858

K. LAKATOS AND ]J.

A. KRUMHANSL 175

Z1u=Y Gt (Yot Vo= Vit Y15)Grat (Yot Y 10)Grot+ Vo(Gut-GotGrt-G13) 42V 5(Got- Gur)+ VoG

+ (Y 1+ YV 14)Gs+ Y 12:(G1— G4+ G5—Ghs)

Zyp=—YGs— Vet Yt VutV10)Gu— (Yot Vo=V 15)Gro— (Vo Vot V1otV 14)Ga— Vs(Gi+2G5+Gs)

and

Z13=Y§(Go+G)+ YV §(Gr+Go)+2Y 1(Gro+ G12)+ 2V 5(Got Guit-Gra) +2Y o(Gra+G1s)+ Y 10Gs

The Green’s functions are then given by

+ YV 11G5+2Y 120G+ 2Y 1G4+ V4G

G2:(1,1;0)=G1(14Z9)+G2Z 1+ 2GsZ5+Gu(Z2—2Z6)+GsZs—GeZy

G..(1,1; ) =G1H+4GZ1+GsZ3—4(Gut-Gro) 212,

and

+(Gr+Go)Z 13+ 2(Gro+G12) Z 11+ 2(Gra+-G1s) Z 10,

Gay(L,1;0) =G1Z4+GoZ ot 2GsZ s+ Go(Z1— 22 5)+GsZs— GoZs+ (GrtGo) Z15+ 2(Gro+G12) Z10+ 2(G1a+G13) Z1s -

PHYSICAL REVIEW

VOLUME 175,

NUMBER 3 15 NOVEMBER 1968

Landau Fermi-Liquid Parameters in Na and K

T. M. Rice
Bell Telephone Laboratories, Murray Hill, New Jersey 07971
(Received 14 June 1968)

Theoretical estimates are presented for the Landau Fermi-liquid parameters in Na and K, and a com-
parison is made with the experimental values. The calculations are presented in two parts. The effects of
the Coulomb interaction between the electrons are taken from previous calculations which use the random-
phase approximation and include exchange diagrams approximately. The electron-phonon-interaction effects
are calculated using the observed phonon spectra and a screened pseudopotential approximation for the
electron-ion coupling. The theoretical estimates for Na are found to be in surprisingly good agreement with
six independent experimentally determined parameters. In K, the experimental values are less accurate, but

a preliminary comparison is encouraging.

I. INTRODUCTION

HE Landau theory of a Fermi liquid! as extended

by Silin? has been very successful in explaining

the qualitative nature of many-body effects in metals.
In this theory the effects of the interactions are char-
acterized by an effective mass m* and an interaction
function f(kek’e’) which are to be determined from
experiment. Until recently, however, the experimental
information on the size of f was very limited. The
observation of spin waves®* and high-frequency
plasmalike waves®7 in Na and K has led to the deter-
mination of several of the Legendre coefficients of the

1L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956)
[English transl.: Soviet Phys.—JETP 3, 920 (1956)7].

2V, P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (1957) [English
transl.: Soviet Phys.—JETP 6, 945 (1958)].
( 3 P7.) M. Platzman and P. A. Wolff, Phys. Rev. Letters 18, 280

1967).

48.'Schultz and G. Dunifer, Phys. Rev. Letters 18, 283 (1967).

5 W. M. Walsh, Jr. and P. M. Platzman, Phys. Rev. Letters 15,
784 (1965).

6 P. M. Platzman and W. M. Walsh, Jr., Phys. Rev. Letters 19,
514 (1967); 20, 89(E) (1968).

7 P. M. Platzman, W. M. Walsh, Jr., and E-Ni Foo, Phys. Rev.
172, 689 (1968).

function f. In this paper we will be concerned with a
comparison of the experimental values of these coeffi-
cients, the Landau parameters, with theoretical
estimates based on microscopic theory.

In metals there are two sources of interactions
between electrons, (a) the Coulomb repulsion between
two electrons and (b) the attraction caused by the
virtual exchange of phonons. There are, in addition,
effects due to the periodic potential of the ions. Na and
K have Fermi surfaces which deviate from the free-
electron sphere by less than 0.29%,8 so that we will, for
the most part, ignore band-structure effects. The
contribution to interaction effects from the Coulomb
repulsion, which we will refer to as the electron-electron
contribution, may then be obtained from calculations
for a uniform electron gas.? The derivation of the

8 For Na, M. J. G. Lee, Proc. Roy. Soc. (London) A295, 440

E1966g; for K, M. J. G. Lee and L. M. Falicov, ibid. A314, 319
1968).

9 A. W. Overhauser [Phys. Rev. 128, 1437 (1962); 167, 691
(1968)7 has suggested that at low temperatures K may not be a
normal metal. Our calculations and the interpretation of the ex-
perimental data, which we shall cite, are based on the assumption
that Na and K are normal metals.
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Landau theory for an electron gas with purely Cou-
lombic repulsion has been studied by several authors
and a detailed treatment may be found in Nozidres’s
book. Prange and Kadanoff* have derived a Landau
theory for electrons interacting via the exchange of
virtual phonons. Recently Prange and Sachs? have
given a derivation of the Landau theory in the presence
of both electron-electron and electron-phonon inter-
actions.

The electronic-density parameter 7, takes the values
3.96 in Na and 4.87 in K. (7, is defined such that
§mrs® is the volume per electron in units of the Bohr
radius cubed.) These values are intermediate between
the high density (small 7;) and low density (large 7,)
regimes. There is no small parameter in the theory
which would allow us to calculate f unambiguously.
The basic scheme which is used to evaluate f at
metallic densities is the random-phase approximation
(RPA) along with the approximate inclusion of so-
called exchange diagrams. Since these approximations
are widely used elsewhere, for example, in pseudopoten-
tial theory, etc., it is of real interest to have some
direct test of their accuracy. The first calculation of the
effective mass and spin susceptibility for the alkalis
using such an approximation, suggested by Noziéres
and Pines,’® were carried out by Silverstein.141% Sub-
sequently the present author'®” calculated the full
Landau interaction function f(kek’e’) using the
Hubbard approximation!® scheme which is similar to
the Noziéres-Pines approximation. The Landau interac-
tion fhas also been calculated by Hedin® in a somewhat
different approximation.

The calculation of the electron-phonon contribution
is greatly simplified by using Migdal’s® result, which
shows that only the lowest-order one-phonon exchange
graph is important. The higher-order terms are reduced
by powers of the ratio of the electronic and ionic masses.
The calculation depends on an accurate knowledge of
the phonon frequency sepectrum and the electron-ion
coupling. The former has been measured directly by
neutron scattering in Na? and K.2 The latter we
estimate using a screened pseudopotential approxima-
tion. It would be of interest if the accuracy of this

1 P. Nozieres, Theory of Interacting Fermi Systems (W. A.
Benjamin, Inc., New York, 1963).

(1;16%4{)' E. Prange and L. P. Kadanoff, Phys. Rev. 134, A566

2R, E. Prange and A. Sachs, Phys. Rev. 158, 672 (1967).

18 P. Nozitres and D. Pines, Phys. Rev. 111, 142 (1958).

148, D. Silverstein, Phys. Rev. 128, 631 (1963).

18 S. D. Silverstein, Phys. Rev. 130, 912 (1963).

16 T. M. Rice, Ann. Phys. (N. Y.) 31, 100 (1965).

17'T. M. Rice, in Proceedings of the Ninth International Conference
on Low-Temperature Physics (Plenum Press, Inc., New York,
1965), p. 108.

18 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957).

19 L. Hedin, Phys. Rev. 139, A796 (1965).

® A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)
[English transl.: Soviet Phys.—JETP 7, 996 (1958)].

A. D. B. Woods, B. N. Brockhouse, R. H. March, A. T.
Stewart, and R. Bowers, Phys. Rev. 128, 1112 (1962).

ZR. A. Cowley, A. D. B. Woods, and G. Dolling, Phys. Rev.
150, 487 (1966).
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latter approximation could be tested directly ; however,
at present, there is no direct way to measure the
electron-phonon contribution to the Landau param-
eters. The electron-phonon contribution to the effective
mass was first calculated in this manner by Ashcroft
and Wilkins.2® Since then a number of authors using
different pseudopotentials have also estimated the
effective mass.?425 However, there have been no calcula-
tions of the full f function.

In Sec. II we discuss the connection between the
microscopic theory and the Landau theory in the
presence of both the electron-electron and electron-
phonon interactions. We will derive the results of
Prange and Sachs® from a different point of view.

In Sec. III we discuss the numerical calculations of
the electron-electron contributions. We tabulate the
Lengendre coefficients of the Landau f function as
calculated previously by the present author!® and also
by Hedin."® In general, observed quantities depend on
both the electron-electron and electron-phonon. There
are, however, some quantities which depend only on
the electron-electron interaction. For these quantities
we compare the experimental values in Na and K with
the theoretical estimates. We find surprisingly good
agreement between the two sets of values.

In Sec. IV we report on calculations of the electron-
phonon contribution to the effective mass and the
higher Landau coefficients for Na and K using several
different pseudopotentials and the observed phonon
spectra. We examine the effects of the band structure
by including more than one plane wave. These we find
are fairly small. Our results for the mass enhancement
are in agreement with previous calculations. We also
examine the magnitude of the departures from isotropy
due to the large anisotropy in the observed phonon
spectra. These we find are too small to be observable at
present.

Finally, in Sec. V we combine the two sets of calcula-
tions to give theoretical estimates for the Landau
parameters in Na and K. A comparison with the
observed values in these materials shows good qualita-
tive and even quantitative agreement between” the
theoretical estimates and the experimental values.

II. REVIEW OF LANDAU THEORY INCLUD-
ING BOTH ELECTRON-ELECTRON AND
ELECTRON-PHONON INTERACTIONS

First let us define our terms. We define the electron-
phonon contribution to include all graphs which involve
one or more phonon lines. The electron-electron contri-
bution includes all graphs with no phonon lines. Thus
the electron-phonon contribution includes electron-
electron interaction lines to all orders.

( 3 N) W. Ashcroft and J. W. Wilkins, Phys. Letters 14, 285
1965).

% A. Animalu, F. Bonsignori, and V. Bortolani, Nuovo Cimento
52B, 83 (1966).

% G. Grimvall, Physik Kondensierten Materie 6, 15 (1967).



Fi16. 1. The proper four-point
vertex function °T(p,p’,@). The
proper four-point vertex is
defined as including all graphs
which cannot be cut into two
separate pieces by cutting a
single interaction line carrying
the four-momentum vector a.

I, @
Pl+ L

v
+
vlel

It is customary in discussing the electron-phonon
problem to start from the self-energy. We will take a
different approach and begin by noting the Landau
interaction function f(ke,k’o’) is defined in microscopic
theory (see Nozieres') as a certain limit of the proper
four-point vertex function °T', shown in Fig. 1.

f(kok'e")=1lim lim 2rizze °T (ko k'o’,0) (1)
&0 g/e—0

= ZWizkzk: Of‘() (ko’,k’(r') . (2)

We will use, with certain exceptions, Noziéres’s nota-
tion. 2y is the quasiparticle renormalization factor and
the proper four-point vertex is defined as including all
graphs which cannot be cut into two separate pieces by
cutting a single interaction line carrying the four-
momentum vector &= (q,e). The four-momentum
vectors p, = (kw), and p’ are taken on the energy shell
and |k|=Fkr. The other limit of the four-point vertex
function defines the two-particle scattering function
which we denote by g(ke,k'o”) 2:

g (ko k'e’) = l}ino l/im 2rizze T (ke k'e’,0)  (3)
&0 gle—o

= drizzw °T (ko,k'a’) . 4)

Migdal® showed some years ago that the calculation
of electron-phonon effects was greatly simplified by the
existence of a small parameter, i.e., the ratio of electronic
and ionic masses (m/M). We may apply his results
directly to show that the contribution of graphs of the
form shown in Fig. 2 are all of order (m/M)Y2. The
difference in momenta in all of these graphs is typically
of order kp and it follows at once from Migdal’s argu-
ments that they give negligible contributions to f.
The graphs of the form shown in Fig. 3 are not small.
They may be included by using electron-phonon vertices
and phonon propagators which are fully renormalized
for Coulomb interactions.

Fic. 2. Examples of phonon renormalization effects which are
negligible by Migdal’s theorem. A wavy line denotes a phonon
propagator and a dashed line a Coulomb interaction line.

NN/
S ¢

26 We denote the scattering function by g (ke ,k's’), rather than
A (ko X's’) as Nozitres (Ref. 10) has done, to avoid a conflict
with the notation 4 , for the Legendre coefficients of the f function.

T. M.
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In graphs of the general form shown in Fig. 4 the
intermediate electron and hole momenta are constrained
to differ by &. Since we require the limit ® — 0, we may
not simply rule out such graphs. Let us consider a
representative graph shown in Fig. 4(b). To avoid
unessential complication let us follow Migdal® and take
a constant electron-phonon coupling and a Debye
model. We shall work throughout this paper at 7=0.
Denoting by T’y the contribution of this graph, we
see that

F2(P’p!’é)~)\2/d4pu®(P_P//>SD(P//__p/)
XGo(p"+30)Go(p"—3a). (5)

We will use atomic units. D(p) is the phonon prop-
agator, Go(p) is the unperturbed one-electron prop-
agator, and A is the dimensionless electron-phonon
coupling constant. It is straightforward to evaluate
T',? and, examining the result for both p and p’ on the
energy shell and on the Fermi surface, we find that

kpq+€

kpq—é
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Fic. 3. Examples of Coulomb
renormalization effects.

)\2
To(k,k' @)~ (m —mif(krq— | €| ))
k[«'2q

wo/2
% / d(0(+19—0(—3e), (6)

—wol2

where w; is the Debye frequency. Taking the limits
appropriate to the f function, we see that
>\2
lim lim I‘g(k,k’,o'))fv;e—,

&0 g/e0 7

Q)

while in the other limit, appropriate to the scattering

1 @ W
p! P pl-¢ P+
Hn_& iy @
pll- P+
@ @
P 3 p-2 P+%
(a) (b)

Fic. 4. (a) One-phonon-exchange graph; (b) and (c), graphs which
carry intermediate four-momentum @.
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function g,

A2\ Y2
lim lim Pz(k,k’,é)~—0(——> . 8)
a0 g/eo k 7 M
This shows that only the lowest-order one-phonon
exchange graph contributes to the scattering function
g(kok'o’). To calculate the electron-phonon contribu-
tion to the Landau f function one must include all
graphs of the form shown in Fig. 4(b).

It is customary to formulate the Landau theory
in terms of the f function. However, it is equally
possible to use the g function instead. The g-function
formulation is more convenient in discussing anisotropy
due to the phonons since, as shown above, the phonons
enter in a much simpler way. We will, therefore, in
Sec. IV express our results for the electron-phonon
system in terms of the g function.

For an isotropic situation the two functions f and
g are simply related. They may be expanded in Legendre
polynomials in the angle 6 and in the absence of
spin orbit coupling may be separated into singlet and
triplet contributions. Thus

fke k' )= (fi*+ fioo-a') P1(cosbi.xr) . )
=0
We define our Fermi-liquid coefficients such that

Sty

m*kp
A= —*fz‘ y
w2(2141)

We also define an additional set of parameters g,;
and g,,; which are related in the same way to g as 4;
and B; are to f. In an isotropic material these two sets of
parameters are connected by a simple relationship:

gea=A41/(14+47), gai1=Bi/(14+B). (11)

In a general case, such as a real metal where there are
anisotropies in the shape of the Fermi surface, in the
phonon spectrum, etc., the two functions f and g are
related by an integral equation.!

fkok'o")=g(kok'e)+ 3 f(ka k")
kflv-lf

Xo(ewr—u)g(k"e" k'o’). (12)

The arguments that we have given here to show that
only the lowest-order one-phonon exchange contributes
to g are quite general and apply to anisotropic situations.
The result that we find is that

gen (ko k'o") = 2mizz T'1eP (k,k')8,,00 (13)

where I'1°?(k,k’) is the contribution of the graph shown
in Fig. 4(a). The subscript or superscript ep denotes the
inclusion of only electron-phonon contributions, and ee
will denote only electron-electron contributions. Quan-
tities which include both will be unadorned.
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The electron-electron contribution and the electron-
phonon contribution to the four-point vertex function
simply add, in the forward scattering limit, and we get
the result, due to Prange and Sachs,?

g(ka ko) = 2mizizn (Toe® (ko k')
+Ter(kk),,00). (14)

The combined f function is then determined through
the integral equation (12).

An important result which can be derived using
Migdal’s arguments'?:?” is that

Voo (K)ze0 (k) = v~ (k)3 (k) , (15)

where v is the magnitude of the quasiparticle velocity.
Thus we can rewrite Eq. (14) as

8 (ko K'o") = 2mizee (k) zes (k') (v (k)2 (k') / veo (k) v (k"))
X[Tee® (ko k'c")+T1o7 (k,k)8,,0-].  (16)

With these results it is possible to discuss the effects
of the electron-electron and electron-phonon interac-
tions on the transport and equilibrium properties of the
system. Such a discussion may be found in the articles
by Heine, Nozitres, and Wilkins?’ and Prange and
Sachs' and we shall not repeat it here.

III. ELECTRON-ELECTRON INTERACTION

We turn now to the evaluation of the contribution
from the electron-electron interaction. The basic
approximation used is one in which all diagrams in the
RPA are included exactly and the lowest class of
exchange diagrams are approximated. Hubbard!® and
Noziéres and Pines'® have shown that for large momen-
tum transfers (or short distance) the exchange graphs
will cancel half the direct RPA terms. Various authors
have calculated transport coefficients using interpola-
tion schemes which are based on this result. Silver-
stein'#15 calculated the effective mass and Pauli spin
susceptibility using the numerical interpolation scheme
proposed by Noziéres and Pines.® The present
author'®!” calculated the Landau function f(kek’s")
using an analytic interpolation scheme proposed by
Hubbard.’® Hedin'® calculated the Landau f function
to second order in a staticly screened interaction.
Because the interaction is staticly screened, his calcula-
tion is not an exact RPA calculation of the direct terms.
He does, however, include the second-order exchange
graphs explicitly, whereas the author has only included
these graphs approximately. We take the view that the
size of the differences between these two calculations is
indicative of the size of the errors in approximating the
exchange graphs. There are, of course, many classes of
graphs whose magnitude has not been estimated at all
and the more serious error lies in neglecting these graphs.
There is no small parameter in the problem, so that

(1;763). Heine, P. Nozitres, and J. Wilkins, Phil. Mag. 13, 741
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Tasre I. The Landau parameters calculated for an electron
gas with purely Coulomb interactions.

Hubbard approx. Screened
from I Hedin exchange
rs=2 re=4 r,=2 r,=4 7,= rs=4
A -0.35 —0.69 —033 —055 —0.64 —0.32
Ayee —0.001 +0.06 —0.05 —003 —0.015 —0.04
A% —-0.03 —005 -002 —0.025 —092 —0.005
A0 0.004  0.004
Byee —0.235 —0.28 -—025 —-031 -—032 -—0.32
By —0.06 —0.06 -—008 —0.09 -—009 —0.04
Byee —-003 —-002 -—0.01 —0.001 0.005 —0.005
Bgee 0.004 —0.001
X/Xo 1.31 1.47 127 14 1.45 1.42
Mee* /M 1.00 1.06 095 097 0.985  0.96
Sum rule +0.20 +0.23 +40.10 -40.03 4011 +40.26

there is no justification for ignoring such contributions.
We shall attempt to assess the reasonableness of our
results by comparing the calculations with experiment,
wherever possible. We know that there are many
cancellations among higher-order graphs, so that great
care must be exercised in going beyond the simpler
approximations. It is possible that merely including
more diagrams will not lead to more accurate results,
especially if sum rules, conservation laws, or Ward
identities are violated.

In Table I we quote the results found for the electron-
electron contributions to the Landau parameters 4 ,°°
and B,°°. A detailed description of the author’s calcula-
tion of the Landau f function is given in Ref. 16
(hereafter referred to as I) and we will not repeat it
here.?8 The results quoted in Table I were found from
numerical integration of the results in I. For comparison
we quote the values found by Hedin.® These were
obtained by numerical integration using the values for
the f function quoted in Table V of his paper. We quote
only the values that do not include the quasiparticle
renormalization factors. As pointed out in I, there are
large cancellations between the quasiparticle renormal-
ization factors and vertex corrections. The cancellations
are exact only in the limit of zero momentum transfer
but calculations, reported in I, of the lowest-order
vertex corrections suggest that approximate cancellation
will occur at higher momentum transfers. We take the
position that, omitting all frequency-dependent vertex
corrections and all quasiparticle renormalization factors,
is a better approximation than including the latter,
but omitting the former.

There is good qualitative agreement between the
two calculations. The only major discrepancy is in the
sign of 4. We find 4% positive for 7,2 2 correspond-
ing to an enhanced effective mass, whereas Hedin finds
Ay negative and correspondingly a reduced effective
mass. Silverstein!4 using the Noziéres-Pines approxima-
tion also found an enhanced mass and we shall see
below that an enhanced mass is in better agreement with

28 Note our present definition of 4, differs from that in Ref. 15
by a factor of (2n+1)"%
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the experimental results for Na and K. There are also
significant differences in the magnitudes of some of the
other coefficients.

For comparison we show in Table I the results of a
calculation keeping only the lowest-order exchange
graph in the RPA for r,=4. In this approximation,
A»=B,. The results are much closer to Hedin’s but
there are significant differences in magnitude.

Brinkman, Platzman, and Rice?® have derived a sum
rule on the coefficients of the f function. They show
that due to the exclusion principle the exact f function
for an interacting electron gas satisfies the relation

Alea Blee
+ >=0.
1+4.¢ 1+Bgee

Bee

1+
1+

+i<zz+1>( (17
=1

B Oee

It is interesting to examine how well the various
approximations satisfy this sum rule. In the last
column of Table I we have tabulated the left-hand side
of Eq. (17), neglecting all terms with 72> 3.2 We see
that the sum rule is reasonably well approximated by
the calculations. Hedin’s values give rather better
numerical agreement than those calculated with the
Hubbard approximation. This is not surprising since in
his calculations the second-order exchange and direct
graphs are treated on the same footing, whereas in the
Hubbard approximation the direct terms are exactly
included and the exchange terms are approximated.
Thus, if we had extended the sum over / to infinity, the
Hubbard approximation would still not give the right
answer. On the other hand, Hedin’s calculation would
not satisfy the sum rule either. This can be seen by
examining the origin of the sum rule. The sum rule
is really a condition on g(ko,k's’) rather than on
f(ko k’s"). Thus in using Eq. (17) to give a condition on
f we are including some terms of arbitrary order in the
screened potential in g, whereas to satisfy the sum rule
we should expand g consistently to a given order. In
summary, neither approximation satisfies the sum rule
exactly, but neither violates it badly.

We now wish to compare the electron gas calculations
with experiment. In general, observed quantities depend
on both the electron-phonon and electron-electron
interactions. There are, however, some quantities which
depend only on the electron-electron interaction. These
offer a direct check on the accuracy of this part of the
calculation. The Pauli spin susceptibility X is independ-
ent of the electron-phonon interaction.!*3! It can be
determined in two ways, by direct measurement of the

20 W, F. Brinkman, P. M. Platzman, and T. M. Rice, Phys. Rev.
(to be published).

® In both these approximations f(ke,k's’) has a logarithmic
infinity as k' — —k. Thus the series is only conditionally con-
vergent. The true f function does not have this infinity (Ref. 29).
In using just the first few terms of the sum for these approximate
f functions, we wish to examine how well the first few coefficients
can mimic the behavior of the true f function.

3t C, Herring, in Magnetism, edited by G. T. Rado and H.
Suhl (Academic Press Inc., New York, 1966), Vol. IV.
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power absorbed in CESR by determining m* and By
and using the relation

X m*/m

Xo 14+By

(18)

where X is the spin susceptibility in the absence of
interactions. The parameters m* and By are the observed
values and contain electron-phonon effects which cancel
in the ratio of Eq. (18). Similarly, the combination

k m*/m

ko 1440

is independent of the electron-phonon interaction. x may
be regarded as the “‘compressibility” of the electron gas.
However, 4, has not been measured and the observed
compressibility of a metal such as Na and K depends on
a number of terms besides , so that there are no reliable
values for this quantity.

The Pauli spin susceptibility has been measured
directly in Na.®? Schultz and Dunifer* have measured
By by studying the spin-wave spectrum in Na and K in
the presence of a magnetic field. We combine their
result with the value the effective mass found by
Grimes and Kip?®? to estimate the enhancement of the
susceptibility from Eq. (18). In Table II we tabulate
these results and the theoretical estimates. The spin-
wave value is some 109, lower than the latest directly
measured value. In view of the difficulties in making an
absolute power absorption measurement, necessary to
obtain the Pauli spin susceptibility directly, the agree-
ment appears reasonable. The spin-wave value is in
better agreement with the theoretical values from the
Hubbard approximation and from Hedin’s results.
In K there are no direct spin susceptibility measure-
ments and the spin-wave data are much less accurate
at present. Kaeck?* has estimated the spin susceptibility
of K by studying the Knight shift in a series of Na-K

(19)

TaBLE II. Esxperimental and theoretical estimates for the
enhancement factor of the spin susceptibility in Na and K. Expt.
(1) Na, Schumacher and Vehse,* K, Kaeck.>? Expt. (2) From the
spin-wave data® and effective mass.d Theory (1) using the Hub-
bard approximation from I. Theory (2) using Hedin’s calculation.

X/Xo Na K
Expt. (1) 1.74+0.1 1.5840.1
2) 1.514:0.06 1.68+0.25
Theory (1) 1.47 1.55
2) 1.41 145

a Reference 32.
b Reference 34.
¢ References 4 and 42.
d Reference 33.

2 R. T. Schumacher and W. E. Vehse, J. Phys. Chem. Solids
24, 297 (1963).

8 C, C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963).

3 J. A. Kaeck, this issue, Phys. Rev. 175, 897 (1968).
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Tasre ITI. Experimental values* and theoretical estimate for
s, in Na. Theory (1), Hubbard’s approximation calculated by
present author in I. Theory (2), Hedin’s calculations.

85,0 8a,1 83,1 a,1 83,27 4a,2
Theory (1) —1.82 +0.12 —0.03
2 —0.74 +0.07 —0.025
Expt. —0.053-0.06

a References 4, 7, and 42.

alloys. He takes the directly measured value in Na as a
reference point and extrapolates to pure K. In Table IT
we show this value and the theoretical estimates for K.
The calculated value for K in the Hubbard approxima-
tion has been found by extrapolation from the results
quoted in I. The comparison of the experimental and
theoretical results is encouraging. The theory gives
slightly lower answers for the enhancement of the
susceptibility than observed but in view of the crudity
of the approximation it is perhaps surprising that they
are so close.

As we discussed above, Migdal’s result® implies
that only the lowest-order one-phonon exchange
diagram enters the scattering function g(ks,k’c’). The
contributions of the electron-phonon interaction to the
singlet and triplet parts of g are the same and the
combination g,,;— g, Will depend only on the electron-
electron contributions. Note that because of the non-
linear relation between the interaction function f and
the scattering function g, Eq. (12), this is not true of
A1~ B,. Similarly, all electron-electron exchange graphs,
i.e.,, graphs whose spin dependence has the form
g(ko k'o’)=g(k,k’)d, .-, will cancel from the combina-
tions gs,1—gq,1. Thus a comparison of the measured and
calculated values of g,,1—g,,: directly tests the spin-
independent electron-electron part of the scattering
function g. The high-frequency waves found by Walsh
and Platzman®7 measure A4; for />2 and therefore
neglecting anisotropies g,,; for >2. The spin-wave
spectrum, in principle, can give B; for all /; so that an
experimental determination of g, —g,,; for 122 is
possible. At present there are preliminary measurements
of A, and B, in Na. In Table IIT we quote the results
and compare them with the calculated values. We also
tabulate the calculated values of gs,0— ga,0 and gs,1—ga,1,
though at present there are no experimental values for
gs,0 and go,1. The theoretical estimates agree with the
measured values within experimental values. The large
uncertainty in B; at present reduces the significance of
this test.

In summary, we find, where we have been able to
make comparison, a surprisingly good agreement
between the experimental values and the available
theoretical estimates. In Sec. V we compare the
combined electron-electron and electron-phonon results
with experiments.
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IV. ELECTRON-PHONON INTERACTION

As we have remarked previously, the calculations of
the electron-phonon contribution is greatly simplified
by Migdal’s? result. In contrast to the electron-electron
part we need only calculate one graph, that shown in
Fig. 4(a). Thus we would expect our electron-phonon
calculations to be more accurate than the electron-
electron calculations. We need to know, however, the
effective electron-ion coupling which, in fact, involves
electron-electron interactions to all orders. We shall use
a linearly screened pseudopotential approximation to
describe the electron-ion coupling.

The contribution of the graph in Fig. 4(a) may be
written immediately :

27I'izk ek’ eeI‘ 1ep (k(")k,“l)
1 & (k—k’)
- z(
2NM ~ \wy(k—Kk)

)Vps(k—k’)“’[1+<r'0’], (20)

where N is the number of ions, M is the ionic mass, &\
and w), are the polarization vector and frequency of the
phonon with wave vector k—k’ and index \. Vys(q)
is the screened pseudopotential. We will always choose
Vos(q) such that it has the correct long-wavelength
limit and passes through the values determined by
fitting the Fermi surface,? at reciprocal lattice vectors.

The frequency spectrum of the phonons in a number
of symmetry directions has been determined by neutron
scattering in both Na and K. We follow the method
suggested by Darby and March® and expand the
spectrum in cubic harmonics, fit the coefficients to the
symmetry directions, and interpolate in this way for
arbitrary directions in reciprocal space. We assume that
the polarization vectors are purely longitudinal or
transverse, so that the transverse phonons only enter
via umklapp processes. Grimvall?® has investigated this
approximation for Na. He finds that it tends to under-
estimate the enhancement of the effective mass by about
10%. This is less than the differences in g which arise
from the use of different pseudopotentials.

Vps (K)/ [Vpg (0]

Fic. 5. The pseudopotentials used for Na. Solid curve I,
Ashcroft’s pseudopotential (Ref. 36) undamped at large K. Solid
curve II, Ashcroft’s pseudopotential (Ref. 36) with damping
factor. Dashed curve, the low node pseudopotential. Solid points
denote values at reciprocal-lattice vectors determined from de
Haas-Van Alphen data by Lee (Ref. 8).

s J, K. Darby and N. H. March, Proc. Phys. Soc. (London)
84, 591 (1964).
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We will discuss the results for Na first. Ashcroft®
has proposed a simple form for the pseudopotential of
the alkali metals,

Vpst(q)=—N2(cosqR.)/q%(g,0) , (21)

where e(q) is the Lindhard dielectric function, and
= (raokp) and R,=0.88 A for Na. In Fig. 5 we plot
Aschroft’s pseudopotential for Na. The points on Fig. 5
are taken from Lee’s fit to the Fermi surface of Na.® In
the one-plane-wave approximation, which we are using,
only momentum transfers ¢ 2kr are relevant. We see
that Ashcroft’s form fits the de Haas—van Alphen data
well in Na. Fong and Cohen?” have fitted the optical
spectrum of NaCl and obtain pseudopotentials for both
Na and Cl atoms. Their pseudopotential also has a note
near 2kp. It is interesting to vary the position of the
node and see what effect this has on the parameters.
We have arbitrarily constructed a potential with a
node near 1.5kr, shown as the dashed curve in Fig. 5,
which we shall refer to as the low node potential.

We have investigated convergence of the one-plane-
wave approximation for Na. In general, the matrix
element, in the nearly-free-electron approximation for
scattering from a state |k) to a state |k}, has the form

My~ Y Cw,cCr oty (K+G'—k—G)

G,G’

XVos(k'+G'—k—G), (22)
where q is the momentum transfer reduced to the first
zone and

Ck,0= CO )

Cr oz Von(G)/ (k2 2m— (k4 G)/2m), G20, 23

Co is a normalization constant and the vectors {G} are
the reciprocal lattice vectors of the crystal. We have
included the twelve (110) vectors. The momentum
transfers in the pseudopotential may now be larger
than 2kp. The Ashcroft pseudopotential (curve I in
Fig. 5) is too large at large k. We have arbitrarily
reduced it in magnitude to curve II in Fig. 5 by multi-
plying by the factor (k/2.3kr)~* for k2 2.3ks.

In Table IV we list the results of our numerical
calculations. It is convenient to tabulate the moments
of the scattering function g., (ko k'c’). We define

A A

Mep R F
-_— Zep (ko‘,k'o’)Pl(COSBk,k') y (24)
47 4r

272

gl°P=

where we have dropped the spin suffix since the singlet
and triplet amplitudes are equal. The average effective
mass including only electron-phonon interactions is
given by

M/ Mep*=1—go°P. (25)

36 N, Ashcroft, Phys. Letters 23, 48 (1966).
37 C, Y. Fong and M. L. Cohen, Phys. Rev. Letters 21, 22
(1968).
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TABLE IV. The moments of the scattering gop(ko,k’a’) due to
electron-phonon interaction in Na evaluated using (1) one-plane-
wave and Ashcroft pseudopotential,® (2) one-plane-wave and
the low node pseudopotential,® and (3) multiplane wave and
Ashcroft pseudopotential.®

£0°P £1°P £2°P £s°P
1) 0.13 0.05 —0.001 0.002
2) 0.08 0.04 0.02
3) 0.17 0.06 0.01 0.001

a Reference 36.

The results for go°® show a considerable variation.
The lowest value is obtained using the low node
potential. Previous calculations of the effective mass
give values for go°® which range from 0.13 (Animalu
et al.?*) t0 0.16 (Grimvall?®), while Ashcroft and Wilkins??
quote 0.15. These authors use pseudopotentials which
are similar to Ashcroft’s with a node near 2kr. We
conclude that go°° is quite sensitive to the position of
the node. The resistivity is extremely sensitive to the
position of the node and we expect that the low node
potential would not give good estimates of the resistiv-
ity. The results for the higher moments are much less
sensitive to the pseudopotential form.

A comparison of rows 1 and 3 shows that go°® is
enhanced by some 309, by going beyond the one-plane-
wave approximation. This enhancement is clearly
strongly dependent on the behavior of the pseudo-
potential at large k£ and is, for example, much larger
again with the undamped Ashcroft potential. Unfor-
tunately, there is no good criterion for deciding the form
at large & of the pseudopotential and there is no direct
experimental test of the size of the electron-phonon
contribution in the alkalis. The higher moments g;°®
are not too sensitive to the different approximations.

In K, Lee and Falicov® have fitted their de Haas-van
Alphen data with a nonlocal pseudopotential. Their
pseudopotential has the form

Vs ®(@)=Vi(g)+Vuu(g),

where V1.(¢g) is a local pseudopotential and Vi, is the
nonlocal part which, however, for scattering on the
Fermi surface, depends only on g. The Fermi-surface
data only determine the pseudopotentials at reciprocal
lattice points. We need, in the one-plane-wave approxi-
mation, a pseudopotential for all values of momentum
transfer ¢<2kr. We interpolate the local part from the
known V'1(110)=0.35 €V by using an Ashcroft form.
For Vxwi(g) we write

(26)

€(110)

V 3
w10 e(q)

F(g), 27)

where e(g) is the Lindhard dielectric function and F(g)
is the Fourier transform of a potential of the Heine-
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Abarenkov form,

Fxu(d)= go U(®PUL)PR), (28)

where P;(L) and P;(R) project the ! component of the
wave function on the left and right, respectively. U,(r)
has the form

Uz(l‘)=Uz, r< Ry

=0, >Ry (29)

and the following values are chosen: Ry=1.33X10-8
cm, Up=—1.5 eV, U1=3.0 eV, and U,=—33.5 V.

In Table V we quote the results for the parameters
g in K using the pseudopotential of Lee and Falicov,?
and also the earlier Ashcroft potential3 in the one-
plane-wave approximation. The phonon spectrum was
treated as in Na, by using a cubic harmonic expansion
to interpolate from the measurements of Cowley,
Woods, and Dolling.?? The differences between the two
sets of results are small, which is not surprising since
the two potentials in the region ¢< 2kr do not differ by
much and in particular the position of the node does
not vary greatly.

Finally, we turn to the question of anisotropy in
the Landau function. The phonon spectrum is quite
anisotropic in the alkali metals and in view of the
almost spherical Fermi surfaces one expects that this
will be a major, if not the greatest, source of anisotropy.
In discussing anisotropy due to the phonon spectrum it
is much simpler to use the scattering function g(ko,k'c").
However, the simplest expansion is not valid. One may
not expand in the form

gep(k";k"",)= Z g2n2m6¢r,a'K2ﬂa(R)K2ma(l}l) ) (30)

where K,* is the nth cubic harmonic of type a in the
notation of Von der Lage and Bethe,® normalized to 4.
This can be seen by considering the limit as k'—k — 0.
The phonon spectrum depends strongly on the direction
of k—K’ relative to the crystal axes even in the zero-
momentum limit. Thus from Eq. (20) limy_y_og®
depends on the direction in the limit. A form such as Eq.
(30) clearly cannot reproduce such behavior. We must,
instead, expand directly in terms of the vector k—k’

TABLE V. The coefficients g;°® for X calculated using (1) the
Lee-Falicov pseudopotential* and (2) the Ashcroft pseudopoten-
tial® in the one-plane-wave approximation,

goep glep gz°l’
(6)) 0.10 0.04 0.001
(2) 0.11 0.05 —0.001

s Reference 8.
b Reference 36.

#F. C. Von der Lage and H. A. Beth , Phys. Rev.
(198, g e ys. Rev. 71, 612
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and write
gr (ko k') =3 g (K=K, | o))
n=0 k—— k,
XKz::“(m)(%(l-i'o'o")) , (31

where ¢y is the remaining independent variable.
If we include only the anisotropy due to the phonon
spectrum and neglect all anisotropy due to band
structure, then it is clear that gy, will depend only on
|k—k’|. We may now expand gy.(|k—k'|) as a series
of Legendre polynomials in 0 x/, and we define for each
of the functions g:.°*(|k—k’|) a set of parameters
gan,1°® corresponding to the g;,; defined in Sec. II. The
parameters go,;°® are identical to the g;°® which we have
evaluated previously. We have also evaluated the
lowest anisotropic coefficients gs,:°® and g,:°?, where
1=0,1,2, and in Table VI we list the results for these
parameters. The calculations were carried out for
Na only, using the one-plane-wave approximation,
Ashcroft’s pseudopotential, and the observed phonon
spectrum. We see that the anisotropic coefficients are
small, <0.02. Therefore we expect deviations in any
quantity which, in the uniform system, depends on
the combinations 144, or 14 B; to be of order a few
percent or less. The coefficient g4,0°P is very small
because of a cancellation between large and small ¢ in
the function gs¢?(¢). This is consistent with the measure-
ments of the effective mass,® where the anisotropy was
found to be less than 29). The spin-wave spectrum
depends sensitively at long wavelengths® on the differ-
ence Bo— Bi. It can be shown,? however, that the form
of the spectrum is unchanged at long wavelengths and
all corrections involve the squares of the anisotropic
coefficients, ga,c, etc. Such corrections we would expect
to be very small, and it appears that the predicted size
of anisotropic effects even in the spin-wave spectrum is
too small to be measured at present.

V. CALCULATED AND EXPERIMENTAL
LANDAU COEFFICIENTS

In preceding sections we have discussed the calcula-
tion from microscopic theory of the electron-electron
and the electron-phonon contributions to the scattering
and interaction functions. It is customary to express
the experimental results in terms of the moments of the
Landau interaction function f(ke,k’c’). In Sec. IV we

TasLE VI. The anisotropy coefficients g,,:°? defined in (30) for
Na. These were calculated in the one-plane-wave approximation,
with the Ashcroft form of the pseudopotential.®

£0,1°P £4,1°P 86,1°P
=0 0.13 —0.002 0.005
=1 0.05 0.008 —0.003
=2 —0.001 0.012 —0.004

= Reference 36.
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expressed our results for the electron-phonon contribu-
tion in terms of the scattering function g(ke,k’s").
Strictly speaking, for an anisotropic situation we would
solve the integral equation (12) to obtain f from g. How-
ever, the anisotropy effects are quite small and less
than the uncertainties due to other sources in our calcu-
lations. We will therefore ignore the anisotropy effects
and use Eq. (11) to relate the moments of f and g.

We will consider Na first. The experimental values for
Na are considerably more accurate, at present, than
those for K. The paramagnetic spin-wave spectrum of
Na has been studied by Schultz and Dunifer.t They
fitted their transmission spectrum to the theory of
Platzman and Wolff® and Fredkin and Wilson® to ob-
tain Bo, By, and Bs. The spin-wave spectrum determines
only the triplet amplitude f¢. The high-frequency
plasma like waves lead to a determination of 4,, where

Tasre VII The experimental values® and theoretical estimates
for the Landau parameters in Na. Theoretical approximations:
(I) Electron-electron calculated by author in T, electron-phonon
in multiplane-wave and Ashcroft pseudopotential.b (II) Electron-
electron from I, electron-phonon in one-plane-wave and Ashcroft
pseudopotential.b (III) Electron-electron from I, electron-phonon
in one-plane-wave and the low node pseudopotential. (IV)
Electron-electron from Hedin®; electron-phonon as in approx.
(). (V) Electron-electron, screened-exchange approximation,
electron-phonon as in approx. (I).

Expt. Theory

(Na) @® am aan avy W
4o —062 —0.64 —0.66 —045 —0.17
Ay +0.12 +40.11 +40.10 +0.04 +0.03
4, —0.054+0.01 —0.03 —0.04 —0.03 —0.01 +40.006
As 0.0 +0.005 -4-0.004 +0.005
By —0.18+0.03 —0.14 -0.17 —-022 —0.17 —0.17
By +0.05+0.04 4001 —0.005 —0.02 —0.02 +40.03
B, 0.0 £0.05 —-0.01 —0.02 0.00 +0.01 -+0.006
Bs +0.000 4-0.001
m*/m  1.2440.02 1.26 1.21 115 119 117

a Reference 42.
b Reference 36.
¢ Reference 19.

7n22.57 So far A, and 43 have been measured in this
way in Na. The effective mass m* is an independent
parameter which has been measured by Azbel-Kaner
cyclotron resonance® and by specific heat.®4 In the
presence of both electron-phonon and electron-electron
interactions the effective mass is not simply related to
the Landau parameters. This gives us six independent
quantities to compare with the microscopic estimates.
At present there is no way of determining 4, or 4;.
These two would be particularly interesting to measure.
A knowledge of 4o would give the electron-gas compress-
ibility which in turn is related to the second derivative
of the ground state energy with respect to density.
Thus a knowledge of 4o would provide a direct test of
the various theoretical estimates of the correlation
energy of an electron gas. A measurement of 4; com-
¥ D. R. Fredkin and A. R. Wilson (to be published).

4 D. L. Martin, Phys. Rev. 124, 438 (1961).
4 W. H. Lien and N. E. Phillips, Phys. Rev. 133, A1370 (1964).
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bined with the known effective mass #* would enable a
determination of the cyclotron mass in a uniform field
which, in the absence of band effects, is determined
solely by electron-phonon interaction.”? This would
directly test the accuracy of our electron-phonon
calculations.

In Table VII we list the experimental values®? and
theoretical estimates for the Landau parameters in Na.
We include a variety of different theoretical approxima-
tions for comparison purposes. Approximation (I)
corresponds to using the Hubbard approximation as
calculated by this author in I for the electron-electron
part and calculating the electron-phonon part with
many plane waves and Ashcroft’s pseudopotential. In
approximation (II) we use just one plane wave in the
electron-phonon part, while in (III) we use the low
node pseudopotential and one plane wave. In (IV)
and (V) we vary the electron-electron part, using
Hedin’s"® results (IV) and a simple screened-exchange
approximation (V). These are combined with the
electron-phonon parts as in approximation (I).

The over-all agreement between the experimental
values and the theoretical estimates is remarkably good.
There are some discrepancies between the different
estimates but these are unfortunately largest in A,
and A4;. Comparing first the different electron-electron
calculations (I), (IV), and (V), the best agreement is
with the Hubbard approximation, approximation (I).
By is somewhat off in (I), while (IV) and (V) have m*/m
too low and A4, considerably off. The best over-all
agreement is with approximation (II). Approximation
(III) is particularly bad on the mass value. However,
it is clear that it would be premature at present to
claim that one approximation was decisively better than
the others. This is perhaps not too surprising since the
difference between approximations (I), (II), and (IV)
is not very great.

The theoretical estimates are qualitatively correct
for ‘all the six independent parameters and' even
quantitatively correct for most of them. This must be
regarded as a major success for the approximations.
As we have stressed before, there'is no a priori reason
to assume that the interaction effects are weak. Thus
one might expect that 4;, Bi~1 for small values of !
and indeed such values are found in He3. The theoretical
estimates based on the simple approximations predict
much smaller values in good agreement with experi-
ment. It clearly shows that there must be considerable
cancellations among the higher-order graphs for the
Coulomb interaction, which we have omitted. It will be
interesting to see if the calculations can predict the
correct trends for the lower density alkalis. This
question will be left to a later publication.

Leggett® has recently derived some inequalities for

“ The experimental values are the best available at present and
were communicated to the author by W. M. Walsh, Jr., and by
S. Schultz and G. Dunifer. The By, differ a little from those quoted

in Ref. 29.
4 A. J. Leggett, Ann. Phys. (N. Y.) 46, 76 (1968).
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TasLE VIII The experimental values® and theoretical estimates
for the Landau parameters in K. Theory (I) Electron-electron
calculated by author in I and electron-phonon using Lee-Falicov
potential.b (II) Electron-electron from Hedin® and same electron-
phonon.

Theory
Expt. 49)] (In
A, —0.58
A, -+0.04
4, —0.030-+0.005 —0.02
By —0.28 +0.1 —0.21 —0.24
B, +0.06 +0.15 —0.04
B, -+0.003
m*/m 1.21 +0.01 1.23 1.11

a References 4, 7, 33, and 42.
b Reference 8. .
¢ Reference 19.

the Landau parameters in metals. He shows that

m*
Zm, Zm.
144, 1+B;

m* -

(32)

It is clear from the results in Table VII that both the
experimental values and theoretical estimates satisfy
the relations (32). :

In K the experimental values are much less well
known at present for the B,. Our earlier electron-gas
calculations in I were restricted to the densities 7,=2
and 4, so that we cannot use them for K, where r,=4.87.
More extensive calculations were done on the effective
mass and spin susceptibility, so that we can quote
results for m* and B,. Hedin® calculated at both 7,=4
and 7,=5. We will linearly interpolate between these
two values to obtain estimates for K. In Table VIII we
quote the results. An accurate comparison is really
only possible for #m*/m and A, at present. Hedin’s
results are combined with phonon calculations from
Sec. IV and shown as approximation (II). There are
considerable deviations in both m*/m and A, in this
approximation. The mass value calculated with the
Hubbard approximation is better. More accurate
measurements are clearly needed on K to draw a firm .
conclusion.

In summary, we find very good agreement between
the calculated and measured values of the Landau
parameters for Na. In view of the obvious crudity of
the electron-electron part, it is indeed surprising
that the estimates are so close. The best agreement
with experiment is obtained by using the Hubbard
approximation, as in I, for the electron-electron
and the Ashcroft pseudopotential in the electron-phonon
calculations.
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