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The coupled-currents approach is utilized to study oxidation kinetics for the case of electron and ion
transport by field-modified diffusion. The expression developed for the particle current J for a given species
is J= (v/Sw) exp(—W/ksT)[no—nny exp(ZeVn/ksT)], with Sy="r1¥ exp[Ze(Vi_1+V1)/2kpT], where
v, W, no, ny, and Z are, respectively, the attempt frequency, activation barrier, areal density at the metal-
oxide interface, areal density at the oxide-oxygen interface, and charge per particle in units of e for the
diffusing defect species in question; kp, T, and ¢ denote the Boltzmann constant, the temperature, and
the electronic-charge magnitude. The macroscopic electrostatic potential at the position of the potential
minimum following the kth potential maximum due to the ordinary lattice periodicity is denoted by V.
In the low-space-charge high-field limit for equal magnitudes of Z for the oppositely charged diffusing
species, the electrostatic potential developed across the film is a constant, and the resulting kinetics have the
Mott-Cabrera form. The time £ as a function of film thickness L is given by a series of second-order exponen-
tial integrals E. with successively increasing values of the argument:

2L 5 L_e__t)
tr ZLN'R mZ_oEz((Zm-l-l) 7 )’
where  and Lo are determined by the transport parameters for the system in question. This expression
reduces to the previously derived homogeneous-field parabolic growth law L2= 2L::%/+ whenever nonlinear
effects become inappreciable. Space charge can retard, enhance, or provide no modification of the growth
rate, depending on the potential developed across the film and the sign of the space charge relative to the
rate-limiting species. For nonzero potentials with the sign of the space charge opposite to that of the rate-
limiting species, the growth rate is found to be enhanced; for nonzero potentials with the sign of the space
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charge the same as that of the rate-limiting species, the growth rate is found to be retarded.

I. INTRODUCTION

HE effect of space charge on electronic and ionic
transport in semiconducting and insulator-type
solids is an important physical problem to which con-
siderable attention has been given in the literature.’-5
The space-charge modifications of the values of such
transport currents introduce changes in the kinetics of
growth of dielectric and semiconducting contact layers
on metals, since the rate of growth of such layers is
determined by the rate of charged particle transport
through the layer.® Some consideration has already been
given to the possible modification of the oxidation
kinetics whenever space charge is important.”1° Be-
cause of the complexity of the system of coupled non-
linear diffusion equations, however, the analytical ap-
proaches to date have been approximate. Exact numeri-
cal computations are a necessity in order to verify the
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predictions of previous treatments of an approximate
nature and to provide a basis for further analytical
development.

The present work consists of exact numerical solutions
for oxidation kinetics based on electronic and ionic
diffusion currents with space charge. The computations
represent solutions for the early growth stage in which
space charge initially becomes an important factor in
the kinetics; the numerical scheme utilized for the
computations did not allow the computations to be
carried into the thick-film limit where total neutraliza-
tion of the space charge has been considered.® The
method utilized for obtaining the kinetics is that of
“coupled currents” which has been utilized previously
to examine models of thin-film oxidation kinetics based
on electron tunneling! and thermal electron emis-
sion.”® The present development is applicable in the
growth region in which electron tunneling is negligible
and the scattering of thermally emitted electrons in the
oxide conduction band is sufficient to establish an
electron concentration gradient. There is evidence that
this thickness may be of the order of 25 A. The present
equations include nonlinear diffusion effects due to large
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electric fields in discrete lattices as considered by Mott!®
and by Cabrera and Mott.!¢

The basic equations are formulated in Sec. II.
Oxidation kinetics in the zero space-charge limit are
considered in Sec. ITI. Numerical computations illus-
trating space-charge modifications in the kinetics and
concentration profiles are illustrated in Sec. IV. Con-
clusions are summarized in Sec. V.

II. FORMULATION OF EQUATIONS

The discrete model previously developed!” for dif-
fusion currents is utilized without making the simplify-
ing homogeneous field approximation. Thus the space-
charge contribution to the electric field, as given by
Poisson’s equation considering two or more oppositely
charged diffusing species, is included in the present
development of equations for diffusion currents.

Discrete Lattice

The lattice is considered to consist of N potential
barriers of equal height W for the sth diffusing species
(e.g., cation or anion vacancies, cation or anion inter-
stitials, electrons, or electron holes). A diagram illus-
trating the barriers and appropriate notation is given in
Fig. 1 of Ref. 17. The factor of the discreteness of the
lattice must definitely be included in order to obtain
a valid microscopic derivation of the current for large
electric fields.”” The one-dimensional geometry utilized
is applicable for the case of the growth of uniform
oxides on flat metal surfaces, since the diffusion currents
for growth of the oxide are then directed normal to the
metal-oxide interface. The potential maxima are con-
sidered to be located at positions x; (k=1, 2, - -+, N),
where x,= (2k— 1)a, with 2a representing the distance
between the potential barriers along the direction of the
current. The potential minima are located at the posi-
tions x=0 and x;+a=2ka (k=1, 2, - -+, N). The total
thickness L(f) of the oxide is thus xy+a=2Na.

The potential minimum located at (xx+a)=2ka for
arbitrary k is given the index k. Thus potential minima
occur at =0, 2a, 4a, - - -, 2Na and potential maxima
occur at x=a, 3a, 5@, -+, QN—1)a.

The areal density (particles/cm? in a plane normal to
the direction of the current) of a given type s of diffusing
particles (interstitials, vacancies, electrons, or electron
holes) at the kth potential minimum is given by 7.
It should be emphasized that #() represents the defect
concentration (i.e., the deviation from the value appro-
priate for a perfect lattice) of the sth species rather
than the stoichiometric concentration of the sth species
appropriate for a perfect lattice, since the defect con-
centrations are responsible for the space charge, and
defect gradients provide the driving force for diffusion

16 N. Cabrera and N. F. Mott, Rept. Progr. Phys. 12, 163
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currents, The bulk defect concentration equivalent to
the 7, at the point in question is given by 7:(®/2a.

The electrostatic potential at the kth potential
minimum (for arbitrary k) is denoted by V. The rela-
tionships between the electrostatic potentials, electric
fields, and areal densities of the diffusing species can
now be stated in terms of the present notation in
a manner consistent with Poisson’s equation'® of
electrostatics.

Electric Fields

Define the quantities E, (k=1,2,---,N) as the
electric field at the position of the potential maxima,
i.e., Ey= E(xy). The electric field differs from potential
maximum to potential maximum because of the areal
densities of charged diffusing species in the intervening
potential minimum. Thus for r diffusing species,

Ey=Ep1+ (4r/[qPni 1D +¢®np @+ - - -
+q(r)nk-1(r):| (k"_' 17 2) T N) ’ (21)

where ¢(® is the actual electric charge (i.e., the deviation
from a charge neutral lattice resulting in a contribution
to the macroscopic space-charge distribution) associated
with each particle of the sth diffusing defect species.
With E; defined in this manner, E, is the surface-
charge electric field at the metal-oxide interface
excluding the areal densities of charged particles at the
potential minimum with index 0 (i.e., at x=0). The
source of E, is considered to be the net charge on the
metal at =0, as distinguished from the charged defects
in the zeroth potential minimum in the oxide.

Utilizing the notation of finite differences,”® where
the first difference of an arbitrary function f is de-
fined by

Afe=fr— (2.2)
the first difference of the electric field given by (2.1) is
thus

AE;= (47"/6)‘7]' (j=0y 1,2 N—l) ) (2.3)
where o; is the net charge associated with the jth
potential minimum due to all diffusing species,

r
oj=% qWn® (j=0,1,2,--,N).  (24)

s=1

That is, o; is the total areal charge density at the posi-
tion of the jth potential minimum. An additional
quantity of charge necessary for charge neutrality of the
metal-oxide system as a whole is considered to reside in
surface states provided by adsorbed oxygen at the
oxide-oxygen interface. A summation of (2.3) from j=0

18 7, D. Jackson, Classical Electrodynamics (John Wiley & Sons,
Inc., New York, 1962), p. 12. .

1 C, Jordan, Caleulus of Finite Differences (Chelsea Publishing
Co., New York, 1965), p. 2.
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to j=k—1 yields

k—1 4 k-1
Z AEJ=E]¢—E0=~*'Z 0y (k=1) 2, "';N)' (25)
7=0 € j=0

Electrostatic Potentials

Since the charged particles are considered to be
located predominantly in the potential minima, the
macroscopic electric field E, (k=1,2,.--,N) can be
considered to be essentially uniform in value over
regions #;— e = x<x;+a of the order of a lattice param-
eter. This statement is consistent with expression (2.1)
for the field. The change in electrostatic potential be-
tween adjacent potential minima is then given by

AVi1= Vk—'rVk_1= —_2aEk (k= 1, 2, ey N) (2.6)

The reasonableness of this equation becomes apparent
when it is recalled that Ej is defined at the kth potential
maximum whereas V;_; and V; are defined, respec-
tively, at the potential minima preceding and following
the %th potential barrier. Taking the second difference
of (2.6) and substituting (2.3) then yields

AZVb_lE A(AV}G_l) = — ZGAEk= -_ (87r(l/€)0‘k
(k=1,2, ""N)'
This is the discrete analog of Poisson’s equation.

On the other hand, substitution of (2.5) into (2.6)
and summation from k=1 to k=m yields

2.7

8

AVi1=Vau—V,
k=1
m 87ra, m k-1
=—'2(1 Z Ek—_-—Z(lmEo—‘— Z Z £}
k=1 € k=1 j=0
(m=1’ 21 "'1N)' (2'8)

The double sum can be rearranged and written as a
single sum, so that (2.8) becomes

8mwa m—1
Vi— Vo= —2amEo-———— Z (m—])a,

€ =0

2.9)

The surface-charge field E, at the metal interface can
be related to the total difference of potential (V y— V)
across the oxide by letting m=N in (2.9):

8ra N—1
Eo= (—ZaN)“[(VN— Vo)+— X (N— j)aj]. (2.10)

i=0

It is illuminating to recall that 2aN is simply the total
thickness L(#) of the oxide. Equation (2.10) shows that
in principle it is immaterial which of the two parameters
(Eo, Vy—Vo) is chosen for discussing a calculation in
which neither of the two is held fixed at the outset, since
they are related through Eq. (2.10). It has been found
in practice that V does not vary appreciably with N
for the present work, a result of great importance in
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application of previous perturbation and averaging
techniques,®™ so that it is conceptually an easier
parameter to consider for this set of numerical calcula-
tions. Substitution of (2.10) into (2.9) thus yields the
following : :

8ra N—1
V— Vo= (m/N)[(VN~ Vo+— X (N— j)zr,-]
€ J=0

8ra m—1 ) m
—— 2 (m—foj=—(Vn—Vy)
€ =0 N

LB S Eo- 2]

€ Lj=0 J=m

(m=1,2, .-+, N—1). (2.11)

The zero of potential is arbitrary, as usual, since only
differences of potential occur in the above equations.
It is therefore convenient to choose Vy=0. This is done
throughout the remainder of the equations; this is
the convention used throughout in our numerical
computations.

Particle Currents

The equation for the particle currents J;(® of the sth
species over the kth potential barrier can now be stated.
Each current is the difference between the forward
current due to the particles with areal density #;_;(
attempting the kth barrier with frequency », and the
reverse current due to the particles with areal density
n;(® attempting the same barrier with the same fre-
quency. The barrier height W;® for the forward
direction is modified to W —Z®¢Ea by the presence
of the electric field E;, and the corresponding value
W, for the reverse direction is W(®4Z)¢Ea. The
parameter ¢ is the magnitude of the electronic charge
and Ze is the effective charge'” (magnitude and sign)
of the diffusing species for migration in the polarizable
and partially covalent medium in which the macroscopic
electric field is E;. The quantity Z(®e¢ has recently been
stated by Dignam? and previously by Lidiard? to be
equal to the space-charge contribution per particle of
the sth species; an alternate justification is given in
Appendix A. Even though the quantities ¢¢® and Z®e
may have the same average numerical value, and have
always been chosen numerically equal in our calcula-
tions, we prefer to retain the different notations for these
quantities in our equations to emphasize the two roles
(i.e., space-charge contribution to the macroscopic
electric field and force per particle located in the field
surrounded by the polarized lattice) which the charge on
each particle plays in the diffusion phenomenon.

% M. J. Dignam, J. Electrochem. Soc. 112, 722 (1965); J. Phys.
Chem. Solids 29, 249 (1968). (The later represents a reversal in
opinion over the former as regards the question of internal electric
field modifications of the diffusion current.)

* A. B. Lidiard, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1957), Vol. 20, p. 324.
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Assuming Boltzmann statistics for the probability
that the diffusing particle has a given energy as a result
of thermal vibrations of the lattice, the relation for the
particle current [Eq. (2.5) of Ref. 17] follows
immediately :

T4 =0 exp(— W /kT) [ ms® exp(Z©eEra/ksT)
_nk(s) exp(—Z(")eEka/kBT)]
(k=1,2,--+,N;5=1,2,-++,7),

where kp is the Boltzmann constant and T is the
absolute temperature. The currents are thus defined at
the positions x; of the potential barrier maxima.
Equation (2.12) neglects second-order effects of the
electric field. These effects, which are due to a relative
shift in the potential maxima with respect to the
potential minima that is asymmetrical in the forward
and reverse directions, were first discussed by Dignam.?
An independent treatment is given in Appendix II of
Ref. 17. In view of the simplicity of the model utilized
for the diffusion process in developing Eq. (2.12), and
the fact that only “built-in” potentials are present in
thermal oxidation (in contrast to the possibility of much
larger “applied” potentials in the anodic oxidation®
case), it was decided to ignore second-order effects
entirely in the present development. This is in accord-
ance with the treatment of ionic diffusion in our previous
developments! of oxidation kinetics for the cases of
electron tunneling and thermal electron emission.

(2.12)

Steady State

The consideration of the diffusion currents is now
restricted to the limit of the steady state in the presence
of the surface-charge field and the space-charge dis-
tribution appropriate for the given thickness and the
given values of the physical parameters. The steady
state is the nonzero particle current situation obtained
in the theoretical limit in which the two boundaries of
the oxide film are not moving relative to each other, and
following a time lapse sufficient for all transients to
disappear from the system. In this limit, the particle
currents are uniform (divergenceless) throughout the
lattice, having sources and sinks only at the metal-oxide
interface and at the oxide-oxygen interface. Exact
numerical computations® using the non-steady-state
continuum equation for simple diffusion have shown
the steady-state approximation to be well justified for
growth rates (and corresponding particle currents)
which are physically realistic for thermal oxidation. The
mathematical statement of the steady-state approxima-
tion for the sth species in the case of a discrete lattice is

I/ dt= Ji@— T W= —AJ9>~0
(k=1,2,---,N—1). (2.13)
Thus each of the variables J;® can be replaced by the

2 M. J. Dignam, Can. J. Chem. 42, 1155 (1964).
21, Young, Anodic Oxide Films (Academic Press Inc., New

York, 1961).
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single parameter J(®,
Je2=J® (k=1,2,---,N;s=1,2,--+,71),

where J® still remains to be determined.

(2.14)

Partial Summation of Difference Equations

A partial summation of the set of equations (2.12) for
the currents and the areal concentrations can be effected
in the limit of the steady state. This summation con-
siderably simplifies the process of obtaining practical
numerical solutions; it also renders the problem
amenable to an analytical solution for certain cases.

Substituting Eq. (2.14) for the steady state and
utilizing (2.6) to replace the electric fields by the corre-
sponding first differences of the potential, Eq. (2.12)
becomes

J@ =y exp(—W/kpT)
Xl:nk..1(‘) exp(—Z(’)eAVk,_l/ZkBT)
— 1 ® exp(Z@eAV _1/2kpT)]
(k=1,2,-+-,N;s=1,2,---,r). (2.15)

Let V=0 as mentioned previously, and for convenience
introduce the following quantities:

ar@=exp(—Z®eAV;_1/ksT), (2.16)
Fi@=exp(—ZWeVy/ksT), (2.17)
§@=(J@/p®) exp(W®/EkpT). (2.18)

Substitution of (2.16) and (2.18) into (2.15) and
multiplication by (a:(®)V2/F(® transforms (2.15) into
the form

O (@) /By = (s D JF ) — (18 /F ()
= =A@ /Frs®), (2.19)

where the definition (2.2) has been utilized. A summa-
tion of (2.19) from k=1 to k= j yields

FOS,) =y — (n;® /F;®) (2.20)
where
P é (ap(@)12 i (Z(s>g(Vk,_1+Vk)> 2.21)
()= —_—— e _. .
A T Re &t 2%k5T (

Equation (2.20) for the case j=N yields an evaluation
of ¢ @, and therefore J©, in terms of 7o), ny(®), and the
potentials:

J@=y® exp(—W® /kpT)
X [0 —ny® exp(Z@eVy/ksT)]/Sh®. (2.22)

The evaluation of the areal densities (called the

“concentration profile’” in analogy with the continuum

case) in the oxide film then follows from (2.20):

1,9 (1 ® — £ O5;9) exp(— 29V i/baT)
(j=1,2,---,N—1). (2.23)

% A, T. Fromhold, Jr., J. Phys. Chem. Solids 24, 1081 (1963).
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In the limit of an equilibrium of the sth species (i.e.,
zero current J @), ¢® =0, and #;(® given by (2.23) then
reduces to the Poisson-Boltzmann form. Equation
(2.22) shows that J® is zero whenever the total
potential Vy across the film has the particular value
qu(‘),

VE®=(ksT/Z®e) In(ne/nn ).  (2.24)

This represents the diffusion potential across the film
provided by the concentration gradient of the sth
species.

The interfacial reactions, considered in the present
model to be faster than transport through the oxide,
determine the 27 interfacial areal densities #o® (s=1,
2,--+,7) and nx®@ (s=1,2, ---,7). Hence these are
considered to be fixed quantities in the subsequent
development.

The reason for developing expressions for the particle
currents is that the currents determine the rate of
particle transport, which in turn limits the rate at
which new oxide can be formed. Utilizing the diffusion
current equations in the partially summed form, the
problem for each given film thickness consists in solving
for N (r+1) unknowns, namely, the J® (s=1,2, ---,7),
the #;® (k=1,2, «++, N—1;s5=1,2, ---,r), and the
Vi (k=1,2, ---, N). Of course, once these quantities
are obtained, the o3, (=1, 2, ---, N—1), E,, and the
E; (k=1,2,---,N) follow immediately from (2.4),
(2.10), and (2.1), respectively. If (2.4) is utilized to
eliminate the o; in (2.11), then the problem is reduced
to obtaining the N (r-1) unknowns listed above from
the total of N(r+1) equations given by the N—1
equations (2.11) for Vi, the »(V—1) equations (2.23)
for n;(®), the r equations (2.22) for J®, and an auxiliary
relation known as the “coupled currents” requirement.
This latter equation is given and discussed in the next
subsection.

To obtain a solution, numerical techniques must
generally be employed. However, the sums can be
evaluated analytically in certain cases, the most note-
worthy of which is the “homogeneous field” limit?®
treated in Sec. ITI.

Coupled Currents
The relation

Zr: q(S)](s)z()

8=1

(2.25)

is the basis for the coupled-currents approach to
thermal oxidation, as contrasted with single-current
approaches'® 6 valid in certain limited cases of a current
equilibrium. This equation was also utilized by Wagner®
in his derivation of his parabolic growth law, and, in
fact, is almost classical in solid-state physics.2® It re-

% A. T. Fromhold, Jr., J. Phys. Chem. Solids 24, 1309 (1963);
Bull. Am. Phys. Soc. 10, 454 (1965).

26 N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Oxford University Press, Oxford, 1940), p. 256.
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quires that the net electric charge transported through
the oxide during any given time increment be zero. The
essence of the argument proposed by Wagner for use of
this equation is that the growth of a stoichiometric
oxide requires the continuous transport of a stoichio-
metric ratio of particles through the existing film. It can
be argued that the zero charge transport situation is
intrinsically stable since the field is then unchanged by
the particle currents. Equation (2.25) is termed the
“kinetic condition”; the potential Vy across the film
necessary to satisfy (2.25) is termed the ‘Xkinetic
potential” to emphasize its role in balancing the
currents. Whenever Vy has a value nearly equal to the
equilibrium potential (2.24) for one of the currents, the
situation is termed® growth under a ‘“‘virtual current
equilibrium.”

Growth Kinetics

The growth rate of the oxide or other semiconducting
or insulating film at a given thickness produced by a
given ionic particle current J®'is given by R®J®,
where R®'is the volume of new oxide formed for each
particle of species s which diffuses to the oxide-oxygen
interface. If AL(s) denotes a monolayer of oxide and
At denotes the time necessary to grow this monolayer
as determined by diffusion, then AL(#)/At is the growth
rate. If thereare  of the total number of 7 species which
are ionic, then the total growth rate of the film is given
by summing over these ! species:

AL(t)
— Y R®&J®,
At s=1

(2.26)

The kinetics of growth [i.e., the oxide film thickness
L(¥) versus time #] can therefore be obtained using this
relation, provided the currents are first evaluated as a
function of film thickness according to the procedure
outlined in the above subsections.

III. HOMOGENEOUS FIELD LIMIT

The concentrations® of diffusing defects in the film
as a rule increase exponentially with increasing tempera-
ture, as given by a Boltzmann factor, so that the space-
charge contributions to the electric field should be
largest at high temperatures. At lower temperatures
(i.e., within several hundred degrees of ambient
temperature), the defect concentrations may be low
enough in many cases to neglect space charge. Computa-
tions® show that defect concentrations of 10 particles/
cm?® or so produce insignificant space-charge contribu-
tions to the total electric field until the growing film
reaches a thickness of hundreds of angstroms. Therefore
the homogeneous field limit, in which all space-charge
contributions to the field are neglected relative to the
surface charge field E,, provides a very realistic ap-
proximation for oxidation kinetics over a significant
range of experimental conditions. This approach is not
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the same as that of Wagner® based on the assumption
of charge neutrality, as evidenced by the fact that the
rate constants and concentration profiles derived
thereby are quite different from those predicted by
the Wagner theory.

Homogeneous Field Currents

Equation (2.1) in the homogeneous field limit yields
E=E, for all k, while (2.8) yields V;=—2ajE, for all
7. The total potential V y across the film is thus —2aVE
= —FE,L(#) in this limit. The sum S;® of (2.21) be-
comes a geometric series and can thus be evaluated
readily:

S0 Zj: (Z(s)ean(l—Zk)
(8) — e -
TTETP EsT )

=[1—exp(—2jZ®eE.a/ksT)]/

[2sinh (Z®eEewa/ksT)]. (3.1)

Utilizing this expression for the particular index j=N,
and substituting into (2.22), yields the homogeneous
field approximation for the particle current:

J©=2y® exp(—W® /kpT) sinh(Z®eEa/ksT)
X[ nx®—no'® exp(2NZ®@eEga/k5sT)]/
[1—exp(2NZWeEoa/ksT)]. (3.2)

This expression is identical to Eq. (2.18) of Ref. 17.
Substitution of (3.1), (2.18), and (3.2) into (2.23) then
yields the areal density profile in the limit of a homo-
geneous field. It is identical to the profile given by
Eq. (4.2) of Ref. 17 in continuum notation, where the
areal densities ;¢ divided by 2a yield the correspond-
ing bulk concentrations which are denoted by C(x),
with the position x at the potential minimum denoted
by index j given by ¥=2ja.

Film Thickness Dependence of Potential

The coupled currents condition (2.25) determines Eo
as a function of L(#). For arbitrary values of Z(),
numerical techniques must still generally be used to
obtain a solution. Considerable simplification is effected
if all values of Z(® have the same magnitude, however,
because sinh(—y)=—sinhy and thus all hyperbolic
functions divide out of the coupled-currents equation.
For this special case, suppose that the indices s=1,
2, --+, p denote species for which Z(®¥=+|Z|, and
suppose s=p-+1, p+2, - - -, r denote species for which
Z@W=—|Z|.Let

y=exp(2N|Z|eEoa/ksT) (3.3)
denote a parameter which is independent of s, and define
D®=4a% exp(— W /kpT), (3.4

the latter being the generally accepted expression for the
diffusion coefficient!” for the sth species. With these
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substitutions, the coupled-currents condition (2.25)
yields

?
Z q(S)D(S){nN(s)__no(a)'p}

s=1
— Y gOD@{ny@—ny@y}=0. (3.5)
s=p+1
Denote the sums by
P
Tu=Y ¢®D®g®, (3.6)
8=1
P
Ti=) ¢WD@py®, (3.7)
=1
Ta= Z q(a)D( ’)no(“) ) (38)
g=p+1
Png Z q(3>D(8)nN(3) . (3_9)
s=p+1
Equation (3.5) then yields for ¥
Y= (T13—Ta1)/ (T1u—T22). (3.10)

Referring to the definition of ¥, Eq. (3.3), this relation
is noted to give an expression for the homogeneous
electric field in the film,

Eo= |kBT/2NZ€lZl ln[(rlz—rz1)/(r11—rgz)]. (3.11)

This expression shows that the total potential Va
= —FEyL(t)=—2aNE, across the film during growth
(i.e., the kinetic potential by definition) is a constant,
independent of oxide film thickness. Furthermore, for
the case of two oppositely charged species only, employ-
ment of the Einstein relation and application of the
results presented in Appendix A to Eq. (3.11) shows
that it gives the same value of the kinetic potential as
Eq. (15) of Ref. 27. Thisis interesting since (3.11) holds
for all film thicknesses and corresponding values of the
field, while Eq. (15) of Ref. 27 was derived on the basis
of the linear-diffusion equation and thus is applicable
only in the limit when Z®e¢FE.a/kpT has a magnitude
somewhat less than unity. Therefore, for this particular
case of equal magnitudes of Z¢®, the potential across
the film is not perturbed by nonlinear effects. This is in
contrast to the case of unequal magnitudes of Z(®,

A computation of Vy=—2aNE,, utilizing Eq. (3.11)
in the limit of two oppositely charged species, has been
made as a function of W®—W®, holding all other
parameters fixed. Species 1 is considered to have a
positive Z value, while Z® is considered to be negative.
The results, which are presented in Fig. 1, illustrate that

27 A, T. Fromhold, Jr., J. Chem. Phys. 41, 509 (1964); see also
A. T. Fromhold, Jr., J. Phys. Chem. Solids 24, 1309 (1963),
especially Sec. 2.
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the kinetic potential lies somewhere between the two
extremes of an equilibrium potential (2.24) of one or the
other of the two species. An increase in W relative to
W® drives the system toward the negative equlibrium
potential, while a decrease in W relative to W® drives
the system toward the positive equilibrium potential.
The fixed parameters utilized for the computations of
Fig. 1 are T=300°K, Z®=1, Z®=—1, 5,0 =4X10"
particles/cm?, 7,®@=1X10" particles/cm?, -ny® =4
X107 particles/cm?, #ny®=1X107 particles/cm?, »W¥
=102/sec, »®=10%/sec, and a=2 A. The results are
the same, however, if #,®, #,®, ny®, and ny® are
multiplied by the same constant factor.

Whenever the Z(® are of different magnitude for
different s, Eq. (3.11) is not valid. In fact, numerical
computations®® utilizing (2.25) and (3.2) show that
V is significantly dependent on film thickness for thin
films, but approaches the constant potential derived in
Ref. 27 as soon as the thickness is large enough
(generally several tens of angstroms) so that the linear-
diffusion equation provides a good approximation. It is
noteworthy that no startling difference in the early
stage kinetics is observed?® between the case of the
varying early stage potential and the case of the
potential which is constant throughout growth.

Kinetics for Constant Potential

Whenever (3.11) is valid so that the value of Vy
=—2aNE, is independent of the film thickness 2aN
=L(f), then the only term in the homogeneous field
current (3.2) which depends on thickness of the oxide is
the argument of the hyperbolic sine function. Consider-
ing the generally expected case in which each ionic
current yields a positive contribution to the growth
rate, Eq. (3.2) can be rewritten to yield the following
expression for the contribution of each ionic current to
the over-all rate:

ROJ®=A® sinh[La/L(H)],  (3.12)
where
L= |ZeaEoL(t)/ksT| = |—ZeaVy/ksT| (3.13)
and
A®= |2y R® exp(—W® /kpT)
X{[nw®@—no® exp(—ZeVn/ksT)]/
[l—exp(—ZeVN/kBT)]}[ (3.14)

are defined to be positive constants, independent of
film thickness.

Equation (3.12) has the same functional form as the
Mott-Cabrera equation.!® The primary difference in the
present work (homogeneous field limit) is the mecha-
nism assumed for electron transport (nonlinear diffusion
instead of electron tunneling! or thermionic emission'2)

% Ronald B. Mosley, M.S. Thesis, Auburn University, 1968
(unpublished).
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F16. 1. Electrostatic potential across growing oxide versus the
difference in activation energies for the two oppositely charged
diffusing species. (Values for parameters are given in text.)

and the resulting manner in which the potential across
the film is created and controlled. In the present work,
either the ionic or the electronic species can be rate-
limiting for growth.

An analytical expression for the growth kinetics can
be readily obtained for the present case by approximat-
ing the growth rate AL(#)/A¢ in Eq. (2.26) by the corre-
sponding derivative dL(f)/dt. Equations (2.26) and
(3.12) then yield

dL (t) Lcr it -Lcr it
—_— sinh , (3.15)
dat T L)
where
1
T= Lcrit/z A® . (3 16)

8=1

If L({)=0 when ¢=0, this relation can be written as

L Lcrit
t/7=Leig! / csch( )dﬁ' .
0 $

Expansion of the hyperbolic cosecant into the infinite
series

(3.17)

Lcr it

23 ( @ +1)Lcrit 3.18
= € - — J.
. Xp m : ) (3.18)

m=0

csch

and the change of variable ¢= L(#) /¢ produce the follow-
ing exact expression for the oxidation kinetics:

L(f)) $ Ez( (Zm-;lt;llcm

t/1'=2< ) . (3.19)

crit/ m=0

Each of the quantities Es[ (27+41)Lei/L()] is the
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F16. 2. Monolayer densities of two diffusing species (subscripts
1 and 2) versus position in the oxide. Values of parameters are
given in Table I except for variable boundary concentrations of
species 2: For curves 4, B, and C, #o® has values of 10*, 10, and
102 particles/cm?, and #y® has values of 107, 108, and 10°
particles/cm?, respectively. Dashed curves represent zero space-
charge limit.

tabulated? second-order exponential integral, defined as

Ey(n)= / y~2exp(—mny)dy. (3.20)

The above series of exponential integrals converges
quite rapidly, so that only a few terms are usually
needed in Eq. (3.19). For example, the first term alone
is sufficient for an accuracy of 19, or better whenever
L(#) <3Leit. The dimensionless nature of the quantities
t/r and L(t)/Les, makes it possible to compute a single
universal curve (or tabulation)® from Eq. (3.19),
which can then be used subsequently to obtain L({)
versus ¢ for any particular set of physical parameters.

Parabolic Law

In the limit where L (¢)> Lerit, which may be as small
as 20 A or so for the present model, the hyperbolic sine
function in Eq. (3.15) may be approximated by its
argument. Equation (3.15) then reduces to the form

aL (t) Lc!‘it2
~——o1IL()™, (3.21)
dt T
which yields
L (t)Zg (ZLcrit2/T)l . (3 . 22)

» Handbook of Mathematical Functions, edited by M. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), Appl. Math.
Ser., No. 55, p. 227.

% Universal curves and tabulations may be obtained from the
authors.
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This result is equivalent to the parabolic growth law
previously derived by Fromhold” on the basis of
transport by ions and electrons according to the linear-
diffusion equation integrated in the homogeneous field
limit. This parabolic growth law differs from the field-
controlled parabolic growth law proposed by Cabrera
and Mott! insofar as concentration gradient effects are
included, and it differs from that proposed by Wagner®
insofar as the defect concentrations at any given point
in the oxide for the present model are not generally in
stoichiometric ratio.

IVv. NONHOMOGENEOUS FIELD
COMPUTATIONS

Numerical Techniques

The successive approximation technique, Newton’s
method, and a time-dependent technique were tried
with varying degrees of success for the present numerical
solutions. None was completely satisfactory; the nu-
merical treatment of nonlinear equations is difficult and
there is presently no general algorithm for their solution.
Convergence and stability are the two major properties
which constitute the greatest sources of difficulty.

A combination of the steady-state method and the
time-dependent method was found to be the best
technique regarding both convenience and reliability.
Tt is based on the assumption that the concentration
profiles are in the steady state, but the surface-charge
field and the number of particles in the growing mono-
layer are considered to be time-dependent quantities.
The steady-state concentrations are used to calculate
the corresponding homogeneous currents. These quanti-
ties are obtained from a given potential distribution
which is time-dependent. The primary difference be-
tween this method and that of successive approximation
lies in the fact that the surface-charge field is varied be-
tween successive approximations for the concentration
profiles.

We are confident that the results presented herein are
reliable, since each current (including the current for
the species in a state of virtual equlibrium) was checked
after growth of every monolayer to verify that it was
homogeneous throughout the film.®* This assures self-
consistency of the solution at a given thickness. This
stringent criterion does limit the scope of the results,
since it was found that this condition could not be
maintained in the limit of high space charge for thick-
nesses greater than approximately 75 monolayers. The
present results are valuable because they provide a
clear and exact picture of the perturbing effects of
space charge in the early growth region.

31 This stringent criterion was not maintained in preliminary
numerical computations (Ref. 24, Sec. 3.A), so that the conclusions
of the present more comprehensive study are considered to
supplant these earlier results.
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TABLE I. Parameters for numerical computatlons All computatlons e/ =10, R=1.92X10"% cm?,
y® =102/sec, »® =10 /sec, and Z@
Figure
2 3 4 5 6 7 8 9 10 1 12
curve  curve
Symbol Units a
7o 10% particles/cm? 40 40 40 40 40 a 40 40 40 40 4 40
7@ 10" particles/cm? a a 1 1 1 a 1 1 1 1 1 10
ny® 107 particles/cm? 40 40 a 40 40 a 40 40 40 40 4 40
ny® 107 particles/cm? a a 1 a 1 a 1 1 1 1 1 10
wo eV 065 040 065 040 a a a a 065 040 0.65 0.710
w® eV 055 075 055 075 a a a a 055 075 0727 0787
YA 1 1 1 1 1 1 1 1 1 1 1 1
a A 2 2 2 2 2 2 2 2 2 2 2 2
T °K 300 300 300 300 300 300 300 a 300 300 300 300

& Varied with curve in figure.

Defect Concentration Profiles

The areal densities of the positive and negative
diffusing species for three cases in which the negative
species (species 2; subscript 2) is near a virtual current
equilibrium and the positive species (species 1; sub-
script 1) is rate-limiting are presented in Fig. 2. The
position coordinate (abscissa) is normalized to the
film thickness for each curve. For this figure, the thick-
ness NV of the film is 20 monolayers. Each monolayer is
always chosen to be 4 A. The values of the parameters
utilized for the computations are listed in Table I. These
were chosen to be representative of metal-oxide systems
in general, but were not chosen for any specific system.
For the given activation energies, the results are
essentially independent of the type of lattice defects in
question. Hence the presently considered negative-
gradient case would hold equally well for growth by
motion of anion vacancies as it does for growth by
motion of cation interstitials. An extension of the
numerical results to the positive-gradient case is given
in a separate subsection.

The three cases of Fig. 2 correspond to three sets of
boundary concentrations for the negative species, while
the boundary concentrations of the positive species are
held fixed. The curves labeled 4, and A4; correspond,
respectively, to the negative and positive defect con-
centrations for the lowest electronic boundary con-
centrations; the dashed curves represent the corre-
sponding profiles in the limit of a homogeneous field,
thus giving an indication of the modification in the
profiles introduced by the space charge.

The curves labeled B, and B; represent the corre-
sponding electronic and ionic areal defect densities
when the electronic boundary concentrations are in-
creased by an order of magnitude. The qualitative be-
havior of the profiles remains unchanged.

The curves labeled C; and C; represent the corre-
sponding electronic and ionic areal densities when the
boundary concentrations of the electronic species are
increased still another order of magnitude. The ionic
and electronic profiles then cross one another, and the
qualitative appearance of the curves is vastly modified.

A companion series of profiles has been computed for
three alternate cases in which the positive species
(species 1) is near a virtual current equilibrium while
the negative species (species 2) is rate-limiting. These
are presented in Fig. 3. Again the position coordinate is
normalized to the film thickness (20 monolayers). The
curves 4, and A corresponding to electronic and ionic
profiles for the lowest ionic boundary concentrations
do cross, and thus resemble qualitatively the set C; and
C, of Fig. 2 which also cross. The qualitative behavior
of the positive and negative species are noted to be
interchanged in Figs. 2 and 3 because the species which
is rate-limiting is different in the two figures.

There is no significant qualitative change in the
curves A, and A, in Fig. 3 when the ionic boundary
concentrations are increased by an order of magnitude

F1c. 3. Monlayer densities of two diffusing species (subscripts
1 and 2) versus position in the oxide. Values of parameters are
given in Table I except for variable boundary concentrations of
species 2: For curves 4, B, and C, #o® has values of 10%, 10, and
102 particles/cm?, and #y® has values of 107, 108, and 10°
particles/cm?, respectively. Dashed curves represent zero space-
charge limit.
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F16. 4. Monolayer density distributions of two diffusing species
in a growing oxide for several values of the film thickness. Dashed
curves represent zero space-charge limit of solid curves. Values of
parameters are given in Table I except for variable nx®, which is
4X 108 particles/cm? for all except dot-dash curve, for which
N =g,

to yield the profiles denoted by B, and B;. A further
order-of-magnitude increase in the boundary concentra-
tions, however, yields the uncrossed profiles denoted by
Cs and Ci. These resemble qualitatively the uncrossed
profiles of Fig. 2.

The profile of the species near a virtual current-
equilibrium is noted in both figures to deviate somewhat
from a nearly straight-line behavior on the semi-
logarithmic plot, while the profile of the rate-limiting
species is somewhat horizontal until it takes a sudden
plunge downward near the outer interface. By noting
this qualitative behavior, which holds for both the
homogeneous-field limit as well as for the computations
with space charge, the rate-limiting species can be
distinguished.

To summarize, two qualitative types of profile occur,
the uncrossed and the crossed. Each can occur for a
proper choice of relative jonic and electronic defect con-
centrations, and thus the characteristic does not depend
critically on which species is rate-limiting.

Figure 4 illustrates the variation of the areal defect
densities with film thickness. The curves represent a
case in which the profiles are uncrossed, namely, the
pair of curves A, and 4 in Fig. 2. The position coordi-
nate is normalized to the film thickness for each curve,
with the thickness in monolayers given on each curve.
The upper curves in the figure represent the ionic defect
profile, while the lower curves represent the electronic
defect profile. Note that the profiles of the negative
and positive species pull closer and closer together for
the thicker films, corresponding to a tendency for the
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F16. 5. Monolayer density distributions of two diffusing species
in a growing oxide for several values of the film thickness. Dashed
curves represent zero space-charge limit of solid curves. Values of
parameters are given in Table I except for variable #nx®, which
is 107 particles/cm? for all except dot-dash curve, for which
ny® =5,

space charge to neutralize partially in the interior of
the film. The dashed curves again represent the corre-
sponding profiles in the limit of a homogeneous field.
The dot-dashed curves in Fig. 4 (and also in Fig. 5)
illustrate the effect of perturbing the outer boundary
concentration of the rate-limiting species; such effects
are discussed under ‘“Ohmic Transport.”

Figure 5 illustrates the corresponding variation of
the areal defect densities with film thickness for the
case in which the profiles are crossed. This sequence of
curves corresponds to the pair of curves 4, and 4; in
Fig. 3, for which the electronic species is rate-limiting.
In referring to these figures, it is helpful to remember
that in both Figs. 4 and 5 the ionic boundary concentra-
tion at the metal-oxide interface (x=0) is larger than
that for the electronic species. The tendency toward
space-charge neutralization with increasing film thick-
ness in Fig. 5 for the crossed profile case is much less
pronounced than for the uncrossed profile case of Fig. 4,
since a profile crossing already represents a partial
neutralization of the space charge.

The dashed curves in Figs. 4 and 5, which represent
the corresponding homogeneous field profiles for each
of the cases, are independent of film thickness on the
normalized plots. The homogeneous field curves serve
the purpose of illustrating the modifications of the
profiles introduced by the space charge. Some insight
into the reasons for the difficulty in obtaining an exact
analytical solution to the present problem can be
attained by noting the contortions of the curves in
Figs. 4 and 5 as the space charge in the film increases.
Previous numerical computations® have also illustrated

8 A. T. Fromhold, Jr., J. Chem. Phys. 39, 2278 (1963).
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F16. 6. Space-charge monolayer density and electric field as a
function of normalized position in the growing oxide. The solid
curves represent two thicknesses (25 and 50 monolayers) with
activation energies W®=0.65 and W®=0.55 eV; the dashed
curves represent corresponding computations with W® =0.40 and
W®=0.75 eV. Other parameters are given in Table I.

this feature; the present numerical computations, how-
ever, are the first which have been made subject to the
condition of balanced currents given by Eq. (2.25).

Space Charge and Electric Field Distributions

Other features of the computations of Figs. 4 and 5
are now illustrated. The upper curves in Fig. 6 illustrate
the space-charge profile across the film, while the lower
curves in Fig. 6 illustrate the electric-field variation with
position in the film. Again the position in the film is
normalized to the film thickness. Curves are given for
different thicknesses; the thickness in monolayers is
given on each curve. The solid curves represent the un-
crossed-profile case corresponding to Fig. 4, while the
dashed curves represent the crossed-profile case corre-
sponding to Fig. 5. It is noted in Fig. 6 that the sign of
the space charge is positive throughout the film for the
uncrossed-profile case, while the sign of the space charge
reverses inside the film for the crossed-profile case.

The most striking feature of the space-charge profiles
o is the decreasing concentration of charge in the latter
80% or so of the film as the film thickness increases. This
effect, which is especially pronounced for values of N
less than 25 monolayers (not shown in Fig. 6), is due in
part to an initial increase in total space charge with
film thickness. The curves for the electric field in the
lower part of Fig. 6 illustrate that the fields become more
and more inhomogeneous as the thickness increases.
Note that the values of the electric field are in the range
of 105 V/cm.
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F1c. 7. Electrostatic potential as a function of position in the
growing oxide film. The five groups of curves have values of Vy in
thes homogeneous-field limit of 0.178, 0.067, 0.007, —0.065, and
—0.178 V, corresponding, respectively, to values for WO —W @
of —0.35, —0.21, —0.15, —0.077, and +0.10 eV. Table I lists
values for fixed parameters. The curves labeled 4, B, C, a, b in
the several groups have the following boundary concentrations:

"Curves
Parameters  Units A B,b C a
#o® 101°/cm? 40 40 40 4
n0® 101°/cm? 1 10 100 1
ny® 107/cm? 40 40 40 4
ny® 107/cm? 1 10 100 1

Potential Distributions

The variation of electrostatic potential with position
in the film for N =20 monolayers is shown in Fig. 7 for
all six individual cases illustrated in Figs. 2 and 3 and
for intermediate potential cases. The lower curves
(i.e., negative potential) labeled 4, B, and C corre-
spond, respectively, to the cases labeled 4, B, and C in
Fig. 2, where the ionic species is rate-limiting. The upper
curves (i.e., positive potential) labeled 4, B, and C
correspond to the cases labeled in the same manner in
Fig. 3, where the electronic species is rate-limiting.

The upper and lower curves labeled by the letter a
illustrate the change in the corresponding curves
labeled B when all four boundary concentrations are
lowered by an order of magnitude to decrease the space
charge in the film.

The intermediate-potential cases were chosen with
the aid of Fig. 1; each case is given for two values of
boundary concentrations (curves @ and b in each set)
differing by an order of magnitude. All curves labeled
a in Fig. 7 have the same boundary concentrations,
while all curves labeled & (or B) have boundary con-
centrations an order of magnitude higher.

Note that the potential at the outer interface differs
appreciably for the pair a, b for the intermediate cases;
this is in contrast with the pair a, B in the upper and
lower sets of curves, which represent cases of growth
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F1c. 8. Electric fields E and Ey at the inner and outer interfaces
of the oxide versus the thickness in monolayers. The solid curves
represent computations with W®=0.65 and W® =0.55 eV; the
dashed curves represent computations with W®=0.40 and
W®=0.75 eV. Values of other parameters are given in Table I.

under conditions near a virtual current equilibrium.
For these latter cases, the kinetic potential is very
nearly independent of space-charge concentration and
film thickness. This is an important observation as
regards any approximate treatment of space-charge
effects,31 since it is generally necessary to make some
assumption regarding either the total potential or the
surface-charge field.

The dashed curves in Fig. 7 represent the linear varia-
tion of the potential with position appropriate for the
homogeneous-field case. The curves for the nonhomo-
geneous-field case are noted to depart more and more
from a linear function with increasing space charge. The
thickness dependence (not illustrated) of the potential
curves, with potential plotted versus position in the
film as normalized to the thickness, is very similar for
any given case to the trend illustrated in Fig. 7 for
which NV is fixed at 20 monolayers and space-charge
magnitude is the variable.

Surface-Charge Fields

Figure 8 shows the dependence of the electric field Eo
at the metal-oxide interface and the electric field Ey at
the oxide-oxygen interface on the thickness NV of the
film in monolayers for the numerical computations
leading to Figs. 4 and 5. The solid and dashed curves
correspond, respectively, to the computations of Figs. 4
and 5. The most striking feature is the asymptotic
convergence of E, toward some fixed value as NV in-
creases for both the uncrossed profile case (solid curve)
and the crossed profile case (dashed curve). The be-
havior of Ey is noted to be similar, but not so pro-
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nounced. The two computations corresponding to Figs.
4 and 5 are based on the same values for the boundary
concentrations, but widely differing mobilities. The
asymptotic approach of the interfacial electric fields
toward some fixed value which is the same for the two
cases is therefore a feature which occurs because of the
choice of equal boundary concentrations and despite
the widely differing mobilities. Hence this asymptotic
limit must represent the zero-growth-rate case in which
the currents for all practical purposes are zero. The
system characterized by such a field would be in a state
of chemical equilibrium, and no further change in film
thickness would be possible.

Total Space Charge; Space-Charge Modified Currents

Other features of the same computations leading to
Figs. 4 and S are illustrated in Fig. 9. The upper curves
give the total space charge 1ot in the film as a function
of thickness of the film, where 1.4 is defined as the total
charge in the film due to the positive species minus the
magnitude of the total charge in the film due to the
negative species. The uncrossed-profile case is illustrated
by the solid curve while the crossed-profile case is
illustrated by the dashed curve. The crossed-profile
curve lies considerably below the uncrossed-profile case,
illustrating the fact that a profile crossing represents a
partial neutralization of the total space charge. It can
be seen that oy for the uncrossed-profile case goes
through a maximum (thickness range of 20~25 mono-
layers), and then gently decreases with increasing
thickness.

The dot-dashed curve for o1 corresponds to a higher
temperature computation (600°K instead of 300°K),
with all values of the remaining parameters chosen to
have the same values as were used in computing the
solid curve. These results are discussed under “Tem-
perature Dependence.”

The lower curves in Fig. 9 illustrate the film-thickness
dependence of the difference (Jnsc—Jsc) between the
particle current Jysc computed for a homogeneous field
and the particle current Jsc computed including space
charge. The quantity Jxsc—Jsc can thus be considered
to be proportional to the change or modification in the
current due to the perturbing effect of space charge. The
values are normalized to the corresponding value of
Jnsc for N=25 monolayers (designated as Jxsc*), so
that the ordinate of the curves in the bottom of Fig. 9
is dimensionless. The solid curve (for which Jnsc*
=1.27X102 particles/cm? sec) again represents the
uncrossed-profile case corresponding to Fig. 4, while the
dashed curve (for which Jxgsc?5=7.21X10" particles/
cm? sec) represents the crossed-profile case correspond-
ing to Fig. 5. The dot-dashed curve (for which Jysc?
=2.91X 10" particles/cm? sec) again corresponds to
the higher-temperature case. The curves designated by
long and short dashes are #=Jxsc curves, again nor-
malized to Jxsc?®; the upper one corresponds to the solid
(Jnsc—Jsc) curve, while the lower one corresponds to
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the dashed (Jnsc—Jsc) curve. For N> 30 monolayers,
the curves z=Jngc vary nearly inversely with film
thickness, corresponding to parabolic growth; com-
parison of the slope of a (Jnsc—Jsc) curve with the
corresponding slope of the Jxsc curve at a given film
thickness gives a good indication of how much the space
charge is perturbing the growth kinetics from the
parabolic form at that particular thickness. Note that
the deviations are very large in the early growth period.
Additional information concerning the kinetics is given
in subsequent figures. :

The sign and magnitude of the (Jxsoc—Jsc) curves
are also of importance. The sign for the solid curve
(lower part of Fig. 9) is positive, corresponding to a
smaller current with space charge than without space
charge. Thus the growth rate is retarded by the space
charge for this case. It is interesting that this curve rises
almost linearly for thin films, and then levels off. This
is in agreement with the predictions of first-order® and
second-order'® perturbation treatments, respectively.
Subsequent to the leveling off, the curve decreases
gently with increasing thickness, but the slope is less
than that of an inverse thickness dependence, as seen
by comparison with the corresponding Jnsc curve.
There is a definite correlation between the shape of the
solid curves for oyt and Jxsc—Jsc.

The dashed curve for Jysc—Jsc at the bottom of
Fig. 9 is negative, corresponding to a larger current with:
space charge than without space charge. Thus the
growth rate is enhanced by space charge for this case.
Again the curve initially increases in value with increas-
ing IV, but then levels off. Note that even for the largest
values of IV, the slope is still significantly different from
that of the corresponding — Jnsc curve. The correlation
between the shape of the dashed curves for ot and
Jxsc—Jsc is again evident, but in this case the signs
for oot and Jnsc— Jsc are opposite. This is due to the
fact (as discussed later) that the sign of the total space
charge is the same for the two cases while the sign of
the defect species which limits the growth rate is
opposite for the two cases.

The correlation between the curves for oy and
Jnso—Jsc noted in Fig. 9 holds not only for the shape
of the curves, but also for magnitude of the curves. For
both gy and Jxsc—Jsc, the magnitudes of the solid
curves are larger than the magnitude of the dashed
curves. Thus the total space charge in the film deter-
mines the degree to which the current is perturbed
from the zero-space-charge case. This agrees with the
predictions of the averaging technique.?

The dependence of the quantity Jso/Jwsc with
thickness (not shown in figures) is of some interest, since
it is complementary to the curves in the lower part of
Fig. 9. This quantity, representing the ratio of the
current as computed including space-charge effects to
the current as computed in the homogeneous field limit,
starts out at zero thickness with the value unity. It
decreased monotonically with increasing N for the
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 F16. 9. Total space charge and corresponding relative deviation
in particle current from homogeneous-field value as a function of
thickness (in monolayers) of the growing oxide. All curves except
the dot-dash curve represent a temperature of 300°K; the dot-
dash curve is for T=600°K. (Solid and dot-dashed curves:
W®=0.65 and W®=0.55 eV. Dashed curves: W®=0.40 and
W®=0.75 eV.) The long-dash-short-dash curves in the lower.
half of the figure represent zero space-charge curves, as further
explained  in the text. Table I lists values of the remaining
parameters. .

uncrossed-profile case (Fig. 4), reaching a value of 0.118
at 65 monolayers. [At this point, Jso=5.57X10"
particles/cm? sec, Jnso=4.74X10" particles/cm? sec,
Insc—Jsc=4.18 X 10" particles/cm? sec, (Jnsc—Jsc)/
JIngc?= 0.330, and JNSQ/JNSC%‘: 0.374:.] On the other
hand, for the crossed-profile case (Fig. 5) the quantity
increases monotonically with increasing N, reaching a
value of 1.74 at 65 monolayers. [At this point, Jsc

- =4.69X10" particles/cm? sec, Jnsc=2.70X10" par-

ticles/cm? sec, Jnsc—Jso=—2.00X 10" particles/cm?
sec, (]Nsc‘—fsc)/JNsczs= —:_0.277, and ]Nsc/]N5025
=0.374.] It would be very worthwhile to compute oot
and Jnxsc—Jsc for even greater thicknesses to find out
the ultimate film-thickness dependence of these quanti-
ties, Unfortunately, this could not be done with the
numerical scheme utilized for the present studies, as
mentioned in the “Numerical Techniques” subsection.

Kinetics

Figures 10 and 11 illustrate results obtained for film
thickness versus time (lower curves) and kinetic
potential versus time (upper curves). To point out the
effects of space charge, a comparison is given in the
figures between the nonhomogeneous field results
(solid curves) and the corresponding curves ‘(dashed)
based on the homogeneous-field approximation. The
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F16. 10. Electrostatic potential across growing oxide and film
thickness in monolayers versus time of oxidation. Dashed curves
representing the zero space-charge limit illustrate that space

charge retards growth rate for this case. Values for parameters
are listed in Table T.

homogeneous-field results were computed according to
the formulation given in Sec. III using identical values
for the parameters as were utilized for the computations
including space-charge effects. The curves in Figs. 10
and 11 correspond, respectively, to the computations of
Figs. 4 and 5. Figures 10 and 11 illustrate two possible
effects of space charge on growth rate: In certain cases
the rate is retarded by space charge, as illustrated in
Fig. 10, but in other cases the rate is enhanced by space
charge, as illustrated in Fig. 11.

The kinetic potential ¥y can be observed in Fig. 10
to depend somewhat on time (and hence on film thick-
ness), while in Fig. 11, it is almost time-independent.
The corresponding potentials in the homogeneous-field
approximation are rigorously time-independent, since
the magnitudes of Z® and Z® for these curves are
equal (ZW=1, Z®=—1). The result illustrated of a
nonconstant kinetic potential whenever space-charge
effects are important appears to be quite general. The
variation can be quite small whenever either current is
near a virtual equilibrium, as is the case for Figs. 10 and
11, but can be relatively large when neither current
approaches a virtual equilibrium.

In Fig. 10, the system is near the state of a virtual
electronic current equilibrium, while in Fig. 11 the
system is near the state of a virtual ionic current
equilibrium. The state of the system with respect to a
current equilibrium is one important factor in determin-
ing whether growth is retarded or enhanced by space
charge; the other equally important factor has been
found to be the sign of the space charge. In Fig. 10, the
rate-limiting species is ionic, since the system is near a
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virtual electronic current equilibrium; the space charge
itself is predominantly ionic, as illustrated by the upper
solid curve for o in Fig. 9. The rate-limiting species
and the predominant space charge thus are of the same
sign, and the growth rate is found to be retarded.

In Fig. 11, on the other hand, the rate-limiting species
is electronic, since the system is near a virtual ionic
current equilibrium, while the space charge is still
predominantly ionic, as illustrated by the upper
dashed curve for g1 in Fig. 9. The rate-limiting species
and the predominant space charge thus are of opposite
sign, and the growth rate is found to be enhanced.

The effects of the correlation noted in Fig. 9, that the
magnitude of the perturbing effects of space charge
on the current depends on the total space charge in the
film, can be seen quite distinctly by comparing Figs. 10
and 11. The magnitude of the deviation of lower solid
curves from the dashed curves is much larger for Fig. 10
(uncrossed profiles; relatively large oyor) than for Fig. 11
(crossed profiles; smaller oyot). Similarly, the deviation
of the kinetic potential Vy from the homogeneous-field
limit can be seen to be larger in Fig. 10 than in Fig. 11.

The functional form of the film thickness-versus-time
curves for Figs. 10 and 11 is of interest. Plots (not
shown) of logarithm of film thickness versus logarithm
of time were made for each growth curve, including
those for the homogeneous-field limit. The slopes of the
straight-line portions of such curves gave values for the
parameter #, where L(f) « /" represents an empirical
description of the growth curve. The homogeneous field
growth curves for thicknesses greater than 25 mono-
layers were essentially parabolic (i.e., straight line with
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Fic. 11. Electrostatic potential across growing oxide and film
thickness in monolayers versus time of oxidation. Dashed curves
representing the zero space-charge limit illustrate that space
charge enhances growth rate for this case. Values of parameters
are listed in Table I.
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slope of 2 on the log-log plot), since nonlinear effects
were inappreciable in this thickness range. The value
of n was of course larger in the thin-film region due to
nonlinear effects, varying from approximately 2.2 to
4.4 at a thickness of five monolayers for the series of
computations which were performed.

The growth curve including space-charge effects in
Fig. 10 for N> 18 monolayers was found to approximate
a straight line with »=23.04; a slope of 3 would corre-
spond to a cubic growth law L(#)®« ¢, so the computed
growth curve can be said to be “pseudocubic.” This
growth law is in agreement with recent analytical
work.3 The several other curves in the series represent-
ing retarding effects of space charge computed in the
present study had values of # which ranged between 2.2
and 3.0. The limiting-thickness type of #th-root growth
laws as produced by space-charge effects thus appears to
have a sound theoretical basis.

Figure 11 represents a case in which space charge
enhances the growth rate; for N >25 monolayers, this
curve on the log-log plot was found to approximate a
straight line with a slope of 1.75. Since a slope of 2
corresponds to parabolic growth, while a slope of one
corresponds to linear growth [L(¢) <{], the computed
growth curve can be said to be “paralinear.”

Figure 12 illustrates kinetics for growth under condi-
tions far removed from those necessary for a virtual
current equilibrium of either species. Curves ¢ and b
correspond, respectively, to the pair of negative poten-
tial curves ¢ and b in Fig. 7 which have values of V;
at k=N between —0.06 and —0.10 V; they lie above
the lowest set which represent a virtual electronic
current equilibrium. Curve b represents an increase in
all four boundary concentrations by an order of mag-
nitude relative to those of curve e, with a corre-
sponding decrease of the mobilities for both species by
an order of magnitude. As noted in Fig. 7, there is a
considerable difference in -V at k=N for curves ¢ and
b; this is reflected also in the time dependence of Vy
given in the upper curves of Fig. 12. The potential
changes with time by a factor of nearly 2 in Fig. 12,
whereas the corresponding changes of the potential

TasLE II. Time in minutes to reach 20 monolayers.

Figure 22 Figure 30
Without  With Without With
space space space space
Curve charge charge charge charge
A 212 376 371 336°
B 195 342 38.6 41.3
C 191 256 4.71 9.11

a Jons rate-hmltmg, electrons near a virtual current equilibrium; W®
=0.65 eV, W =0.55 eV.

b Electrons rate-lxmmng, ions near a virtual current equﬂlbrium,
W =0.40 eV, W® =0.75 eV.

oNote that growth is enhanced by space charge for this case; for the
other five cases listed, growth can be noted to be retarded by space charge.

# K. Hauffe, L. Pethe, R. Schmidt, and S. R. Momson, J.
Electrochem. Soc. 115, 456 (1968)
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F16. 12. Electrostatic potential across growing oxide and film
thickness in monolayers versus time of oxidation for two values of
space charge differing by an order of magnitude. Inset illustrates
f)otentxa,l versus monolayer number. Values for parameters are

isted in Table I.

with time in Figs. 10 and 11 are less than 109,. The
time "dependence of the potential for the nonhomo-
geneous-field case is always found to be significantly
larger when the system is not in a virtual current-
equilibrium state.

The inset in the upper half of Fig. 12 gives Vy versus
N.Note that the deviation from the dashed curve in the
inset giving the value of Vy in the homogeneous-field
limit is considerably larger for curve b than for curve a,
due to the fact that the space charge is larger for curve
b than for curve a.

The film-growth curve b in Fig. 12 departs more from
the dashed curve representing the homogeneous-field
limit than does curve a, again reflecting the effects of
the larger space-charge concentrations for curve b.
Since the product of mobility and concentration was
chosen to have the same value for curves ¢ and b, the
same dashed curve represents the homogeneous-field
limit for both. The deviation of the solid curves from
the dashed curves thus accurately reflects the effects
of space charge on the growth kinetics.

Empirical Correlation between Total Space
Charge and Growth Rate

Table II summarizes our results for time of growth
of 20 monolayers for a series of computations corre-
sponding to all six cases illustrated in Figs. 2 and 3. A
relative comparison between the numbers in the table
for the time of growth yields all the worthwhile in-
formation ; the values themselves are not of fundamental
significance, since they scale linearly with mobility as
long as a constant ratio is maintained between the two
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TasLE III. Total space charge at 20 monolayers
in units of 101/cm?.

Figure 2 Figure 3
Rate- Rate-
limiting limiting
Curve  Profile* oyt species  Profile* oot species
4 0] 28.7 + X 9.41b -
B 0 25.8 + D¢ —-0.569 —
Cc X 5.55 -+ 0 —35.2 -

a The crossed-profile cases are denoted by X; the uncrossed-profile cases
are denoted by O.

b This case is the only one of the six in which the product of the sign of the
total space charge and the sign of the rate-limiting species is negative.

mobilities. (A constant ratio between mobilities is
equivalent to a variation in both W® and W® subject
to the condition of a fixed value for W®—W ®.) With
this type of scaling, the concentration profiles are un-
perturbed, so that the distribution of space charge in
the film, the electric fields, and the potentials are un-
changed. It is noted in Table II that the three computa-
tions relevant for Fig. 2 yield times which are of the
same order of magnitude, while those relevant for Fig. 3
yield times which differ sequentially by roughly an
order of magnitude. These differences are readily ex-
plained. For Fig. 2, the ions are rate-limiting in each
case; since the ionic mobility and the largest ionic
boundary concentration are held fixed for the three
computations, the product (i.e., the ionic conductivity)
is unchanged and the times of growth are of the same
order of magnitude. They differ in the zero space-
charge limit only because of slightly different kinetic
potentials (Vy has values in the homogeneous-field
limit of —0.163, —0.177, and —0.178 V, respectively,
for curves 4, B, and C of Fig. 2). For Fig. 3, the elec-
trons are rate-limiting in each case; the electronic
mobility is held fixed but the largest electronic boundary
concentration is increased successively by an order of
magnitude for each of the three computations, so that
the product (i.e., the electronic conductivity) increases
successively by an order of magnitude for each of the
three computations. Thus the times of growth decrease
successively by roughly an order of magnitude, differing
from this exact figure in the zero space-charge limit only
because of slightly differing kinetic potentials (Vy has
values in the homogeneous field limit of 0.178, 0.171,
and 0.141 V, respectively, for curves 4, B, and C of
Fig. 3).

Table III summarizes the corresponding values of
total space charge in the film for the six cases discussed
above. Note the correlation which exists between the
magnitude of oyt and the type of profile, the space-
charge magnitude being larger for the case of uncrossed
profiles than for the crossed profiles.

The sign of the rate-limiting species is also listed in
Table IIT for each of the six cases. The rate-limiting
species is considered to be that species for which
transport is aided by the kinetic potential across the
film; for the presently considered case of diffusion from
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the metal-oxide interface to the oxide-oxygen interface,
this is the species with the sign opposite to the sign of
the kinetic potential. The product of the sign of the
rate-limiting species and the sign of the total charge is
noted to be positive for every case in Table III except
for the case of curve 4 of Fig. 3; a comparison with
Table II shows that this case is also the only one of
the six for which enhanced growth occurs.

The correlation between the product of the signs of
the total space charge and the rate-limiting species and
the effect of space charge on growth kinetics is further
developed in Table IV. Kinetic potentials for each of
the curves in Fig. 7 are listed, together with information
regarding type of profile, magnitude and sign of total
space charge at 20 monolayers, and the ratio of the
growth time fg¢ including space charge to the growth
time insc in the homogeneous-field approximation.
Ratios tso/tnsc greater than 1 correspond to retarded
growth, while ratios less than 1 represent enhanced
growth. Utilizing the fact that the sign of the rate-
limiting species is opposite to that of Vy for the
presently considered cases, the sign obtained by taking
the product of that of the total space charge and the
rate-limiting species is computed and listed in Table IV.
In every case, it is seen that this sign is positive for
Isc/tnse> 1, representing retarded growth, while it is
seen to be negative for fsc/insc<1, representing en-
hanced growth. Furthermore, this correlation has been
verified for all other computations which have been
made to date, including 11 calculations designed to
study special effects such as perturbations resulting
from variation of individual parameters. On the basis
of this correlation, we propose our first empirical rule
for space-charge effects: Space charge retards the growth
rale whenever the sign of the rate-limiting species is the

Tasre IV. Correlation between space-charge retardation or
enhancement of growth rate and the product of the sign of rate-
limiting species and the sign of the total space charge in the film
for all computations of Fig. 7.

Ttot Product
Curve Profile (10%/cm?) Vn(V)®  of signs® (fgc/tnsc)®
a X —0.27 0.172 + 1.01
A X 9.41 0.178 - 0.91
B X —0.57 0.173 + 1.07
C 0 —-35.2 0.167 + 1.93
a X 1.06 0.066 - 0.991
b X 6.73 0.063 — 0.95
a o 2.43 0.002 — 0.998
bd 0 13.4 —0.014 + 1.015
a (0] 4.02 —0.073 + 1.04
b ] 20.4 —0.097 + 1.30
A 0 28.7 —0.174 + 1.77
B (0] 25.8 —0.178 + 1.75
C X 5.55 —0.179 + 1.34
a 0 5.32 —0.177 + 1.10

» Kinetic potential at 20 monolayers including the effects of space charge.
b Product of sign of total space charge and sign of charge of rate-limiting
species. X
p° Ratio greater than 1 indicates retarded growth; ratio less than 1
indicates enhanced growth. . . L
d Electric fields as large as 105 V/cm inside film; field is negative in first
part of film but positive in latter part of film,
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same as the sign of the total space charge in the film; space
charge enhances the growth rate whenever the sign of the
rate-limiting species is opposite to the sign of the lotal
space charge in the film.

It should be pointed out in connection with this
empirical rule that in some cases the total space charge
undergoes a change in sign during growth. This occurs,
for example, in curve B of Fig. 3, where ot is positive
for N'<10 monolayers, but is negative from 10 to 20
monolayers. The space-charge effects relevant for the
latter growth stage predominate, however, as evidenced
by the fact that the over-all effect is throughout growth
one of retardation (curve B with Vx=0.173 V in
Table IV). Thus the early stage growth for this case is
an example in which the above empirical rule does not
hold.

Analytical verification of the rule is possible for cases
where the following two conditions are met: (a) the
non-rate-limiting species is near a virtual current
equilibrium, so that Vy is essentially unperturbed by
the space charge, and (b) the space-charge density does
not undergo a sign change within the film. The first of
these conditions, together with the convention V,=0,
allows us to interpret the term (m/N)(Vy—TVy)
occurring in Eq. (2.11) as the homogeneous-field
potential V,? at the mth potential well. The non-
homogeneous-field potential ¥,, at the mth potential
well given by Eq. (2.11) then becomes

Va=Vud+6Va, 4.1)
where
V= (1=2)E dortm 4 )
Vm={1—— joi+m (1———)0'-. 4.2
N5 Joj P N FR ¢

The second of the above conditions allows us to conclude
that the sign of 6V, in Eq. (4.2) is the same as the sign
of the space charge o;, since both j and m are equal to
or less than .

The ratio of the current Jsc of a given species to the
corresponding current Jysc in the homogeneous-field
limit can be obtained from Eq. (2.22); the first of the
above conditions reduces this ratio to the following
simple form:

Jsc/Insc=Sn"/Sw, (4.3)

where Sy is given by Eq. (2.21) for this species in
question, and Sy° is the same quantity evaluated in the
homogeneous-field limit. Substitution of Eq. (4.1) into
Eq. (2.21) yields the following expression for Eq. (4.3):

Js¢ N Ze(Vi-1"+ V1)
=2 em(———~——) /
Jysc k=1 2ksT
21‘5 [ (Ze V™4 Vk°)>
expl ————— "7
k=1 P 2kpT

28(3 Vit 6Vk)
——-—«~)] . (4.4)
2kpT

Xexp(
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This equation is valid for any diffusing species in the
film. Application to the rate-limiting species and use of
the fact that 8V, has the sign of the space charge yields
the immediate result that Jso/Jnsc is less than 1 when
the sign of the rate-limiting species is the same as the
sign of the net space charge, but greater than 1 when
the sign of the rate-limiting species is opposite to the
sign of the net space charge. Thus the above empirical
rule is verified analytically for such conditions, and
therefore can be said to be semiempirical.

Examination of the values of Vy in Table IV (or
Fig. 7) shows values which fall into five groups, namely,
values in the neighborhood of 0.17, 0.06, 0.01, —0.08,
and —0.18 V. The four cases for which Vy~0.17 V
illustrate an excellent correlation between the mag-
nitude of a0 and the deviation of f5c/insc from a value
of 1. In every case, the larger values of gt result in a
larger retardation or enhancement, as the case may be,
of growth rate. Note also the same correlation for the
two cases for which Vy~0.06 V, for the two cases in
which ¥ 3=20.01, for the two cases in which V y~—0.08,
and for the four cases in which Vy~~<—0.18 V. This leads
us to propose our second empirical rule for space-charge
effects: For a given kinetic potential, the extent to which
the growth rate is modified by space charge is qualitatively
proportional to the total space charge in the film, which in
turn depends on the boundary concentrations and the
character of the concentration profiles. The dependence of
rate on total space charge is in agreement with pre-
dictions based on the averaging technique.? In addition,
Eq. (4.2) shows that 8V, increases in magnitude with
the magnitudes of o;; this in turn yields a larger devia-
tion of the ratio Jsc/Jnsc in Eq. (4.4) from the value
of 1. Therefore under the same conditions of constant
V and a uniform sign for ¢; as specified above, the
second empirical rule is seen to be justified analytically,
and therefore it can also be called semiempirical.

The values of oot listed in Table IV for the curves
marked ¢ have magnitudes in the range 0.27X10" to
5.3X10"/cm?, and thus are not particularly large. These
curves. all have the same boundary concentrations,
no®=4X10°/cm?, 7o®@=1X10"/cm?, ny®=4%X107/
cm?, and ny®=1X107/cm?. The boundary concentra-
tions for the curves marked b or B are an order of
magnitude larger. The corresponding values of oo for
the uncrossed profile cases lie in the range 13.4X 10" to
25.8X10"/cm?, which are considerably larger than for
the curves designated a. On the other hand, the curves
marked & or B for the case of crossed profiles have
magnitudes for ot of 0.57X10" and 6.73X 101, which
are not much larger than for some cases of the curves
marked a. This provides additional evidence that a
profile crossing results in a considerable neutralization
of space charge, with the accompanying lessening of
space-charge modifications of the growth rate.

Another very interesting feature of Table IV is the
fact that the two cases for which Vy is extremely small
(0.002 and —0.014 V) have ratios fsc/fysc very close



894

to 1, corresponding to almost no space-charge modifica-
tion of the growth rate. This is true even though oyt is
relatively large and the electric fields in the film are
found to have values which range in magnitude as large
as 10% V/cm. (The concentration profiles are of course
greatly modified by the space charge.) Furthermore, a
comparison with values of fgo/insc in the table for
calculations in which gy is not significantly larger but
for which Vy is considerably larger (e.g., consider the
cases of Vy being 0.167 and —0.174 V, with corre-
sponding o104 values of —35.2X 10" and 28.7 X 10'Y/cm?)
illustrates that the rate in the higher potential cases is
considerably affected by space charge. A corresponding
comparison can be made for the calculations listed in
Table IV for which Vy has the values 0.173, 0.066,
0.002, —0.073, and —0.179 V, with the same result.
On this basis, we propose our third empirical rule for
space-charge effects: For a given total space charge in the
Sfilm, the extent to which the growth rate is modified by the
space charge is proportional to the magnitude of the kinetic
potential. For example, for the case of zero kinetic potential,
the growth rate (in contrast to the concentration profiles) is
unmodified by space charge, and is the same as the growth
rate predicted from Fick’s first law for diffusion as applied
to the tonic species in zero electric field.

Temperature Effects

Most computations were performed utilizing a tem-
perature of 300°K; the dot-dashed curves in Fig. 9
illustrate the essential effects of raising the temperature
from 300°K (solid curves) to 600°K, without a change
in the other parameters. Note that o, increases signifi-
cantly with increasing temperature, while the normal-
ized value of Jygc—Jsc decreases with increasing
temperature. Therefore, even though the total space
charge increases, the space-charge modification of the
growth rate for fixed boundary concentrations is less at
higher temperatures. The decreasing effectiveness of
space charge on growth rate at elevated. temperatures
for fixed boundary concentrations is in qualitative agree-
ment with the inverse temperature dependence pre-
dicted by the perturbation®! and averaging® techniques.

An examination of the concentration profiles (not
shown) for the 300 and the 600°K computations shows
immediately that the larger total space-charge con-
centration in the 600°K case is due to the fact that the
concentration profiles for the two oppositely charged
species do not pull together as much at 600°K as they
do at 300°K, so that there is less space-charge neutrali-
zation at each point in the film, The linear dependence
of the equilibrium potentials on temperature leads to an
increase in the kinetic potential by a factor of almost 2.
The electric fields are significantly larger also at 600°K
than at 300°K. The time of growth to 20 monolayers
decreases enormously (by a factor of approximately
3.3X107%) at 600°K relative to 300°K owing to the
vastly increased mobilities,
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Ohmic Effects for Rate-Limiting Species

The axiomatic basis?* for the present work is the
assumption of particle transport by diffusion currents
with fixed boundary concentrations for each diffusing
species which are established by the interfacial re-
actions. The dot-dashed curves in Figs. 4 and 5 illustrate
the effect on the concentration profiles in a 50-mono-
layer film produced by changing the smaller boundary
concentration of the rate-limiting species to a value
equal to that at the opposite interface, as would be the
case in the low-space-charge limit for an “ohmic”
species (i.e., a species with no net concentration
gradient). It is noted in Figs. 4 and 5 that the profile of
the rate-limiting species is modified only near the outer
interface, while the profile of the oppositely charged
species is hardly changed at all. Thus the space-charge
concentration profile (these and subsequent curves are
not shown) and the curve for the electric field versus
position for each of the two cases are modified signifi-
cantly only at the outer interface, the modification being
quite large in the case of Fig. 4 because the major space-
charge species is involved, but almost negligible in the
case of Fig. 5 because it is the minor space-charge
species which is involved. In the case of Fig. 4, o%
achieves almost the same value at the outer interface as
it has at the metal-oxide interface. The potential versus
position in the film is changed somewhat for Fig. 4 but
changed negligibly for Fig. 5. The curves for the film-
thickness dependence of the total space charge and the
electric field at the outer interface are likewise modified
somewhat in magnitude but not in shape, while the film-
thickness dependence of the electric field at the metal-
oxide interface is almost unchanged in both cases. The
curves illustrating the film-thickness dependence of
Jnsc—Jsc are unperturbed in shape, the values them-
selves being modified by less than 5%. The film thick-
ness versus time and the kinetic potential versus time
are likewise affected very little.

Therefore it is concluded that the explicit value
chosen for the outer boundary concentration of the
species which is strongly rate-limiting is not important
insofar as it does not appreciably affect the results for
the kinetics. (This boundary concentration could even
vary arbitrarily with film thickness without affecting
the final results.) The physical reason for the un-
importance of the value of this particular boundary
concentration is the fact that transport of the rate-
limiting species is field-controlled and hence it does not
depend very strongly on the concentration gradient.

Charge Neutrality at the Interfaces

The tendency toward partial neutralization of the
space charge observed in the thicker films at large
boundary concentrations raises the question of whether
or not the departure from neutralization is due merely
to the choice of unequal boundary concentrations for
the oppositely charged species, Two calculations were
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therefore performed in which the boundary concentra-
tions of the oppositely charged species were chosen to
be equal at the interfaces. The resulting curves (not
shown) illustrate that charge neutrality is not obtained
in this manner; instead, the surface-charge and space-
charge fields are of the same order as those for the more
general cases. For example, a computation with 7,®
and z#y® chosen to have the same values as 7,® and
ny®, respectively, but otherwise similar to the one
given by curve b of Fig. 12, has values of gyt at N =20
in the neighborhood of 13X 10'/cm?, with electric fields
in the film between 5X10* and 3X105 V/cm. The
concentration profiles and their variation with increas-
ing film thickness are much the same as those illustrated
in Fig. 4. The one curve which has a significantly differ-
ent appearance is that for oy versus k/N, since this
curve approaches zero at each interface. The rate is
considerably retarded by the space charge in the film,
in agreement with the qualitative behavior predicted by
the three empirical rules.

The results of these computations therefore illustrate
that the coupled-currents condition of equal charge-
current magnitudes for the oppositely charged diffusing
species is the determining factor for the surface-charge
and space-charge fields, so that these fields will be
created whenever the ionic and electronic conductivities
in the film are unequal, as is generally the case. The
partial neutralization which occurs for higher boundary
concentrations and thicker films is merely a result of
the fact that electric fields have been established which
are sufficient to equalize the currents, and any further
increase in the magnitude of the field would unbalance
the currents and therefore cause the coupled-currents
condition to be violated. It is of considerable significance
that the partial space-charge neutralization which is
observed in the present work is a direct result of the
macroscopic electric field in the film as deduced from
Poisson’s equation, and is not a result of strong Coulomb
(or chemical) forces between individual oppositely
charged defects.®

Dependence on Z Value

All calculations described thus far correspond to the
choice ZW=1 and Z® = —1. As shown in the previous
section on the homogeneous-field approximation, the
choice of equal magnitudes for the Z values yields a
kinetic potential in the absence of space charge which
is independent of thickness. A series of computations
have been performed with parameters chosen to have
the values utilized for curves @ and B in the lower part
of Fig. 7 but with Z® chosen to have values of 2 and 4.
(Curve B in Fig. 7 corresponds to curve B in Fig. 2;
thus species 1 is both the rate-limiting species and the
major space-charge species in the present example.) The
most immediate consequence of increasing the value of
ZM is a noticeable increase in the space-charge density
or; at the metal-oxide interface the full increase is
noted, but the increase is less inside the film due to the
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pulling together of the concentration profiles with the
resulting partial neutralization of the space charge. The
curves for oy versus N have the same shape, but
increase in value by approximately 709, with increase
in ZW from a value of 1 to the value of 2, and increase
by approximately 409, with increase in Z® from the
value 2 to the value 4. The (retarding) effect on growth
rate is increased by the additional space charge, in
accordance with the three empirical rules for space-
charge effects.

Of course, the over-all growth rate increases greatly
with the value of ZW, especially in the nonlinear
diffusion region. In the linear diffusion region, the
mobility increases linearly with the Z value.

The kinetic potential is perturbed by the additional
space-charge at higher values of ZW, as in Fig. 12. In
addition, Vy in the homogeneous-field limit, as well as
in the case for the inhomogeneous field, has a sharp
decrease in value with decreasing thickness in the region
of the first several monolayers; this is due to the fact
that the unequal magnitudes of the Z values cause Vy
to be perturbed by nonlinear effects, as mentioned in
the section on the homogeneous-field limit. The film
thickness versus time curves are not noticeably per-
turbed by this behavior of the potential. These early-
stage variations of Vy with thickness for unequal
Z values and the effect on the kinetics have been
studied in greater detail by Mosley.?

To summarize, increased Z values cause (a) a
perturbation in the early-stage potential and kinetics in
the homogeneous-field limit and in the inhomogeneous-
field case because of nonlinear diffusion effects, (b) in-
creased transport rates in both the nonlinear and linear
diffusion regions due to the larger force per particle
exerted by a given electric field, and (c) increased space
charge in the film with the accompanying space-charge
modifications of growth rate. The second of these
effects is important whenever the increase in Z value
occurs for the rate-limiting species, and the third of
these is important whenever the increase in Z value
occurs for the major space-charge species.

Dependence on Lattice Parameter

The lattice parameter a is clearly an important factor
in growth rate, since the nonlinear effects of a given
electric field on diffusion increase enormously with the
value of @, and the mobilities depend on a? in the region
in which the currents vary linearly with electric field.
Computations were carried out corresponding to those
of Fig. 12 but with the @ value increased by factors of
S and 10. These calculations indicated a direct scaling to
thicker films and lower defect densities.

Let a be replaced by Aa and the interfacial areal defect
densities 70", 7@, ny®, and nxy® be replaced by the
corresponding densities 7™ /A, ny® /A, nxy® /N, and
ny®/\, where \ is an arbitrary dimensionless param-
eter. (For the following discussion, consider A>1.) The
solution of this new scaled problem yields the result
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that throughout the film the areal defect densities, the
space-charge areal densities, and the electric fields are
decreased from the ones for the unscaled case precisely
by the factor 1/\, [The scaling of areal defect densities
by 1/ is actually equivalent to a reduction of bulk con-
centrations by 1/)?, since in general C(x)=#/2a.] The
total film thickness is increased by the factor A, while all
potentials remain the same. The time to transport a
given number of particles is increased by the factor A,
Considering the fact that the number of particles per
monolayer should decrease as 1/)A2, the time to reach
a given monolayer number would actually be decreased
by the factor 1/\.

Due to exact superposition of the scaled and unscaled
defect profiles, the extent to which the profiles pull
together to yield a partial charge neutralization can be
considered to be exactly the same for the scaled and
the unscaled cases, despite the fact that the charge
densities are significantly different in the two cases. It
is therefore seen that the pulling together of the profiles
is an effect primarily due to the electrostatic potential,
instead of the charge densities per se.

Transport Currents Directed from Oxide-Oxygen
Interface to Metal-Oxide Interface

Since all computations have been for the negative-
gradient case, such as for the diffusion of cations and
electrons from the metal-oxide to the oxide-oxygen
interface, the question arises as to whether the results
have any significance for the positive-gradient case, as
for example, the diffusion of cation vacancies and posi-
tive holes from the oxide-oxygen interface to the metal-
oxide interface. The results for the previously presented
negative-gradient case can be transformed directly to
the corresponding positive-gradient case by inter-
changing the boundary concentrations at the two inter-
faces for each given species and replacing each value of
Z® by the corresponding value —Z. Thus the case
of positive cations diffusing outward under a gradient
produced by the fixed areal densities 70" =4X10" and
ny®=4X10"/cm? transforms to the case of negative
cation vacancies diffusing inward under a gradient
produced by the fixed areal densities 7y ®=4X10" and
7o =4X107/cm?. The ionic and electronic mobilities
are considered to be unchanged. In continuum notation,
the various quantities for this positive-concentration-
gradient case can be obtained very simply from the
corresponding quantities calculated for the negative-
concentration-gradient case by the transformations
C(x)— C(L—x), p(x)— — p(L—2), E(x) > — E(L—2),
and {V(x)—V(0)} - —{V(L—x)—V(L)}. Note that
the transformed potential is renormalized so that it
remains zero at the metal-oxide interface. The growth
rate is of course unchanged.

Correlation with Experimental Data

Experimental determination of the causes for the
manifestation of a given type of oxidation kinetics by
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a system has not advanced to the point where definite
correlations between theory and experiment can be
made unambiguously. Departures from the parabolic
growth law are commonly observed®; in certain cases
(e.g., copper,? iron,3%% and sodium38) these are fre-
quently in the retarding direction, while in others
(notably aluminum?® and hafnium®) these are at higher
temperatures in the enhancing direction. Thus there is
qualitative agreement between theory and experiment.
The complexity of the space-charge equations pre-
cludes any extensive quantitative fitting of experimental
data utilizing the exact numerical computations; how-
ever, the approximate equations of previous analytical
developments indicate satisfactory agreement with
experimental data, as illustrated in Refs. 9 and 10. The
present numerical computations provide support for
the predictions of these approximate analytical develop-
ments, and in this sense quantitative agreement between
theory and experiment can be said to be satisfactory.

V. CONCLUSIONS

Space charge generally modifies growth kinetics from
the functional form appropriate for a homogeneous field,
as summarized by the following semi-empirical rules:

(1) Space charge retards the growth rate whenever
the sign of the rate-limiting species is the same as the
sign of the total space charge in the film; space charge
enhances the growth rate whenever the sign of the rate-
limiting species is opposite to the sign of the total space
charge in the film.

(2) For a given kinetic potential, the extent to which
the growth rate is modified by space charge is qualita-
tively proportional to the total space charge in the film,
which in turn depends on the boundary concentrations
and the character of the concentration profiles.

(3) For a given total space charge in the film, the
extent to which the growth rate is modified by the space
charge is proportional to the magnitude of the kinetic
potential. For example, for the case of zero kinetic
potential, the growth rate (in contrast to the concentra-
tion profiles) is unmodified by space charge, and is the
same as the growth rate predicted from Fick’s first law
for diffusion as applied to the ionic species in zero
electric field.

3¢ 0. Kubaschewski and B. E. Hopkins, Oxidation of Metals and
Alloys (Butterworths Scientific Publications, Ltd., London,
1953).

3T, N. Rhodin, J. Am. Chem. Soc. 73, 3143 (1951).

36 . T. Yolken and J. Kruger, J. Electrochem. Soc. 114, 796
(1967).

37 M. Wym. Roberts, Trans. Faraday Soc. 57, 99 (1961).

38 J. V. Cathcart, L. L. Hall, and G. P. Smith, Acta Met. 5, 245
(1957).

® E. A. Gulbransen and W. S. Wysong, J. Phys. Chem. 51, 1087
(1947).

4 W. W. Smeltzer and M. T. Simnad, Acta Met. 5, 328 (1957).
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APPENDIX: RELATIONSHIP BETWEEN ACTUAL
CHARGE AND EFFECTIVE CHARGE PER
PARTICLE OF A SPECIES DIFFUSING
IN A POLARIZABLE AND PARTIALLY
COVALENT MEDIUM

In the limit of equilibrium, the relationship between
the areal densities of charged particles in adjacent
potential minima is given by the Boltzmann factor, so
that

NE="MNp—1 CXp(—'AUk-l/kBT) ) (Al)

where AU;—; is the difference in potential energy be-
tween the two positions. The energy AUj_, is simply the
product of the actual charge per particle of the diffusing
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species and the electrostatic potential difference AV;_;
between the two positions,

AUk=qAVk_1= —quEk N

where Eq. (2.6) has been utilized.
In addition, at equilibrium the particle current J; is

zero, in which case Eq. (2.12) [i.e., Eq. (2.5) of Ref. 17]
yields

(A2)

Ng=MNr—1 €XpP (ZZeEka/kBT) . (A3)
Comparison of (A3) with (A1) shows that
AUy= —2Z¢Ea. (A4)

Comparing (A2) with (A4) yields the result Ze=gq.
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Electron-Spin Susceptibilities of the Liquid Binary
Alkali Metal Alloys*
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We report measurements of the Knight shifts of the liquid binary alkali metal alloys over the entire
range of concentration of constituents for the alloys Na-Cs, K-Rb, K-Cs, and Rb-Cs. We interpret all
existing measurements of the Knight shift in the binary alloys of Na, K, Rb, and Cs to give the electron-
spin susceptibility X, of those pure alkalis not previously measured. Our interpretation uses the assumption
that (|y(0)|2)zp for a particular constituent of a particular alloy remains constant, equal to that for the
pure metal, over the entire concentration range in that alloy. In previous work on the alkali alloys, the
changes in the Knight shift in dilute alloys were attributed solely to changes in {|¢|?)g, due to scattering
by impurity atoms, whereas we attribute the changes primarily to changes in x, and the atomic volume.
New results for pure metals, in cgs volume units, are X,=(0.84-0.08)X10-8 for potassium and
X,= (0.800.08)X10~¢ for both rubidium and cesium. Our values are based upon the measured value
X,=1.13X 1078 for sodium as a calibration point. The inferred susceptibilities are consistent with values of
the parameter ¢ of 0.6940.07, 0.72:£0.07, and 0.79+0.08 for potassium, rubidium, and cesium, respec-
tively, where £ is the ratio of electron wave function density at the nucleus in the metal to the same quantity
in the free atom. We compare the inferred susceptibilities with the calculations of Silverstein. We also make
comparisons via the measured total susceptibilities for the alkalis with some existing calculations of the
diamagnetic and ionic susceptibilities for these metals.

I. INTRODUCTION

A QUANTITY of considerable interest in the mod-
ern theory of metals is the conduction-electron-
spin susceptibility X, of the simple metals. There exist
in the literature direct measurements of values of X, of
Li and Na.!~® The measurement technique used to
obtain the value of X, is that of Schumacher and

* Work supported in part by the U.S. Army Research Office
(Durham) ug[()ier Contract No. DA-31-124-AR0-D-407, Tech-
nical Report No. 9, and by the Advanced Research Projects
Agency through the Materials Science Center at Cornell Univer-
sity, Report No. 914. . . .

t Present address: Department of Physics, Ohio State Univer-
ity, Columbus, Ohio.

Y R. (zr‘.lrgchimacher and C. P. Slichter, Phys. Rev. 101, 58
1956). .
( 2R.) T. Schumacher and W. E. Vehse, J. Phys. Chem. Solids
24, 297 (1963).
3 R. Hecht, Phys. Rev. 132, 966 (1963).

Slichter.! The experiment consists of the comparison
of the integrated conduction-electron spin-resonance
(CESR) absorption to the integrated nuclear magnetic
resonance (NMR) absorption at constant frequency.
The technique has not yet been applied to simple
metals other than Li or Na because of unfavorably
large CESR linewidths of the other metals.%5

We present a technique by which we obtain values
of X, for K, Rb, and Cs by means of an indirect mea-
surement of X, in the liquid binary alkali alloys. Our
technique uses the Knight shifts® of the liquid binary
alkali alloys of Na, K, Rb, and Cs. We use the results

4 G. Feher and A. F. Kip, Phys. Rev. 98, 337 (1955).

5 Sheldon Schultz and M. R. Shanabarger, Phys. Rev. Letters
16, 178 (1966); W. M. Walsh, Jr., L. W. Rupp, Jr., and P. H.
Schmidt, bid. 16, 181 (1966).

¢ W. D. Knight, Phys. Rev. 76, 1259 (1949).



