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Ferxrti Surface and Eiectronic Structure of Indium*

N. W. ASHCROPT AND %. E. LAVfRENCE

I.aboratory of Atomic and Solid State I'hysics, Cornell University, Ithaca, Eem Fork l4g50
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The available cyclotron-resonance, size-effect, and de Haas-van Alphen data in indium are compared with
the geometry of the Fermi surface de6ned by secular equations of up to sixth order. The principal Fourier
coefIj[cients appearing in the secular equation are found from a simple form factor with a single adjustable
parameter. The possible topologies of the Fermi surface are considered systematically in terms of structure
plots appropriate to the points of high symmetry in the zone. It is found that a form factor consistent
with transport properties, and which accurately reproduces the experimental dimensions on the p-arms, is
suSciently strong to remove all but minute, disconnected remnants of the o,-type arms near the symmetry
points E'. Sand structure, density of states, and cyclotron masses are calculated, and the electron-phonon
enhancement of these and of the speci6c-heat mass is estimated from the Gnal form factor.

I. INTRODUCTIOÃ

~OR polyvalent metals whose ions are small and

tightly bound, the pseudopotential method for

determining band structures' ' is, in principle, very
useful. It is possible to treat the effective electron-ion

interaction as a small perturbation on a pseudo-wave-

function, which can be expressed in lowest order as a
sum of plane waves, and thus leads within the local

pseudopotential approximation to the usual secular

equation for energy Lsee Eq. (1), below]. In the past it
has been customary to construct potentials and pseudo-

potentials from first principles: This procedure can often

lead to relatively large errors in the potential because of

the efFicient cancellation arising from orthogonalization

terms resulting from the pseudopotential transforma-

tion. (The canceBed effective potential may contain in

large measure the uncertainties involved in the indi-

vidual terms comprising the self-consistent periodic

potential. ) In metals whose Fermi surfaces are accu-

rately measured. (as in. Al, for example) a different

approach is possible: The Fourier components of the

pseudopotential can be regarded as parameters and

their values deduced from experimental data on the

detailed dimensions and shape of the Fermi surface. In
addition to Al, 4 the same procedure, modi6ed to include

spin-orbit coupling, has been applied in the analysis of

the Fermi surface of Pb. ' Potential distortions to the

Fermi surface ut zone planes are .of Grst order in the

appropriate Fourier components and hence the method

is ideally suited to polyvalent metals. Ke have, there-

fore, used a very similar approach here for face-

centered-tetragonal (fct) indium. In Sec. lI, we outline

the free-electron structure of In and analyze, in terms
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Figure 1 shows the 6rst Brillouin zone for fct In, whose
low-temperature lattice constants are a =4.5557 A,
c/a= 1.0831.' We note that since the synnnetry is lower

[001] = c Qxls

= [010]

IOO- Fro. 1. (a) First Brillonin
zone in fct In (cfa=1.083)
showing the +~ symmetry
element used in setting up
Eq. (1). The free-electron
second-zone hole surface,
multiply connected at points
8', as shown in (b) and the
third-zone electrons arms,
multiply connected at T and
pinched 06 at 5 are also
shown (c).

'C. S. Barett, Advances in X-Ray Analysis (Plenum Press,
Inc. , New York, 1962), p. 33.
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of the Fourier components of the potential, the possible
Fermi-surface topologies as predicted by structure plots
for the various symmetry points in the zone. The
calculations of the subsequent Fermi-surface structure
and of extremal areas on the third zone by means of a
simple model potential are outlined in Sec. III, and in
Secs. IV and V we discuss the derived band structure,
density of states, and related properties. Section V also
contains some general results on the form of the lines
of band contact for the fct structure.
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TAsLE I. Free-electron areas on the second- and third-zone
surfaces in In (areas in computational units).

Plane

(t&o)
(010)
(100)
(Oon)

(110)
(01a)

0.039
0.014
2.83
2.64
1.81
1.82

~kg& 3.'l9.

thRD 1D thc cRsc for cubic fcc metals) thc lTllDUIlum sym-
metry element is now ~'~ of the zone a,s shown in Fig. 1.

The free efsctrorI -Fermi surface {FS) is also shown
in Fig. I. The 6rst zone being almost exactly 611ed, it
consists prlnclpaBy of a second-zone hole surface, which

is connected in the extended zone scheme at the sym-
metry points 8'. The third-zone surface consists of two
sets of arms (referred to as rr and P), which are multiply
connected at the points T and pinched off at W. {Note
that 5' has been used to label the point with tetrahedral
symmetry. ) The principal areas of interest in the free-
electron model are listed in Table I. Although our
discussion centers primarBy on the third zone, wc have
given the areas on the second zone for completeness.
Unless otherwise stated, we use the conventional com-
putational units (CU) throughout, namely, h'/2m
=2s/a=i, where res is the free-electron mass: the
conversion factor for In is simply 1 CU= 7.22 CV.

There are 6ve zone planes bounding the minimum
symmetry element, and for a local pseudopotential
these lcRd to R secular cquRtlon for cDclgy Eg as a
function of k as follows:

Ts(k,Es)
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where wc abbreviate the principal Fourier components as

Vx= Vi, ~, , V~= Vo, o,~~,
' V3= V2, o, o', V4= Vm, o,2, V5= Vj.,~,3~.

In Fq, (],), wc set rr= g/c; its diagollal terms al'c

Ts(k,Es) =k' —Es,
TI(k,Es)= fk —(0,0,2rr) O' —Ea,
T,(k,E,)= Lk—(2,0,0)]'—E.,

Ts(k,Eg) = t k—(1,i,u) )'—Ez,
T,{k,E,)=Lk-(1,1p)O'-E„
T,(k,Ea)= $k—(1,1,n))'—Es.

Since thc CGect of higher bands on the energy levels at
the symmetry points is small (as can be demonstrated.
readily by perturbation theory), we can discuss the
level structure at E, 8", T, and U in terms of smaller
secular equations as outlined in Appendix A t Eqs.
(Ai)—(A4)j.

The free-electron sphere passes just outside the sym-
metry point T and just inside 8'. The actual Fermi
surf Rcc 8UBcrs collslderRblc dlstol tloD 1D this rcgloQ. To
determine the connectivity we can, following the
methods of I,4 plot regions of occupation or nonoccupa-
tion of levels at the various symmetry points and
thereby predict the topological structure of the Fermi
surface that accompanies a particular sct of Fourier
components. To accomplish this, we require the energy
levels at the symmetry points; these are easily obtained
as the solutions of the secular equations (Ai)-(A4).

In Figs. 2—4 we have given the. structure, plots
appropriate to the symmetry points. -E, U, 8', and T

defined 1Q Flg. i. Thc diagrams hRvc tlM followlDg
interpretation: 1 implies a single zone occupied at the
glvcn point) 2 IncRDS two zoDcs occupied~ Rnd so OD.
Note that the Fermi energy used in Eqs. (A9)—(A12) is
in fact appropriate to the Gnal choice of band gaps that
ylcld tllc corlcct areas oil tllc p-RIIlls. Tile dctallcd fol'Ill

o g~ =Q.575 A

R~ =07) 5 A

Fjo.2. Structure plot. for the symmetry point T, where normally
for VI=/'2= VI=0 four zones are occupied. Our plot does not
show this because the dependence of the structure at T upon all
three principal band gaps requires an additional constraint. tA'e
assunM pg —V2=0.0401 wlMch ls found floIQ Eq. (2) to be vahd
over a wide range of E,.
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Fn. 3. Structure at lV, showing no zones occupied
for the free-electron bands.

of the plots is, in general, not altered when any Fermi
energy close to the free-electron value is used. (The
changes in E are second order in the V&'s as discussed
below. )

Thc gcnel"Rl prlnclple lnvolvcd ln 6tting pscudo-
potentlRls to I c~-surf Rcc data ls qultc stI'3 lght-
forward (Ref. 4). Fourier components are chosen, the
Fermi energy ensuring the correct volume is calculated,
and extremal areas ln various zones are directly com.-
puted, The latter are compared with experimental
Fermi-surf Rcc dlIncnslons Rnd areas) RQd thc FGUI'1er

OInp cnts are dj ted u til ag eeme t is achie d.
Kith two independent components, as in Al, 4 the
method is lengthy; with three oI' QMre, as here, the
procedure can bc prohibitive. However, we take note of
the fact that the Fourier components V6 of the pseudo-
potential are in fact simply ordinates (on the complete
form factor) evaluated at the reciprocal lattice points.
Model-potential calculations of form factors for simple
metals have been shown by Heine Rnd Abarenkov' to
be smooth curves (for scattering on the Fermi surface
as required here). More importantly, however, the form
factors exhibit nodes, and the shortest reciprocal
lattice points lie quite dose to the position of the erst
of these.

The "experimental" values of Vg for several siInp].c
metals'' ' are reproduced reasonably weD by model-

potential calculations. It has recently been observed
that thc 5.rst few Fermi-surface-derived Fouricr com-

ponents llc on a some%'hRt slmplel form fRctolq QRIQely)

V(~)= —) 'co~*/I:*'+) 'f(~)3, (2)

where energy is measured in units (-', )Ep, x is the wave-

numbcr variable measured 1Q units of 2kp, $=2$J;E„
Rnd

f(g)=-,'+(1—x'/4x) luau(1+x)/(1 —x) ig(x).

In Eq. (2), X'=(eaekz)-', and g(x) is the form of
exchange collection to thc dlelcctx'lc function Rs used

~ P, Heine and I.Abarenkov, Phil. Mag. 9, 451 (1964);A. 0. E.
Anilnalu and V. Heine, Phil. Nag. I2, I249 (I965).

~ +.W. Ashcroft, Phys. Letters 23, 48 (1966);J.Phys. C I, 242
(j.968).

by HclIM Rnd Abarcnkov, l.c.,

g(*)= &—L~'/2(~'+0) J.
The constant P=X'+0.5. For our purposes, the precise
form of exchange ls not too 1InpoI'tant, slncc thc
denominator of (2) is dominated by x' at the reciprocal
1Rttlcc vectors. Thc slDgle paraIQeter Rg appearing ln
(2) is a measure of the range of pseudopotential cancel-
1ation in the core region. Its value is fairly close to the
ionic I'adlus,

In pursuing the values of vl, v2, and Vs that re-
produce the data, , we have assumed that Rll three hc on
a smooth curve, and moreover, that, as with other
simple metals (e.g., Al, Pb), the curve can be reproduced
with sufhcient RccUI'Rcy by RpplopI'1Rtc cholcc of E .
The possible extremal Fermi-surface areas in In range
ovcI' DcRlly four orders of IQRgnltudc ln slzc. Thc foI'Gl
factor given by (2) reproduces these successfully (as it
does fol R langc of thlec orders of Inagnitudc ln RrcR
in Al), and it appears that, at least for values of x
around unity, the simple form factor should require
only small rehnements.

The band gapa Vq, V2, and Vt given by Eq. (2) are
shown on the structure plots in Figs. 2-4. To deter-
mine the correct Fermi energy, we have used as a first
approximation (as in I) the simple perturbation-theory
result for the shift 6 in energy produced by a Bragg

Fro. 4. We plot (e) end (b) on the same scale to contrast the
structure at U, where the principal P-arm section is located, and
at'X, where the O.-arm section would be expected.
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PbfIn 0,575K
I I

I.O I.2
X

-0.2

V(X )

-0.4

-0.6
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-0.8
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FIG. 5. Form factors for In, Al, and Pb, with the arguments
x1 ——0.769, x2=0.842, x3=0.911 marked for In. The Fourier coefB-
cients for Al are taken from Ref. 1, and those for Pb are taken
from Anderson and Gold (Ref. 5). The form factors that pass
through these points are given by Eq. (2), with R,=0.59 L for Al
and =0.57 A for Pb. Energies are measured in units of (~2)Zg and
wave vectors in units of 2k~. The curve labelled HA is the Heine-
Abarenkov model potential for In {Ref.7).

R.=0.5'/5A and R,=O. /15A, yielding form factors
shown in Fig. 5, give the correct extremal cross sections
for the P arm and correct Fermi-surface volumes. The
band gaps corresponding to the two choices for R. are
Vg= —0.091, V2= —0.038, V3=0.005; and Vg=0.037,
V2=0.087, V3=0.125, respectively, in computational
units. The principal sections are shown, together with
the free-electron sections, in Fig. 6. In both cases, the
P-arm system has a ring structure (appropriate to
topologies of Fig. 2) as shown in Fig. '/, and is thus
similar to the third-zone structure in. Al. 4 The areas of
the necks near the corners of the rings are of order ~ the
area of the principal sections for R,=0.715A, but

1/30 the area for R,=0.575 A, and we attribute (as
do Mina and Khaikin) the small cyclotron masses to
these regions (see Table III). Only for R,=0.575A do
any remnants of the n arms remain —the other model
removes them completely. These minute arms (or
"platelets") are shown on Figs. 6 and 7 with their P-arm
counterparts. Corresponding principal areas Lin the
(011) plane] are 4'Pg of the principal area of the P arm,
10 ' CU, and the volume of each remnant e arm is

plane with Fourier coe%cient V0..

Ag= Vg'/SZs' xg ln
~
(1+xg)/(1 —sg)

~
. (3)

In the case of In, where we require some precision in the
discussion of the n arms (see Sec. III), we have also
compared the above result with machine calculations
(which adjust R& for a given set of Vg's to yield a Fermi
surface enclosing 3 electrons/atom), and found that
corrections to the energy shift (3) were required. ln
comparison to Ess (1.205), we find energies for pertinent
values of R, (see below) to be

t0ll) plane
faTI]

ta) Rc 0.575~

Ol0) plane

t

el&al

EJ
Perturbation theory:
Machine

(volume calculations): 1.203 1.194.

R,=0.575A R.=0.715A
1.194 1.182

III. CALCULATED PROPERTIES: COMPARISON
WITH EXPERIMENT

The available experimental data fall roughly into
three groups: (i) de Haas —van Alphen measurements of
Brandt and Rayne' (ii) cyclotron mass measurements
of Mina and Khaikin, 's and (iii) size-effect measurement
of Gantmakher and K.rylov. "In this section, we focus
our attention on the results of the 6rst group and we
compare experimental areas with extremal areas arising
from the various topologies predicted by Figs. 2—4
)and Eqs. (A9)—(A12)j. We find that boo choices,

(b) R
t.lTO)

9 G. B. Brandt and J. A. Rayne, Phys. Letters 12, 87 (1964);
Phys. Rev. 132, 1512 (1963)."R.T. Mina and M. S. Khaikin, Zh. Eksperim. i Teor. Fiz.
51, 62 (1966) LEnglish transl. :Soviet Phys. —JETP 24, 42 (1966)j."V. F. Gantmakher and I. P. Krylov, Zh. Eksperim. i Teor.
Fiz. 49, 1054 (1965) /English transl. :Soviet Phys. —JETP 22, 734
(1966)3.

(b)

FzG. 6. Free and perturbed p-arm principal (110) section at U.
We have marked in dimensions corresponding to measurements of
Gantmacher and Krylov, who obtain 0.22 and 0.18. Also shown
is the principal section of the a-arm remnant with R,=0.5753,,
which appears in the (011) plane near X.
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R, =o.575K

(OOl) Plane

Fxo. 7. Free and perturbed sec-
tions of the p arm ln the (001}
plane, miih ring structure pre-
served in both models. Correspond-
ing sections of the o. arms appear
in the (j.00) plane.

~10 CU. %e can gee the following arguments to
show that if the n arms exist at all, they must be very
small.

First, without appealing to the details of the form
factor, we remark that the free-electron levels at E and
V are triply degenerate, and any (small) perturbation
wiQ therefore increase the third-zone energy in the
vicinity of these points, thereby reducing the size of
the n (and P) arms. The shght decrease in Z p due to the
presence of Bragg planes will further reduce their size.
Note that (E~ E~))2(E~——Ea), corresponding to
a "free-electron" area for the n arm about 3 that of the
P-arm, hence the effects are proportionately more
plonounced on the O.-arxIl systeID.

Next, we point out that two form factors that pro-
duce the correct P-arm area and Fermi-surface volume

may give diGerent results for the 0. arm, because it is
predominantly V~ and V3 that perturb the levds at E,
and V~ and V~ the levels at U. A rough rule of thumb
which serves as a criterion for the existence of O.-arms
is

~
Va/Vm

~
&ar, which occurs in our model only for Z.

between 0.55 A and 0.58 A. As long as the band gaps lie

on a smooth curve, a reasonable upper limit to the area
of the n arms near E is, conservatively, &'~A p. Ke are
ruling out the -unlikely possibility that V~ could be
large with V~ and Vq small —the only circumstance
under which the n arms could be substantial.

At the zone corner points 8' and T, the effect of the
perturbation is more complicated. As noted in Sec. I,
certain combinations of band gaps can lead to multiple
connectivity of the second-zone hole surface around the
corners of the zone. Ke 6nd markedly similar behavior
to occur here. In fact, for the sets of values of Vj, V~,
'and Va, which reproduce the correct P-arm structure,
the second-zone hole surface is connected by small tubes

near the corners of the rhombohedral faces, as depicted
in Figs. 8 and 9 (in contrast to the situation in Al,
whose second-zone surface is closed). The structure at
the square face is similar to that found in Al, namely,
in the absence of spin-orbit coupling the second-zone
hole surface is connected at single points to the (third-
zone) P-arm ring. As might be expected, the details of
the Fermi-surface structure near 8' and T are consider-
ably diGerent for the two model pseudopotentials. To
illustrate, we list extremal areas for the second-zone
junction tubes and neck regions of the P-arm system
in Table II, together with the larger extremal areas
observed on the third zone. The smaller sections are
depicted in Figs. $0 and ii. In their earlier work,
Brandt and Rayne observe low-frequency oscillations
corresponding to an extremal area 0.0006 CU, and with
an orientational dependence very similar to that
arising from the bulbous neck region of the P-arm
system as given in the E,=0.575 1 model (shown also
in Fig. 10). This agreement is quite striking, inasmuch
as a change in energy over this region of 0.2% EI would
cause these areas to change by about 50'P~. We shouM

not, in fact, expect such agreement from a modd as
simple as ours, and cannot expect to retain it when
de6nitive data on the 0. arms and the structure at 8'
become available. Notice that the Fermi-surface
dimensions around 8' are also very small, and experi-
mental data on this region should give an interesting
guide to refinements for the pseudopotential.

IV. EFFECTIVE MASSES AND
DENSITY OF STATES

The observed resonances in the Azbel-Kaner effect
in In give a measure of the diBerential area on the
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(0
(OOI) Plane

(a) Rc +0.575A
—-l 0-

«o

o.ol4

= I'olo]
lio

'l.o f.l00]

(loo)
(b) Rc&o.

(a)

-0

(00l)
(b) Bc=0

, I foio]

I

[OTo] 0.5 I

g~~Llne of
Band Contact

0.5
, N

i,p [Ioo]

Fro. 8. (100) section of second-zone hole surface showing con-
necting tubes near 8' and P-arm necks near T, connected at single
points to the hole surface. Third-zone regions are indicated by
the numeral 3.

Fermi surface in various zones. Normally the latter are
expressed as cyclotron effective masses ns,* and are
given by

I dA

Fro. 9. (001) section of hole surface showing connecting
tubes near T with the E,=0.715 A, model.

projection operator onto the entire core space. If 0 is
chosen to be —V, then V„,= V—P,V is the Austin"
form of the potential which, by assuming P, leads to

TABLE II. Extremal areas (in computational units) on the third-
zone p-arm system and second-zone connecting tubes.

- Large third-zone orblts
6eld direction Empt. ' E,=0.7I5 3. E,=0.575 z

where 2 is an extremal area on the Fermi surface. The
energy e here is the ~ appearing in the energy-versus-
wave-number relation appropriate to the $rep 'band
structure. It is not the energy E appearing in the secular
equations used here. In Eqs. (1) and (Ai) (A4)~ ea 18

related to E& in the (G,G) diagonal element by

e,=Z,+(I —Gi V„il —G), (4)

where we have explicitly displayed the fact':that the
potential is a pseudopotential whose most general forin
is V„,=V+P,O, with 0 being any linear operator
(satisfying the translation of the lattice) and P, being a

pion
[100]
L011$

Small orbits
P neck near Tb
Second-zone tube near T'
Second-zone tube near lV'
Second-zone tube near W~

0.023
0.03I
0.04$

. .0.0006

~ t 0

0.0007

0.023
0.032
0.042

0.0093
0.00j,2
0.0040

0.023
0.03j.
0.042

~ ~ 1

0.0003
0.0005

a Brandt and Rayne, Ref. 9.
b See Fig. 10.
e Extremal areas are given for 6eld in the I:100)direction, .
sf Field in the $110j direction.

"B.J. Austin, V. Heine, and L. J. Sham, phys, Rev, &2&, 27'
(1962).
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(l00) plane

Re ~ 0.715K
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Data from Ref. 0—Theory tRc 0.5T5$)O
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PIG. 10. Various sections of the I'ermi surface near T, with the
number of occupied zones in each region indicated and lines of
band contact drawn in where they aid understanding of the
second- and third-zone structures. The pronounced bulb on the
neck of the 2to=O.SH A p arm as shown 1n (c) (which causes the
cross-sectional area in the (100) plane to change by a factor of 2j
is not present in the other model, shown in (a) and (b). The bulb
makes possible the unusual angular dependence, which corre-
sponds to the data of Srandt and Rayne. Notice the two sets of
extremal areas: The larger areas represent orbits centered at T.
There is also a marked qualitative difkrence between the second-
zone surface near T. This is possible because the band contact
line passing through the rhombohedral face of the zone near T
represents degenerate second and third levels for R,=0.715 A, but
not for E,=O.M'5 i..

essentially complete cancellation between terms for
r(R„ is being approximated m local form by Etl. (2).
The matrix elements of t/'~, in general depend, however,
on both the energy and wave vectors of the pseudo-
wave-functions. For Fermi-surface areas and their
derivatives, we need to pay particular attention to the
deinition of the energy scale for the secular equation,
in which we set

E,= e,—&l
—G~ V„,~lt —G&=.,—V„,(E)

(as in the local pseudopotential approximation). As
regards band-structure contributions to effective
masses, we must, therefore, modify any derivatives
taken with the secular-equation energy E by a factor

1+Ld Vess(E)/dE] ~

Thus, for example,

m.e 1 dA) dQ 1(dA d vsse
1+

n ~ dE& de& ~EdE dE

and so the cyclotron masses computed by area changes
dehned by the secular equations used here must be
corrected by a factor of

(&)

)
'

~t=j 1+
dE gr

It is clear that this result is applicable to a/l zones. The
density of states calculated by evaluating the volume
shift in k space of the Fermi surface must also be altered
in a similar way to get the true density of states. In terms
of the model potential leading to (2) we incorporate the

energy dependence solely in terms oi' R,(E). In forming

(V(r)), the long-range part of the potential is cancelled
oG by the Coulomb Geld of the electron gas leaving,

simply, as the energy-dependent part,

(V(r,Er))=4sl.es(E,s/2) = (Er/3)hsss,
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(l00) plane

Rc 0.7ISK Re ~ 0.575K

(OOI) plane

UX

~ Ooto from Ref. 0—Theory (Ro~04TSA)

(l00j plane

E o l.203

Q ~ t E I ~

& (log) IS 30 45 60 75 [Oio]
Field Direction from [IQQ] gyyeoe)

(b)

Fro. 11. Sections of tbe Fermi surface near W in the (100) and (001) planes. Tetrahedral symmetry permits one to view the (010)
sections by inverting the (100) 6gures. The E,=0.7j.5 A sections are depicted in (a), and in (b) are shown the jwfersectf'ffg tubes
which appear with R,=0.575 A. The latter make possible an areal minimum in the [110]direction, 3[110]=0.0005 CU, which cor-
responds as shown to the data of Brandt and Rayne. Our E,=0.575 A model gives another set of oscillations, arising from orbits
centered away from W, with areal minima in the [100] and [010]directions, 2[100]=0.0003 CU, as listed in Table II. Notice that a
small increase in Eg replaces the tubes by pockets of electrons in the third zone.

where e, is the electron density. It follows that

d Vooo = (-', )X'S'rf,
dE @g

d 1nR,

dlnE ~~

is the parameter which expresses the energy dependence
of the potential and thus leads to a determination of
~(E).

In addition to the energy dependence of the diagona1
elements of V~„we also expect the o6-diagonal elements
(here, Vt, t, , Vs, s s, and Vs, s, s) to be dependent on the
energy of the valence state. %e are assuming eGects of
nonlocality to be small, which is a reasonable approxi-
mation for scattering on the Fermi surface. ' The energy
dependence of the V6's has an effect on the cyc1otron
masses, but now the shifts depend very much on the
orbit concerned. To illustrate, we may write,
symbolically,

dA BA& BA) d V)

dE BE)r BVlrr dEP
I+

where the 6rst term evaluates the differential area
keeping the band gaps Gxed, and the second term in-
corporates changes in the pseudopotentia1 with valence
energy. In terms of the parameter dered above we

may rewrite Kq. (6) as

f'dA (BA) E, BA (dA)+
&dE kBEi,. ~, BE, &dE)„

B 1rL4 f BA)

Vo& Bins, EBEi,'

and Ao=xkp'. It is now' apparent that the magnitude
of this term will depend sensitively on the orbit size.
For a large free-electron-1ike orbit, as in the second
zone, the effect of potentia1. distortion on the area is,
in the 6rst place, small. As a consequence, the eGects
of chueges in the potential are negligible. On the other
hand, for the smaB third-zone orbits, potential dis-
tortion gives a large initial fractional change in the
area, and changes in the potential itself and their effect
on the areas cannot be neglected. Collecting the factors
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together, we now find orbit concerned. '5 Hence, we may write, finally,

(m,*) 1 BA

&m/ss ~ aE g. s,

To make a comparison with experiment, we must
incorporate two further corrections. The erst is a many-
body correction to the mass due to electron-electron
interactions. At electron densities appropriate here

(r,= 2.39), Rice" has shown these to have a negligible
effect on the over-all effective mass of a free-electron-
like metal, and we expect them to be similarly small
here. The other correction, due to electron-phonon
coupling, is, however, not small. By way of example,
Ashcroft and Wilkins'4 have shown that a state k at the
Fermi surface leads to a contribution Xi, to the linear
term in the total low-temperature specific heat C, of
the form

d~~ lg.-ul'

so that averaging over all states k at the Fermi level,
the linear term becomes

where

C=70(1+X)T,

(1~ d~~ d~u le~-u I'
A= Nasl —

I

ES/ 4

Xr =Nss(E p)— dP
~F orbit i'

dS, lg.—I'

4x' AMER|;

(8)

where li is the path length of the extremal orbit F. For
spherical Fermi surfaces contained within a single zone,

(7) and (8) reduce to the same enhancement factor, but
for distorted multiply-connected surfaces we must

expect the averages to be dependent, in general, on the

"T.M. Rice, Ann. Phys; (N. Y.) 31, j.00 (j.965).
"N. W. Ashcroft and J. W. Wilkins, Phys. Letters 14, 285

(1965).

with gi, p the matrix element for scattering phonons of
frequencies s» ~ (S here is the actual Fermi-surface

area, and for the sake of clarity we have omitted the
usual sum over polarizations). In (7), .Vss(Ep) is the
band-structure density of states. Turning again to the
case of the cyclotron eGective mass, we find that it too
suGers an enhancement, although the average involved is

somewhat diferent, being an average of the contribu-

tions of the states k around the extremal areas con-

cerned and not over the whole Fermi surface, (as in the
specific-heat case). We are therefore led to consider

expressions of the form

1 dary
J (J"2(1+zr).

vr dE)g, s~

The calculations of F~ and F2 both involve a deter-
mination of g. In addition, the precise evaluation of Xi
requires a knowledge of the lattice spectra and these
are not presently available. Although detailed estimates
of the corrections cannot therefore be made, we can
make reasonable calculations of the expected enhance-
ments as follows. First, we note that the tetrahedral
structure of In is not too far removed from cubic.
Second, we may take the phonon dispersions on In to
be similar to those in a cubic metal but scaled by an
average ratio of the longitudinal and transverse sound
velocities. It follows that if we can find a cubic metal
(CM) whose form factor V(x) in reduced units (i.e.,
wave vectors in units of 2k' and energies in terms of
as E~) is similar, then

EF' ' Com (McM (mss~)'"

p'M C" &3P" (mss*)'"

which follows directly from (7). Here, C's are sound
velocities and M's are ionic masses. By assumption, the
integrals in reduced units are approximately equal, and
hence cancel in the expression above. The reference
metal should also be trivalent and its phonon enhance-
ment should be known, and this obviously limits us to
Al whose form factor is not as close to that of In as
we would like. Nevertheless, we obtain X'"=0.60, giving
a predicted phonon-enhancement factor of 1.60, to be
applied to our band-structure density of states and
cyclotron effective masses. When applied to our band-
structure density of states Nss(E&)/No(E+') = 0.91 (to
be discussed in Sec. V), we get a value of 1.45, which

agrees rather too well with the exp:rimental thermal
mass, "mr*/m= 1.46, taken from the coefficient of the
linear term in the specific heat. The error here is

probably large, but we also get good agreement with the
observed cyclotron masses on the second zone, as shown

in Tables III and IV. The third-zone ratios, m,*(expt)/
m,*(IlS), are systematically greater than 1.6, however.
This stems in part from variation of the enhancement
factor Xi discussed above. For most points on the
second zone, the matrix elements gk ~ referred to earlier
are constructed from essentially single orthogonalized-
plane-wave (OPW) wave functions; hence, as mentioned
previously the orbital averages (8) would give essen-

tially the same result as the surface average (7). How-

"The ratios of moR*(expt)/mga*(theor} which give (1+))
have shown some anisotropy in, for example, both Al and Pb
{see Refs. 4 and 5)."J.R. Clement and E. H. Quinnel, Phys. Rev. 92, 258 (1953).
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TABLE III. Comparison of experimental and theoretical speci6c-
heat and cyclotron effective masses, without energy dependence
of the pseudopotential included. »

TABLE IV. Comparison of the eHective masses in In
with those of some other simple metals. '

Na Al In{Re=0.575 A)

Zone
Field

direction

Li 103
L011j
t;111)
t.i ioj
Liloj
Liooj
{.111j
p. ioj

Specijc-heat mass

1.17
1.34
1.54

0.19b
0.202
0.27
0.35

0.096
{extrapolated}

1,46e

0.778
0.885
1.022

0.113
0.113
0.146
0.211
0.044

1.51
1.52
1.51

1.68
1.78
1.85
1.66
2.2

1.60

0.768
0.909
0.970

0.110
0.119
0.162

0.10

1.53
1.48
1.59

1.60
1.70
1.67

0.096

1.60

Rs =0.575 L O.715 A
mP(expt) mP(B.S.) expt/th. mP'{B.S.) expt jth. (m+gm) es 1.00

(am*pm) el-el 0.06
(Bm+/m) el-ph 0.18

1+{bm/m)el-el+ (hm/m)el-ph 1.24

Specific-heat 1,25
mass

1.06
-0.01

0.49

0.91
~0,0

0.60
1.48 1.60

1.37 1.60

0.90
0.00
1,05

me(Fxp ) Cyclotron mass
(second zone)
(third zone)

~1.50 ~2.00
1.75 +0.10 2.25 +0.15

a Values other than those for In are taken from Ref. 14.

a Values taken from Ref. 10. unless otherwise stated.
b. Reference 9.
e Reference 16.

ever, this is not true for third-zone orbits, since most of
their points lie close enough to Bragg planes that
two or three OP%'s are mixed with considerable weight.
To estimate the CGcct of this, we perform a rough
calculation (as outlined in Appendix C) of the quantity
(Xiii—Xzz), where Xiiz is the enhancement factor for the
principal orbit of the P-arm system at U, and Xzz is the
second-zone factor, 1.6. Wc choose the principal orbit
of the p arm because of all third-zone orbits it is "least
distorted" from the free-electron orbit, and (Xiii—Xzz)
will probably be greater for all other third-zone orbits.
We conclude that for R.=0.5'l5 A (Xiii—Xzi)/Xii
=O.I5~0.05, which is not large enough to account for
the observed difference between second- and third-zone
mass enhancements but does have the correct sign.
With R,=0.715A, (Xiii—Xzz) is negative.

Notice that the orbit-dependent cGective-mass
enhancements found here have also been observed by
Gordon and Larson'7 in Al. The enhancements for the
equivalent neck masses in Al are about 15%higher than
the enhancement for the principal third-zone orbits.
This is also the case here, although there is also some
anisotropy in the enhancements: Inspection of the
elastic constants in indium indicates a marked variation
in the transverse and longitudinal sound velocities for
the various crystallographic directions. The latter will
manifest itself in the orbit averages involved in the
mass enhancements, and the observed irregularities
in m*/mss* are, as a consequence, related both to the
orientation aed orbit size.

The over-all agreement between experimental and
theoretical effective masses (including electron-phonon
corrections) suggests that FzF& may be close to unity,
i.e., q small. If we were to choose g in such a way that
F2, the orbit-dependent correction factor, brought the
second- and third-zone masses into agreement (i.e.,
"apparent" value of X, the same for both zones), then
F1 would diGer enough from unity to destroy the Over-all
agreement existing with y small. An independent

"W. L. Gordon and C. O. Larson, Phys. Letters 15, 12I (1965};
C, O, Larson and %'. L Gordon, Phys. Rev. j$6, 703 ($967),

determination of g ls afforded ln pllnclplc by plcssulc
dependence of the de Haas —van Alphen effect. How-
ever, this pressure dependence depends upon the
quantity g'= $(8 inR, /8 lnE) —1.164(8 1nR,/8 lna)]
and not upon y alone, and it is difficult to separate the
two dependences without explicitly constructing the
pseudopotential from the core states. We have com-
puted values of the quantity d lnA/dF, as outlined in
Appendix D, for comparison with the measured values
of O' Sullivan et ul." In the cases of the second-zone
oi'bits, agl'eezileil't is to wi'thiil about 20%. Since second-
zone areal derivatives are quite insensitive to g', an
unreasonably large energy dependence would be
required to achieve perfect agreement for these. The
third-zone areal derivative is most sensitive to q, and
for R,=0.575 A, a value of q'= —0.18 gives the best fit.
We have also attempted to deduce the energy depend-
ence of our pseudopotential using the OP%-calculated
energy levels of Gaspari and Das." We find that
dV000(E)/dE=0. 07 is consistent with many of their
points. This would suggest that g=0.11.However, the
apparent energy dependence of the Vg(E) does not
correspond to this value, and cannot„ in fact, be repre-
sented by a single parameter of this type. Moreover,
although the band structure calculated by Gaspari
and Das is qualitatively similar to the curves in Fig. 12,
the details are sufficiently di6erent to remove the
over-all agreement with the de Haas —van Alphen areas
which are highly sensitive to the band gaps.

7. BAND STRUCTURE AND
DENSITY OF STATES

We have used Eq. (1) and the values of Vz, V2, V3
corresponding to both values of E. to obtain the energy
dispersions of the electrons, E(k), as a function of k
for k along the various symmetry directions. These are
shown in Fig. 12; we have also marked in the Fermi
energy Ez as shown (see, also, Sec. VI). None of the
curves in. these figures includes the factor Fi, which can.
cRslly bc lncoI'poI'Rtcd fol Rny posslblc RpplleRtlon.

's W. J. O' Sullivan, J, E. Schirber, and J. R. Anderson, Soli/
State Commun. 5, 525 (j.967).

~' Q. D. Gaspari and I, P. Das, Phys. Rev, 167, 650 (I968),
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The presence of the planes of reaction on the zone

(the planes of the square and rhombohedral faces),
ensures the existence of.lines of band contact's (as found

previously, for example, in Al). We have solved Eqs.
(81) for the lines of contact and found, for the point T,

( Vs'+ Vs Vs—2Vr'&
I=( )',

2V2

in the (100) plane, and
n= c/a (10)

'" C. Herring, Phys. Rev. 52, 365 (1937).

2V2

in the (00n) plane, where K=(x,y, s) is the (wave

vector) displacement from T. There are also lines of
contact associated with the point 5', and their equations
are similar to those found for the lines of contact in Al

(n= 1 in what follows), namely,

nsLns —(Vs' —Vr')/(Vs)7= y' (12)

in the (100) plane, and

nsLns+(Vs' —Vr')/(Vs)7= x'

in the (010) plane, with K= (x,y,s) being the displace-
ment from 5'.

The positions and interpretations of the lines of band
contact for both values of E, are given in Table V,
although much can be inferred from the band-structure

graphs of Fig. 12. A more complete analysis of the lines

of band contact and resulting Fermi-surface structure
is deferred to Appendix B, for which the appropriate
illustrations are Figs. 10 and 11.

The following structure is commoe to both models:

(a) The P-arm ring is connected at eight points to the
second-zone hole surface (at its corners); (b) those lines

of contact near W which represent degeneracy between
the second and third bands lie entirely within the tubes
that connect the second-zone hole surface in the
extended zone scheme. We repeat that the areas of the
connecting tubes are especially sensitive to the choice
of Fermi energy because of their small size. For
R,=0.575 A, a 0.4% increase in Er will, in fact, replace

the tubes by tiny pockets of electrons in the third zone.
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TABLE V. A directory of the lines of band contact, giving their in-
tercepts and resulting Fermi-surface structure near W and T.
(B4) refers to Eq. (B4), etc.

1.0

Symmetry Set of Intercepts
point lines

T (B4) (100) Y =0.021

-1.6»

T (BS)(001) 0.021

-0.19
8 (B7)(1oo) z =o.o

8' (BS)(010)
-1.6»

0.0
1.6»

Interpretation
R.=O.575 A

contain tiie eight points of contact be-
tween P arm and second-zone hole sheet
lies entirely within second-zone electron
surface in rhombohedral face, first and
second bands degenerate
lies within P-arm ring, second and third
bands degenerate
third and fourth bands degenerate
second and third bands degenerate b lies
within second-zone connecting tubes
first and second bands degenerate
same as (B7)

Rc =0.715 A

H7 (BS)(010)

T (B4)(100) Y=0.018 first and second bands degenerate
0.096 contain the eight points of contact be-

tween P-ring and second-zone hole
surface

T (BS)(001) 0.018 first and second bands degenerate
-0.092 second and third bands degenerate, & lies

within second-zone connecting tubes
(B7)(100) Z=O.O first and second bands degenerate

0.114 second and third bands degenerate b lie
within second-zone connecting tubes

0.0 same as (B7)
-0.114

0.75

No(E)

N, (EF')

0.25

1.0-
N(E)
g(EFo)

0.75

0.5

0.25

(b)

I

I

2' 2vz

IIIp
/ne

EF

a.
rIII p
~EF

L X NK Ukg

» Has moved out of symmetry element, hence levels are not degenerate.
b Requires third-zone electrons. or tubes that connect the second-zone

hole surf ace.

Each. of these pockets will then be connected at four
points to corners of the second-zone hole surface. Con-
stant energy surfaces near 8" are drawn in Fig. 11.The
two model pseudopotentials dier in the following struc-
ture: (c) With R,=0.715A, those lines of band contact
near T which lie in the (001) plane and connect bands
two and three lie entirely within the second-zone con-
necting tubes. For the R,=0.575 A alternative, however,
neither second-zone connecting tubes nor third-zone elec-
tron pockets exist in the rhombohedral face near T. This
structure results because one of the two lines of band
contact associated with this region represents de-
generacy between bands three and four; the other line
connects bands one and two. The associated structure
is shown in Fig. 10, and compares favorably with
measurements of Gantmakher and Krylov" on the
second-zone hole sheet.

With only the third-zone il arm and second-zone hole
surface present, we have computed the density of states
directly from evaluating the change in Fermi-surface
volume accompanying a small change in Fermi energy.
LThis procedure leads, of course, to the usual relation,
X(E,)= (1/4~s) JFsdS/(I V,E, I).]We find

X(Ei )/Xp(E pP) =0.91&0.01.

About 10% of the density of states is lost through the
almost complete disappearance of the 0. arms. The
contribution from the second zone is enhanced by
about 2% over the free-electron value. The P-arm
contribution is reduced by less than 1% of Ep(Ess),

1.0-

0.75

N(E)
No(EF)

0.50

0.25

I I
V

2Vl 2V~ 2V3

FIG. f3. (a) Contributions to the density of states for the free-
electron model in In: I, first zone; II, second zone; III, third-zone
n-arm system; IIIp, third-zone P-arm system. (b) Density of
states in the nearly-free-electron model, with R,=0.7j.5L as
described in the text. The density of states at the Fermi energy
corresponds to a band-structure effective mass of 0.85. (c) Density
of states with R, =0.575 A..

because enhancement of 1/~ VsEs~ near the neck com-
pensates the substantial loss in area.

A semiquantitative calculation of the density of
states at energies below Ep is shown in Figs. 13(a)—
13(c).In Fig. 13(a), we have computed the contribution
to 1Vp(E)//cV p(Esp) from the various zones as a function
of E. This follows from

dSE
X(E)=

$(E& i VsE(
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Koyama 6 Spi
Pseudopotent
threshold fu

FIG. 14. Photoemission curve
superimposed vnth calculated
(scaled) density-of-states curve of
Fig. 13(c).

again for the particular case in which
~
VsE~ = 2k (i.e.,

the free-electron value). Then

where the 5; are the areas of the Fermi surface in the
zones i for a Fermi radius k=8'Is (we will con6ne our
attention to zones I, II, and III). In Fig. 13(a), the
second-zone (II) sill f8ce ls sllowll to coll tribute fol'

energies E&EI,. The third-zone surface contributes
when E&Ep, and the third-zone O.-surface contributes
when E&E~.

To account for the effect of the potential and band
structure on cV(Z) LEq. (14)], we have used the result
of Jones" derived for the correction to the density of
states due to a single zone plane, and have summed

these corrections over planes that cut the Fermi surface.
The existence of the band gaps now requires the area
of the Fermi surface of the 6rst zone, for example, to
start diminishing at an energy less than El„ in fact at
EL,—V~. On the other hand, Fermi-surface area in the
second zone first appears at El.+Vl, as shown in
Fig. 13(b) for R,=O. '115 A and Fig. 13(c) for E,=0.575
A. Similar abrupt changes occur at Ex+Vs and Zsr& Vs

as shown, and their magnitudes are also calculated
with Eq. (7) of Jones.

The contribution from the 6rst zone terminates in
Fig. 13(b), for example, at Er Vs (which is the e—nergy
of the first-zone level at S' and is the highest first-zone

energy). The third-zone contributions commence at the
third-zone energies appropriate to X and U as marked
in Figs. 13(b) and (c). As mentioned already, the third-

zone e system is empty or almost empty at E=E&, also
seen in Figs. 13(b) and (c). Contributions from the P
system commence below Ep. The result of adding the

s' lI. Jones, Proc. Phys. Soc. (London) 49, 230 (1937).

various terms gives the full curve on Figs. 13(b) and (c),
showing general increases in the density of states in the
region of the band gaps (as expected) and a few percent
decrease around the Fermi energy. Further support for
the potential corresponding to R,= 0.5'/5A is found in
the recent photoemission experiments (and their inter-
pretation) by Koyama sf ol.ss One of the implications of
the relatively large band gap V& produced by this
potential is the appearance of relatively strong structure
i»(Z) centered about the free-electron e~e~gy Ez.
This ls sccQ cleally 1Q the measuremcnts reported 1Q

Ref. 21 Dn which Fig. 13(c) also appearsj. The position
of the center of the structure relative to the Fermi
cutoff gives a rough measure of the energy scale in-

volved; it also gives an order-of-magnitude comparison
with the value of g'- previously mentioned; i.e.,

Vooo(&z,)—Vooo(&s)—=—0.17.

Of course there is not necessarily a simple relationship
between r) and ri' (clearly the quantity above depends

explicitly only upon r)), but we would expect similar

orders of InagQltudc. Thc cxpcl lmcntal Rnd scaled bRnd-

structure density-of-states curves are superimposed on
each other in Fig. 14.

vr. DISCUSsrom

From the band structures of Fig. 12, it is evident
that In is essentially as free-electron-like as Al. Kith
the Rid of R simple functional form for the effective
electron-ion interaction, we have investigated the
various topologies possible for the Fermi surface of In,
and have succeeded in reproducing the P-arni data with

'2R. KoyaIna, %. E. Spicer, N. W. Ashcroft, and W, F.
Lawrence, Phys. Rev. Letters 19, 1284 (1967).
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values of the three principal band gapa shown in
Fig. 5. Of the two model form factors we have discussed,
the E,=0.575A model gives much better agreement
near the symmetry point T with the de Haas-van
Alphen, cyclotron-mass, and size-effect data. In addi-
tion, it matches the caliper dimensions of Gantmakher
and Krylov on the principal section of the P arm at V.
Finally, the pressure dependence of this third. -zone
section clearly favors the E.=0.575 A model. The large
positive value of (d lnA/dI') for the third-zone orbit
suggests that V~ and V2 are negative. The band gaps,
now in eV, are, for Z, =0575k: Vr= —066, Vs ———0.28,
Vs ——0.037; and for E.=0.715A: Vr=0.27, Vs ——0.65,
V3=0.90. It is interesting to record that Golovashkin
s1 uLss have concluded from optical studies that

I Vr I

and ~Vs~ are 0.30 eV and 0.74 eV. These authors
orderedthegapsbyassuming, asinAl, that

) Vs() ( Vr(:
the agreement with the R,=0.575 A model is remark-
ably good if we make the opposite assumption.

As to the question of the presence of n arms, if they
exist, they must be very small. Their principal areas
Dying in (011) planesf would probably be no larger
than 1/20 of the principal area of the P arm.

There is Httle experimental evidence favoring the,
second-zone connecting tubes. In the earlier work of
Srandt and Rayne, " two sets of low-frequency oscil-
lations are observed. . One, as we have said, is un-
mistakably identi6ed with the P-arm neck. The other
has a symmetry that is consistent mth the second-zone
connecting tubes as given by R,=0.575A; here the
tubes actuaOy intersect at the symmetry point TV, to
give areal minima in the (110) planes. The frequencies
of the latter set of oscillations also agree in magnitude
with those of the E,=0.575 Amodel. A co-mparison is
shown ln Flg. 11.

One consequence of the connecting regions between
the second-zone sheets is the possibility of extended, or
even open, orbits for 6elds accurately aligned along
L100j or L010] directions (see Figs. 8 and 9). The effect
of these orbits on galvanomagnetic properties is di@.cult
to assess but, for example, there may be a small non-
saturating component in the transverse magneto-
resistance at high 6elds for strain-free single crystals.
The present measurements of transverse magneto-
resistance due to Gaidukov" use 6elds of up to 24 kG
and there is evidently no large nonsaturating com-
ponent. (Since the connecting regions are so small, the
condition on alignment is rather severe. )

There is little other experimental evidence supporting
the existence of the second-zone tubes. Oblique sections
of these regions do permit caliper dimensions of a
substantial size, and it is possible that they are respon-

23 A. I. Golovashkin et al. , Zh. Eksperim, i Teor. Fiz. 51, 1622
(1966) )English transL: Soviet Phys. —JETP 24, 1093 (1967)j.

'4 See Fig. 7 of the second paper of Ref. 9 (also shown in our
Fig. Ii).

"Vu. P. Gaidukov, Zh. Eksperim. i Teor. Fiz. 49, 1049 (I965)
)English transl. :Soviet Phys. —JETP 22, 730 (1966)g.

sible for the "y"oscillations of Gantmakher and Krylov
in their size-effect measurements. These authors remark
that the "y" osciHations give a range of dimensions
whose maxima are considerably in excess of those
expected on the n (and P) systems and are otherwise
dificult to relate to a closed second-zone sheet. We
have also found (see Figs. 8—12) regions on the con-
necting tubes with small Gaussian curvature, and
regions where the Gaussian curvature R changes sign
(saddle points). The effect of these parts of the Fermi
surface will be to increase integrals weighted by R '
appearing in the expression for the attenuation param-
eter over the free-electron value. This is in qualitative
agreement with the observation of Bliss and Rayne" of
attenuations in excess of the free-electron values for
certain crystal directions.

We have used the form factor given in Eq. (2) with
R,=0.715 A and 0.575 A, respectively, to compute the
resistivity p of liquid In just above the melting point.
According to Ziman'~ the lowest-order expression for
p~ is given by

(15)

where, again, x is the wave-number variable, measured
in units of 2ks. The function tr(x) appearing in (15) is
the static structure factor for the ions in liquid In. We
have calculated p using the experimental a(x) of Ocken
and Wagner" and the model hard-sphere function of
Ashcroft and Lekner, " the two curves being quite
similar. The results are, respectively, 38pQ cm and
41 pQ cm for R,=0.715 A, and 34 pQ cm and 36 pQ cm
for R,=0.575 A. These figures are to be compared with
the experimental value of 33 pQ cm at the melting
temperature T~——456'C. Both values of R„ therefore,
yield values for p~ that are within the probable limita-
tions of (15), and hence the two possibihties for the
potential cannot be distinguished between by appealing
to the resistivity of liquid In. Nor is the form of the
ion-ion interaction a decisive test—we have calculated
the pair potential Q(p) (where p=2krr) for two iona
separated by a distance r by the methods outhned in
Ashcroft and Langreth. " Using their Eq. (7), the
potential $ Lin units of (ss)Zs 7 for the two values of Z,
is shown in Fig. 15. Both curves are in reasonable
agreement with the hard-core dimension resulting from
an analysis of the structure-factor data in terms of the
Percus-Yevick equation (see Ref. 27). In the units of
Fig. 15, the hard-sphere diameter is pas= 8.40; measur-
ing (s)kTsr from the principal minima of the potential

se E. S. Bliss and J. A. Rayne, Phys. Letters 23, 38 (1966).
27 J. M. Ziman, Phil. Mag. 6, 1013 (I961).
'8 H. Ocken and C. N. J. Wagner, Phys. Rev. 149, 767 (1966).
ss N. W. Ashcroft and J. Lekner, Phys. Rev. 14S, 83 (1966).

We use a packing fraction of 0.456 appropriate to the melting
temperature.

80 N. %. Ashcroft and D. C. Langreth, Phys. Rev. 159, 500
(1967).
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(a) Hb)

I'so. 15. Ion-ion interactions
calculated from Eq. (7) of Ref. 28
for an electron density appropriate
to liquid In just above its melting
point. (a) R,=0.575 x, (b)
E,=0.715A. Note that p=2k~
and energies are in units of (glEg.

-2,0-

curves (see Ref. 18) give intercepts p= 8.1 and p=8.6
for E,=0.575 and 0.715A, respectively, both values
bracketing the hard-sphere value.

In summary, the form factor (2) with E,=0.575 A

gives reasonable agreement with the established
galvanomagnctlc datR RIll ls also in accord with
elective-mass data, both cyclotron resonance and
speci6c heat. There may, of course, be small corrections
to (2) arising from the I-dependent nature of the
pseudopotential and truncation of the secular equation.
Most of these are assumed to be absorbed in the
parametrization (i.e., in E,) and the over-all agreement

suggests that they are small. Finally, we note that
there may be some small" additional anisotropy in the
Ferm1, suI'fRcc resulting from spin-orbit coupling. These
CBects have been neglected in the present treatment in
which the Kraxners degeneracy is unresolved.
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Tv Vx Vx

Tv
Tv

Vs Vx Vx

Vs Tw Vx

Vl Vl Tw Vs
-'

Vi Vs Tw

(A3)

@—kp V2p

Eg=k~g+g Vg&Lg(Vg)g+2Vrg7r",
(A6)

E=ks g—Vg (doubly degenerate),
(A7)

Ep ks '+ Vs&2 V——r,

Tz Vg Vy Vg

Tr
V. Vl Tr Vs-'

Vs Tr

where, for example, T~= k~' —E. The solutions to these
give the foUowing levels:

At E, E=k~' —Vs,
(AS)

Eg——keg+ g' Vga $(g' Vg)'+ 2Vtgj'lg,

APPENDIX A

The level structure at the four symmetry points of
interest is determined by the following secular
equations:

and at T, Eg=kp' —Vs,

E2= k p' —V2,

E~——krs+p(Vg+ Vg)

~Hi(V —V ))'+(2V )'7'".

(Ag)

AtE,
Tx V» Vx

Vg Tz Vs =0,
Vg Vs TE.

(A1)

"The spin-orbit coupling parameter has a value on the order
of 0.5 eV in lead (Ref. 5). In indium, vre expect the parameter to
be & (49/82)'X0. 5 eV=0.04 eV.

As in paper I, we now set E=Ep, and express U2 or Vs
as a function of Vg for each level. These curves /repre-
sented by (A9)-(A12)7 separate regions in which
different numbers of zones (indicated in Figs. 2-5) are
occupied at the given symmetry point. Letting
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~&=+p k~ ~ and so on~ we find at E~

V3= —~z,
Vi= ~Ir—{2//~x) VI',

V2= —6p,
Vg = d, rl —(2/h~) VI2.

Now all three band gaps determine the levels at T and
we use the constraint, V~= Vi+0.04, consistent with a
large range of E„to obtain

V~= —~T,
V2= —hp —0.04,
Vg= Ap —0.02+L(0.02)'+4VIij'".

Similarly, at 8 tlM lines separating zones of occupancy
are VI= —hs (corresponding to the doubly degenerate

state) and
V3= —d g +2Vg. (A12)

To discuss tlM topological structure of tlM Fermi
surface in the vicinity of 8' and T, we reduce the 4&4
determinants discussed in Appendix A to a more
convenient forin. We can rewrite (A3) and (A4) in
cases where the diagonal elements are not equal as

We must apply a small correction to EJ. and thus also
to the d 's as a result of the presence of band gaps. The
second-order perturbation-theory result used in I gives

EI =Eg 0 (1.3—0VI2+0.43Vii+1.16Vi2) (A13)

if we bring in only those Bragg planes that cut the
Fermi surface. The use of (A13) rather than E~'
modlflics tlic clilvcs oIlly sllglltly (A11) and (A12).

APPENDIX 3

Tj Vi Vg Vg
'

= (TITS—Vi') (T3T4—Vs') —Vii(TI+ Tm —2Vi) (Ta+ T4—2 Vs) =0.
Vy Vy Vg T4

(81)

Let us consider 6rst the point T. We paranMtrize the
kinetic energy in terms of wave-vector displacements
K= (x,y,s) from the point T (with x parallel to L100j,
etc.):

Ti r+2x12diy p

Tg ——y —2x+2diy,

Tg ——7+2ns —2dgy,

T4= p—as—2d2$ q

where y=
~
K

~

'—6, 6=EI —Ep,

d, = (ÃT),
d, = (XT) .

Equation (81) now becomes

L(p+ 2diy)' —(2*)'—V,'jL(p —2d,y)'—(2nz)2 —VI'g
—4V,2(~+2d,y —V,)(y—2d,y —V,)=0. (83)

This nicely displays the reQection symmetry in the
(100) and (001) planes at T, and factorizes for x= 0 or
x=0 to give lines of band contact in these planes.

(i) In the (100) plane, (y+2diy —V3) is a factor of
(83). Substitution of y= V~—2diy into the other factor
yields the lines of double roots:

b-s(V.—V.)j
&(Q+(Vai+ V2Vg —2 VI')/2Vij= (ns)', (84)

which intersect the p ring at the eight points of contact
with the second-zone hole surface (in fact at its corners).
Notice that, for Vi small (as in the case for 2,=0.5 "/5 A),
there is only one solution that lies within the symmetry
element, The other solution approaches a straight line

as VS~0, and strongly aBects the structure of the
p-arm neck (as shown in Fig. 11).

{ii) We similarly obtain, for the (001) plane,

Ey
—k(VI—V~)3

XQ—(Vii+ V2Vg —2VI')/2V2$= x', (85)

giving lines which lie inside the hole-surface connecting
tubes for Z,=0.715 K (see Table IV for comments).

For each model pseudopotential, we find the (100)
Slid (001) sectloils of tile. Fcl'Iili surface by solvlIig (81)
on the machine. These are shown in Figs. 10 and 1I
with lines of contact drawn in.

The structure at W is given by (81) if we replace
V2 by Ve and parametrize kinetic energies in terms of
wave-vector displacements K= {x,y,s) from 8' as
follows:

Ti='r+2x+ns q

Ti= p 2x+ns g

Ti= 7+2x ns q

T4=+ 2x Qs ~

where y=x'+y'+s' —6 and d =EI —Es. Because of
the higher symmetry at 8', one set of contact lines is
obtained from the other by a reQection through s=0
and a rotation through -,'s. about the s axis (as in
aluminum). In the (100) plane the contact line is

~L~—(Vi'—Vi')/Vsj =y',
and in the (010) plane

nsLns+(Vg' —Vii)/Vg1= x'. (88)
For both E,.=0.5BA and E,=0,7154, the sets of lines
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at 8" which represent degenerate second and third
lcvcls llc wlthln thc second-zone hole sul fRcc. In
general, when such a situation exists on the rhombo-

hedral or square faces of the zone, we must have either
the third zone occupied or tubes that connect the
second-zone hole surface in the extended zone scheme.

APPENDIX C

Point

2
3

CI

—0.90—0."/4
—0.33

0,0

0.30
0.66
0.94
0.7j.

0.30—0.13—0.02—0.7i

Th.al.E VI. Mixing coeKcients for third zone
(see text and Fig. 16).

The electron-phonon enhancement factor for a
(Ilioch) state ~k,n) of wave vector k in the nth band is Now if k is on the (third zone) Fermi surface, k—(1,1,u)

given in second-order perturbation theory by
and k—(1,1p) are very close to the Fermi surface, and
to a good approximation the integrals arising from the
three direct terms are equal, so that since

and the enhancement factor for an orbit I' is

&r=— d'&r~~'"'.
~r r

Since most of the Fermi surface in In is free-electron-

like, we let
~ p) be a single plane wave. For most points

on large second-zone orbits, ~k,2) is also very nearly a
single plane wave, but for most points on any third-zone

orbit this is not the case, and we must write, e.g. ,

(r~k 3) c sa r+c &'0-(),).a)) r+c~c.o —(),),al) r

Hence, for the second zone, we may write

~,),(g, (2))'= (s@»&q)',

whcrc Fy, 1S thc polaI'1ZRtlon vcctol fol a phonon of
polarization X and frequency eu~q. Both quantities are

understood to be periodically extended beyond the

6rst zone. However, the analogous expression for the

third-zone state above ls

~,), ~ g, .), (3)
)
'=

~
c)e~), .»&~+cue, ) (»—t:1,1,~j)I'g-().).-)

+css() (»—[1,1p])I'g-(), ).-) I

'

rooo]

the sum of direct terms gives a result equal to that for
the second zone. As R result, the difference between the
enhancement factor for some third-zone orbit, I', and
a typical second-zone orbit is

where

1
&r = Xr(3)—X(2)=— d/roc;c I,,

lr r

1 d5

S kr

Lee~ (»+G')3Ls.~ (»+6 )j~(.+o') I'(~+o )

xZ

G)=0, Gg ——(1,1,n), and G))
——(1,1,a).

%c have performed a rough calculation of 6 for the

principal orbit of the p arm, since 6 will probably be
larger for most of the other orbits on the P arm.

%c break the third-zone orbit up into three segments

(see Fig. 16), within each of which one of the c; s is

small, so that within each of the segments wc have only

to evaluate a single integral, %e tabulate, below, the

mixing coeKcients for representative points on the
third-zone orbit, and contrast these with typical ratios
of the two largest mixing codFicients on the second

zone. The second-zone 6gures were obtained by
averaging over each of the three types of zone faces,
approximating the actual segment of surface by a
spherical cap. (See Tables VI and VII.)

TAaLE VII. Ratios of two largest second-zone
mixing coefBcients (see text).

Pro. 16. Points on the principal orbit of the P arm for which
we have tabulated the mixing coeKcients.

Zone plane, G

DtnJ
$200]
$002ng

cl/cg

8
Ij
20
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To calculate the pressure dependence of de Haas-
van Alphen areas, we use the formula

d 11L4. 8 1nA d lnN 81nA d lno.

8 lns dP 8 lno, dPdP

BlnA BlnA BlnEr )dVa+Z +
BVg B lnEr BVg v, )3 dI'

Ke assume the I;;to be uniform over a given segment,
and pcIfol.m thc OIb1t avcl.agc by averaging the p1oducts
c;c;I;;, with c;c; averaged over the given segment. The
geometry involved is quite complex and only very rough
numerical estimates of the integrals I;, have been made,
from which we conclude that

0.10&() "&—X "&)/X &s' &0.20.

The processes that contribute to these I;, can be
classified as, say, E (only longitudinal phonons in-
involved) and U (both longitudinal and transverse
Phonons involved). Roughly saof the above factor
results from Ã processes, partly because there is some
cancellation between contributions from U processes.

The 6rst two terms account for the changes in electron
density n and ratio of lattice constants 0,. The last term
accounts for the change in band gaps; B Inst /B ln Va) voi
is the shift in Fermi energy, which accompanies a change
in V6 in such a way that the Fermi surface encloses
constant volume. The Va's change according to (2),
and we shall take into account possible changes in the

parameter E, with energy.
For the principal section of the P arm, we find that

dlnA/dE=$4. 41+5.10r/)Er, where Er is the com-

pressibility and s/=d lnR, /d lnE The various contri-

butions are (in units of Er):0.67 from the electron den-

sity, 1.21 from the lattice constants, "and 2.25+3.94rt

from the band gaps. Comparing this with the result

of Anderson, O' Sullivan, and Schirber, d lnA/dP
=(3.4+0.15)Es, we would deduce that st= —0.18.
%c note howcvcl that uncertainty 1n this value fol g
is greater by a factor of four than experimental un-

certainty in d lnA/dI'. Finally, we point out again that
our calculations of d lnA/dP for second-zone orbits give
numbers about 20% smaller than the experimental

ones, as do the calculations of Anderson, O' Sullivan,

and Schirber.
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Third-Order Elastic Constants of Aluminumet'

J. F. THoMAs, JR.1
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The complete set of six third-order elastic constants of single-crystal Al has been experimentally deter-
mined by measuring both hydrostatic-pressure and uniaxial-stress derivatives of the natural sound velocities
using a two-specimen interferometric technique. The specimens vrere neutron-irradiated to eliminate dis-
location e8ects from the uniaxial experiments. A self-consistent set of hydrostatic-pressure derivatives of
the second-order elastic constants has been calculated from the measured third-order constants. The third-
order elastic constants have also been used to calculate the thermal expansion in the anisotropic-continuum
model at both high and low temperatures, and a comparison has been made vrith the directly measured
expansion coeScients.

INTRODUCTION

IGHER-ORDER elastic constants provide an
CScient measure of many aspects of lattice an-

harmonicity. In particular, the third-order elastic con-
stants are useful in the calculation of many mechanical
and thermal properties related to the anharmonic
nature of the lattice potential energy. In addition, the
third-order elastic constants would be expected to

~ This research was supported by the U. S. Atomic Energy
Commission under Contract No. AT(11-1)-1198.

f Based on a thesis submitted in partial ful6llment of the re-
quirements for the degree of Doctor of Philosophy at the Uni-
versity of Illinois, 1968.

f Present address: Department of Physics, University of
Virginia, Charlottesville, Va. 22903.

provide useful new information on the nature of co-
hesive properties and interatomic forces.

The most powerful method for obtaining third-order
elastic constants is the measurement of sound-velocity
changes with applied homogeneous stress. Basic meas-
urements of this type utilize simple modifications of the
well-known megacycle pulse-echo technique. Early
measurements were restricted to velocity change with
applied hydrostatic pressure. For a cubic crystal, this
gives three experimental numbers which are related to
6ve of the six third-order elastic constants. To obtain
sufBcient information to measure all six third. -order
elastic constants, it is necessary to utilize a deviatoric
stress such as uniaxial compression.


