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+ I'xxG6+2 I'xgG8+2I'xsG4+ I'14Gx.

The Green's functions are then given by

Ggg(1, 1;40) =Gl(1+Z4)+G2Z1+2G8Z6+G4(Z2 —2Z6)+G6Z8 —G6Zg

+ (G7+Go)Z18+2(Gxo+Gxg)Zxx+2(Gxg+Gxs)Zlo,
Ggg(1)1 j oo) Gx+4G2Z7+G8Z8 4(Gxx+Gxg)Z12g

and

G»(1, f
& &0) =GlZ4+G2Z2+2G8Z6+G4(Z1 —2Z6)+G6Zg —GsZs+(G7+Gg)Zls+2(Glo+Gxg)Zlo+2(G12+Gls)Zxx.
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Theoretical estimates are presented for the Landau Fermi-liquid parameters in Na and K, and a com-

parison is made with the experimental values. The calculations are presented in two parts. The effects of

the Coulomb interaction between the electrons are taken from previous calculations which use the random-

phase approximation and include exchange diagrams approximately. The electron-phonon-interaction effects

are calculated using the observed phonon spectra and a screened pseudopotential approximation for the
electron-ion coupling. The theoretical estimates for Na are found to be in surprisingly good agreement with

six independent experimentally determined parameters. In K, the experimental values are less accurate, but

a preliminary comparison is encouraging.

I. INTRODUCTION

'HE Landau theory of a Fermi liquid' as extended

by Silin' has been very successful in explaining
the qualitative nature of many-body effects in metals.
In this theory the effects of the interactions are char-
acterized by an effective mass m* and an interaction
function f(itxrit 47 ), w'h'ich are to be determined from

experiment. Until recently, however, the experimental
information on the size of f was very limited. The
observation of spin waves" and high-frequency

plasmalike waves' 7 in Na and K has led to the deter-
mination of several of the Legendre coefFicients of the

~L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956}
/English transl. : Soviet Phys. —JETP 3, 920 (1956}].

V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (1957) t English
transl. : Soviet Phys. —JETP 6, 945 (1958)g.

3 P. M. Platzman and P. A. Wolff', Phys. Rev. Letters 18, 280
(1967).

4 S. Schultz and G. Dunifer, Phys. Rev. Letters 18, 283 (1967).
5 W. M. Walsh, Jr. and P. M. Platzman, Phys. Rev. Letters 15,

784 (1965).
6 P. M. Platzman and W. M. Walsh, Jr., Phys. Rev. Letters 19,

514 (1967);20, 89(E) (1968).
7 P. M. Platzman, W. M. Walsh, Jr., and E-Ni Foo, Phys. Rev.

172, 689 (1968).

function f In this pap. er we will be concerned with a
comparison of the experimental values of these coefFi-

cients, the Landau parameters, with theoretical
estimates based on microscopic theory.

In metals there are two sources of interactions
between electrons, (a) the Coulomb repulsion between
two electrons and (b) the attraction caused by the
virtual exchange of phonons, There are, in addition,
effects due to the periodic potential of the ions. Na and
K have Fermi surfaces which deviate from the free-
electron sphere by less than 0.2%,' so that we will, for
the most part, ignore band-structure effects. The
contribution to interaction effects from the Coulomb

repulsion, which we will refer to as the electron-electron
contribution, may then be obtained from calculations
for a uniform electron gas. 9 The derivation of the

8 For Na, M. J. G. Lee, Proc. Roy. Soc. (London) A295, 440
(1966); for K, M. J. G. Lee and L. M. Falicov, ibid. A314, 319
(1968}.

'A. W. Overhauser /Phys. Rev. 128, 1437 (1962); 167, 691
(1968)g has suggested that at lovr temperatures K may not be a
normal metal. Our calculations and the interpretation of the ex-
perimental data, which we shall cite, are based on the assumption
that Na and K are normal metals.



Landau theory for an electron gas with purely Cou-
lombic repulsion has been studied by several authors
and a detailed treatment may be found in Norieres's
book io Prange and Kadano6u have derived a Landau.
theory for electrons interacting via the exchange of
virtual phonons. Recently Prange and Sachs" have
given a derivation of the Landau theory in the presence
of both electron-electron and electron-phonon inter-
actions.

The electronic-density parameter r, takes the values
3.96 in Na and 4.8'I in K. (r, is defined such that
~go-r, ' is the volume per electron in units of the Bohr
radius cubed. ) These values are intermediate between
the high density (small r,) and low density (large r,)
regimes. There is no small parameter in the theory
which would allow us to calculate f unambiguously.
The basic scheme which is used to evaluate f at
metallic densities is the random-phase appmximation
(RPA) along with the approximate inclusion of so-
called exchange diagrams. Since these approximations
are widely used elsewhere, for example, in pscudopotcn-
tial theory, etc., it is of real interest to have some
direct test of their accuracy. The 6rst calculation of the
cGcctive Dlass and spin susccptlblllty fox' thc alkalis
using such an approximation, suggested by Nozieres
and Pines, "were carried out by Silvcrstein. ""Sub-
sequently the present author"" calculated the full
Landau interaction function f(ke, lt'e') using the
Hubbard approximation'8 scheme which is similar to
the Nozicrcs-Pines approximation. The Landau interac-
tion fhas also been calculated by Hedin's in a somewhat
diferent approximation.

The calculation of the electron-phonon contribution
is greatly simplified by using Migdal's'0 result, which
shows that only the lowest-order one-phonon exchange
graph is important. The higher-order terms are reduced
by powers of the ratio of the electronic and ionic masses.
The calculation depends on an accurate knowledge of
the phonon frequency sepcctrum and the electron-ion
coupling. The former has been measured directly by
neutron scattering in Na" and X." The latter we
estimate using a screened pseudopotential approxima-
tion. It would be of interest if the accuracy of this

"P. Nozihres, Theory of Irtteractertg Ferme Systems (W. A.
Benjamin, Inc., New York, 1963).

'1R. E. Prange and L. P. Kadano6, Phys. Rev. 134, A566
(1964)."R.E. Prange and A. Sachs, Phys. Rev. 158, 6'l2 (196/)."P.Nozihres and D. Pines, Phys. Rev. 111, 142 (1958)."S.D. Silverstein, Phys. Rev. 128, 631 (1963),» S. D. Silverstein, Phys. Rev. 130, 912 (1963).

~6 T. M. Rice, Ann. Phys. (N. Y.) 31, 100 (1965)."T.M. Rice, in Proceedcrsgs of the Ezrtth Irtterrtatiortat Cortferertce
oe Iou-Temperature I'hysks (Plenum Press, Inc. , New York,
1965), p. 108.

~ J. Hubbard, Proc. Roy. Soc. (London} A243, 336 (1957)."L.Hedin, Phys. Rev. 139, A796 (1965),
@A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)

LEnglish transl. : Soviet Phys. —JETP 7, 996 (1958)1.
'~A. D. B. Woods, B. ¹ Brockhouse, R. H. March, A. T.

Stewart, and R. Bowers, Phys. Rev. 128, 1112 (1962)."R.A. Cowley, A. D. B. Woods, and 0. Dolling, Phys. Rev.
150, 487 (1966).

latter approximation could be tested directly; however,
at present, there is no direct way to measure the
electron-phonon contribution to the Landau param-
eters. The electron-phonon contribution to the CBective
mass was 6rst calculated in this manner by Ashcroft
and Wilkins. 23 Since then a number of authors using
diferent pseudopotentials have also estimated the
effective mass. 24 2' However, there have been no calcula-
tions of the full f function.

In Sec. II we discuss the connection between the
microscopic theory and the Landau theory in the
presence of both the electmn-electron and electmn-
phonon interactions. We will derive the results of
Prange and Sachs" from a diBerent point of view.

In Sec. III we discuss the numerical calculations of
the electron-electron contributions. Ke tabulate the
Lengendre coeKcients of the Landau f function as
calculated previously by the present author" and also
by Hedin. "In general, observed quantities depend on
both the electron-electron and electron-phonon. There
are, however, some quantities which depend only on
the electron-electron interaction. For these quantities
we compare the experimental values in Na and K with
the theoretical estimates. We 6nd surprisingly good
agreement between the two sets of values.

In Sec. IV we report on calculations of the electmn-
phonon contribution to the CGective mass and the
higher Landau coefficients for Na and K using several
different pseudopotentials and the observed phonon
spectra. We examine the CGccts of the band structure
by including more than one plane wave. These we 6nd
are fairly small. Our results for the Inass enhancement
are in agreement with previous calculations. We also
examine the magnitude of the departures from isotropy
due to the large anisotropy in the observed phonon
spectra. These we 6nd are too small to be observable at
present.

Finally, in Sec. V we combine the two sets of calcula-
tions to give theoretical estimates for the Landau
parameters in Na and K. A comparison with the
observed values in these materials shows good qualita-
tive and even quantitative agreement between, the
theoretical estimates and the experimental values.

II. REVIEW OF LANDAU THEORY INCLUD-
ING BOTH ELECTRON-ELECTRON AND

ELECTRON-PHONON INTERACTIONS

First let us de6ne our terms. We define the electmn-
phonon contribution to include all graphs which involve
one or more phonon lines. The electron-electron contri-
bution includes all graphs with no phonon lines. Thus
the electron-phonon contribution includes electron-
electron interaction lines to all orders.

"N. W. Ashcroft and J. W. Vhlkins, Phys. Letters 14, 285
(1965).

'4 A. Animalu, F. Bonsignori, and V. Bortolani, Nuovo Cimento
528, 83 (1966).

's G. Gritnvall, Physik Kondensierten Mateiie 6, 15 (1M'I).



FIG. 1.The proper four-point
vertex function pI" (p,p',co). The
proper four-point vertex is
de6ned as including all graphs
which cannot be cut into two
separate pieces by cutting a
single interaction line carrying
the four-momentum vector cq.

It 18 custoIQRry lQ dlscusslxlg thc electron-phonon
problem to start from the self-energy. We will take R

(Mcrcnt RpproRch Rnd bcglQ by Doting thc Landau
interaction, function f(kek ,e'') is dc6ned in microscopic
theory (see Noziereslo) as a certain limit of the proper
four-point vertex function 01', shown in Fig. 1.

f(kk ,
') '1=m h 2 's s 'I'(k, k' ', )

g/6~0

FIG. 3. Examples of Coulomb
renormallzation Meets.

In graphs of the general form shown in Fig. 4 the
intermediate electron and hole momenta are constrained
to d16cr by m. 81Dcc %c require thc limit v ~ 0, %c IQRy

not simply rule out such graphs. I et us consider a
I'cplescntatlvc gl'Rpll sllown 111 Flg. 4(b). To avoid
unessential complication let us follow Migdal20 and take
a constant electron-phonon coupling and a Debyc
model, We shaH work throughout this paper at 7=0.
DcnotlQg by I 2 thc coQtI'lbUtloQ of this gl Rph wc
see that

= 2sis,s f"(ko,k's') . (2) 12( P, P', ~)- 1' d'P"&(P P")&(P—" P')—
Kc will use, with certain exceptions, Nozieres'8 nota-
tion. s1, is the quasiparticle renormalization factor and
thc pI'opcl foUx'-polDt vertex ls dcGDcd as lncludlng all
gx'Rphs %hlch CRDIlot, bc cut 1Dto t%'o scpalRtc plcccs by
cutting R single lntcl Rctlon linc CRI'1 ylng thc foUI-
momentum vector co = (Il,e). The four-momentum

vectors p, = (k,a&), and p' are taken on the energy shell

and ~k~ =kg. The other limit of the four-point vertex
function defines the two-particle scattering function
which we denote by g(kc,k'e') ":

g(ke, k'0') = lim lim 2s.isksk 'I'{ke,k'e', co)
c4-4 Q/4~00

XGo(p "+5~)GO(p"—2~) (~)

We will llSC Rtollllc unltS. S(p) lS tlM p11011011 pl'Op-

Rgator) Go(P) ls 'tile unperturbed ollc-clcctloll pl'op-

agator, and X is the dimensionless electron-phonon
coupling constant. It is straightforward to evaluate
I'&" and, examining the result for both p and p' on the
energy shell and on the Fermi surface, we 6nd that

k pq+k
I', (k,k', ) )D —— ia(k g

—
) )))

kI g kpg —0

= 2sizksk 'f""(ke,k'e') .
6)p/ 2

dt(9(t+-', «) —0(t——',e)), (6)

MigdaP0 showed some years ago that the calculation
of electron-phonon CGccts was greatly simpli6ed by the
existence of a small parameter, i.e., the ratio of electronic
and ionic masses (m/M). We may apply his results

directly to sho% that thc contribution of gx'Rphs of thc
form shown in Fig. 2 are all of order (m/M)I)2. The
diGerencc in InonMntR ln Rll of thcsc gI'Rphs ls typically
of order kp and it follows at once from Migdal's argu-
ments that they give negligible contributions to f
The graphs of the form shown in Fig. 3 are not smaH.

They may be included by using electron-phonon vertices
and phonon propagators which are fuBy rcnormalized

for Coulomb interactions.

where ~0 is the Debye frequency. Taking the limits
appropriate to the f function, we see that

j9
lim lim r, {k,k', co) (7)
tkl—10 hatt e~0

while ln thc other limit, appropriate to thc scattering

p'- —",
QW2

Pl ——1) 1IP +-4l 11

2 2

(b)

FIG. 2. Examples of phonon renormalization e8ects vrhich are
negligible by Migdal's theorem. A wavy line denotes a phonon
propRgatol' Rnd R dashed 11ne R Coulomb 1nteractlon 11ne.

p -—tt11

2
it pll+ td

2

'p We denote the scattering function by g(ko, k'e'), rather than
A(her, k'o') as Nozihres I'Ref. j.O) has done, to avoid a conflict
wi, th the notation 3„for the Legendre coefhcients of the f function.

FIG. 4. I'a) One-phonon-exchange graph; (b) and I,'c), graphs vrhich
carry intermediate four-momentum ou.
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mq'i'
lim lim I'g(k, k',a)-—0 —

i

M/

This shows that only the lowest-order one-phonon
exchange glaph contributes to thc Scattcllng fUQctloQ

g(ke, k'e'). To calculate the electron-phonon contribu-
tion to the Landau f function one must include all
graphs of the form shown in Fig. 4(b).

It 18 customary to formulate the LRndRU theory
in terms of the f function. However, it is equally
possible to use the g function instead. The g-function
formulation is more convenient in discussing anisotropy
due to the phonons since, Rs shown above, the phonons
enter in a much simpler way. Ke will, therefore, in
Sec. IV express our results for the electron-phonon
system. in terms of the g function.

For an isotropic situation the two functions f and
g are simply related. They may be expanded in Legendre
polynomials in the angle e~,~ and in the absence of
spin orbit coupling may be separated into singlet and
tllplct contributions. Thus

f(kek'e')=g(fi'+ fpe. e')Pg(cos8|, .|,).

The electron-electron contribution and the electron-
phonon contribution to the four-point vertex function
simply add, ln the forward scattering hmlt, and we gct
the result, due to Prange and Sachs,"
g(ko, k'(r') = 2s is|,s|, ('f'„"(ka,k'0')

+I *"(k,k')~.."). (14)

The combined f function is then determined through
the integral equation (12).

An important result which can be derived using
Migdal's arguments"'~ is that

e„-'(k)s„(k)= s-'(k)s(k), (15)

where e is the magnitude of the quasiparticle velocity.
Thus we can rewrite Eq. (14) as

g(ka, k'0') = 2m is..(k)s..(k')(s(k) s(k')/s„(k) s„(k'))
&&tol,."(k~,kV)+ I',"(k,k')b. ,..j. (16)

V'6th these results it is possible to discuss the cGects
of thc electron-electron and electron-phonon Interac-
tions on the tran. sport and equilibrium properties of the
system. Such a discussion may be found in the articles
by Hclnc) Noziercsq Rnd Wilkins Rnd PI'Rngc Rnd
Sachs" and we shall not repeat it here.

%'e de6ne our Fermi-liquid cocfBcients such that

m*kp m*ky
Ai —— f&', A= fi'.

s'(2l+ I) a'(21+I)

%C also de6ne an additional set of parameters g, , g

and g, g which are related in the same way to g as A g

and JIE are to f In an isotro. pic material these two sets oi
parameters are connected by a simple I'elationship:

g..~=~~/(I+~i) g..i=&i/(I+&i). (11)

In a general case, such as a real n1etal where there are
anisotropies in the shape of the Fermi surface, in the
phonon spectrum, etc., the two functions f and g are
related by an integral equation. "
f(ke, k'e') =g(ka, k'e')+ P f(ke,k"e")

&(B(ej,"—p)g(k"o",k'e') . (l2)

The arguments that we have given here to show that
only the lowest-order one-phonon exchange contributes
to g RI'c quite gcncI'RI and Rpply to RnlsotI'oplc sltuRtlons.
Thc result that we And is that

g,p(ka, k'0') =2misgsg I'ge&(k, k')b. .. , (13)

where I"1'&(k,k') is the contribution of the graph shown
in Fig. 4(a). The subscript or superscript ep denotes the
inclusion of only electron-phonon contributions, and ee
will denote only electron-electron contributions. Quan-
tities which include both will be unadorned.

Irr. ELECYRGN-ELECTRON DTTERACTIGN

%C turn now to the evaluation of the contribution
from the electron-electron interaction. The basic
approximation used is one in which all diagrams in the
RPA are included exactly and the lowest class of
cxchRngc diagrams RI'c approximated. Hubbard Rnd
Nozieres and Pines~' have shown that for large momen-
tum transfers (or short distance) the exchange graphs
will cancel half the direct RPA terms. Various authors
have CRlcU1Rtcd tI'Rnspolt cocKclcnts Using lntcx'polR-
tion schemes which are based on this result. Silvex'-
stcln ' CRlculRtcd thc cGectlvc DlRss Rnd PRU11 spin
susceptibility using the numerical interpolation scheme
proposed by Nozieres and Pines. " The present
author" 'r calculated the Landau function f(ko;k'o')
Using Rn RQRlytlc interpolation schcIQc pl oposcd by
Hubbard. '8 Hedin" calculated the Landau f function
to second order in a staticly screened interaction.
Because the interaction is staticly screened, his calcula-
tion is not an exact RPA calculation of the direct terms.
He does, however, include the second-order exchange
graphs explicitly, whereas the a.uthor has only included
these graphs approximately. %'e take the view that the
size of the diQ'erences between these two calculations is
indicative of the size of the errors in approximating the
exchange graphs. There are, of course, many classes of
glRphs whose magnitude hRS not bccn cstimatcd Rt Rll
and the more serious error lies in neglecting these graphs.
There is no small parameter in the problem, so that

"V. Heine, P. Nozikres, and J,. %'ilkins, Phi1. Nag. 13, 'Ni
(1966).
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ALE I. The Landau parameters calculated for an electron
gas arith purely Coulomb interactions.

Hubbard approx.
from I

r, =2 re=4
Hedin
r, =4

Screened
exchange

r, =4

A ee

A &ee

A ee

A,-
g ee

g ee

g ee

g ee

X/Xo
m„*/m
Sum rule

—0.35—0.001—0.03
0.004—0.235—0.06—0.03
0.004
1.31
1.00

+0.20

—0.69
+0,06—0.05

0.004—0.28—0.06—0.02—0.001
1.47
1.06

+0.23

—0.33—0.05—0.02

—0.25—0.08—0.01

—0.55—0.03—0.025

—0.31—0.09—0.001

1.27 1.41
0.95 0.9I

+0.10 +0.03

—0.64—0.015—0.92

—0.32—0.04—0.005

—0.32 —0.32—0.09 —0.04
0.005 —0.005

1.45 1.42
0.985 0.96

+0.11 +0.26

'8 Note our present definition of A divers from that in Ref. 15
by a factor of (2n+1)

there is no justification for ignoring such contributions,
Ke shaH attempt to assess the reasonableness of our
results by comparing the calculations with experiment,
wherever possible. Ke know that there are many
cancellations among higher-order graphs, so that great
care must be exercised in going beyond the simpler
approximations. It is possible that merely including
more diagrams will not lead to more accurate results,
especially if sum rules, conservation laws, or Ward
identities are violated.

In Table I we quote the results found for the electron-
electron contributions to the Landau parameters 3„"
and J3„".A detailed description of the author's calcula-
tion of the Landau f function is given in Ref. 16
(hereafter referred to as I) and we will not repeat it
here."The results quoted in Table I were found from
numerical integration of the results in I.For comparison
we quote the values found by Hedin. " These were
obtained by numerical integration using the values for
the f function quoted in Table V of his paper. We quote
only the values that do not include the quasiparticle
renormalization factors, As pointed out in I, there are
large cancellations between the quasiparticle renormal-

ization factors and vertex corrections. The cancellations
are exact only in the limit of zero momentum transfer
but calculations, reported in I, of the lowest-order

vertex corrections suggest that approximate canceHation

will occur at higher momentum transfers. We take the
position that, omitting all frequency-dependent vertex
corrections and all quasiparticle renormalization factors,
is a better approximation than including the latter,
but omitting the former.

There is good quahtative agreement between the
two calculations. The only major discrepancy is in the
sign of A j".We 6nd A i"positive for r,& 2 correspond-

ing to an enhanced eA'ective mass, whereas Hedin finds

A~" negative and correspondingly a reduced eGective
mass. Silverstein'4 using the Nozieres-Pines approxima-
tion also found an enhanced mass and we shall see

below that an enhanced mass is in better agreement with

the experimental results for Na and K. There are also
significant diGerences in the magnitudes of some of the
other coeScients.

For comparison we show in Table I the results of a
calculation keeping only the lowest-order exchange
graph in the RPA for r,=4. In this approximation,
A~=—8 . The results are much closer to Hedin's but
there are significant differences in magnitude.

Brinkman, Platzman, and Rice" have derived a sum
rule on the coefficients of the f function. They show
that due to the exclusion principle the exact f function
for an interacting electron gas satisdes the relation

g ee g ee g ee

1+ +Z(2f+1) + =o (17)
ee 1+2,ee 1+8,ee

It is interesting to examine how well the various
approximations satisfy this sum rule. In the last
column of Table I we have tabulated the left-hand side
of Kq. (17), neglecting all terms with l~&3.ss We see
that the sum rule is reasonably well approximated by
the calculations. Hedin's values give rather better
numerical agreement than those calculated with the
Hubbard approximation. This is not surprising since in

his calculations the second-order exchange and direct
graphs are treated on the same footing, whereas in the
Hubbard approximation the direct terms are exactly
included and the exchange terms are approximated.
Thus, if we had extended the sum over 3 to infinity, the
Hubbard approximation would still not give the right
answer. On the other hand, Hedin's calculation would

not satisfy the sum rule either. This can be seen by
examining the origin of the sum rule. The sum rule

is really a condition on g(ko, it'o') rather than on
f(ko' it o' ).Tllus ln llslllg Eq. (17) 'to give a condltlon oil

f we are including some terms of arbitrary order in the
screened potential in g, whereas to satisfy the sum rule

we should expand g consistently to a given order. In
summary, neither approximation satisfies the sum rule

exactly, but neither violates it badly.
We now wish to compare the electron gas calculations

with experiment. In general, observed quantities depend
on both the electron-phonon and electron-electron
interactions. There are, however, some quantities which

depend only on the electron-electron interaction. These
oGer a direct cheek on the accuracy of this part of the
calculation. The Pauli spin susceptibility X is independ-

ent of the electron-phonon interaction. ""It can be
determined in two ways, by direct measurement of the

"W. F, Brinkman, P. M. Platzman, and T. M. Rice, Phys. Rev.
(to be published).' In both these approximations f(ka, k'cr') has a logarithmic
inanity as k —+ —k. Thus the series is only conditionaDy con-
vergent. The true f function does not have this in6mty (Ref. 29).
In using just the Grst fear terms of the sum for these approximate

f functions, we ash to examine hove mell the erst fever coeScients
can mimic the behavior of the true f function.

» C. Herring, in Magnetism, edited by G. T. Rado and H.
Suhl (Academic Press Inc., Nevr York, 1966), Vol. IV.



powcx' Rbsox'bcd ln CESR by dctcDMDlng f5* RIld 80
and using the relation

T~LE III. Experimental values' and theoretical estimate for
ge, I lI1 Na. Theory {1),Hubbard s approximation calculated by
present author in I. Theory (2), Hedin's calculations.

(18)

where Xo is the spin susceptibility in the absence of
interactions. The parameters m~ Rnd 80 are the observed
values RDd contRln clcctx'on-phoQon cBccts which CRQccl
in the ratio of Eq. (18). Similarly, the combination

Theory (1)
(2)

Expt.

—1.82
—0.74

a References 4, 7, and 42.

+0.12
+0.07

-0.03
—0.025
—0.05&0.06

TABLE G. Experimental and theoretical estimates for the
enhancement factor of the spin susceptibiHty in Na and K.Expt.
(1}Na, Schumacher and Vehse, ' K, Kaeck.b Expt. (2) Prom the
spin-wave data' and effective mass. s Theory (1) using the Hub-
bard approximation from I. Theory (2) using Hedin's calculation.

Expt. (1)
(2)

Theory (1)
(2)

1,N+0.1
1.51+0.06
1.47
1.41

1.58+0.1
1.68~0.25

1.55
1.45

a Reference 32.
b Reference 34.
e References 4 a,nd 42.
d Reference 33.

"R, T. Schumacher and W. K. Vehse, J. Phys. Chem. Solids
24, 2Ã (1963)."C. C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963).

s4 J. A. Kaeck, this issue, Phys. Rev. 175, 897 (1968).

is independent of the electron-phonon interaction. ~ may
be regarded. as thc "compressibility" of the electron gas.
Howcvcl, Ao hRS Qot bccD measured Rnd thc obscfvcd
compressibility of a metal such as Na and K depends on
a number of terms besides ~, so that there are no reliable
vRlucs fol this quRntlty.

The Pauli spin susceptibility has been measured
directly in Na, "Schultz and Dunifer4 have measured
80 by studying the spin-wave spectrum in Na and K in
the presence of a magnetic 6eld. %c combine their
result vrith the value the efkctive mass found by
Grimes and Kip" to estimate the enhancement of the
susceptibility from Eq. (18). In Table II we tabulate
these results Rnd the theoretical estimates. The spin-
wave value is some 10% lower than the latest directly
measured vRluc. In vlcw of thc dlQlcultlcs lQ making Ml

absolute power absorption measurement, necessary to
obtain the Pauli spin susceptibility directly, the agree-
ment appears reasonable. The spin-wave value is in
better agxcemcnt with the theoretical values from the
Hubbard approximation and from Hedin's results.
In K there are no direct spin susceptibility measure-
IncQts Rnd thc spin-wave datR Rx'c much less Rccux'Rtc

Rt plcscnt. KRcck hRs cstlIQRtcd thc spin susccptlblllty
of K by studying the Knight shift in a series of Na-K

alloys. He takes the directly measured value in Na as a
reference point and extrapolates to pure K. In Table II
we show this value and the theoretical estimates for K.
The calculated value for K in the Hubbard. approxima-
tion has been found by extrapolation from the results
quoted in I. The comparison of the experimental and
theoretical results is encouraging. The theory gives
slightly lower answers for the enhancement of the
susceptibility than observed. but in view of the crudity
of the approximation it is perhaps surprising that they
Rrc so close.

As vc discussed. above, Migdal's result~ implies
that only the lowest-order one-phonon exchange
diagram enters the scattering function g(ko,k'o'). The
contributions of the electron-phonon interaction to the
singlet and triplet parts of g are the same and the
combination g, , ~

—g, , ~ wiB depend only on thc clcctron-
electron contributions. Note that because of the non-
linear relation between the interaction function f and
the scattering function g, Eq. (12), this is not true of
A ~

—Bg. Similarly, all electron-electron exchange graphs,
i.e., graphs whose spin dependence has the form
g(ktr, k'o') =g(k,k')8„..., will cancel from the combina-
tions gg, ) gt2, g. Thus a comparison of thc xncRsux'cd Rnd
calculated. values of g, , g

—g~, ~ directly tests the spln-
independent electron-electron part of the scattering
function g. The high-frequency waves found by %alsh
and Platzman~~ measure Ag for l~&2 and therefore
neglecting anisotropies g, , ~ for l~& 2. The spin-wave
spectrum, in principle, can give B~ for all $, so that Rn

CXpCrlIQCDtal detCHMnatlon Of gg, )—gts, ) fOl 3~~ 2 ls
possible. At present there are preliminary measurements
of As and Bs in Na. In Table III we quote the results
and. compare them with the calculated values. %C also
tRbulRtc thc CRlculatcd values of gg, o—ga, o and ge, 2 ge, 1p

though at present there are no experimental values for
g, ,o and g, ,1. The theoretical estimates agree with the
measured values within experimental values. The large
unccx'tainty in 82 at px'esent reduces the signidcance of
this test.

In sunlmary, we 6nd, where wc have been able to
make comparison, a surprisingly good. agreement
between the experimental values and the avaiIablc
theoretical estimates. In Sec. V we compare the
combined electron-electron and electron-phonon results
with cxpcI'QTlcnts.
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2s isa..sg „I'ge&(k(r,k'e')

e, (k—k')l'
i V„(k—k')'t 1+e e'], (20)

2/M ~ (a),(k—k') /

where E is the number of ions, M is the ionic mass, eq

and co& are the polarization vector and frequency of the
phonon with wave vector k —k' and index X. V~.(g)
is the screened pseudopotential. We will always choose

Vps(g) such that lt has the correct long-wavelength

limit and passes through the values determined by
6tting the Fermi surface, ' at reciprocal lattice vectors.

The frequency spectrum of the phonons in a number

of syIMQctry dil cctlons has bccn determined by neutlon
scattering in both Na and K. We follow the method

suggested by Darby and March" and expand the
spectrum in cubic harmonics, 6t the coeKcients to the
syxnmetry directions, and interpolate in this way for
arbitrary directions in reciprocal space. We assume that
the polarization vectors are purely longitudinal or
transverse, so that the transverse phonons only enter
via umklapp processes. Grimval12' has investigated this

approximation for Na. He 6nds that it tends to under-

estimate the enhancement of the effective mass by about

10%. This is less than the differences in g which arise

from the use of different pseudopotentials.

0

Q

3C

O.
tfl

k/kF
1 I

7

IV. ELECTRON-PHONON INTERACTION

As we have remarked previously, the calculations of
the electron-phonon contribution is greatly simpli6ed

by Migdal's'o result. In contrast to the electron-electron
part we need only calculate one graph, that shown in

Fig. 4(a). Thus we would expect our electron-phonon
calculations to be more accurate than the clcctron-
elcctron calculations. We need to know, however, the
CGective electron-ion coupling which, in fact, involves
electron-electron interactions to all orders. We shall use
a linearly screened pseudopotential approximation to
describe the electron-ion coupling.

The contribution of the graph in Fig. 4(a) may be
written inimediately:

We will discuss the results for Na first. Ashcroft"
has proposed a simple form for the pseudopotential of
the alkali metals,

V,.'(a) = —~'(cosP.)/V'«(a0) (2i)

where «(q) is the Lindhard dielectric function, and
X'= (~aok p)

' and R.=0.88 A for Na. In Fig. 5 we plot
Aschroft's pscudopotential for Na. The points on Fig. 5
are taken from Lee's 6t to the Fermi surface of Na. s In
the one-plane-wave approximation, which we are using,
only momentum transfers q&~2kp are relevant. Ke see
that Ashcroft's form 6ts the de Haas —van Alphen data
well in Na. Fong and Cohen'~ have 6ttcd the optical
spectrum of NaCl and obtain pseudopotentials for both
Na and Cl atoms. Their pseudopotential also has a note
near 2k'. It is interesting to vary the position of the
node and see what CGect this has on the parameters.
We have arbitrarily constructed a potential with a
node near i.5k', shown as the dashed curve in Fig. 5,
which we shall refer to as the low node potential.

We have investigated convergence of the one-plane-

wave approximation for Na. In general, the matrix
element, in the nearly-free-electron approximation for
scattering from a state ~k) to a state ~k'), has the form

Mg, k~~ P Cg~, o~Cg, os«(k'+6' —k—6)
G, G'

&& Vp, (k'+ 6'—k—6), (22)

where q is the momentum transfer reduced to the first
zone and

C~,o=co) (23)
Cg, o——V„(6)/(k'/2m —(k+6)'/2m), G~O.

C« is a normalization constant and the vectors {6)are
the reciprocal lattice vectors of the crystal. We have
included the twelve (ii0) vectors. The momentum

transfers in the pscudopotential may now be larger
than 2k'. The Ashcroft pseudopotential (curve I in

Fig. 5) is too large at large k. We have arbitrarily

reduced it in magnitude to curve II in Fig. 5 by multi-

plying by the factor (k/2. 3k~) ' for k ~&2.3k'.
In Table IV we list the results of our numerical

calculations. It is convenient to tabulate the moments

of the scattering function g„(ko,k'a'). We de6ne

m,p*k P de de,
gp&= — — g,p(ko, k'o)Pg(cos8gg), (,24)

2w' 4m 4x

FIG. 5. The pseudopotentials used for Na. Solid curve I,
Ashcroft's pseudopotential (Ref. 36} undamped at large K. Solid
curve II, Ashcroft's pseudopotential (Ref. 36} with damping
factor. Dashed curve, the low node pseudopotential. Solid points
denote values at reciprocal-lattice vectors determined from de
Haas-Van Alphen data by Lee (Ref. 8).

"J.K. Darby and N. H. March, Proc. Phys. Soc. (London)
84, 591 (1964}.

where we have dropped the spin suQix since the singlet

and triplet amplitudes are equal. The average CGective

mass including only electron-phonon interactions is

glvcn by
m/m, ~*=i—goe~.

'6 N, Ashcroft, Phys. Letters 23, 48 (1966}.
3'C. Y. Pong and M. L. Cohen, Phys. Rev. Letters 21, 22

(~968}.
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TAszx IV. The moments of the scattering g,~(ko,k'o') due to
electron-phonon interaction in Na evaluated using (1) one-plane-
wave and Ashcroft pseudopotential, ' {2) one-plane-wave and
the low node pseudopotential, ' and (3) multiplane wave and
Ashcroft pseudopotential. '

Abarenkov form,

P»(r) =Z «(r)Pr(1-)Pr(R) (28)

(1)
(2)
(3)

a Reference 36.

g ep

0.13
0.08
0.17

g ep

0.05
0.04
0.06

g2 p

—0.001
0.02
0.01

glep

0.002

0.001 U((r) = U(, r(Rrr
=0, r&R~ (29)

where P~(L) and P~(R) project the I component of the
wave function on the left and right, respectively. Ur(r)
has the form

V,."(q)= Vr. (q)+ VNz, (q), (26)

where Vz, (q) is a local pseudopotential and VNz, is the
nonlocal part which, however, for scattering on the
Fermi surface, depends only on q. The Fermi-surface
data only determine the pseudopotentials at reciprocal
lattice points. We need, in the one-plane-wave approxi-
mation, a pseudopotential for all values of momentum
transfer q& 2k'. We interpolate the local part from the
known Vz, (110)=0.35 eV by using an Ashcroft form.
For VNz, (q) we write

e(110)
VNL(q) = P(q)

e(q)

where e(q) is the Lindhard dielectric function and F(q)
is the Fourier transform of a potential of the Heine-

The results for go'& show a considerable variation.
The lowest value is obtained using the low node
potential. Previous calculations of the eGective mass
give values for gs'& which range from 0.13 (Animalu
et al. ) to 0.16 (Grimvall"), while Ashcroft and Wilkins"
quote 0.15. These authors use pseudopotentials v hich
are similar to Ashcroft's with a node near 2k'. We
conclude that go'& is quite sensitive to the position of
the node. The resistivity is extremely sensitive to the
position of the node and we expect that the low node
potential would not give good estimates of the resistiv-
ity. The results for the higher moments are much less
sensitive to the pseudopotential form.

A comparison of rows 1 and 3 shows that go'& is
enhanced by some 30% by going beyond the one-plane-
wave approximation. This enhancement is clearly
strongly dependent on the behavior of the pseudo-
potential at large k and is, for example, much larger
again with the undamped Ashcroft potential. Unfor-
tunately, there is no good criterion for deciding the form
at large k of the pseudopotential and there is no direct
experimental test of the size of the electron-phonon
contribution in the alkalis. The higher moments g~'&

are not too sensitive to the diGerent approximations.
In K, Lee and Falicov' have 6tted their de Haas —van

Alphen data with a nonlocal pseudopotential. Their
pseudopotential has the form

g"(ko,k'o') = Q gs.s„4,.%~~(k)Es~~(k'), (30)

where E„ is the nth cubic harmonic of type 0, in the
notation of Von der Lage and Bethe,"normalized to 47t-.
This can be seen by considering the limit as k' —k-+ 0.
The phonon spectrum depends strongly on the direction
of k—k' relative to the crystal axes even in the zero-
momentum limit. Thus from Eq. (20) lim&. & &g'&

depends on the direction in the limit. A form such as Eq.
(30) clearly cannot reproduce such behavior. We must,
instead, expand directly in terms of the vector k—k'

TAszE V. The coeincients gp& for I calculated using (1) the
Lee-Falicov pseudopotential' and (2) the Ashcroft pseudopoten-
tialb in the one-plane-wave approximation.

(1)
(2)

g ep

0.10
0.11

g1ep

0.04
0.05

g ep

0.001—0.001

& Reference 8.
b Reference 36.

3~ F. C. Von der Lage and H. A. Bethe, Phys, Rev, 71, 612
(1947).

and the following values are chosen: 831——1.33)(10—
cm, U'0 ———1.5 eV, V~=3.0 eV, and U2= —33.5 eV.

In Table V we quote the results for the parameters
g~'p in K using the pseudopotential of Lee and Falicov, s

and also the earlier Ashcroft potential, " in the one-
plane-wave approximation. The phonon spectrum was
treated as in Na, by using a cubic harmonic expansion
to interpolate from the measurements of Cowley,
Woods, and Dolling. "The diGerences between the two
sets of results are small, which is not surprising since
the two potentials in the region q ~(2k& do not diGer by
much and in particular the position of the node does
not vary greatly.

Finally, we turn to the question of anisotropy in
the Landau function. The phonon spectrum is quite
anisotropic in the alkali metals and in view of the
almost spherical Fermi surfaces one expects that this
wi}1 be a major, if not the greatest, source of anisotropy.
In discussing anisotropy due to the phonon spectrum it
is much simpler to use the scattering function g(ko, k'o').
However, the simplest expansion is not valid. One may
sot expand in the form



where qI, ,I, is the remaining independent variable.
If we include only the anisotropy due to the phonon
spectrum and neglect all anisotropy due to band
structure, then it is clear that gg will depend only on

I
k—k'I. We may now expand gs (I k—k'I) as a series

of Lcgcndrc polyQomlals 1Q ISI@,g~, Rnd wc de6nc for cRch
of the functions gs~'&(Ik —k'I) a set of parameters
g~„~'~ corresponding to the g, , g dehned in Sec, II. The
parameters go, pI' are identical to the g~'~ which we have
evaluated previously. Wc have also evaluated the
lowest anisotropic coefficients g4, ~'I' Rnd. g6, ~'I'„where
3=0,$,2, and in Table VI we list. the results for these
parameters. The calculations were carried out for
NR only, using the one-plane-wave approximation,
Ashcroft's pseudopotcntial, and the observed phonon
spectrum. We see that the anisotropic coeKcients arc
small, &0.02. Therefore wc expect deviations in any
quantity which, in the uniform system, depends on
the combinations 1+Pi or 1+Bi to be of order a few

percent or less. The codBcient g4, 0'I' is very small
bccRusc of R CRnccllRtlon between lalgc Rnd small g ln
the function g4'&(q). This is consistent with the measure-
ments of the CGective mass, '3 where the anisotropy was
found to be less than 2%. The spin-wave spectrum
depends sensitively at long wavelengths' on the diGer-

cnce 80—81. It can be shown, "however, that the form
of the spectrum is unchanged. at long wavelengths and
all corrections involve the squares of the anisotropic
coeKcicnts, g4, o', etc. Such corrections we would expect
to be very small, and it appears that the predicted size

of Rnlsotroplc effects cvcQ lI1 tI1c spin-wRvc spcctlum 18

too small to be measured at present.

0.13
0.05

—0.001

g4, i &

—0.002
0.008
0.012

g~ )BP

0.005
—0.003
—0,004

a Reference 36.

V. CALCULATED AND EXPERIMENTAL
LANDAU COEFFICIENTS

In preceding sections we have discussed the calcula-
tion froIG microscopic theoly of thc electron-electron
and. the electron-phonon contributions to the scattering
and interaction functions. It is customary to express
the experimental results in terms of the moments of thc
Landau interaction function f(ko.,k'o. '). In Sec. IV we

ThmF. VI. The anisotropy coeKcients g~ pI' de6ned in (30) for
Na. These were calculated in the one-plane-weave approximation,
vrith the Ashcroft form of the pseudopotential. "

expressed our results for the electron-phonon contribu-
tion in terms of the scattering function g(ko, k'o').
Strictly speaking, for an anisotropic situation we would
solve the integral equation (12) to obtain f from g. How-
ever, the anisotropy cGects are quite small and less
than the uncertainties due to other sources in our calcu-
lations. Ke will therefore ignore the anisotropy eGects
and use Eq. (11) to relate the moments off and g.

Kc will consider Na erst. The experimental values for
Na are considerably more accurate, at present, than
those for K. The paramagnetic spin-wave spectrum of
Na has been studied by Schultz and Dunifer. 4 They
Gtted their transmission spectrum to the theory of
Platzman and Kolfts and Fredkin and Kilson39 to ob-
tain 80, 81, and 82. The spin-wave spectrum determines
only the triplet amplitude f~. The high-frequency
plasma like waves lead to a determination of A, where

ALE VII. The experimental values+ and theoretical estimates
for the Landau parameters in Na. Theoretical approximations:
(I) Klectron-electron calculated by author in I, electron-phonon
in multiplane-@rave and Ashcroft pseudopotentiaLb (II) Electron-
electron from I, electron-phonon in one-plane-wave and Ashcroft
pseudopotential. (III) Electron-electron from I, electron-phonon
in one-plane-wave and the low node pseudopotentiaL (IV)
Electron-electron from Hedin'; electron-phonon as in approx.
(I). (V) Electron-electron, screened-exchange approximation,
electron-phonon as in approx. (I).

Expt.
(Na)

—0.05+0.01
0.0 &0.005—0.18+0.03

+0.05~0.04
0.0 ~0.05

1.24~0.02

—0.62
+0.12—0.03
+0.004
—0.14
+0.01—0.01
+0.000

1.26

—0.64
+0.11—0.04
+0.005
—0.17—0.005—0.02
+0.001

1.21

—0.66 —0.45 —0.17
+0.10 +0.04 +0.03—0.03 —0.01 +0.006

—0.22 —0.17 —0.17—0.02 —0.02 +0.03
0.00 +0.01 +0.006

1.15 1.19 1.17

a Reference 42.
& Reference 36.
e Reference 19.

N~&2.' ' So far A~ and A3 have been measured in this
way in Na. The effective mass vs* is an independent
parameter which has been measured by Azbcl-Kancr
cyclotron resonance" and by spccihc heat. "4' In the
presence of both electron-phonon and electron-electron
interactions the CBective mass is not simply related to
thc LRQdau parameters. This glvcs us 81x 1ndcpendent
quantities to compare with the microscopic estimates.

At prese~t there is no way of determining Ao or A 1.
These two would be particularly interesting to measure.
A knowledge of 2 0 would give the electron-gas compress-
ibiTity which in turn is related to the second derivative
of the ground state energy with respect to density.
Thus a knowledge of A s would provide a direct test of
the various theoretical estimates of the correlation
energy of an electron gas, A measurement of A1 com-

39 D. R. Fredkin and A, R.'gljlson (to be puMjshed)
'0 D. L. Martin, Phys. Rev. 124, 438 (1961).o W. H. Lien and N. E.Phillips, Phys. Rev. 1M, A1NO (1964)~
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bined with the known e&ctive mass m* would enable a
determination of the cyclotron mass in a uniform 6eld
which, in the absence of band eBects, is determined.
solely by electron-phonon interaction. " This would
directly test the accuracy of our electron-phonon
calculations.

In Table VII we list the experimental values4' and.
theoretical estimates for the Landau parameters in Na.
Ke include a variety of diferent theoretical approxima-
tions for comparison purposes. Approximation (I)
corresponds to using the Hubbard approximation as
calculated by this author in I for the electron-electron
part and. calculating the electron-phonon part with
many plane waves and Ashcroft's pseudopotential. In
approximation (II) we use just one plane wave in the
electron-phonon part, while in (III) we use the low
node pseudopotential and one plane wave. In (IV)
and (V) we vary the electron-electron part, using
Hedin's" results (IV) and a simple screened-exchange
approximation (V). These are combined with the
electron-phonon parts as in approximation (I).

The over-all agreement between the experimental
values and the theoretical estimates is remarkably good.
There are some discrepancies between the different
estimates but these are unfortunately largest in Ao
and A1. Comparing 6rst the different electron-electron
calcula, tions (I), (IV), and (V), the best agreement is
with the Hubbard approximation, approximation (I).
Bo is somewhat off in (I), while (IV) and (V) have re*/te
too low and A~ considerably o6. The best over-all
agreement is with approximation (II). Approximation
(III) is particularly bad on the mass value. However,
it is clear that it would be premature at present to
claim that one approximation was derisively better than
the others. This is perhaps not too surprising since the
difference between approximations (I), (II), and (IV)
ls not vely great.

The theoretical estimates are qualitatively correct
for all the six independent parameters and even
quantitatively correct for most of them. This must be
regarded as a major success for the approximations.
As we have stressed before, there is no u priori reason
to assume that the interaction effects are weak. Thus
one might expect that A~, B~ 1 for small values of l
and indeed such values ar'e found in He'. The theoretical
estimates based on the simple approximations predict
much smaller values in good agreement with experi-
ment. It clearly shows that there must be considerable
cancellations among the higher-order graphs for the
Coulomb interaction, which we have omitted. It will be
interesting to see if the calculations can predict the
correct trends for the lower density alkalis. This
question will be left to a later publication.

Leggett" has recently derived some inequalities for
4' The experimenta1 values are the best available at present and

&vere communicated to the author by %. M. Walsh, Jr. , and by
S. Schultz and G. Dunifer. The B„di6er a little from those quoted
in Ref. 29.

~ A. J. Leggett, Ann. Phys. (¹Y.) 46, 76 (1968).

TAsr.E VGI. The experimental values' and theoretical estimates
for the Landan parameters in K. Theory ill Electron-electron
calculated by author in I and electron-phonon using Lee-Falicov
potential. & (II) Electron-electron from Hedin' and same electron-
phonon.

Ao
AI
Ag
Bo
Bl
Bg
sr~/m

Expt.

—0.030+0.005—0.28 +0.1
y0.06 ~0.15

1.21 +0.01

—0.21

Theory

—0.58
+0.04—0.02—0.24—0.04
+0.003

1.11

a References 4, 7, 33, and 42.
b Reference 8.
o Reference 19.

the Landau parameters in metals. He shows that

m~ yi*
&m — &m

1+A t 1+Br

It is clear from the results in Table VII that both the
experimental values and theoretical estimates satisfy
the relations (32).

In K the experimental values are much less well
known at present for the 8„.Our earlier electron-ga, s
calculations in I were restricted to the densities r, =, 2
and 4, so that we cannot use them for K, where r,=4.87.
More extensive calculations were done on the effective
mass and spin susceptibility, so that we can quote
results for m* and Bo. Hedin" calculated at both r.,=4
and r, =s. %'e will linearly interpolate between these
two values to obtain estimates for K. In Table VIII we
quote the results. An accurate comparison is really
only possible for m*/m and As at present. Hedin's
results are combined with phonon calculations from
Sec. IV and shown as approximation (II). There are
considerable deviations in both m*/m and As in this
approximation. The mass value calculated with the
Hubbard approximation is better. More accurate
measurements are clearly needed on K to draw a firm
conclusion.

In summary, we 6nd very good agreement between
the calculated, and measured values of the Landau
parameters for Na. In view of the obvious crudity of
the electron-electron part, it is indeed surprising
that the estimates are so dose. The best agreement
with experiment is obtained by using the Hubbard
approximation, as in I, for the electron-electron
and the Ashcroft pseudopotential in the electron-phonon
calculatlolis.
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