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and. Space-Charge Fields

A. T. FRGMHGLD~ JR.q AND EARL L. CooK
Depurttnent of I'hysics, Alblrn Un& arly, Auburn, AEubuntu 3N30

(Received 3 June 1968)

The coupled-currents approach is utilized to study oxidation kinetics for the case of electron and ion
transport by Geld-modi6ed diGusion. The expression developed for the particle current I for a given species
is J= (v/Spr) exp( —W/ks2')t us —ns exp(ZeVN/kyar) j, with SN=+s P expt'Zs(Vs y+Vs)/2ksT), where
y, 8', no, n~, and Z are, respectively, the attempt frequency, activation barrier, areal density at the metal-
oxide interface, areal density at the oxide-oxygen interface, and charge per particle in units of e for the
dousing defect species in question; kg, T, and e denote the Boltzmann constant, the temperature, and
the electronic-charge magnitude. The macroscopic electrostatic potential at the position of the potential
minimum following thc kth potcntlal Inax1IQuIQ duc to thc ordinary lattlcc pc11odlclty ls dcnotcd by Vp
In the low-space-charge high-Geld limit for equal magnitudes of Z for the oppositely charged diGusing
species, the electrostatic potential developed across the Glm is a constant, and the resulting kinetics have the
Mott-Cabrera form. The time t as a function of 61m thickness L is given by a series of second-order exponen-
tial integrals E2 with successively increasing values of the argument:

where v and L„;t are determined by the transport parameters for the system in question. This expression
reduces to the previously derived homogeneous-Geld parabolic growth law L'= 2L„usr/v whenever nonlinear
effects become inappreciable. Space charge can retard, enhance, or provide no modi6cation of the growth
rate, depending on the potential developed across the Glm and the sign of the space charge relative to the
rate-limiting species. For nonzero potentials with the sign of the space charge opposite to that of the rate-
limiting species, the growth rate is found to be enhanced; for nonzero potentials with the sign of the space
charge the same as that of the rate-limiting species, the growth rate is found to be retarded.

I. INTRODUCTION

HE effect of space charge on electronic and ionic
transport in semiconducting and insulator-type

solids is an important physical problem to which con-
siderable attention has been given in the literature. '—'
The space-charge modiacations of the values of such
transport currents introduce changes in the kinetics of
growth of dielectric and semiconducting contact layers
on metals, since the rate of growth of such layers is
determined by the rate of charged particle transport
through the layer. ' Some consideration has already been
given to the possible modification of the oxidation
kinetics whenever space charge is important. ' '0 Be-
cause of the complexity of the system of coupled non-
linear diffusion equations, however, the analytical ap-
proaches to date have been approximate. Exact numeri-
cal computations are a necessity in order to verify the
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pany, St. Paul, Minnesota. This research was performed at Auburn
University in partial ful61lmcnt of the requirements for the Ph.D.
degree.
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predictions of previous treatments of an approximate
nature and to provide a basis for further analytical
development.

The present work consists of exact numerical solutions
for oxidation kinetics based on electronic and ionic
diffusion currents with space charge. The computations
represent solutions for the early growth stage in which
space charge initially becomes an important factor in
the kinetics; the numerical scheme utihzed for the
computations did not allow the computations to be
carried into the thick-61m limit where total neutraliza-
tion of the space charge has been considered. ' The
method utilized for obtaining the kinetics is that of
"coupled currents" which has been utilized previously
to examine models of thin-61m oxidation kinetics based
on electron tunneling" and thermal electron emis-
sion.""The present development is applicable in the
growth region in which electron tunneling is negligible
and the scattering of thermally emitted electrons in the
oxide conduction band is suKcient to establish an
electron concentration gradient. There is evidence" that
this thickness may be of the order of 25 A. The present
equations include nonlinear diffusion effects due to large

'1A. T. Fromhold Jr., and K. L. Cook, Phys. Rev. 158, 6g}
(1967).

'~A. T. Fromhold, Jr., and K. L. Cook, Phys. Rev. 163, 650
(1967).
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electric fields in discrete lattices as considered by Mott"
and by Cabrera and Mott"

The basic equations are formulated in Sec. II.
Oxidation kinetics in the zero space-charge limit are
considered in Sec. III. Numerical computations illus-

trating space-charge modi6cations in the kinetics and
concentration profiles are illustrated in Sec. IV. Con-

clusions are summarized in Sec. V.

IL FORMULATION OF EQUATIONS

The discrete model previously developed" for dif-

fusion currents is utilized without making the simplify-

ing homogeneous field approximation. Thus the space-
charge contribution to the electric Geld, as given by
Poisson's equation considering two or more oppositely
charged diffusing species, is included in the present
development of equations for diffusion currents.

currents, The bulk defect concentration equivalent to
the ni( & at the point in question is given by n&('&/2a.

The electrostatic potential at the 0th potential
minimum (for arbitrary k) is denoted by V&. The rela-

tionships between the electrostatic potentials, electric
fields, and areal densities of the diffusing species can
now be stated in terms of the present notation in

a manner consistent with Poisson's equation" of
electrostatics.

Electric Fields

Define the quantities E&, (k=1, 2, . . ., 7) as the
electric Field at the position of the potential maxima,
i.e., E&,——E(xi). The electric field differs from potential
maximum to potential maximum because of the areal
densities of charged diffusing species in the intervening

potential minimum. Thus for r diffusing species,

Discrete Lattice

The lattice is considered to consist of X potential
barriers of equal height 8'(' for the sth diAusing species

(e.g., cation or anion vacancies, cation or anion inter-

stitials, electrons, or electron holes). A diagram illus-

trating the barriers and appropriate notation is given in

Fig. 1 of Ref. 17. The factor of the discreteness of the
lattice must definitely be included in order to obtain
a valid microscopic derivation of the current for large
electric fields. '" The one-dimensional geometry utilized

is applicable for the case of the growth of uniform

oxides on flat metal surfaces, since the di6'usion currents
for growth of the oxide are then directed normal to the
metal-oxide interface. The potential maxima are con-

sidered to be located at positions x~ (k= 1, 2, , N),
where x&,= (2k —1)a, with 2a representing the distance

between the potential barriers along the direction of the
current. The potential minima are located at the posi-

tions x=0 and xi+a= 2ka (k=1, 2, 1&&r). The total
thickness L(t) of the oxide is thus x»&+a= 21Va.

The potential minimum located at (xi+a) = 2ka for
arbitrary k is given the index k. Thus potential minima

occur at @=0, 2u, 4a, ~ ~, 2%0 and potential maxima

occur at x= a, 3a, Sa, , (2X—1)a.
The areal density (particles/cm' in a plane normal to

the direction of the current) of a given type s of diffusing

particles (interstitials, vacancies, electrons, or electron

holes) at the kth potential minimum is given by n„&'&.

It should be emphasized that e(') represents the defect
concentration (i.e., the deviation from the value appro-

priate for a perfect lattice) of the sth species rather

than the stoichiometric concentration of the sth species

appropriate for a perfect lattice, since the defect con-

centrations are responsible for the space charge, and

defect gradients provide the driving force for diffusion

IBN. Cabrera and N. F. Mott, Rept. Progr. Phys. 12, 163
(1949).

» A. T. Fromhold, Jr., and E. L. Cook, J.Appl. Phys. 38, 1546
(&967).

Er, E& ——i+(4'/e)[(1('&n& i('&+&1('&ng i&"+
+&1("&n& i("&] (k=1, 2, ~,S), (2.1)

where &1('& is the actual electric charge (i.e., the deviation

from a charge neutral lattice resulting in a contribution

to the macroscopic space-charge distribution) associated
with each particle of the sth diffusing defect species.
With EI, defined in this manner, Eo is the surface-

charge electric 6eld at the metal-oxide interface
excluding the areal densities of charged particles at the
potential minimum with index 0 (i.e., at x=0). The
source of Eo is considered to be the net charge on the
metal at x= 0, as distinguished from the charged defects
in the zeroth potential minimum in the oXid.

Utilizing the notation of finite differences, " where

the first difference of, an arbitrary function f is de-

fined by

Af&=f~i f&, — (2.2)

where 0; is the net charge associated with the jth
potential minimum due to all diffusing species,

(2.4)

That is, 0-; is the total areal charge density at the posi-

tion of the jth potential minimum. An additional

quantity of charge necessary for charge neutrality of the
metal-oxide system as a whole is considered to reside in

surface states provided by adsorbed oxygen at the

oxide-oxygen interface. A summation of (2.3) from j=0

J. D. Jackson, Classical Electrodynamics (John Wiley L Sons,
Inc. , New York, 1962},p. j.2.

'9 C. Jordan, Calndus of Finite Differences (Chelsea Publishing

Co., New York, 1965},p. 2.

the first difference of the electric iield given by (2.1) is

thus

AE;= (4&r/e)&r; (j=0, 1, 2, , X—1), (2.3)
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to j=k—1 yields

k—1

Q hE =Ep Ep — ——Q—p. (k= 1, 2, ~ , N) (2.5)

application of previous perturbation and averaging
techniques, ~' so that it is conceptually an easier
parameter to consider for this set of numerical calcula-
tions. Substitution of (2.10) into (2.9) thus yields the
following:

Electrostatic Potentials

Since the charged particles are considered to be
located predominantly in the potential minima, the
macroscopic electric field Ep (k=1, 2, ~,N) can be
considered to be essentially uniform in value over
regions xp —a& x(xi+a of the order of a lattice param-
eter. This statement is consistent with expression (2.1)
for the field. The change in electrostatic potential be-
tween adjacent potential minima is then given by

&Up i—=Up —Vp i —— 2aEp (k—=1, 2, , N). (2.6)

The reasonableness of this equation becomes apparent
when it is recalled that EI, is defined at the kth potential
maximum whereas VI, ~ and V~ are defined, respec-
tively, at the potential minima preceding and following
the kth potential barrier. Taking the second difI'erence
of (2.6) and substituting (2.3) then yields

6'V p i= D(hVy i) = 2—&AEp= —(8sii—/p)op'
(k=1, 2, ~ ~, N). (2.7)

This is the discrete analog of Poisson's equation.
On the other hand, substitution of (2.5) into (2.6)

and summation from k=1 to k=m yieMs

Q &Up-i= U —Up
&=1

= —2a Q Ep= —2umEp—

The double sum can be rearranged and written as a
single sum, so that (2.8) becomes

8~g m—y

V —Vp= —2amEp — Q (m —j)p;. (2.9)
e i-p

The surface-charge field Ep at the metal interface can
be related to the total diiference of potential (Vip —Vp)
across the oxide by letting m= N in (2.9):

8~g x—z

Ep=(—2aN) ' (VN —Vp)+ Q (N j)rr, . (—2.10)
i-p

It is illuminating to recall that 2' is simply the total
thickness L(t) of the oxide. Equation (2.10) shows that
in principle it is immaterial which of the two parameters
(Ep, Uip —Vp) is chosen for discussing a calculation in
which neither of the two is held fixed at the outset, since
they are related through Eq. (2.10). It has been found
in practice that VN does not vary appreciably with 1V
for the present work, a result of great importance in

sea &-&
V —Vp= (ns/N) (UN —Vp)+ P (N—j)p;.

(m= 1, 2, ~ ~, N —1). (2.11)

The zero of potential is arbitrary, as usual, since only
differences of potential occur in the above equations.
It is therefore convenient to choose Vp=0. This is done
throughout the remainder of the equations; this is
the convention used throughout in our numerical
computations.

Particle Currents

The equation for the particle currents J&&' of the sth
species over the kth potential barrier can now be stated.
Each current is the difference between the forward
current due to the particles with areal density e~&&'&

attempting the kth barrier with frequency v('&, and the
reverse current due to the particles with areal density
n~'& attempting the same barrier with the same fre-
quency. The barrier height 8"y&' for the forward
direction is modified to F'(' —Z&'&eE&a by the presence
of the electric Geld EI„and the corresponding value
W„&'& for the reverse direction is W&'&+Z&'&eEpc. The
parameter e is the magnitude of the electronic charge
and Z'&e is the egectke charge'~ (magnitude and sign)
of the di6using species for migration in the polarizable
and partially covalent medium in which the macroscopic
electric held is EI,. The quantity Z('&e has recently been
stated by Dignam' and previously by Lidiard" to be
equal to the space-charge contribution per particle of
the sth species; an alternate justification is given in
Appendix A. Even though the quantities g

&' and Z&'&e

may have the same average numerical value, and have
always been chosen numerically equal in our calcula-
tions, we prefer to retain the diferent notations for these
quantities in our equations to emphasize the two roles
(i.e., space-charge contribution to the macroscopic
electric Geld and force per particle located in the field
surrounded by the polarized lattice) which the charge on
each particle plays in the diffusion phenomenon.

20 M. J. Dignam, J. Electrochem. Soc. 112, 722 (1965);J. Phys.
Chem. Solids 29, 249 (1968). (The later represents a reversal in
opinion over the former as regards the question of internal electric
Geld modiGcations of the diffusion current. )

~1 A. B. Lidiard, in Hundbuch der Physik, edited by S. Plugge
(Springer-Verlag, Berlin, 1957), Vol. 20, p. 324.
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Assuming Boltzmann statistics for the probaMity
that the diffusing particle has a given energy as a result
of thermal vibrations of the lattice, the relation for the
particle current [Eq. (2.5) of Ref. 17j follows
immediately;

Ji&'& = ) &'& exp( —W(')/ksT)C Ni i&'& exp(Z(' Ee)&/ak sT)
—np(s) exp( Z(s)—eE),a/k}) T)]
(k= 1, 2, , X; s= 1, 2, , r), (2.12)

where k~ is the Soltzmann constant and T is the
absolute temperature. The currents are thus dehned at
the positions xI, of the potential barrier maxima.

Equation (2.12) neglects second-order effects of the
electric Acid. These CGeets, which are due to a relative
shift in the potential maxima with respect to the
potential minima that. is asymmetrical in the forward
and reverse directions, were 6rst discussed by Dignam. "
An independent treatment is given in Appendix II of
Ref. 17. In view of the simplicity of the model utilized

for the diffusion process in developing Eq. (2.12), and

the fact that only "built-in" potentials arc present in

thermal oxidation (in contrast to the possibility of much

larger "applied" potentials in the anodic oxidation"

case), it was decided to ignore second-order effects

entirely in the present development. This is in accord-
ance with the treatment of ionic diffusion in our previous
developments" ' of oxxdatzon km. ethics for the cases of

electron tunneling and thermal electron emission.

Steady State

The consideration of thc diffusion currents is now

restricted to the limit of the steady state in the presence

of the surface-charge field and the space-charge dis-

tribution appropriate for the given thickness aud the

given values of the physical parameters. The steady
state is the nonzero particle current situation obtained

in thc theoretical limit ln which thc two boundaries of

the oxide film are not moving relative to each other, and

following a time lapse suflicient for all transients to
disappear from the system. In this limit, the particle
currents are uniform (divergenceless) throughout the

lattice, having sources and sinks only at the metal-oxide

interface and at the oxide-oxygen interface. Exact
numerical computations" using the non-steady-state

continuum equation for simple diffusion have shown

the steady-state approximation to be well justified for

growth rates (and corresponding particle currents)

which are physically realistic for thermal oxidation. The
mathematical statement of the steady-state approxima-

tion for the sth species in the case of a discrete lattice is

Bn),(')/R= J):(' Ji+i"=—&Ja"——0—
(k = 1, 2, , X—1). (2.13)

Thus each of the variables J~&') can be replaced by the

~ M. J. Dignam, Can. J. Chem. 42, 1155 (1964).
'3 L. Young, A@OChc oxQ'e Fibns (Academic Press Inc., Nc~

York, 1961).

single parameter J('),
J„(s) J(s) (k 1 2 ~ E s= 1, 2, , r), (2.14)

where J(') still remains to be determined.

Partial Summation of Difference Equations

A partial summation of the set of equations (2.12) for
the currents and the areal concentrations can be CGcctcd
in the limit of the steady state. This summation con-
siderably simpli6es the process of obtaining practical
numerical solutions; it also renders the problem
amenable to an analytical solution for certain cases.

Substituting Eq. (2.14) for the steady state and
utilizing (2.6) to replace the electric fields by the corre-
sponding first differences of the potential, Eq. (2.12)
becomes

J(') =
&

&*& exp( —W')/k&)T)

X[I) i(s) exp( Z(')ehV—
g i/2ksT)

—&ii(s) exp(Z(s&ehV) i/2k&)T)g

(k=1 2 ~ ~ X s=i 2 ~ ~ ~ r) (2.15)

' (~) ")"' s' Z"e(V~-i+ Va))
S,(&=—Z =P e~ ~. (2.21)

Jg=] p~ (s&) 2ksT )

Equatio n {2.20) for the casej=E yields an evaluation
«t'('), and therefore J('&, in terms of eo(s), N&(s), snd the
potentials:

J"=)(') exp( —W(s)/ksT)

X $+0 ')—s»& ' exp(Z 'ev~/ksT) j/5~('. (2.22)

The evaluation of the areal densities (called the
concentration profile in analogy with the continuum

case) in the oxide f(lm then follows from (2.20):

~ (s) = (@ (s)—f (s)5'.(s)) exp( Z(s)eV./k T)
(j=1, 2, , S—1). (2.23)

~ A. T. Fromhold, Jr., J. Phys. Chem. Solids 24, 1081 (1963}.

Let Vo= 0 as mentioned previously, and for convenience
introduce the following quantities:

ni') =exp( —Z(s)eh—Vg /kiTs), (2.16)

P),(')—=exp(—Z&'&eVi/ksT), (2.1/)

i (s) = (J(')/v(s)) exp (W(')/k)&T) . (2.18)

Substitution of (2.16) and (2.1g) into (2.15)
muitiphcation by (n),")"'/pi(' transforms (2.15) into
the form

f'( &( ()) I/p ()—( () „()/p ()) ( ()/p ())
g(~~i( )/P~i( )) (2 19)

where the definition (2.2) has been utilized. A summa-

tion «(2.19) from k= 1 to k =j yields

t'(s)g. (s) —)&0(s) (@.( )/ps())s. (2 20)
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The relation
Coupled Currents

g(&)j(&)—0 (2.25)

is the basis for the coupled-currents approach to
thermal oxidation, as contrasted with single-current
approaches" "valid in certain limited cases of a current
equilibrium. This equation was also utilized by Wagner'
in his derivation of his parabolic growth law, and, in
fact, is almost classical in solid-state physics. " It re-

~~ A. T. Fromhold, Jr., I. Phys. Chem. Solids 24, 1309 (1963);
Bull. Am. Phys. Soc. 10, 454 (1965).

~6 N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Oxford University Press, Oxford, 1940},p. 256.

In the limit of an equilibrium of the sth species (i.e.,
zero current P') ), f'(') =0, and n;(') given by (2.23) then
reduces to the Poisson-Boltzmann form. Equation
(2.22) shows that J(') is zero whenever the total
potential V~ across the Glm has the particular value
p'~ (&)

Vir, (') = (ksT/Z(')e) ln(e (')/I))((')). (2.24)

This represents the dBusion potential across the film

provided by the concentration gradient of the sth
species.

The interfacial reactions, considered in the present
model to be faster than transport through the oxide,
determine the 2r interfacial areal densities eo(') (s= 1,
2, ~ ~, r) and n))((') (s=1, 2, , r) Henc. e these are
considered to be fixed quantities in the subsequent
development.

The reason for developing expressions for the particle
currents is that the currents determine the rate of
particle transport, which in turn limits the rate at
which new oxide can be formed. Utilizing the diBusion
current equations in the partially summed form, the
problem for each given film thickness consists in solving
for N (r+1) unknowns, namely, the J&'& (s= 1, 2, , r),
the e),(' (k= 1, 2, ~ ~, N 1; s= 1, 2, ~—, r), and the
V& (k=1, 2, ~ ~, N). Of course, once these quantities
are obtained, the ai, (k = 1, 2, , N —1), Eo, and the
E), (k=1, 2, ~ ~, N) follow immediately from (24),
(2.10), and (2.1), respectively. If (2.4) is utilized to
eliminate the o; in (2.11), then the problem is reduced
to obtaining the N(r+1) unknowns listed above from
the total of N(r+1) equations given by the N 1—
equations (2.11) for V)„ the r(N —1) equations (2.23)
for e;('), the r equations (2.22) for J&'&, and an auxiliary
relation known as the "coupled currents" requirement.
This latter equation is given and discussed in the next
subsection.

To obtain a solution, numerical techniques must
generally be employed. However, the sums can be
evaluated analytically in certain cases, the most note-
worthy of which is the "homogeneous Geld" limit"
treated in Sec. III.

The growth rate of the oxide or other semiconducting
or insulating him at a given thickness produced by a
given ionic particle current J(' is given by E('J(',
where E.("is the volume of new oxide formed for each
particle of species s which diffuses to the oxide-oxygen
interfa, ce. If AL(r) denotes a monolayer of oxide and
dt denotes the time necessary to grow this monolayer
as determined by diffusion, then AL(t)/At is the growth
rate. If there~re l of the total number of r species which
are ionic, then the total growth rate of the film is given

by summing over these l species:

AL(t) = Q g (s)J (s) (2.26)

The kinetics of growth [i.e., the oxide film thickness
L(t) versus time tj can therefore be obtained using this
relation, provided the currents are first evaluated as a
function of film thickness according to the procedure
outlined in the above subsections.

III. HOMOGENEOUS FIELD LIMIT

The concentrations" of diffusing defects in the film
as a rule increase exponentially with increasing tempera-
ture, as given by a Boltzmann factor, so that the space-
charge contributions to the electric field should be
largest at high temperatures. At lower temperatures
(i.e., within several hundred degrees of ambient
temperature), the defect concentrations may be low
enough in many cases to neglect space charge. Computa-
tions' show that defect concentrations of 10"particles/
cm' or so produce insignificant space-charge contribu-
tions to the total electric held until the growing film
reaches a thickness of hundreds of angstroms. Therefore
the homogeneous Geld limit, in which all space-charge
contributions to the field are neglected relative to the
surface charge Geld Eo, provides a very realistic ap-
proximation for oxidation kinetics over a signi6cant
range of experimental conditions. This approach is not

quires that the net electric charge transported through
the oxide during any given time increment be zero. The
essence of the argument proposed by Wagner for use of
this equation is that the growth of a stoichiometric
oxide requires the continuous transport of a stoichio-
metric ratio of particles through the existing film. It can
be argued that the zero charge transport situation is
intrinsically stable since the field is then unchanged by
the particle currents. Equation (2.25) is termed the
"kinetic condition"; the potential VN across the film

necessary to satisfy (2.25) is termed the "kinetic
potential" to emphasize its role in balancing the
currents. Whenever V& has a value nearly equal to the
equilibrium potential (2.24) for one of the currents, the
situation is termed" growth under a "virtual current
equilibrium. "

Growth Kinetics
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the same as that of Wagner based on the assumption
of charge neutrality, as evidenced by the fact that the
rate constants and concentration profiles derived
thereby are quite different from those predicted by
the Wagner theory.

substitutions, the coupled-currents condition (2.25)
yields

q(s)D(s) {rt (s)—r( (s)P)
s=l

Homogeneous Field Currents

Equation (2.1) in the homogeneous field limit yields
Ep Ep fo——r all k, while (2.8) yields V, = 2aj E—p for all

j.The total potential V~ across the film is thus —2alVEO
= —EpL(t) in this limit. The sum 8,(') of (2.21) be-
comes a geometric series and can thus be evaluated
readily:

Denote the sums by

Pi(—P q(s)D(s)Np(s) (3.6)

q(')D(') {n &'& —eN('))P) =0. (3.5)
s=y+1

z"es,s(1—
2s})8 &'& = P exp

Iss+ 7

[2 sinh(Z(')eEpa/keT) j. (3.1)

= P1 exp( 2—jZ "eE—pa/keT)5/

Isis——P q(s)D(s}z&(s)
s 1

@pi
—g q(s)D(s)rtp(s)

e-@+1

(3.7)

(3 8)

Utilizing this expression for the particular index j=E,
and substituting into (2.22), yields the homogeneous
field approximation for the particle current:

I'pp —Q q(s)D(s)ri&(s)
s=y+1

(3.9)

1&'&= 2r(s) exp( —W(s)/keT) sinh(Z(s) eEpa/keT)

&& Lrt)&((s) —Np &') e p(x2EZ') eE a/pk Te)j/
[1—exp (2EZ(') eEpa/k)) T)j. (3.2)

This expression is identical to Eq. (2.18) of Ref. 17.
Substitution of (3.1), (2.18), and (3.2) into (2.23) then
yields the areal density profile in the limit of a homo-

geneous field. It is identical to the profile given by
Eq. (4.2) of Ref. 17 in continuum notation, where the
areal densities e;(') divided by 2a yield the correspond-
ing bulk concentrations which are denoted by C(x),
with the position x at the potential minimum denoted

by index j given by x= 2ja,

Film Thickness Dependence of Potential

The coupled currents condition (2.25) determines Ep
as a function of L(t). For arbitrary values of' Z&'&,

numerical techniques must still generally be used to
obtain a solution. Considerable simplification is effected
if all values of Z(' have the same magnitude, however,
because sinh( —y)= —sinhy and thus all hyperbolic
functions divide out of the coupled-currents equation.
For this special case, suppose that the indices s=i,
2, , p denote species for which Z"=+~Z~, and

suppose s= p+1, p+2, , r denote species for which
Z&'&= —~Z~. Let

f—=exp(2E
~

Z [ eEpa/keT) (3.3)

denote a parameter which is independent of s, and define

D&'=4a'r(s) exp( —W')/keT) (3.4)

the latter being the generally accepted expression for the
diffusion coeKcient'7 for the sth species. Kith these

Equation (3.5) then yields for )P

(I 1 I i)/(~i —I ) (3 1o)

Referring to the definition of )P, Eq. (3.3), this relation
is noted to give an expression for the homogeneous
electric Geld in the film,

Ep=
I
ki)T/2ÃZea

~

1nL(I'ip —I'pi)/(I'i) —I'pp)g. (3.11)

This expression shows that the total potential V~
= —EpL(t)= 2aEEp across —the film during growth
(i.e., the kinetic potential by definition) is a constant,
independent of oxide film thickness. Furthermore, for
the case of two oppositely charged species only, employ-
ment of the Einstein relation and application of the
results presented in Appendix A to Eq. (3.11) shows

that it gives the same value of the kinetic potential as
Eq. (15) of Ref. 27. This is interesting since (3.11) holds
for all film thicknesses and corresponding values of the
field, while Eq. (15) of Ref. 27 was derived on the basis
of the linear-diffusion equation and thus is applicable
only in the limit when Z"eEpa/keT has a magnitude
somewhat less than unity. Therefore, for this particular
case of equal magnitudes of Z(', the potential across
the film is not perturbed by nonlinear effects. This is in
contrast to the case of unequal magnitudes of Z(').

A computation of V)&&
—— 2aXEp, utilizing E—q. (3.11)

in the limit of two oppositely charged species, has been
made as a function of W(') —8'('), holding all other
parameters fixed. Species 1 is considered to have a
positive Z value, while Z(') is considered to be negative.
The results, which are presented in Fig. 1, illustrate that

~~ A. T. Fromhold, Jr., J. Chem. Phys. 41, 509 (1964); see also
A. T. Fromhold, Jr., J. Phys. Chem. Solids 24, 1309 (1963),
especially Sec. 2.
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the kinetic potential lies somewhere between the two
extremes of an equilibrium potential (2.24) of one or the
other of the two species. An increase in W'& relative to
W('& drives the system toward the negative equlibrium
potential, while a decrease in W(') relative to 8'"& drives
the system toward the positive equilibrium potential.
The axed parameters utilized for the computations of
Fig. 1 ale T=300'K) Z('&= j. Z('&= —1, no(') =4)&10"
particles/crn', iso&'& = 1X10' particles/cm', osis "&=4
X10' particles/cm', ossa&'& = 1X10' particles/cm', v&'&

=10'%ec, v&'& =10's/sec, and &i=2 A. The results are
the same, however, if no('& mo('~ e~('~ and e~&" are
multiplied by the same constant factor.

Whenever the Z&'& are of diGerent magnitude for
different s, Eq. (3.11) is not valid. In fact, numerical
computations" utilizing (2.25) and (3.2) show that
V~ is significantly dependent on 61m thickness for thin
films, but approaches the constant potential derived in
Ref. 27 as soon as the thickness is large enough
(generally several tens of angstroms) so that the linear-
di8usion equation provides a good approximation. It is
noteworthy that no startling difference in the early
stage kinetics is observed" between the case of the
varying early stage potential and the case of the
potential which is constant throughout growth.

Kinetics for Constant Potential

Whenever (3.11) is valid so that the value of Vsi
= —2uEEO is independent of the film thickness 2'
=L(i), then the only term in the homogeneous field
current (3.2) which depends on thickness of the oxide is
the argument of the hyperbolic sine function. Consider-
ing the generally expected case in which each ionic
current yields a positive contribution to the growth
rate, Eq. (3.2) can be rewritten to yield the following
expression for the contribution of each ionic current to
the over-all rate:

IA

wJ0

0.1-

-0.1-

and the resulting manner in which the potential across
the 61m is created and controlled. In the present work,
either the ionic or the electronic species can be rate-
limiting for growth.

An analytical expression for the growth kinetics can
be readily obtained for the present case by approximat-
ing the growth rate EL(t)/Dt in Eq. (2.26) by the corre-
sponding derivative dL(t)/d/. Equations (2.26) and
(3.12) then yield

where

dL(~) L,.„„
dh

L'crit
sinh

L(t)
(3.15)

l
r= L„,;,/P i1& &. — (3.16)

I t I I

-0.4 -0.2 0
w&') -w&') (.y)

FIG. 1. Electrostatic potential across growing oxide versus the
difference in activation energies for the two oppositely charged
di6'using species. (Values for parameters are given in text.)

where

R&'&J&'i =A&'& sinh[L„;i/L(t)], (3.12)

If L(i) =0 when i= 0, this relation can be written as

L-'i=—1«~&oL(&)/ksTI =
I
—««~/keT

I (3 13) Lit) (L
t/ L,; t:hach=~ )dp.

o

(3.17)

A'&—=
l

2v&'&R&'& exp( —W "/ksT)
X {[ossa &'& —no&'& exp( ZeVs&/ksT)]/—

[1—exp( —ZeVN/keT)]} l (3.14)

are defined to be positive constants, independent of
film thickness.

Equation (3.12) has the same functional form as the
Mott-Cabrera equation. "The primary difference in the
present work (homogeneous field limit) is the inecha-
nism assumed for electron transport (nonlinear diffusion
instead of electron tunneling" or thermionic emission!')

"Ronald 3. Mosley, M.p. 'thesis, Auburn University, 1968
(unpublished) .

Expansion of the hyperbolic cosecant into the infinite
series

Lcrio ~
I I'crit

csch = 2 P expl —(2m+1) (3.18)
=o

and the change of variable $ = L (1)/f' produce the follow-
ing exact expression for the oxidation kinetics:

(L(t) ~ (2ois+1)L„;o
i/r=2l Q Eo . (3.19)

& I.„;, -o L(t)

Each of the quantities Es[(2ois+1)L.„i/L(t)] is the
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This result is equivalent to the parabolic growth law
previously derived by Fromhold" on the basis of
transport by ions and electrons according to the linear-
difFusion equation integrated in the homogeneous field
limit. This parabolic growth law difFers from the field-
controlled parabolic growth law proposed by Cabrera
and Mott" insofar as concentration gradient effects are
included, and it divers from that proposed by Wagner'
insofar as the defect concentrations at any given point
in the oxide for the present model are not generally in
stoichiometric ratio.

10

14

tabulated" second-order exponential integral, defined as

E,(g) —= (3.20)

The above series of exponential integrals converges
quite rapidly, so that only a few terms are usually
needed in Eq. (3.19).For example, the 6rst term alone

is sufhcient for an accuracy of 1% or better whenever
L(t)(-',L„;,. The dimensionless nature of the quantities
t/r and L(t)/L„;, makes it possible to compute a single

universal curve (or tabulation)" from Eq. (3.19),
which can then be used subsequently to obtain L(t)
versus t for any particular set of physical parameters.

Parabolic Law

In the limit where L(t) &L„;t,which may be as small

as 20 A or so for the present model, the hyperbolic sine

function in Eq. (3.15) may be approximated by its
argument. Equation (3.15) then reduces to the form

which yields

dL(t) Lorit'
L(t)-',

dt 7

(3.21)

(3.22)

~ Handbook of Mathematica/ Fugctjepgs, edited by M. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), Appl. Math.
Ser., No. 55, p. 227.' Universal curves and tabulations may be obtained from the
authors.

0 lQ 0.4 0,6 O.I 1,0
k/N

Fro. 2. Monolayer densities of two diffusing species (subscripts
1 and 2) versus position in the oxide. Values of parameters are
given in Table I except for variable boundary concentrations of
species 2: For curves A, 8, and C, no&') has values of 10",10",and
10~ particles/cm', and ~~('& has values of 107, 10', and 10'
particles/cm', respectively. Dashed curves represent zero space-
charge limit.

IV. NONHOMOGENEOUS FIELD
COMPUTATIONS

Numerical Techniques

The successive approximation technique, Newton's

method, and a time-dependent technique were tried
with varying degrees of success for the present numerical
solutions. None was completely satisfactory; the nu-

merical treatment of nonlinear equations is dificult and
there is presently no general algorithm for their solution.
Convergence and stability are the two major properties
which constitute the greatest sources of difhculty.

A combination of the steady-state method and the
time-dependent method was found to be the best
technique regarding both convenience and reliability.
It is based on the assumption that the concentration
profiles are in the steady state, but the surface-charge
field and the number of particles in the growing mono-

layer are considered to be time-dependent quantities.
The steady-state concentrations are used to calculate
the corresponding homogeneous currents. These quanti-
ties are obtained from a given potential distribution
which is time-dependent. The primary difFerence be-
tween this method and that of successive approximation
lies in the fact that the surface-charge field is varied be-

tween successive approximations for the concentration
profiles.

We are confident that the results presented herein are
reliable, since each current (including the current for
the species in a state of virtual equlibrium) was checked
after growth of every monolayer to verify that it was

homogeneous throughout the film. "This assures self-

consistency of the solution at a given thickness. This

stringent criterion does limit the scope of the results,

since it was found that this condition could not be

maintained in the limit of high space charge for thick-

nesses greater than approximately 75 monolayers. The

present results are valuable because they provide a
clear and exact picture of the perturbing efFects of

space charge in the early growth region.

"This stringent criterion was not maintained in preliminary
numerical computations (Ref. 24, Sec.3.A), so that the conclusions
of the present more comprehensive study are considered to
supplant these earlier results.
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Tmxz I. Parameters for numerical computations. All computations: e/&0=10, 2=1.92&10 ~ cm',
p(» = 1.0"/sec, v('& =10"/sec, and S('& = —1.

Symbol Units

Figure
6 7 8 9

g,o(1)
no(')
nN(l)
~~(2)
g (»
~(2)
g(1)

T

10"partic1es/cm'
10"particles/cm'
107 particles/cm~
107 particles/cm'

eV
eV

~ ~ ~

A
'K

40

40

0.65
0.55
1
2

300

40

40

0.40
0.75
l
2

300

40

1
0.65
0.55
1
2

300

40
1

40

0.40
0.75
1
2

300

40 a 40
1 a 1

40 a 40
1 a 1

1 1 1
2 2 2

300 300 300

40 40 40
1 1

40 40 40
1 1 1
a 0.65 0.40
a 0.55 0.75
1 1 1
2 2 2
a 300 300

1
4
1
0.65
0.727
1
2

300

40
10
40
10
0.710
0.787

2
300

a Varied anth curve in figure.

Defect Concentration Profiles

The areal densities of the positive and negative
diffusing species for three cases in which the negative
species (species 2; subscript 2) is near a virtual current
equilibrium and the positive species (species 1; sub-
script 1) is rate-limiting are presented in Fig. 2. The
position coordinate (abscissa) is normalized to the
61m thickness for each curve. For this figure, the thick-
ness Ã of the film is 20 monolayers. Each monolayer is
always chosen to be 4 A. The values of the parameters
utilized for the computations are listed in Table I.These
were chosen to be representative of metal-oxide systems
in general, but were not chosen for any specific system.
For the given activation energies, the results are
essentially independent of the type of lattice defects in
question. Hence the presently considered negative-
gradient case would hold equally well for growth by
motion of anion vacancies as it does for growth by
motion of cation interstitials. An extension of the
numerical results to the positive-gradient case is given
in a separate subsection.

The three cases of Fig. 2 correspond to three sets of
boundary concentrations for the negative species, while
the boundary concentrations of the positive species are
held fixed. The curves labeled A~ and A~ correspond,
respectively, to the negative and positive defect con-
centrations for the lowest electronic boundary con-
centrations; the dashed curves represent the corre-
sponding profiles in the limit of a homogeneous 6eld,
thus giving an indication of the modification in the
profiles introduced by the space charge.

The curves labeled J32 and B~ represent the corre-
sponding electronic and ionic areal defect densities
when the electronic boundary concentrations are in-
creased by an order of magnitude. The qualitative be-
havior of the profiles remains unchanged.

The curves labeled C~ arid C~ represent the corre-
sponding electronic and ionic areal densities when the
boundary concentrations of the electronic species are
increased still another order of magnitude. The ionic
and electronic profiles then cross one another, and the
qualitative appearance of the curves is vastly modi6ed.

A companion series of prohles has been computed for
three alternate cases in which the positive species
(species 1) is near a virtual current equilibrium while
the negative species (species 2) is rate-limiting. These
are presented in Fig. 3.Again the position coordinate is
normalized to the film thickness (20 monolayers). The
curves A2 and A~ corresponding to electronic and ionic
profiles for the lowest ionic boundary concentrations
do cross, and thus resemble qualitatively the set Cg and
C2 of Fig. 2 which also cross. The qualitative behavior
of the positive and negative species are noted to be
interchanged in Figs. 2 and 3 because the species which
is rate-limiting is di8erent in the two figures.

There is no signi6cant qualitative change in the
curves A2 and A~ in Fig. 3 when the ionic boundary
concentrations are increased by an order of magnitude

1O12

I I I . I
0 0.2 04 Ok 0

FIo. 3. Monlayer densities of two diffusing species I,'subscripts
1 and 2) versus position in the oxide. Values of parameters are
given in Table I except for variable boundary concentrations of
species 2: For curves A, 8, and C, ~o(') has values of 10' 10",and
101' particles/cm', and N~(') has values of 10~, 10S, and 101
particles/cmm, respectively. Bashed curves represent zero space-
charge limit.
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Pro. 4. Monolayer density distributions of two diffusing species
in a growing oxide for several values of the 61m thickness. Dashed
curves represent zero space-charge limit of solid curves. Values of
parameters are given in Table I except for variable ~~( ), which is
4)&10' particles/cm' for all except dot-dash curve, for which

to yield the profiles denoted by 82 and 8&. A further
order-of-magnitude increase in the boundary concentra-
tions, however, yields the uncrossed profi, les denoted by
C2 and Ci. These resemble qualitatively the uncrossed
profiles of Fig. 2.

The profile of the species near a virtual current-
equilibrium is noted in both figures to deviate somewhat
from a nearly straight-line behavior on the semi-
logarithmic plot, while the profile of the rate-limiting
species is somewhat horizontal until it takes a sudden
plunge downward near the outer interface. By noting
this qualitative behavior, which holds for both the
homogeneous-field limit as well as for the computations
with space charge, the rate-limiting species can be
distinguished.

To summarize, two qualitative types of profile occur,
the uncrossed and the crossed. Each can occur for a
proper choice of relative ionic and electronic defect con-
centrations, and thus the characteristic does not depend
critically on which species is rate-limiting.

Figure 4 illustrates the variation of the areal defect
densities with film thickness. The curves represent a
case in which the profiles are uncrossed, namely, the
pair of curves A2 and A i in Fig. 2. The position coordi-
nate is normalized to the film thickness for each curve,
with the thickness in monolayers given on each curve.
The upper curves in the figure represent the ionic defect
profile, while the lower curves represent the electronic
defect profile. Note that the profiles of the negative
and positive species pull closer and closer together for
the thicker films, corresponding to a tendency for the

FiG. 5. Monolayer density distributions of two diffusing species
in a growing oxide for several values of the film thickness. Dashed
curves represent zero space-charge limit of solid curves. Values of
parameters are given in Table I except for variable n~&'), which
is 10' particles/cm' for all except dot-dash curve, for which
yz~(2) —g 0 (2)

space charge to neutralize partially in the interior of
the film. The dashed curves again represent the corre-
sponding profiles in the limit of a homogeneous field.
The dot-dashed curves in Fig. 4 (and also in Fig. 5)
illustrate the effect of perturbing the outer boundary
concentration of the rate-limiting species; such e6ects
are discussed under "Ohmic Transport. "

Figure 5 illustrates the corresponding variation of
the areal defect densities with film thickness for the
case in which the profiles are crossed. This sequence of
curves corresponds to the pair of curves A2 and A~ in
Fig. 3, for which the electronic species is rate-limiting.
In referring to these figures, it is helpful to remember
that in both Figs. 4 and 5 the ionic boundary concentra-
tion at the metal-oxide interface (x=0) is larger than
that for the electronic species. The tendency toward
space-charge neutralization with increasing film thick-
ness in Fig. 5 for the crossed profile case is much less
pronounced than for the uncrossed profile case of Fig. 4,
since a profile crossing already represents a partial
neutralization of the space charge.

The dashed curves in Figs. 4 and 5, which represent
the corresponding homogeneous field profiles for each
of the cases, are independent of film thickness on the
normalized plots. The homogeneous field curves serve
the purpose of illustrating the modifications of the
profiles introduced by the space charge. Some insight
into the reasons for the diQiculty in obtaining an exact
analytical solution to the present problem can be
attained by noting the contortions of the curves in
Figs. 4 and 5 as the space charge in the film increases.
Previous numerical computations" have also illustrated

3' A. T. Frorghold, Jr., J. Chem. Phys. 39, 2278 (1963}.
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FIG. 6. Space-charge monolayer density and electric 6eM as a
function of normalized position in the growing oxide. The solid
curves represent tvro thicknesses (25 and 50 monolayers) with
activation energies 8'&')=0.65 and 8'&'&=0.55 eV; the dashed
curves represent corresponding computations with S'(') =0.40 and
W (2& =0.75 eV. Other parameters are given in Table I.

this feature; the present numerical computations, how-
ever, are the first which have been made subject to the
condition of balanced currents given by Kq. (2.25).

Syace Charge and Electric Field Distributions

Other features of the computations of Figs. 4 Rnd 5
are now illustrated. The upper curves in Fig. 6 iHustratc
the space-charge profile across the film, while the lowex'

curves in Fig. 6 illustrate the electric-field variation with
position in the film. Again the position in the Glm is
normalized to the film thickness. Curves are given for
diBerent thicknesses; the thickness in monolayers is
given on each curve. The solid curves represent thc un-
crossed-profile case corresponding to Fig. 4, while the
dashed curves represent the crossed-profile case corre-
sponding to Fig. 5. It is noted in Fig. 6 that the sign of
the space charge is positive throughout the film for the
uncrossed-profile case, while the sign of the space charge
reverses inside the film for the crossed-profile case.

The most strjknig feature of the space-charge profilcs
0I„, is the decreasing concentration of charge in the latter
80% or so of the 61m as the 61m thickness increases. This
effect, which is especially pronounced for values of E
less than 25 monolayers (not shown in Fig. 6), is due in
part to an initial increase in total space charge wjth
elm thickness. The curves for the electric field in thc
lower part of Fig. 6 illustra, te that the ficlds become more
and more inhomogeneous as the thickness increases.
Note that the values of the electric field are in the range
of 10' V/cm.

I l

0.2 0.4 0.5 0.8 7.0

Fn. 7. Electrostatic potential as a function of position in the
growing oxide 61m. The 6ve groups of curves have values of Vg in
the» homogeneous-Geld limit of 0.178, 0.067, 0.007, —0.065, and-0.178 V, corresponding, respectively, to values for 8"&'&—8'&'&

of —0.35, —0.21, —0.15, —0.077, and +0.10 eV. Table I lists
values for 6xed parameters. The curves labeled A, 8, C, e, b in
the several groups have the following boundary concentrations:

Parameters

N00)
N0&'&

N~(&)
e~&')

Umts

10~0jcm~
10'/em~
107/cm'
10'/em'

Curves

B, b

40
10 1
40
10

Potential Distributions

The variation of electrostatic potential with position
in the film for X=20 monolayers is shown in Fig. 7 for
all six individual cases illustrated in Figs. 2 and 3 and
for intermediate potential ca,ses. The lower curves
(i.e., negative potential) labeled. A, 8, and C corre-
spond, respectively, to the cases labeled 2, B„and C in
Fig. 2, where the ionic species is rate-limiting. The upper
curves (i.e., positive potential) labeled A, 8, and C
correspond to the cases labeled in the same manner in
Fig. 3, where the electronic species is rate-Emiting.

The upper and lower curves labeled by the letter e
illustrate the change in the corresponding curves
labeled 8 when all four boundary concentrations are
lowclcd by Rn order of magnitude to dccrcRsc thc spRcc
charge in the film.

The intermediate-potential cases were chosen with
the aid of Fig. 1; each case is given for two values of
boundary concentrations (curves a and b in each set)
diGering by an order of magnitude. All curves labeled
u in Fig. 7 have the same boundary concentrations,
while all curves labeled h (or 8) have boundary con-
centrations Rg. order of magnitude higher.

Note that the potential ut the dlter Azterfaee differs
appreciably for the pair a, 5 for the intermediate cases;
this is in contrast with the pair e, 8 in the upper and
lower sets of curves, which represent cases of growth



A. T. FROMHOLD, JR. AND P

4-
3-

1-
o 0

-1-

-4-
-5-

~7
-S-

I r
I J'

II
I

III(I]I
II
)I
Il

I I I I I I-9--
0 10 20 30 40 50 60

FIG. 8. Electric 6elds E0 and EN at the inner and outer interfaces
of the oxide versus the thickness in monolayers. The solid curves
represent computations with W('& =0.65 and W&'& =0.55 eV; the
dashed curves represent computations with W&'&=0.40 and
W('& =0.75 eV. Values of other parameters are given in Table I.

Surface-Charge Fields

Figure 8 shows the dependence of the electric field Eo
at the metal-oxide interface and the electric field E~ at
the oxide-oxygen interface on the thickness X of the
film in monolayers for the numerical computations
leading to Figs. 4 and 5. The solid and dashed curves

correspond, respectively, to the computations of Figs. 4
and 5. The most striking feature is the asymptotic
convergence of Eo toward some 6xed value as E in-

creases for both the uncrossed profile case (solid curve)
and the crossed profile case (dashed curve). The be-

havior of EN is noted to be similar, but not so pro-

under conditions near a virtual current equilibrium.
For these latter cases, the kinetic potential is very
nearly independent of space-charge concentration and
film thickness. This is an important observation as
regards any approximate treatment of space-charge
effects, ' "since it is generally necessary to make some

assumption regarding either the total potential or the
surface-charge Geld.

The dashed curves in Fig. 7 represent the linear varia-
tion of the potential with position appropriate for the
homogeneous-field case. The curves for the nonhomo-

geneous-Geld case are noted to depart more and more
from a linear function with increasing space charge. The
thickness dependence (not illustrated) of the potential
curves, with potential plotted versus position in the
film as normalized to the thickness, is very similar for

any given case to the trend illustrated in Fig. 7 for
which E is fixed at 20 monolayers and space-charge
magnitude is the variable.

nounced. The two computations corresponding to Figs.
4 and 5 are based on the same values for the boundary
concentrations, but widely differing mobilities. The
asymptotic approach of the interfacial electric Gelds
toward some fixed value which is the same for the two
cases is therefore a feature which occurs because of the
choice of equal boundary concentrations and despite
the widely di6ering mobilities. Hence this asymptotic
limit must represent the zero-growth-rate case in which
the currents for all practical purposes are zero. The
system characterized by such a field would be in a state
of chemical equilibrium, and no further change in film
thickness would be possible.

Total Space Charge; Space-Charge Modi6ed Currents

Other features of the same computations leading to
Figs. 4 and 5 are illustrated in Fig. 9. The upper curves
give the total space charge 0.&,t, in the film as a function
of thickness of the 61m, where 0~ ~ is defined as the total
charge in the Glm due to the positive species minus the
magnitude of the total charge in the 61m due to the
negative species. The uncrossed-pro6le case is illustrated

by the solid curve while the crossed-profile case is
illustrated by the dashed curve. The crossed-profile
curve lies considerably below the uncrossed-pro6le case,
illustrating the fact that a profile crossing represents a
partial neutralization of the total space charge. It can
be seen that o-t,,& for the uncrossed-profile case goes
through a maximum (thickness range of 20—25 mono-

layers), and then gently decreases with increasing
thickness.

The dot-dashed curve for 0.~,~ corresponds to a higher
temperature computation (600'K instead of 300'K),
with all values of the remaining parameters chosen to
have the same values as were used in computing the
solid curve. These results are discussed under "Tem-
perature Dependence. "

The lower curves in Fig. 9 illustrate the Glm-thickness

dependence of the difference (JNso —Jso) between the
particle current JNB~ computed for a homogeneous field

and the particle current Jst: computed including space
charge. The quantity JNSC —J&~ can thus be considered

to be proportional to the change or modification in the
current due to the perturbing efFect of space charge. The
values are normalized. to the corresponding value of

JNsc for /=25 monolayers (designated as JNsc"), so

that the ordinate of the curves in the bottom of Fig. 9
is dimensionless. The solid curve (for which JNsc"
=1.27X10i2 particles/cm' sec) again represents the
uncrossed-profile case corresponding to Fig. 4, while the
dashed. curve (for which JNso"=7.21X10"particles/
cm' sec) represents the crossed-profile case correspond-

ing to Fig. 5. The dot-dashed curve (for which JNso'~
=2.91X10" particles/cm' sec) again corresponds to
the higher-temperature case. The curves designated by
long and short dashes are ~JNsg curves, again nor-

malized to JNpc", the upper one corresponds to the solid

(JNsc —Jsc) curve, while the lower one corresponds to
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the dashed (JNgc —Jgc) curve. For E&30monolayers,
thc cgrvcs ~JIBED vary nearly lnverscjy vQth 6lm
thickness, corx'cspondlng to pRI"aholic grMPth; coxn-
parison of the slope of a (Jlrgc —Jgc) curve with the
corresponding slope of the JNSC curve Rt R given 6bQ
thickness gives a good indication of how much the space
chRx'gc 18 perturbing the growth kHletics frGID thc
pax'Rbollc forID Rt that partlcUlar thlckIlcss. Note that
the dcvlRtlons Rre very large 1D QM carly growth period.
Additional inforIDRtion concerning &.c kDMtics 18 given
lQ subsequent figures.

Thc slgrl Rlld magnitude of tile (JNgc —Jgc) cllrvcs
Rrc 818G Gf lnlportancc. Thc slgD fox' thc sohd culve
(lower part of Fig, 9) is positive, corresponding to a
8DMllcr CUxrenf. %9th spRcc cbRI"ge than %'lthout space
chaxgc. Thus the gro%th I'Rte is retarded by thc Space
charge for this case. It 18 lntcrcstlIlg that this cUx'vc rises
R&ost hnearly for thin 6bns, Rnd then levels GG. This
18 ln RgrccIDcnt%'ith the prcdlction8 of 6rst-Order Rnd
Second-Gx'dcr o perturbation treatments, respectivgy.
Subsequent to the leveEng GB, the curve decreases
gently vrith increasing thickness, hut the slope is 1ess
than that Gf RD inverse thickness dependence, Rs seen
by CGIDparlson with the corresponding JNHc cUx'vc.
There 18 R de6nltc correlRtlon betvNcn thc shRpe Gf thc
Solid Curves foX' 0'g~ Rnd JNSC —JHC.

The dRsllcd curve fol JNgc —Jgc R't tlM bottolll of
Flg. 9 18 negative~ corrcspondmg tG R larger cU'trent 'ggth:

space cha, rge than v6thout space charge. Thus the
growth rate is c&RncM by space charge for this case.
Again the curve lnltlRHy mcreases Ivalue v&1th mcreas-
ing S,but then levels OB. Note that even for the largest
values of X, the 81ope is still signi6cantly dNerent from
that of the col responding —JNSC curve. The correlation
between the shape of the dashed curves for rt,,s and
J]q'Sg Jac 18 again evident» but Dl this case the signs
fOI' 8'~g Rnd JNHC —Jsc RI'C GpposltC. This 18 dUC to the
fact (as discussed later) that the sign of the total space
charge is the SRIDC for the tvro cases vrhilc the sign Gf
the defect species vrhich Hmits the growth rate is
Opposite foi thc t%'9 CRSCS.

The cori elation bet LCD thc CUI'vcs for 8'g~g Rnd
J~ac,—Xsq noted in Fig. 9 holds not only for the shape
Gf tbc curves, bUt also fox' DMgMtude of thc CUlvcs. Fox'
botIl gtog Rnd JNHC —Jsc, thc M,agnltudes GI the Solid
curves Rrc largcI' thRD thc magnltUde Gf thc dRshcd
curves. Thus the total spRce chRlge ln thc 61ID deter-
mines thc degree to %hich tIlc Current 18 perturbed
frGID tIlc zero"Space-charge cRsc. This Rgrccs %'1th the
prcdKtions Gf thc Rvex'RglIlg tecIlnique.

Tllc dcpcIKlcncc of tllc qUantlty Jgc/Jrrgc wltll
thickness (not shown in figures) is of some interest, since
lt ls coIHplenlentary to thc curves ln the lower part Gf
Fig, 9. This quantity, representing the ratio of the
CUI'x'cnt RS CGIDputcd including Space-charge cBects to
the current RS conlputed in the homogeneous 6eld bmit,
Staxts out at zero thickness arith the value unity. It
decreased nmnotonlcally %'ltll lncrcRSlIlg E for the

N

FIG. 9.Total space charge and correspon~g rclat1ve devl8, tioQ
ln particle currcIlt from LomogcIlcoUs-6cll value as a function of
thickness (in monoiayers) of the growing oxide. Aii curves except
the dot-dash curve represent a temperature of 300'K; the dot-
d8,sh CurVC ls fOr T=~ K. (SOM and dOt-dashed CurVCS e
8'(~&=0.65' and 8'@&=0.5$ CV. Bashed curves: 8'&»=0.& and
N'&'&=0. 7$ CV.) .The Iong-dash-short-dash curves in thc lower.
half of the figure represent sero: spacewharge curves, as further.
cxplSlncd In thc text. TRMc I hsts. values .of the rcmMnmg
parameters. .

uncrossed-profile case (Fig. 4), reaching a value of 0.118
at 65 monolayers. )At this pomt, Jgc=5.57X101s
particles/cm' sec, JNgc 4.74X10"——particles/cm' sec,
JNgc —Jgc=4.18X10 pal'tlclcs/clll scc, (JNgc —Jgc)/
JNgc =0.330, and, JNgc/JNgcss= 0.3N.) On the other
hand, for the crossed-profile case (Fig. 5) the quantity
lncx'cases InonotonicRHy vAtb lncx'cRsolg X, x'cRclllng 8
value of 1.74 at 65 monolayers )At thi.s point, Jgc

. =469X10" particles/cm' sec, Jlrgc=2. 70X10" par-
ticles/cm' sec, JNsc —Jgc= —2.00X10"particles/cm'

(Jsrgc —Jgc)/Jmgc =—0.2"", »d Jwgc/Jwgc'
=0.3N.g It would be very worthwhile to compute oi,s
Rnd JNgc —Jgc fol' even greRtcI' tlllckncsscs to Gild out
thc UltlHlatc 61ID-thlckDcss dependence of these quanti-
ties, Unfortunately, this could, Dot bc done vrith &e
DUIDerlcal scheIQc Util1zed fol the present studies, Rs
Incnt1oned in thc NUIncrical Techniques subsection.

Figures j.o Rnd Ii iHUstratc results Obtained for 61m
thickness versus time (lower curves) and kinetic
potelltlRl vcl'sUs tllllc (Uppcl' cllrvcs). To polllt ollt 'tile
CGccts Gf space dlargc, R CGIDparlson 18 glvcn ln thc
6guxes between the nonhomogeneous 6C11 results
(solid curves) arid the corresponding curves (dashed)
based Gxl the holnogcncous-6eld RpproxlIDRtlon. The
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FIG. io. Electrostatic potential across growing oxide and fllnl
thickness ln Hlonola+crs versus time of oxldatlon. Dashed curves
representing the zero space-charge limit illustrate that space
charge retards growth rate for this case. Values for parameters
arc llstcd ln Table I.

ho1Tlogcneous-6eld lcsults Merc computed according to
the formulation glvcn ln Scc. III Using ldcntlcal values
fol thc parameters Rs %'crc Utlhzcd fol' thc computations
including space-charge cRccts. Thc curves in Figs. 10
and 11 correspond, respectively, to the computB, tions of
Figs. 4 and 5. Figures 10 and 11 iGustratc toto possible
eRects of space charge on growth rate: In certain cases
the rate is retarded by space charge, as illustrated in

Fig. 10, but in other cases the rate is enhanced by space
charge, as illustrated in Fig. 11.

The kinetic potential V~ cB,n bc observed in Pig. 10
to depend somewhat on time (and hence on film thick-
ness), while in Fig. 11, it is almost time-independent.
The corresponding potentials ln thc homogeneous-6eld

approximation RI'c llgoloUsly time-independent, since

thc magnitudes of Z&" and Z") for these curves are
equal (X&I&'=1, Z&'&= —1). The result illustrated of a
nonconstant kinetic potential vthenever space-charge

c6ccts are important appears to bc quite general. The
variation can be quite sma31 @whenever either current is
near a virtual equihbrium, as is the case for Pigs. 10 and

but can be relatively large vrhcn neither current
RppI'oRchcs R vll tuR1 cqulllbrlum.

In Fig. 10, the system is near the state of a virtual
electronic current equilibrium, vthile in Fig. 11 the
system ls IleB,x' tllc stB.tc 0'f R vll tUB,1 lonlc current
equilibrium. The state of the system vrith respect to a
current equihbrium is one important factor in determin-

ing %'hcther gro%'th ls retarded ox' cnhRQccd by space
charge; the other cquaBy important factor has been
found to be the sign of the space charge. In Fig. 10, the
lRtc llmltlIlg species ls lonlct slQce the system Is QcBx R

virtu. al electronic current equilibrium; the space charge
itself is predominantly ionic, as illustrated by the upper
sohd curve for ot t, Ul Fig. 9. The rate-smiting species
and the predominant space charge thus are of the same

sign, and the growth rate is found to be retarded.
In Flg. 11,on the other hand, thc rate-limiting spcclcs

is electronic, since the system is near a virtual ionic
currcQt eqUilibrlUIQ while the spRce chRx'gc ls still
predominantly ionic, as illustrated by the upper
dashed curve fol' O~g ln Flg. 9.Thc IRtc-llmitlng species
and the predominant space charge thus arc of opposite
sign, and thc grovt th rate is found to be enhanced.

The CGects of the correlation noted in Fig. 9, that the
magnitude of thc pcI'tulbHlg effects of spRcc charge
on the current depends on the total space char'ge in the
61nl, CRQ bc scen qUltc dlstlnctly by colrlpaIlng Pigs. 10
and 11.The magnitude of the deviation of lower solid
CUI'vcs fx'oIQ thc das4ed CUrvcs ls mUch 1Rl gcl foI' Flg. 10
(uncrossed profiles; relatively large 0~,I) than for Fig. 11
(CI'osscd profiles; snlallel' 0't, t). SIII111Rily, tile dcv1Rtlon

of the kinetic potential V~ from the homogeneous-6eld
Hmit can be seen to be larger in Fig'. 10 than in Fig. 11.

The functional form of the 61m thickness-versus-time
culvcs fol' Figs. 10 Rnd 11 Is of III'tclcs't. Plots (Iiot
shown) of logarithm of film thicliness versus logarithm
of time acre made for each growth curve, including
those for the homogeneous-6eld limit. The slopes of the
straight-line portions of such curves gave values for the
parameter I, where I (t) ~ t"" represents an empirical
description of the growth curve. The homogeneous 6eld
grovtth curves for thicknesses greB,ter than 25 mono-

layers were essentially parabolic (i.e., straight line with

I' I I & l l
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FIG. j.j.. Electrostatic potential across growing oxide and film
thickness in monolaycrs versus time of oxidation. Dashed curves
rcpl cscntlng the zero space-charge lllQlt illustrate that space
charge enhances growth rate for this case. Values of parameters
are listed in Table I.



FILM GROWTH ON METAL CRYSTALS

slope of 2 on the log-log plot), since nonlinear effects
werc inappreciable in this thickness range. The value
of e was of course larger in the thin-61m region duc to
xlonllncar cGccts~ varyQlg froIQ Rpplox1matcly 2.2 to
4.4 at a thickness of Ave monolayers-for the series of
computations which were performed.

The growth curve including space-charge CGccts in
Fig. j.0 for E&18 monolayers was found to approximate
a straight line with m=3.04; a slope of 3 would corre-
spond to a cubic growth law L(/) 0- f, so the computed
growth curve can be said to be "pseudocubic. " This
growth law ls 1Q Rgl cement with 1cccnt RDRlytlcR1

work. ~ Thc several other curves in the series represent-
ing retarding CGects of space charge computed in the
present study had values of I which ranged between 2.2
and 3.0. The limiting-thickness type of eth-root growth
laws as produced by space-charge CBects thus appears to
have a sound theoretical basis.

Figure 11 represents a case in which space charge
enhances the growth rate; for E&25 monolayers, this
curve on the log-log plot was found to approximate a
straight line with a slope of 1.75. Since a slope of 2
corresponds to parabolic growth, while a slope ot one
corresponds to linear growth LI,(t) ~ tj, the computed
growth curve can be said to be "paralinear. "

Figure 3.2 Blustrates kinetics for growth under condi-
tions far removed from those necessary for a virtual
current equilibrium of either species. Curves u and b

correspond, respectively, to the pair of negative poten-
tial cul'vcs 8 Rnd 5 ln Flg. 7 which have values of Vls

at k=Ã between —0.06 and —0.10 V; they lie above
the lowest set which represent a virtual electronic
current equilibrium. Curve b represents an increase in
a,ll four boundary concentrations by an order of mag-
nitude relative to those of curve a, with a corre-
sponding decrease of the mobilities for both species by
an order of magnitude. As noted in Fig. 7', there is a
cogsiderable difference in -Vq at k=-Ã for curves u and
b; this is rejected also in the. time dependence of V~
given in the upper curves of Fig. 12. The potential
changes with time by a factor of nearly 2 in Fig. 12,
whereas the corresponding changes of the potential

TAsl.E II. Time in minutes to reach 20 monolayers.

Figure 2'
Without With

space space
charge charge

212 N'6
j95 342
191 256

Figure 3b

Without With
space space
charge charge

3'jl 3366-
38.6 41.3
4.7i 9.1j.

a Ions rate-limiting; electrons near a virtual current equilibrium; 6'&»
=0.65 ev, w'&» =O.ss ev.

&Electrons rate-limiting; ions near a virtual current equilibrium;g(» =o.4o ev, W» -o.7s ev.
- e Note that growth is enhanced by space charge for this case; for the

other 6ve cases listed, growth can be noted to be,retarded by space charge.

".K. HauGe, L. Pethe, R. Schmidt, and S. R., Morrison, J.
Electrochem. Soc. 115, 456 (1968).

I I I I I I t I I

. g-0.20

0 W&% &%&&&&%&%%&%N

~F0 ~

10 20 00 iO 'll

30

ao

with time in Figs. 10,and 11 are less than 10%. The
time dependence of the potential for the nonhomo-
geneous-field case is always found to be significantly
larger when the system is not in a virtual current-
cqulllbl iuIQ state.

The inset in the upper half of Fig. 12 gives V~ versus
E.Note that the deviation from the dashed curve in the
inset giving the value of V~ in the homogeneous-6eld
limit is considerably larger for curve b than for curve e,
due to the fact that the space charge is larger for cur ve
b than for curve u.

The Glm-growth curve b in Fig. 3.2 departs more from
the dashed curve representing the homogeneous-6cld
limit than does curve u, again rejecting the CBects of
the larger space-charge concentrations for curve b.
Since the product of mobility and concentration was
chosen to have the same value for curves e and b, the
same dashed curve represents the homogeneous-6cld
limit for both. The deviation of the solid curves from
the dashed curves thus accurately reQects the efFects
of space charge on the growth kinetics.

Empirical Correlation between Total Space
Charge and Growth Rate

Table II summarizes our results for time of growth
of 20 monolayers for a series of computations corre-
sponding to all six cases illustrated in Figs. 2 and 3. A
relative comparison between the numbers in the table
fol' thc tlGlc of glowth yields RH thc worthwhile 1n-
formation; the values themselves are not of fundamental
signi6cance, since they scale linearly with mobility as
long as a constant ratio is maintained between the two

I I S

4 4 S 20

TlNE (20 SEC)

FIG. 12. Electrostatic potential across grorving oxide and 6lm
thickness in monolayers. versus time of oxidation for two values of
space charge difkring by an order of magnitude. Inset illustrates
potential versus monolayer number. Values for parameters are
listed in Table I.
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TABLE III. Total space charge at 20 monolayers
in units of 10n/cms.

Curve

Figure 2
Rate-

limiting
Prohle' crf & species

0 287 +
0 258 +
X 5.55 +

Pro61e o.t g

X 9.4ib
X —0.569
0 —35.2

Rate-
lllmting
species

a The crossed-profile cases are denoted by X; the uncrossed-profile cases
are denoted by 0.

& This case is the only one of the six in which the product of the sign of the
total space charge and the sign of the rate-limiting species is negative.

mobilities. (A constant ratio between mobilities is
equivalen«o a variatio»n both W &» and W&» subject
to the condition of a fixed value for W "&—Wis&.) With
this type of scaling, the concentration profiles are un-
perturbed, so that the distribution of space charge in
the Glm, the electric Gelds, and the potentials are un-
changed. It is noted in Table II that the three computa-
tions relevant for Fig. 2 yieM times which are of the
same order of magnitude, while those relevant for Fig. 3
yieM times which di8er sequentially by roughly an
order of magnitude. These differences are readily ex-
plained. For Fig. 2, the ions are rate-limiting in each
case; since the ionic mobility and the largest ionic
boundary concentration are held fixed for the three
computations, the product (i.e., the ionic conductivity)
is unchanged and the times of growth are of the same
order of magnitude. They diGer in the zero space-
charge limit only because of slightly de'erent kinetic
potentials (Vn has values in the homogeneous-field
limit of —0.163, —0.177, and —0.178 V, respectively,
for curves A, 8, and C of Fig. 2). For Fig. 3, the elec-
trons are rate-limiting in each case; the electronic
mobility is held Gxed but the largest electronic boundary
concentration is increased successively by an order of
magnitude for each of the three computations, so that
the product (i.e., the electronic conductivity) increases
successively by an order of magnitude for each of the
three computations. Thus the times of growth decrease
Successively by roughly an order of magnitude, diGering
from this exact. figure in the zero space-charge limit only
because of slightly differing kinetic potentials (VN has
values in the homogeneous Geld limit of 0.178, 0.171,
and 0.141 V, respectively, for curves A, 8, and C of
Fig. 3).

Table III summarizes the corresponding values of
total space charge in the 61m for the six cases discussed
above. Note the correlation which exists between the
magnitude of Ot, t, and the type of pro6le, the space-
charge magnitude being larger for the case of uncrossed
proGles than for the crossed profiles.

The sign of the rate-limiting species is also listed in
Table III for each of the six cases. The rate-limiting
species is considered to be tha, t species for which

transport is aided by the kinetic potential across the
film; for the presently considered case of diffusion from

TABLE IV, Correlation between space-charge retardation or
enhancement of growth rate and the product of the sign of rate-
limiting species and the sign of the total space charge in the him
for all computations of Fig. 7.

Curve Pro61e {10"jcm')
—0.27

9.41—0.57—35.2
1.06
6.73
2.43

13.4
4.02

20.4
28.7
25.8
5.55
5.32

V~(V)'

0.172
0.178
0.173
0.167
0.066
0.063
0.002—0.014—0.073—0.097—0.174—0.178—0.179—0.177

Product
of signsb (tacjtwsc)'

1.01
0.91
1.07
1.93
0.991
0.95
0.998
1.015
1.04
1.30
1.77
1.75
1.34
1.10

a Kinetic potential at 20 monolayers including the effects of space charge.
b Product of sign of total space charge and sign of charge of rate-limiting

species.
&Ratio greater than 1 indicates retarded growth; ratio less than i

indicates enhanced growth.
& Electric fields as large as 10~ V/cm inside film; field is negative in first

part of film but positive in latter part of film.

the metal-oxide interface to the oxide-oxygen interface,
this is the species with the sign opposite to the sign of
the kinetic potential. The product of the sign of the
rate-limiting species and the sign of the total charge is
noted to be positive for every case in Table III except
for the case of curve A of Fig. 3; a comparison with
Table II shows that this case is also the only one of
the six for which enhanced growth occurs.

The correlation between the product of the signs of
:the total space charge and the rate-limiting species and
the eGect of space charge on growth kinetics is further
developed in Table IV. Kinetic potentials for each of
the curves in Fig. 7 are listed, together with information
regarding type of proGle, magnitude and sign of total
space charge at 20 monolayers, and the ratio of the
growth time tsc including space charge to the growth
time INsc in the homogeneous-Geld approximation.
Ratios iso/tNso greater than 1 correspond to retarded
growth, while ratios less than 1 represent enhanced
growth. Utilizing the fact that the sign of the rate-
limiting species is opposite to that of V~ for the
presently considered cases, the sign obtained by taking
the product of that, of the total space charge and the
rate-1imiting species is computed and listed in Table IV.
In every case, it is seen that this sign is positive for
&sc/tNso&1, representing retarded growth, while it is
seen to be negative for iso/fNso(1, representing en-
hanced growth. Furthermore, this correlation has been
veriGed for all other computations which have been
made to date, including 11 calculations designed to
study special eGects such as perturbations resulting
from variation of individual parameters. On the basis
of this correlation, we propose our first empirical rule
for space-charge effects: Space charge reiards the grotoih

rate wheneuer the sign 0f the rute linsitieg sP-ecies is the
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sunie as tke sign of tke total space charge in the film' space
charge enhances the growth rute wheneeer the sign of the
rate limi-ting species is opposite to the sign of the total
space charge in tke fbi.

It ShouM bc pointed out in connection with this
empirical rule that in some cases the total space charge
Undcl'goes R cbRngc ln sign during growth. This occUFs»
for example, in curve 8 of Fig. 3, where 0~~ is positive
fox' Sgio Dlonolayers» bUt is Qcgatlvc froID 10 to 20
monolaycrs. Thc 8pRcc-chRx'gc CRccts x'clcvant fol thc
lattcx' growth stRgc predoIQTDRtc» however» RS evidenced
by the fact that the over-all c6ect is throughout growth
one of retardation (curve 8 with VN=0. 173 V in
Table IV). Thus the early stage growth for this case is
an example in which the above empirical rulc does not
hoM.

Analytical veri6cation of the rule is possible for cases
where the following two conditions are met: (a) the
non-I'ate-llInltlng species 18 Dear R vlrtURl cul"I'cnt
cquiTibrium, so that V~ is cssentiaBy unpertu. rbed by
the space charge, and (b) the space-charge density does
Qot Undergo R sign change within the QQ1. Thc 6I'8t of
these conditions, together wi, th the convention V0=0,
allows us to interpret the term (ni/Ã) (V~—Vo)
occurring h Eq. (2.11) as the homogeneous-6eid
potential V 0 at the mth potential well. The Don-
hoIDogcneous-6CM potential V at the mth potential
well given by Eq. (2.11) then becomes

V„=V '+bV, (4.1)

Thc second of the above conditions allovis us to conclude
that the sign of 8V„ in Eq (4.2) is. the same as the sign
of thc space chRrgc 0'~; since both j and 5t Rrc cqURl to
OF less thRD E.

Thc FRtlo of thc current Jsc of R glvcn species to thc
corresponding current Jwsc in the homogeneous-6eM
limit can be obtained from Eq. (2.22); the 6rst of the
above conditions reduces this ratio to the following
simple form:

/ c x/n, (
where S~ is given by Eq. (2.21) for this species in
questioQ, and S~ is the saIDC quantity evaluated in the
homogeneous-6eld limit. Substitution of Eq. (4.1) into
Eq. (2.21) yields the foilowing expression for Eq. (4.3):
Jso & (Ze(V '+V '))--= P exp~--
J~so & & E 2keT

Z8(V»- "+V~"))
exp

2kBT

Ze(b Va-i+ ~ V~)
Xeq

2k gT'

This equation is valid for any di6using species in the
61m. Appb. cation to the rate-hmltlng species and use of
thc fRct that 5Vk has the sign of thc space chRx'gc yields
the immediate result that Jso/JNso is less than 1 when
thc slgQ of the Fate-lDDiting spcclcs 18 thc 8RDM Rs thc
sign of the net space charge, but greater than 1 when
the sign of the xate-limiting species is opposite to the
sign of the Qct space charge. Thus thc above cmplFlcal
rule is vcri6ed analytically for such conditions, and
therefore can be said to bc scmiempirical.

Examination ot the values of Vn in Table IV (or
Fig. 7) shows values which fall into 6ve groups, namely,
values in the neighborhood of O.i7» 0.06, O.oi, —0.08,
and —O.is V. The four cases for which V~o.j.7 V
illustrate an excellent correlation between the mag-
nitude of (rishi and the devlatlon of tso/tNso from a value
of j.. IQ every case» thc larger values of 0gog r'csult ln R

lRrgcF x'etaI'dRtlon or enhancement» as the CRsc Inay be»
of gI'owth x'Rtc. Note also thc SRDM correlation fox' thc
two eases fox which V~0.06 V, for the two cases in
which V~.01,for the two cases in which VN——0.08,
and fox the four cases in which V~—O.I8 V.This leads
us to propose our second empirical rule for space-charge
effects: For u giwn kinetic potential, the extent to which
the growth rate is rnodi$ed by space charge is qnulitutiuely
proportional to the total space charge in the film, which in
tnrn depends on the boundary . concentrations und the
characto of tke concentration profiles. The dependence ot
Fate on total space charge 18 ln agrccIDent with px'c-

dlctlons based OQ thc avcx'aging tcchnlqUc. In Rddltlon»
Eq. (4.2) shows that bV„ increases in magnitude with
the Inagnitudes of 0'~", this 1D tulQ yields R larger devia-
tion ot the ratio Jso/JNso in Eq. (4.4) from the value
of i. Therefore undcx' the same condltlons of constRDt
Vg Rnd R UniforID Sign fol o~ Rs spcci6cd above» thc
second empirical rule is seen to be justi6ed analytically,
RQd tbclcforc lt. CRQ also bc CRllcd scIMcIDplrlcal.

The values of 0~& listed in Table IV for the curves
IQRlkcd 8 have InagDltudcs ln thc Fangc 0.27xko to
5.3X10"/cm', and thus are not particularly large. These
CUx'vcs, Rll have the 8RIDC bounda ry concentrations»
no"& =4X10"/cm', n0&@=1X10"/cm', n~"& =4X10'/
cms, and n~&" =1X10'/cm'. The boundary concentra-
tions foI' thc CUI'vcs IDRI'kcd b ol' 8 Rx'c Rn oxdcr of
Dlagnltudc lax'gcI'. Thc coIrcspondlng values of gtog fox'

the uncrossed pro6le cases he in the range I3.4X I(P' to
25.8X10"/cm', which are considerably larger than for
the curves designated e. On the o&er hand, the curves
marked b OI' 8 fox' thc case of crossed pro61es have
magnitudes for oi,i ot 0.57X10"and 6.73X10",which
aI'c not much 1Rx'gcI' than fol some cases of thc cuxvcs
marked e. This provides additiona, l evidence that R
pI'o6le closslng results in R considerable neutralization
of space charge, with the Rccornpan~g lessening of
space-chRx'gc xQod16catlons of the growth late.

Another very interesting feature of Table Dt' is the
fact that the two cases for which V~ is cxtrelncly slnall
(0.002 and —0.014 V) have ratios tso/torso very close



A. T. FROMHOLD, JR. , AND E. L. COOK

to I, corresponding to almost no space-charge Inodi6ca-
tloD of thc growth rate. This ls true cvcn though ggog ls
relatively large and the electric 6elds in the 61m are
found to have values which range in IDagnitudc as large
as 10' V/cm. (Tlie concentration pm61es are of course
greatly modi6ed by tbe space charge. ) Furthermore, a
c0111pRI'Isoll wlt11 vallICS Of tso/tNSO 111 the tRble fol'
calculations in which rg, g is not signi6cantly larger but
for which VIr is considerably larger (c.g., consider the
cases of V~ being 0.I67 and —0.174 V, with corre-
sponding ot,,~ values of —35.2X10"and 28.7X101'/cm')
illustrates that the rate in the higher potential cases is
coQsidcrably Rejected by spRcc chRlgc. A corresponding
comparison can be made for the calculations listed in
Table IV for which V~ has the values 0.173, 0.066,
0.002, —0,073, and —0.I79 V, edith the same result.
OQ this basis, we propose our third, empirical rule for
space-charge effects: For a gioen total space chargein the

fIlrn, the extent to Iohkh the growth rate is mod@ed by the

space charge is proportional to the magnitude of the kinetic
potential For exu. mple, for the case of sero kinetic potential„
the groroth rute (in contrast to the concentration proft tes) is
NN5$0d$58d 6g spQce chef'g8, CNZ $$ khtt' sgtM 8$ tht,' gfOR'th

rate predicted fromFick's fl,rst larofor dglsion as applied
to the ionk sPecies in sero electric fIeld.

Most CGIIlpUtRtlons were performed Utilizing R tem-
peratUx'c of 300 K

q
thc dot-dashed cul"vcs 1D Flg. 9

illustrate the essential c6ects of raising the temperature
from 300'K (solid curves) to 600'K, without a change
ln thc other paraolcters. Note thRt agog 1Dcl'cases slgrl16"

cantly with increasing temperature, vrhilc the normal-
ized vahlc Gf J~Sc—JBc decreases with ' increasing
telnperature. Therefore, even though the total space
charge increases, the spacc-charge modiIIlcation of the
gx'owth 1Rtc fox' 6xed boundary conccQtlRtlons js less at
higher temperatures. The decreasing c6'ectiveness of
spRcc charge GD growth I'atc Rt elcvatcd. . tcQlpcI'aturcs

for fl xed bolndary concentrations is in quaEtative agree-
Incnt with the inverse teolperaturc dcpcndcnce px'e-

dicted by the perturbations '0 and averaging9 techniques.

An cxaInlIIRt10II of 'the c011cclltl'Rtloll pl'061cs (Ilot
shown) for the 300 Rnd the 600'K computations shows

imInediately that the larger total space-charge con-
centration ln thc 600 K CRsc ls duc to thc- fact that thc
conccntratioxl pro61cs fol the two oppositely charged
species do not pUH together as much at 600'K as they
do Rt, 300 K& so that thcI'e 18 less spRce-charge ncutrall"
Mtlon at, each point ln the 61IA..The 4ncm' dependence
of the cquilibriuol potentials on temperature leads to an
Increase 1Q the klnctlc potcDtlal by R factor of 8,1IDost 2
The electric 6clds are signi6cantly larger also at 600 K
than Rt 300 K. Thc tiIne of growth to 20 Inonolayers
decreases enormously (by a factor of approximately
3.3X10 ') at 600'K relative to 300'K owing to the
vastly increased mobi4t;ies,

O~ic EBects fox Rate-Limiting Species

The RxloIDRtlc basis fox' thc plcscDt work 18 thc
RssUTQptlon of particle transport by dlfTUslon currents
with Axed boundary ConcentrationS for each diffusing
species which Rre established by thc intcxfaclal lc-
actions. The dot-dashed, curves in Pigs. 4 and 5 illustrate
the cfkct on the concentration pro61es in a 50-mono-

layer 611Il produced by changing the Smaller boundary
conccntI"Rtlon of thc rRtc-4Inltlng spcclcs to R vRlUc

cqURl to thRt at thc opposltc intex'face Rs would bc thc
case ln thc low-space-charge 1HQit fol RQ ohmic
species (i.e., a species with no net concentration
gradient). It is noted in Figs. 4 and 5 that the profile of
the rate-limiting spcclcs ls modi6ed only QcRr the outcl
interface, %'hile the pro61c Gf thc oppositely charged
species ls hardly chRngcd Rt Rll. Thus thc spRcc-chRI'gc
concentration pI'ofllc (these Rnd sllt1scqucnt c111'vcs Rle
not shown) and the curve for the electric field versus
position fox' each of thc two CRscs Rlc Inod16ecl, slgYll6-

cantly only Rt the outer interface, the Qmdi6cation being
qUltc--lax'gc ln thc CRsc of Fig. 4 because thc IIla]or space-
charge species is involved, but almost negligible in the
case of Fig. 5 because it is the lninor space-charge
SPCClCS %'hiCh 18 involVed. IQ thC CRSC Of Flg. 4, gIc

achieves almost the same value at the outer interface as
lt has at thc Dlctal-Oxide lntclfRcc. The potcntlal vcx'SUs

po8ition lD thc 61YQ 18 changed BGIQcw'hat fox' Fig. 4 but
changed ncgllglbly for Flg. 5. Thc CUx'ves fol' thc filID-

thickn. ess dependence of the total space charge and the
clectrlc 6CM Rt the GUtcx' lntcrfRcc Rrc hkevHsc Qmdlfled

soIQcvPhat Hl magnitude but not ln shape~ %'hlle the 61m-

thickness dependence of the electric LCM at the Inetal-

oxldc 1DtclfRcc 18 Rbnost UnchRngcd 1Q both cases. Thc
curves illustrating the 61m-thickness dependence of
Jwac —Jac, RI'c Unperturbed lD shape, thc vRlues theol-
selves being modi6ed by less than 5%. The f1hn thick-
Dcss versUS tiIDC Rnd thc klnetlc potential vcx'sus tiIQC

are likewise affected very little.
Therefore it is concluded that the cxpHcit value

chosen foI' thc outer boundary concentration Gf thc
species which is strongly rate-1UDiting is Qot important
insofar as it does not appreciaMy aQcct the results for
tile klIlctlcs. (T1Hs boundary collccIltlRt1011 could cvcll

vary arbitrarily with 61m thickness without Rfrectlng

the 6nal results. ) The physical reason for the un-

importance of the value of this particular boundary
concentration ls Qlc fact that transport of the rate-
limiting species is 6eld-controlled. and hence it docs not
depend vcI'y stlongly GQ thc coQCCDtx'Rtlon gradient.

The tcQdeQcy towar j paltlal neutralization of the
space charge Observed. ixl the thicker 61018 at large
boundary conccntx'Rtlons I'Rises thc question Gf %'hcthcr

or Dot the departure froIIl neutralkzation ls due mere1y

to thc choice of Unequal boundary concentrations fox'

the oppositely charged species, Two calculations were



therefore performed in which the boundary concentra-
tions of the oppositely charged species were chosen to
be equal at the interfaces. The resulting curves (not
shown) illustrate that charge neutrality is not obtained
in this manner; instead, the surface-charge and space-
charge Gelds arc of the same order as those for the more
general cases. For example, a computation with no&"

and mg&'& chosen to have the same values as No&'~ and
e~"', respectively, but otherwise similar to the one
given by curve b of Fig. 12, has values of 0.«t at X=20
in the neighborhood of 13X10"/cm', with electric fields
in the 61m between SX10' and 3X10' V/cm. The
concentration pro6les and their variation with increas-
ing 61m thickness are much the same as those illustrated
in Fig. 4. The one curve which has a signiGcantly differ-
ent appearance is that for 01, versus k/E, since this
curve approaches zero at each interface. The rate is
considerably retarded by the space charge in the film,
in agreement with the qualitative behavior predicted by
the three empirical rules.

The results of these computations therefore illustrate
that the coupled-currents condition of equal charge-
current magnitudes for the oppositely charged diffusing
species is the determining factor for the surface-charge
and space-charge fields, so that these Gelds will be
created whenever the ionic and electronic conductivities
in the Glm are unequal, as is generally the case. The
partial neutralization which occurs for higher boundary
concentrations aM. thicker 6lms ls Incrcly a result of
the fact that electric fields have been established which
are suScicnt to equalize the currents, and any further
increase in the magnitude of the field would unbalance
the currents and therefore cause the coupled-currents
condition to be violated. It is of considerable signiGcance
that the partial space-charge neutralization which is
obscrvcd in the picscnt woI'k is a dlI'cct result of the
macroscopic electric field in the film as deduced from
Poisson's equation, and is not a result of strong Coulomb
(or chemical) forces between individual oppositely
charged defects. '

Deyend, ence on Z Value

AH calculations described thus far correspond to the
choice Z&"= 1 and 8&2) = —1.As shown in the previous
section on the homogeneous-Geld approximation, the
choice of equal magnitudes for the Z values yields a
kinetic potential in the absence of space charge which
is independent of thickness. A series of computations
have been performed with parameters chosen to have
the values utilized for curves a and 8 in the lower part
of Fig. 7 but with Z"' chosen to have values of 2 and 4.
(Curve 8 in Fig. 7 corresponds to curve J3 in Fig. 2;
thus species 1 is both the rate-limiting species and the
major space-charge species in the present example. ) The
most immediate consequence of increasing the value of
Z& ' is a noticeable increase in the space-charge density
rl„at the metal-oxide interface the full increase is
noted, but the increase is less inside the 61m due to the

pulling together of the concentration proGlcs with the
resulting partial neutralization of the space charge. The
curves for 0«& versus E have the same shape, but
increase in value by approximately 70% with increase
in Z&'& from a value of 1 to the value of 2, and increase

by approximately 40% with increase in Z&'& from the
value 2 to the value 4. The (retarding) effect on growth
rate is increased by the additional space charge, in
accordance with the three empirical rules for space-
charge CGects.

Of course, the over-all growth rate increases greatly
with the value of Z&", especially in the nonlinear
difFusion region. In the linear difFusion region, the
mobility increases linearly with the Z value.

The kinetic potential is perturbed by the additional
space-charge at higher values of Z&'&, as in Fig. 12. In
addition, V~ in the homogeneous-Geld limit, as well as
in the case for the inhomogeneous field, has a sharp
decrease in value with decreasing thickness in the region
of the Grst. several monolayers; this is due to the fact
that the unequal magnitudes of the Z values cause Y~
to be perturbed by nonlinear efFects, as mentioned in
the section on the homogeneous-Geld limit. The Glm

thickness versus time curves are not noticeably per-
turbed by this behavior of the potential. These early-
stage variations of V& with thickness for unequal
Z values and the effect on the kinetics have been
studied in greater detail by Mosley. "

To summarize, increased Z values cause (a) a
perturbation in the early-stage potential and kinetics in
the homogeneous-Geld limit and in the inhomogeneous-
field case because of nonlinear diBusion eBects, (b) in-
creased transport rates in both the nonlinear and linear
difFusion regions due to the larger force per particle
exerted by a given electric Geld, and (c) increased space
charge in the 61m with the accompanying space-charge
modifications of growth rate. The second of these
CGccts is important whenever the increase in Z value
occurs for the rate-limiting species, and the third of
these is important whenever the increase in Z value
occurs for the major space-charge species.

Dependence on Lattice Parameter

The lattice parameter a is clearly an important factor
in growth rate, since the nonlinear cGccts of a given
electric Geld on difFusion increase enormously with the
value of a, and the mobilities depend on a' in the region
in which the currents vary linearly with electric 6eld.
Computations were carried out corresponding to those
of Fig. 12 but with the a value increased by factors ot'

5 and 10.These calculations indicated a direct scaling to
thicker Glms and lower defect densities.

I et a be replaced by )a and the interfacial areal defect
densities e()&'&, eo&'& N~&') and e~&'~ be replaced by the
corresponding densities noP&r/X, no&'&/X, e~&'&/X, and
m~"'/X, where X is an arbitrary dimensionless param-
eter. {Forthe following discussion, consider X)1.) The
solution of this new scaled problem yields the result
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that throughout the 61m the areal defect densities, the
space-charge areal densities, and the electric fields are
decreased from the ones for the unscaled case precisely
by the factor 1/X. t The scaling of areal defect densities
by 1/lt is actually equivalent to a reduction of bulk con-
centrations by 1/X', since in general C(x) =e/2a. j The
total 61m thickness is increased by the factor 1, while all
potentials remain the same. The time to transport a
given number of particles is increased by the factor X.
Considering the fact that the number of particles per
monolayer should decrease as 1/7', the time to reach
a given monolayer number would actual1y be decreased
by the factor 1/X.

Due to exact superposition of the scaled and unscaled
defect profiles, the extent to which the profiles pull
together to yield a partial charge neutralization can be
considered to be exactly the same for the scaled and
the unscaled cases, despite the fact that the charge
densities are significantly different in the two cases. It
is therefore seen that the pulling together of the pro61es
is an effect primarily due to the electrostatic potential,
instead of the charge densities per se.

Transport Currents Directed from Oxide-Oxygen
Interface to Metal-Oxide Interface

Since all computations have been for the negative-
gradient case, such as for the diGusion of cations and
electrons from the metal-oxide to the oxide-oxygen
interface, the question arises as to whether the results
have any significance for the positive-gradient case, as
for example, the diffusion of cation vacancies and posi-
tive holes from the oxide-oxygen interface to the metal-
oxide interface. The results for the previously presented
negative-gradient case can be transformed directly to
the corresponding positive-gradient case by inter-

changing the boundary concentrations at the two inter-
faces for each given species and replacing each value of
Z&') by the corresponding value —Z('. Thus the case
of positive cations diffusing outward under a gradient
produced by the fixed areal densities eo&'& =4X10' and
m~&'~=4X10'/cm' transforms to the case of negative
cation vacancies diffusing inward under a gradient
produced by the fixed areal densities eN&'& =4X10' and
no&"=4X10'/cm'. The ionic and electronic mobilities

are considered to be unchanged. In continuum notation,
the various quantities for this positive-concentration-
gradient case can be obtained very simply from the
corresponding quantities calculated for the negative-
concentration-gradient case by the transformations

C(x)~C(L—x), p(x) —+ p(L x), E(x)~ —E(L—x), — —
and (V (x)—V(0)}—+ (V(L x) V(L)}—. Note —that-
the transformed potential is renormalized so that it
remains zero at the metal-oxide intertace. The growth

rate is of course unchanged.

Correlation with Experimental Data

Experimental determination of the causes for the
manifestation of a given type of oxidation kinetics by

a system has not advanced to the point where de6nite
correlations between theory and experiment can be
made unambiguously. Departures from the parabolic
growth law are commonly observed~; in certain cases
(e.g., copper, " iron,""and sodium ') these are fre-
quently in the retarding direction, while in others
(notably aluminum" and hafnium ') these are at higher
temperatures in the enhancing direction. Thus there is
qualitative agreement between theory and experiment.

The complexity of the space-charge equations pre-
cludes any extensive quantitative fitting of experimental
data utilizing the exact numerical computations; how-

ever, the approximate equations of previous analytical
developments indicate satisfactory agreement with
experimental data, as illustrated in Refs. 9 and 10.The
present numerical computations provide support for
the predictions of these approximate analytical develop-
ments, and in this sense quantitative agreement between
theory and experiment can be said to be satisfactory.

V. CONCLUSIONS

Space charge generally modifies growth kinetics from
the functional form appropriate for a homogeneous field,
as summarized by the following semi-empirical rules:

(1) Space charge retards the growth rate whenever

the sign of the rate-limiting species is the same as the
sign of the total space charge in the 61m; space charge
enhances the growth rate whenever the sign of the rate-
limiting species is opposite to the sign of the total space
charge in the film.

(2) For a given kinetic potential, the extent to which

the growth rate is modi6ed by space charge is qualita-
tively proportional to the total space charge in the 61m,
which in turn depends on the boundary concentrations
and the character of the concentration profiles.

(3) For a given total space charge in the 61m, the
extent to which the growth rate is modi6ed by the space
charge is proportional to the magnitude of the kinetic
potential. For example, for the case of zero kinetic
potential, the growth rate (in contrast to the concentra-
tion pro6les) is unmodi6ed by space charge, and is the
same as the growth rate predicted from Fick's first law

for diffusion as applied to the ionic species in zero
electric field.

'4 Q. Kubaschewski and B.E. Hopkins, Oxidation of Metals and
A/loys (Butterworths Scientific Publications, Ltd. , London,
1953).
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. V. Cathcart, L. L. Hall, and G. P. Smith, Acta Met. 5, 245
(19 7).

'fl E. A. Gulbransen and W. S. Wysong, J. Phys. Chem. 51, 1087
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species and the electrostatic potential difference AVJ»
bet&men the two positions,

APPENDIX' RELATIONSHIP BETWEEN ACTUAL
CHARGE AND EFFECTIVE CHARGE PER

PARTICLE OF A SPECIES DIFFUSIN
IN A POLARIZABLE AND PARTIALLY

COVALENT MEMUM

(A2)

where Eq. (2.6) has been utilized.
In addition, at equilibrium the particle current JJ, is

zero, in which case Eq. (2.12) Li.e., Eq. (2.5) of Ref. 17)
yields

In the limit of equilibrium, the relationship between
the areal densities of charged particles in adjacent
potential minima is given by the Boltzmann factor, so
that es ——Ns g exp(2ZeEsa/knT) . (

»&=I~& em( AU~&t&&&) (A1) Comparison of (A3) with (A1) shows t at
chere d, UI, 1 is the difference in potential energy be-

AU/ = —2Z8EIcQ .
t%'ccn thc tvM positions. Thc cncI'gy 6U Jg 1 is sin1ply thc
product of the ucflal charge per particle of the diffusing Comparing (A2) with (A4) yields the result Zo= q.
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Electron-Spin Susceptibilitie& of the Liquid Binary
Alkali Metal Alloys~
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e report measurements of the Knight shifts of the liquid binary aHMlj metal alloys over the entire
range of concentration of constituents for the alloys Na-Cs, K-Rb, K-Cs, and Rb-Cs. e interpret a]l
exist1ng measurements of the Kn1ght sh1ft 1n the b1nary alloys of Na, K, Rb, and Cs to give the electron-
spin susceptibility &, of those pure alkalis not previously measured. Our interpretation uses the assumption
that ( ~re(0) (')so for a Particular constituent of a Particular alloy remains constant, equal to that for the
pure metal, over the entire concentration range 1n that alloy. rn previous work on the all al alloys, the
changes in the Knight shift in dilute alloys were attributed solely to changes in (~p (')sr due to scattering
by 1mpurity atoms, whereas we attribute the changes primarily to changes in y, and the atomjc volume.
New results for pure me«is, in cgs volume umts, «e ~.=(0.&4+0.0&)X10-8 for potassium and
y = (0.$0~0.08)X10 6 for both rubidium and cesium. Our values are based upon the measured value
y, = $.j3y $0-6 for sodium as a calibration point. The inferred susceptibilities are consistent with values of
the parameter $ of 0.69+0.M', 0.72&0.07, and O, B+0.08 for potassium, rub1d1um, and cesium, respec-
tjvely where g is the ratio of electron wave function density at the nucleus in the metal to the same quantity
jn the free atom. %'e compare the inferred susceptibilities with the calculations of Sjlverstejn. ~e also mak:e
comparisons via the measured total susceptibilities for the aHmljs with some existing calculations of the
diamagnetic and ionic susceptibilities for these metals.

I. INTRODUCTION

A pUANT1Tp of considerable interest in the mod-

em theory of n1etals is the conduction-elcctron-

spin susceptibility X. of the simple metals. There exist
in thc literature direct measurements of values of I, of
Ii and Na. 1 3 Thc DlcasuI'cnlcnt tcchniquc used to
obtain the value of x, is that of Schumacher and
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nical Report No. 9, and by the Advanced Research Projects
Agency through the Materials Science Center at Cornell Univer-
sity, Report No. 9&4.
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Slichter. ' The experiment consists of the comparison
of the integrated conduction-electron spin-resonance
(CESR) absorption to the integrated nuclear magnetic
resonance (NMR) absorption at constant frequency.
The technique has not yet been applied to simple
metals other than Li or Na because of unfavorably
large CESR lincvridths of the other metals. 4'

We present a technique by which @re obtain values
of I, for K, Rb, and Cs by means of an indirect mea-
suremcnt of X, in the liquid binary alkali alloys. Our
technique uses the Knight shifts' of the liquid binary
alkali alloys of Na, K, Rb, and Cs. We use the results

4 G. Feher and A. F. Kjp, Phys. Rev. 98, 337 (j,955).
~ Sheldon Schultz and M. R. Shanabarger, Phys. Rev. Letters

16, 1'lg (1966); W. M. Welsh, Jr., L. W. Rupp, Jr., and P. H.
Schmidt, i' 16, 18j. (1966).' W. D. Knight, Phys. Rev. 76, 1259 (1949).


