From the relations of
Thurston and Brugger" (Table IV) and the measured
quantities (8/BP)(poW')r p o, we obtained the five
third-order elastic constants related to the hydrostatic
and linear uniaxial data, by a least-squares analysis. The
6nal set of third-order elastic constants is presented in
Table VII. The errors indicated in Table VII represent
the range of measured stress derivatives. These were

obtained by substituting various combinations of the
maximum and minimum pressure derivatives in the
least-squares computer program and noting the range
of third-order elastic constants so calculated.

Although experiments 5, 6, and 9 were grossly non-

linear, certain restrictions on the stress derivative couM

be deduced. It was clear that the derivative was small

TmLE VII. The third-order elastic constants of Al at 25'C. The
errors represent the range of measured stress derivatives as dis-
cussed in the text. (Units of 10"dyn cm 2.)

CII I = —10.76&0.30
CIIg = —3.15~0.10
C123=+ 0.36+0.15
C144= —0.23+0.05
CI66 = —3.40&0.10
C456 =—0.30+0.30

ln eRch CRse. Assuming that the constRDts Cy44 Rnd Cy66

were well known, a fair estimate of the remaining third-
order elastic constant C456 could be obtained. This value
of C456 ls pIesented ln Ta,ble VII.

The 6nal self-consistent set of third-order elastic
constants was used to calculate the hydrostatic-pressure
derivatives of the adiabatic second-order elastic con-

stants, c=IN'. From the de6nitions of c and H/', we

determine that

Bc c B
+ (po+') r, I =o

BI y p 0 38 BI
(4)

Here 8~ is the isothermal bulk modulus. The second
term of Eq. (4) was calculated from the relations in

Table IV (experiments 10—14) and the measured elastic
constants. The results are presented in Table VIII and
compared to the results of Schmunk and Smith. v The
error presented is consistent with the error associated
with the 6nal set of third-order constants. Our values
for the pressure derivatives of the shear constants

(C44, -', Cll ——',Clo) are in fair agreement with those of
Schmunk and Smith. For the longitudinal const, ants

(Cll, oCll+oCIo+C44), olll. lcslllts Rl'c slg1116calltly

smaller. %e have no de6nite explanation for this. In the
following section, we investigate this comparison further

by using the pressure-derivative results to calculate the
lattice thermal expansion.

Within the anisotropic continuum model, the thermal
expansion can be calculated from the third-order elastic
constants. For a cubic crystal, the thermal expansion is

isotropic a~d can be expressed in terms of the pressure
derivatives of the three second-order elastic constants.
Hence, it depends directly upon the three linear com-

binations of the third-order elastic constants previously
discussed (Table V). Compa11son of a measured and
calculated thermal expansion should provide some in-

formation on the magnitude of these three third-order
constants.
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TAsLE VI'II. The hydrostatic-pressure derivatives of the
adiabatic second-order elastic constants, c=pe', of Al. The error
presented vvith the results of the experiment is consistent arith the
error associated with the 6nal set of third-order elastic constants.

temperatures, C;=k (the Boltzmann constant) for each
of the 3E modes, and

C11
CIg
C44

gCII+gCj.e+C44
$'Gl )C19
)Cu+-,*Cra

This experi

6.35+0.23
3.45+0.16
2.10+0.12
7.00+0.31
1,45+0.10
4.42+0.18

7.35
4.11
2.31
8.04
1.62
5.19

(s~/s~llr
Schmunk and

ment Smith'
At low temperatures, assuming the continuum model,
it can be shown that"

& Reference 7.

Ke have calculated the thermal expansion within the
quasiharmonic approximation. This means that all
thermodynamic and elastic properties of a crystal are
assumed to be determined by the harmonic lattice
frequency distribution and its dependence on volume
or, more generally, on strain. This dependence is usually

specified by dedning the scalar-mode Gruneisen
parameters,

V de;

v;dV

Here V is the volume of the material, and v; is the
frequency of the ith normal mode. Within the quasi-
harmonic approximation, a thermodynamic Griineisen
parameter can be delned as a weighted mean of the
individual mode parameters, namely,

3N SN

v=2 Cv* Z C.

Here C; is the speci6c heat of the ith normal mode. y is
then directly related to the thermal expansion as'4

y=PVBr/Cy PVB8/C p. —— (&)

Here P is the volume thermal expansion; V is the molar
volume; Bp and 88 are, respectively, the isothermal and
adiabatic bulk moduli; and C~ and C~ are, respectively,
the specihc heats at constant volume and constant
pressure. %e see that the calculation of the thermal
expansion basically reduces to the calculation of the
various y; and their weighted mean y. It is convenient
to compare measured and calculated values of the
thermal expansion through the respective Griineisen
parameters.

In the quasiharmonic approximation, the mode
parameters are not explicitly temperature-dependent.
However, the thermodynamic parameter does depend
on temperature through the weighting factors (specihc
heats C;). Expressions for the high-temperature and
low-temperature limits of the thermodynamic GrGneisen
parameter can be obtained from Eq. (6). At high

~4 J. C. Slater, Ietrodgction to Chensica/ Physics (McGraw-Hill
Book Co., ¹mYork, 1939),p. 215.

with
~=(1/C.)(C~+C.v.),

v =PS V/C, v.=p.B V/C, . (10)

TABLE IX. The thermodynamic Griineisen parameters of Al.

From elastic
data

This experiment

2.2'7

2.33

From elastic
data

Schmunk and
Smith'

2.56
2.60

From thermal
data

2.19
2.45

Reference V.

~~ F. %. Sheard, Phil. Mag. 3, 1381 (1958).
~6 Yosio Hiki, J. F. Thomas, Jr., and A. V. Granato, Phys. Rev.

1/3, 764 (1967').
» 3.F. Figgens, G. 0.Jones, and D. P. Riley, Phil. Mag. I, 'N'I

(1956),
's%V. F. Giaque and P. F. Meads, J. Am. Chem. Soc. 63, 18K(1941).
+J.H. 0. Varley, Proc. Roy. Soc. (London) A283, 413 (1956).

Here e; is the wave velocity of the ith mode.
The mode Gruneisen parameters of Al have been

calculated within the anisotropic continuum model.
pre and yz were then calculated. from Eqs. (8) and (9).
These calculations were performed according to a
program described in detail elsewhere. "Results for yII
and yz calculated from our elastic data (Table VII) are
presented in the 6rst column and from the elastic data
of Schmunk and Smith' (Table VIII) in the second
column Of Table IX.

%e also computed yII and yl„ from the measured
thermal properties, according to Eq. (7). For 71',
thermal values were taken at 25'C. The particular
values used were as follows: the thermal expansion of
Taylor et aL" (P=0.102X10 4 'C—'), the bulk modulus
measured here (Bs——0."/585 X10"dyn cm ') the molar
volume from the x-ray lattice parameter data of Figgens
et al. '~ (V= 10.004 cm' per mole), and the speci6c heat
of Giaque and Meads" (C~=24.34X10' erg 'C—' per
mole). The 7& computed from these values is presented
in the third column of Table IX.

At low temperatures, contributions to the thermal
expansion and the specific heat arise from both the
lattice and the electron gas. Equation (7) can be
separated in the form"
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Here subscript l refers to the lattice, and subscript e to
the electron gas. We must compute y~

——yl, as it is this
quantity which is calculated from the elastic data. At
low temperatures, the thermal expansion and the
specihc heat depend on temperature as'0

P(or C)=AT+BI . (11)

The bnear term in temperature is a measure of the
electron-gas contribution. The cubic term in tempera-
ture is a measure of the lattice contribution, and this
term must be isolated. The particular values used werc
as follows: the thermal expansion of %hite as reported
by Collins and White" (P/Ts=26&&10 " 'C~) the
bulk modulus at O'K of Kamm and Alers' (8=0.7938
)(10~ dyn cm '), the molar volume from the lattice
parameter data of I iggens et al."extrapolated to O'K
(V=9.8724 cm' per mole), and the specific heat of
Phillips" L(C/Ts) = 2.468X10' erg 'C ' per mole). The

yl, computed from these values is also presented in
column 3 of Table IX.

There arc two comparisons of interest in Table IX,
the absolute magnitudes and the dispersion (ysr —yz,).
The continuum model should give excellent agreement
between the clastic and thermal values of yI,. Un-

fortunately, the comparison for yL, is difIIcult to assess
due to large uncertainties (approximately 10/o) in the
measured thermal expansion. Agreement for y~ should

be questionable as the high frequency lattice modes
must bc considered. However, results for noble
metals"" show that good agreement is obtained be-

tween elastic and thermal values of yII. If this agree-

ment could be expected for close packed metals in

gcnera1, the values of yB in Table IX would favor our

elastic data versus that of Schmunk and Smith. ~ With
regard to the dispersion yII —yl. , Barron'3 has shown

that for a cubic, close-packed lattice with central forces

between nearest neighbors only, y~ —yJ.=0.30. Also,

this di6erenee becomes smaller when more distant
neighbors must be taken into account. Measurements

by Carr et a3.~ for Cu agree closely with this result. They
obtain y~ —yI, =0.28 from thermal data. Elastic data
will give yII—yg=0.20. This is consistent with the
observation of Hiki and Granato' that the elastic

properties of the noble metals are determined primarBy

by the exchange repulsion between ion cores. In Al, the
elastic properties are determined primarily by the
conduction electrons. Hence, one would expect that, in

a force-constant picture, distant neighbors would be of

ee J. G. Collins and G. K. White, in Progress i@ low Teeeperoigre

Physics, edited by C. J. Gorter (North-Holland Publishing Co, ,
Amsterdam, 1964}.

"N. E. PhBlips, Phys. Rev. 114, 6N (i959}.
~ J. 6. Colbns, Phil. Mag. 8, 323 (1963}.
~ i. ri. K.. Sarron, Phu. Mag. 46, no (1955}.
fl4 R. H. Carr, R. D. Mcoammon, and G. K. %hite, Proc. Roy.

Soc. (London} A280, 72 (1964}.

importance. It is interesting to observe in Table IX
that both the thermal and elastic Griineisen parameters
give yII—yl.&0.

Kc have determined the complete set of six third-order
elastic constants of single crystal Al by measuring both
hydrostatic-pressure and uniaxial-stress derivatives of
thc natural sound velocities. The specimens were
neutron-irradiated to eliminate dislocation effects from
the uniaxial experiments. A self-consistent set of
hydrostatic-pressure derivatives of the second-order
elastic constants calculated from the measured third-
order elastic constants is in fair agreement with the
measured values of Schmunk and Smith. ~ Values of the
thermal expansion at both high and low temperatures
calculated from our third-order elastic constants agree
well with the directly measured expansion codBcients.

Thc observed pattern among the third-order elastic
constants shouM allow some statement to be made
regarding the cohesive properties of Al. Thc third-order
elastic constants of the noble metals'4 recently obtained
correspond closely to those expected, if short-range,
central forces make a predominant contribution to the
higher-order elastic constants. ' Unfortunately, the
situation for Al is not this simple. Leigh" has shown
that the second-order clastic shear constants of Al can
bc accounted for by considering contributions from the
electrostatic energy and the energy of the electron gas.
In particular, C44 is related to the diGerenee of large and
nearly equal contributions from each of these energy
terms. An extension of this calculation to the third
order has indicated that similar considerations hold for
the third-order constants and that, in addition, these
constants depend on thc complicated energy band
structure of Al near the Brillouin zone edges and
corners. ' The contribution of the electrostatic energy to
the third-order clastic constants is known. "' We still
require, however, a calculation of the energy of the
electron gas which will indude a satisfactory treatment
of band-structure effects. Work now in progress" has
indicated that a pseudopotential approach should be
applicable to this problem.

ACKN0%LEDGMENTS

The author wishes to express his gratitude for the
guidance and encouragement of his thesis adviser,
Professor A. V. Granato. He would also like to thank
Professor V. Hiki for introducing him to the experi-
mental techniques, and T. L. Ochs for his skillful
assistance with the sample preparation.

» R. S. Leigh, Ph l. Mag, 42, 139 {1951}.
e Tetsuro Susukr (Private commu111eetlon).


